Powered by Deep Web Technologies
Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Current Status of Deep Geological Repository Development  

Science Conference Proceedings (OSTI)

This talk provided an overview of the current status of deep-geological-repository development worldwide. Its principal observation is that a broad consensus exists internationally that deep-geological disposal is the only long-term solution for disposition of highly radioactive nuclear waste. Also, it is now clear that the institutional and political aspects are as important as the technical aspects in achieving overall progress. Different nations have taken different approaches to overall management of their highly radioactive wastes. Some have begun active programs to develop a deep repository for permanent disposal: the most active such programs are in the United States, Sweden, and Finland. Other countries (including France and Russia) are still deciding on whether to proceed quickly to develop such a repository, while still others (including the UK, China, Japan) have affirmatively decided to delay repository development for a long time, typically for a generation of two. In recent years, a major conclusion has been reached around the world that there is very high confidence that deep repositories can be built, operated, and closed safely and can meet whatever safety requirements are imposed by the regulatory agencies. This confidence, which has emerged in the last few years, is based on extensive work around the world in understanding how repositories behave, including both the engineering aspects and the natural-setting aspects, and how they interact together. The construction of repositories is now understood to be technically feasible, and no major barriers have been identified that would stand in the way of a successful project. Another major conclusion around the world is that the overall cost of a deep repository is not as high as some had predicted or feared. While the actual cost will not be known in detail until the costs are incurred, the general consensus is that the total life-cycle cost will not exceed a few percent of the value of the electricity generated by the power reactors that have produced the waste. Of course, the current international situation is that no nation is currently willing to take any radioactive waste from another nation for deep disposal. This means that every nation will ultimately need to develop its own deep repository. This makes no sense, however--many nations have only a modest amount of waste, or do not have appropriate geological settings for a repository, or both. Ultimately, the need for one or more multi-national or international repositories will emerge, although so far this has not happened.

Budnitz, R J

2005-08-29T23:59:59.000Z

2

Current Status of The Romanian National Deep Geological Repository Program  

SciTech Connect

Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvement in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)

Radu, M.; Nicolae, R.; Nicolae, D. [Center of Technology and Engineering for Nuclear Objectives (CITON), ILFOV County (Romania)

2008-07-01T23:59:59.000Z

3

Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository  

SciTech Connect

The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

1994-11-01T23:59:59.000Z

4

Long-Term Environmental Monitoring of an Operating Deep Geologic Nuclear Waste Repository  

Science Conference Proceedings (OSTI)

In the present energy dilemma in which we find ourselves, the magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. Nuclear energy must be a major portion of the distribution. One often-cited strategic hurdle to the commercial production of nuclear energy is the apparent lack of an acceptable nuclear waste repository. This issue has been quietly addressed at the U. S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP; see http://www.wipp.energy.gov), the closest population center of significant size being Carlsbad, New Mexico. WIPP has been operating for about nine years, disposing of over 250,000 drum-equivalents of nuclear waste. From the standpoint of addressing operational and environmental risk, as well as public fear, WIPP has had extensive human health and environmental monitoring. The Carlsbad Environmental Monitoring and Research Center is in the Institute for Energy and the Environment, in the College of Engineering at New Mexico State University. Located in Carlsbad, NM, CEMRC has been the independent monitoring facility for the area around WIPP from 1993 to the present, i.e., from six years before disposal operations began to nine years of waste disposal operations (www.cemcr.org). Based on the radiological analyses of monitoring samples completed to date for area residents and site workers, and for selected aerosols, soils, sediments, drinking water and surface waters, there is no evidence of increases in radiological contaminants in the region of WIPP that could be attributed to releases from WIPP. Levels of radiological and non-radiological analytes measured since operations began in 1999 have been within the range of baseline levels measured previously, and are within the ranges measured by other entities at the State and local levels since well before disposal phase operations began in 1999. (authors)

Conca, J.; Kirchner, Th.; Monk, J.; Sage, S. [Carlsbad Environmental Monitoring and Research Center, IEE NMSU, 1400 University Drive, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

5

Geologic Repository at a Geologic Repository Operations Area at Yucca  

E-Print Network (OSTI)

On June 3, 2008, the U.S. Department of Energy (DOE) submitted its license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) for a construction authorization for a geologic repository pursuant to Section 114 of the Nuclear Waste Policy Act of 1982, as amended

Mountain Nevada; William J. Boyle

2008-01-01T23:59:59.000Z

6

Monitored Geologic Repository Test Evaluation Plan  

SciTech Connect

The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

M.B. Skorska

2002-01-02T23:59:59.000Z

7

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the...

8

Analytical Performance Models for Geologic Repositories  

SciTech Connect

This report presents analytical solutions of the dissolution and hydrogeologic transport of radionuclides in geologic repositories. Numerical examples are presented to demonstrate the equations resulting from these analyses. The subjects treated in the present report are: (a) Solubility-limited transport with transverse dispersion (Chapter 2); (b) Transport of a radionuclide chain with nonequilibrium chemical reactions (Chapter 3); (c) Advective transport in a two-dimensional flow field (Chapter 4); (d) Radionuclide.transport in fractured media (Chapter 5); (e) A mathematical model for EPA's analysis of generic repositories (Chapter 6); and (f) Dissolution of radionuclides from solid waste (Chapter 7).

Chambre, P.L.; Pigford, T.H.; Fujita, A.; Kanki, T.; Kobayashi,A.; Lung, H.; Ting, D.; Sato, Y.; Savoshy, S.J.

1982-10-01T23:59:59.000Z

9

Monitored Geologic Repository Project Description Document  

SciTech Connect

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

10

Final Supplemental Environmental Impact Statement for a Geologic Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Impact Statement for a Geologic Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation CorridorDOE/EIS-0250F-S2andFinal Envir Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation CorridorDOE/EIS-0250F-S2andFinal Envir This part of the Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -- Nevada Rail Transportation Corridor (DOE/EIS-0250F-S2) (Nevada Rail Corridor SEIS)

11

Final Supplemental Environmental Impact Statement for a Geologic Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Nevada Rail - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final Env Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -- Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final Env The Summary of the Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -- Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final Environmental Impact Statement for a Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County,

12

Constructing Hydraulic Barriers in Deep Geologic Formations  

Science Conference Proceedings (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

13

Performance Assessment Strategy Plan for the Geologic Repository Program  

Science Conference Proceedings (OSTI)

Performance assessment is a major constituent of the program being conducted by the US Department of Energy (DOE) to develop a geologic repository. Performance assessment is the set of activities needed for quantitative evaluations to assess compliance with the performance requirements in the regulations for a geologic repository and to support the development of the repository. The strategy for these evaluations has been documented in the Performance Assessment Strategy Plan (DOE, 1989). The implementation of the performance assessment strategy is defined in this document. This paper discusses the scope and objectives of the implementation plan, the relationship of the plan to other program plans, summarizes the performance assessment areas and the integrated strategy of the performance assessment program. 1 fig., 3 tabs.

NONE

1990-01-01T23:59:59.000Z

14

Underground mining and deep geologic disposal - Two compatible and complementary activities  

Science Conference Proceedings (OSTI)

Active and mature underground mining districts offer conditions favorable to deep geologic disposal because their geology is known in more detail, the feasibility of underground excavations has already been demonstrated, mining leaves distinctive footprints and records that alert subsequent generations to the anthropogenic alterations of the underground environment, and subsequent exploration and production proceeds with great care and accuracy to locate and generally to avoid old mine workings. Compatibility of mining with deep geologic waste disposal has been proven by decades of experience with safe storage and disposal in former mines and in the mined-out areas of still active mining operations. Mineral extraction around an intended repository reduces the incentive for future disturbance. Incidental features of mineral exploration and extraction such as lost circulation zones, allochthonous backfill, and permanent surface markers can deter future intrusion into a repository. Thus exploration and production of mineral resources should be compatible with, and complementary to, deep geologic waste disposal.

Rempe, N.T.

1995-12-31T23:59:59.000Z

15

Transuranic Burning Issues Related to a Second Geologic Repository  

Science Conference Proceedings (OSTI)

This report defines issues that need to be addressed by a development program recently initiated to establish the viability of a transuranic burning concept application that would achieve a substantial delay to the need date for a second geologic repository. The visualized transuranic burning concept application is one in which spent fuel created after a date in the 2010 time frame or later would be processed and the separated plutonium used to start up liquid metal reactors (LMRs).

1992-07-01T23:59:59.000Z

16

Final Supplemental Environmental Impact Statement for a Geologic Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Rail Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Proposed Action: To determine a rail alignment within a rail corridor in which to construct and operate a railroad to transport spent nuclear fuel, high-level radioactive waste, and other materials from an existing railroad in Nevada to a repository at Yucca Mountain, Nye County, Nevada. The Proposed Action includes the construction of railroad construction and operations support facilities. This Rail Alignment EIS analyzes two alternatives that would implement the Proposed Action: the Caliente rail

17

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain for the disposal of spent nuclear fuel and high-level radioactive waste. The EIS evaluates not only impacts from constructing, operating, monitoring, and closing a repository, but also from transporting the materials from 72 commercial and 4 DOE sites to the Yucca Mountain repository site in Nye County, Nevada. Public Comment Opportunities

18

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

19

Minor actinide waste disposal in deep geological boreholes  

E-Print Network (OSTI)

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

20

Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.  

SciTech Connect

Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

Swift, Peter N.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes  

SciTech Connect

The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

2003-11-15T23:59:59.000Z

22

Limits on the thermal energy release from radioactive wastes in a mined geologic repository  

SciTech Connect

The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300/sup 0/C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed.

Scott, J.A.

1983-03-01T23:59:59.000Z

23

Modeling the Sequestration of CO2 in Deep Geological Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

the Sequestration of CO the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 corresponding author Prasad Saripalli Senior Research Scientist Pacific Northwest National Laboratory 1313 Sigma V Complex (K6-81) Richland, WA 99352 ph: (509) 376-1667 fax: (509) 376-5368 prasad.saripalli@pnl.gov 2 Modeling the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 Modeling the injection of CO 2 and its sequestration will require simulations of a multi- well injection system in a large reservoir field. However, modeling at the injection well

24

NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft  

Science Conference Proceedings (OSTI)

This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

none,

1982-07-01T23:59:59.000Z

25

Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain  

Science Conference Proceedings (OSTI)

We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

Short, D.W.; Ruffner, D.J.; Jardine, L.J.

1991-10-01T23:59:59.000Z

26

Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA  

SciTech Connect

This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain.

Bjerstedt, T.W.

1996-12-31T23:59:59.000Z

27

Geotechnical support and topical studies for nuclear waste geologic repositories: Annual report, fiscal year 1987  

Science Conference Proceedings (OSTI)

This multidisciplinary project was initiated in fiscal year 1986. It comprises 11 reports in two major interrelated tasks: The technical assistance part of the project includes reviewing the progress of the major projects in the DOE Office of Civilian Radioactive waste Management (OCRWM) Program and advising the Engineering and Geotechnology Division on significant technical issues facing each project; analyzing geotechnical data, reports, tests, surveys and plans for the different projects; reviewing and commenting on major technical reports and other program documents such as Site Characterization Plans (SCP) and Study Plans; and providing scientific and technical input at technical meetings. The topical studies activity comprises studies on scientific and technical ions and issues of significance to in-situ testing, test analysis methods, and site characterization of nuclear waste geologic repositories. The subjects of study were selected based on discussions with DOE staff. One minor topic is a preliminary consideration and planning exercise for postclosure monitoring studies. The major task, with subtasks involving various geoscience disciplines, is a study of the mechanical, hydraulic, geophysical and geochemical properties of fractures in geologic rock masses.

Not Available

1988-01-01T23:59:59.000Z

28

Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP  

Science Conference Proceedings (OSTI)

This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes.

NONE

1996-10-01T23:59:59.000Z

29

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

30

Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Leveraging regionaL expLoration Leveraging regionaL expLoration to DeveLop geoLogic Framework For co 2 Storage in Deep FormationS Background The Midwestern region encompasses numerous coal-fired power plants that could be adversely impacted by carbon dioxide (CO 2 ) emission control restrictions. Geologic sequestration could be a viable option to mitigate the CO 2 emissions within this region. Unfortunately, the understanding of rock properties within deep forma- tions in the region is poorly understood due to lack of deep well data. Under this project, regional geologic characterization is being refined with new rock property data being collected in collaboration with regional oil and gas drilling companies. Description The project is designed to develop an improved understanding of the geologic frame-

31

Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area  

SciTech Connect

In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation`s first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab.

Mattson, S.R.; Broxton, D.E.; Crowe, B.M.; Buono, A.; Orkild, P.P.

1989-07-01T23:59:59.000Z

32

Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV  

SciTech Connect

This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 × 10-ft) and Concept B (2 × 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 × 17.5-ft) canister (also called the “super canister”), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine "as-is" would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years.

Michael B. Heiser; Clark B. Millet

2005-10-01T23:59:59.000Z

33

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Table of Contents Summary Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal

34

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Volume I Impact Analyses Chapters 1 through 13 U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DOE/EIS-0250F-S1D) (Repository SEIS). CONTACTS: For more information about this document, For general information on the DOE NEPA process, write

35

Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction  

Science Conference Proceedings (OSTI)

Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

R.A. Levich; J.S. Stuckless

2006-09-25T23:59:59.000Z

36

Viability Assessment of a Repository at Yucca Mountain | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Summary The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution. The overview describes why the Unites States is considering Yucca Mountain and how a monitored geologic repository would work in the mountain. It presents a repository design, an assessment of its expected performance, and an evaluation of the possible effects on people living near Yucca Mountain. Also presented is the work remaining to be completed prior to a license application, along with the estimated cost of building and operating a

37

Status of Proposed Repository for Latin-American Spent Fuel  

SciTech Connect

This report compiles preliminary information that supports the premise that a repository is needed in Latin America and analyzes the nuclear situation (mainly in Argentina and Brazil) in terms of nuclear capabilities, inventories, and regional spent-fuel repositories. The report is based on several sources and summarizes (1) the nuclear capabilities in Latin America and establishes the framework for the need of a permanent repository, (2) the International Atomic Energy Agency (IAEA) approach for a regional spent-fuel repository and describes the support that international institutions are lending to this issue, (3) the current situation in Argentina in order to analyze the Argentinean willingness to find a location for a deep geological repository, and (4) the issues involved in selecting a location for the repository and identifies a potential location. This report then draws conclusions based on an analysis of this information. The focus of this report is mainly on spent fuel and does not elaborate on other radiological waste sources.

Ferrada, J.J.

2004-10-04T23:59:59.000Z

38

Systems study of the feasibility of high-level nuclear waste fractionation for thermal stress control in a geologic repository: appendices  

Science Conference Proceedings (OSTI)

This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. Volume II contains appendices for: (1) thermal analysis supplement; (2) fractionation process experimental results supplement; (3) cost analysis supplement; and (4) radiological risk analysis supplement.

McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

1983-06-01T23:59:59.000Z

39

Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada  

SciTech Connect

In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.

1989-12-01T23:59:59.000Z

40

Reducing Greenhouse Gas Emissions with Carbon Dioxide Capture and Sequestration in Deep Geological Formations  

SciTech Connect

Carbon dioxide capture and sequestration (CCS) in deep geological formations has quickly emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed for large reductions in CO2 emissions, a billion of tonnes or more of CO2 will be sequestered annually a 250 fold increase over the amount sequestered annually today. Sequestering these large volumes will require a strong scientific foundation of the coupled hydrological-geochemical-geomechanical processes that govern the long term fate of CO2 in the subsurface. Methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, safe operations, monitoring technology, remediation methods, regulatory oversight, and an institutional approach for managing long term liability are also needed.

Benson, Dr. Sally [Stanford University; Cole, David R [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories  

Science Conference Proceedings (OSTI)

The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

Not Available

1983-06-01T23:59:59.000Z

42

Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems  

SciTech Connect

This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references.

Silviera, D.J.

1981-03-01T23:59:59.000Z

43

Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations  

DOE Green Energy (OSTI)

This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

Dahowski, Robert T.; Dooley, James J.

2008-09-18T23:59:59.000Z

44

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada DOE/EIS-0250 Errata Sheet Since release of the Final EIS for Yucca Mountain on February 14, 2002 as part of the Site Recommendation documentation required under the Nuclear Waste Policy Act, as amended, the Department of Energy (DOE) has identified a variety of errors in the document. These errors were found to include: editing errors - errors in editorial style, rounding, and unit conversions data entry errors, errors in typing a number transcription errors - errors in transcribing information from one part of the document to another, failures to update the text from the most current analyses at the time of the

45

Comparison of resource assessment methods and geologic controls--deep natural gas plays and zones, United States and Russia  

Science Conference Proceedings (OSTI)

Deep (greater than 4.5 km--15,000 ft) conventional natural gas resources will play an important role in the future energy needs of the United States and Russia. Deep sedimentary basins are widespread in these countries and have formed in a variety of depositional and tectonic settings. Significant volumes of undiscovered deep natural gas are in the Gulf Coast, Anadarko, Permian, and Rocky Mountain basins of the U.S., and in the Timan-Pechora, West Siberia, East Siberia, and North and South Caspian basins of the former Soviet Union. Deep natural gas resources are regularly assessed by the All-Russia Petroleum Research Exploration Institute (VNIGRI) and the U.S. Geological Survey (USGS) as part of their normal research activities. Both VNIGRI and the USGS employ similar assessment methods involving play (or zone) analysis using geological data and based on an analysis of confirmed and hypothetical plays using field-size distributions, discovery-process models, and statistical estimation procedures that yield probabilistic estimates of undiscovered accumulations. Resource estimates for the deep structural and statigraphic plays of the Anadarko basin and deep Paleozoic zones in the Timan-Pechora basin are compared and contrasted using both methods. Differences in results of assessments between VNIGRI and USGS arise due to (1) the way in which plays/zones are defined, (2) different geochemical models for hydrocarbon generation as applied to hypothetical plays, (3) variations in the ways in which statistical estimation procedures are applied to plays and regions, and (4) differences in economic and technologic assumptions, reserve growth calculations, and accumulation size limits and ranges.

Dyman, T.S. (Geological Survey, Denver, CO (United States)); Belonin, M.D. (All-Russia Petroleum Research Exploration Inst., St. Petersburg (Russian Federation)) (and others)

1996-01-01T23:59:59.000Z

46

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II--U.S. Regulations for Geologic Disposal  

Science Conference Proceedings (OSTI)

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded sporadically over a three-decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA) codifying a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of t...

2010-06-29T23:59:59.000Z

47

Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV  

Science Conference Proceedings (OSTI)

This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

I. Wong

2004-11-05T23:59:59.000Z

48

Regional Examples of Geological Settings for Nuclear Waste Disposal in Deep Boreholes  

E-Print Network (OSTI)

This report develops and exercises broad-area site selection criteria for deep boreholes suitable for disposal of spent nuclear fuel and/or its separated constituents. Three candidates are examined: a regional site in the ...

Sapiie, B.

49

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TABLE OF CONTENTS Section Page 7. Repository Design, Performance, and Affected Environment .......................................................CR7-1 7.1 Repository Design ...........................................................................................................CR7-18 7.1.1 Draft EIS Repository Design ....................................................................................CR7-39 7.1.2 Supplement to the Draft EIS Flexible Design...........................................................CR7-62 7.1.2.1 Higher- and Lower-Temperature Operating Modes .................................................CR7-73 7.1.2.2 Ventilation.......................................................................................................CR7-74

50

The Holocene valley fill sequence in south Louisiana: A geological and geotechnical interpretation based on results of two deep cores  

Science Conference Proceedings (OSTI)

The Louisiana Geological Survey--US Geological Survey cooperative research program concerning wetland subsidence in Terrebonne and Lafourche Parishes, Louisiana, funded two deep research borings, each of which recovered core of the entire Holocene valley fill. These boreholes, 22 km apart in dip direction, were logged by porosity and resistivity tools and calibrated to cone penetrometer and seismic profiles immediately offsetting them. Major deltaic cycles and ravinement surfaces were recognized in each core by ROCKEVAL pyrolysis, [sup 13]C isotope signatures, shifts of increasing radiocarbon age with depth, shifts of increasing resistivity and density with depth, microfossil analysis, and the presence and type of shell material. Data collected in this project suggest the top of the Pleistocene in this onshore, fluvially-dominated section may not be the top of Substratum sands, but significantly higher in the section, as determined by the strongest positive reflection coefficient below the 10,000 year radiocarbon datum. This satisfies the criterion that this operational boundary be mappable and chronostratigraphic. Additionally, the presence of two growth faults in the northern part of the study area may have acted as sites for preferential thickening of the Holocene. Both reasons stated above profoundly influence the modeling of Holocene thickness and consolidation settlement potential, critical for understanding subsurface controls on wetland loss.

Kuecher, G.J.; Roberts, H.H.; Suhayda, J.H. (Louisiana State Univ., Baton Rouge, LA (United States)); McGinnis, L.D. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

51

Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States  

SciTech Connect

Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along the Ohio River Valley corridor in the Appalachian Basin, which underlies large concentrations of CO{sub 2} emission sources. In addition, some wells in the Michigan basin are included. Assessment of the geologic and petrophysical properties of zones of interest has been conducted. Although a large number of formations have been evaluated across the geologic column, the primary focus has been on evaluating the Cambrian sandstones (Mt. Simon, Rose Run, Kerbel) and carbonates layers (Knox Dolomite) as well as on the Silurian-Devonian carbonates (Bass Island, Salina) and sandstones (Clinton, Oriskany, Berea). Factors controlling the development of porosity and permeability, such as the depositional setting have been explored. In northern Michigan the Bass Islands Dolomite appears to have favorable reservoir development. In west central Michigan the St. Peter sandstone exhibits excellent porosity in the Hart and Feuring well and looks promising. In Southeastern Kentucky in the Appalachian Basin, the Batten and Baird well provided valuable data on sequestration potential in organic shales through adsorption. In central and eastern Ohio and western West Virginia, the majority of the wells provided an insight to the complex geologic framework of the relatively little known Precambrian through Silurian potential injection targets. Although valuable data was acquired and a number of critical data gaps were filled through this effort, there are still many challenges ahead and questions that need answered. The lateral extent to which favorable potential injection conditions exist in most reservoirs is still generally uncertain. The prolongation of the characterization of regional geologic framework through partnership would continue to build confidence and greatly benefit the overall CO{sub 2} sequestration effort.

Neeraj Gupta

2009-09-30T23:59:59.000Z

52

Geological challenges in radioactive waste isolation: Third worldwide review  

E-Print Network (OSTI)

Repositories Have Non-proliferation Benefits . . . . . . .the importance of the non- proliferation advantages of deepREPOSITORIES HAVE NON- PROLIFERATION BENEFITS INTERNATIONAL

Witherspoon editor, P.A.; Bodvarsson editor, G.S.

2001-01-01T23:59:59.000Z

53

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume I--The U.S. Site Selection Process Prior to the Nuclear Waste Policy Amendments Act  

Science Conference Proceedings (OSTI)

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This legislation codified a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountai...

2010-05-27T23:59:59.000Z

54

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

55

in Deep Geologic Formations,"  

NLE Websites -- All DOE Office Websites (Extended Search)

authors' model (as well as all previous work), which overestimates the rates of feldspar dissolution near equilibrium. Nevertheless, the authors' simulations indicate the...

56

Information Repository  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Repository Index Permit Renewal Application (Parts A and B) Submissions, September 2009, Department of Energy CBFOWashington TRU Solutions Administrative Completeness...

57

Draft Supplemental Environmental Impact for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Options to Elements of the Proposed Action Options to Elements of the Proposed Action TABLE OF CONTENTS Section Page A. Options to Elements of the Proposed Action .....................................................................................A-1 A.1 Wastewater Treatment at the Repository Option.........................................................................A-1 A.1.1 Potential Benefits of the Premanufactured Wastewater Treatment Facility..........................A-2 A.1.2 Potential Environmental Impacts of the Premanufactured Wastewater Treatment Facility .................................................................................................................A-2 A.2 Reduced Transportation, Aging, and Disposal Canister Use Option...........................................A-2

58

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network (OSTI)

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Alain Bourgeat; Mladen Jurak; Farid Smaï

2008-02-29T23:59:59.000Z

59

DOE/EIS-0250D; Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada CONTACT: For more information on this Environmental Impact Statement (EIS), write or call: Wendy R. Dixon, EIS Project Manager Yucca Mountain Site Characterization Office Office of Civilian Radioactive Waste Management U.S. Department of Energy P.O. Box 30307, Mail Stop 010 North Las Vegas, Nevada 89036-0307 Telephone: (800) 967-3477 The EIS is also available on the Internet at the Yucca Mountain Project website at http://www.ymp.gov and on the DOE National Environmental Policy Act (NEPA) website at http://tis.eh.doe.gov/nepa/. For general information on the DOE NEPA process, write or call:

60

Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles  

SciTech Connect

The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated with temperature constraints that limit changes to the encapsulating materials, and they generally have less capacity to dissipate heat from the waste package and its immediate surroundings than open modes such as that proposed for a repository at Yucca Mountain, Nevada. Open emplacement modes can be ventilated for many years prior to permanent closure of the repository, limiting peak temperatures both before and after closure, and combining storage and disposal functions in the same facility. Open emplacement modes may be practically limited to unsaturated host formations, unless emplacement tunnels are effectively sealed everywhere prior to repository closure. Thermal analysis of disposal concepts and waste inventory cases has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature constraints. For example, the choice of salt as the host medium expedites the schedule for geologic disposal by approximately 50 yr (other factors held constant) thereby reducing future reliance on surface decay storage. Rock salt has greater thermal conductivity and stability at higher temperatures than other media considered. Alternatively, the choice of salt permits the use of significantly larger waste packages for SNF. The following sections describe the selection of reference waste inventories, geologic settings, and concepts of operation, and summarize the results from the thermal analysis.

Hardin, Ernest [Sandia National Laboratories (SNL); Blink, James [Lawrence Livermore National Laboratory (LLNL); Carter, Joe [Savannah River National Laboratory (SRNL); Massimiliano, Fratoni [Lawrence Livermore National Laboratory (LLNL); Greenberg, Harris [Lawrence Livermore National Laboratory (LLNL); Howard, Rob L [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reference repository design concept for bedded salt  

Science Conference Proceedings (OSTI)

A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

Carpenter, D.W.; Martin, R.W.

1980-10-08T23:59:59.000Z

62

MRS/IS facility co-located with a repository: preconceptual design and life-cycle cost estimates  

SciTech Connect

A program is described to examine the various alternatives for monitored retrievable storage (MRS) and interim storage (IS) of spent nuclear fuel, solidified high-level waste (HLW), and transuranic (TRU) waste until appropriate geologic repository/repositories are available. The objectives of this study are: (1) to develop a preconceptual design for an MRS/IS facility that would become the principal surface facility for a deep geologic repository when the repository is opened, (2) to examine various issues such as transportation of wastes, licensing of the facility, and environmental concerns associated with operation of such a facility, and (3) to estimate the life cycle costs of the facility when operated in response to a set of scenarios which define the quantities and types of waste requiring storage in specific time periods, which generally span the years from 1990 until 2016. The life cycle costs estimated in this study include: the capital expenditures for structures, casks and/or drywells, storage areas and pads, and transfer equipment; the cost of staff labor, supplies, and services; and the incremental cost of transporting the waste materials from the site of origin to the MRS/IS facility. Three scenarios are examined to develop estimates of life cycle costs of the MRS/IS facility. In the first scenario, HLW canisters are stored, starting in 1990, until the co-located repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at various intervals. In the second scenario, spent fuel is stored, starting in 1990, because the reprocessing plants are delayed in starting operations by 10 years, but no HLW is stored because the repositories open on schedule. In the third scenario, HLW is stored, starting in 1990, because the repositories are delayed 10 years, but the reprocessing plants open on schedule.

Smith, R.I.; Nesbitt, J.F.

1982-11-01T23:59:59.000Z

63

Excess plutonium disposition: The deep borehole option  

SciTech Connect

This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

Ferguson, K.L.

1994-08-09T23:59:59.000Z

64

GEOLOGY, January 2007 85Geology, January 2007; v. 35; no. 1; p. 8588; doi: 10.1130/G23101A.1; 5 figures; Data Repository item 2007026. 2007 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.o  

E-Print Network (OSTI)

, Hydrocarbon Source Rocks, Tight gas sand reservoirs Heaman, Larry Isotope geology, geochronology, geochemistry of petroleum; conventional and unconventional source rocks; principles of migration; reservoir rocks; traps and environmental concerns Gleeson, Sarah Economic geology, hydrothermal geochemistry, water/rock interactions Haas

Svensen, Henrik

65

Status of LANL investigations of temperature constraints on clay in repository environments  

SciTech Connect

The Used Fuel Disposition (UFD) Campaign is presently evaluating various generic options for disposal of used fuel. The focus of this experimental work is to characterize and bound Engineered Barrier Systems (EBS) conditions in high heat load repositories. The UFD now has the ability to evaluate multiple EBS materials, waste containers, and rock types at higher heat loads and pressures (including deep boreholes). The geologic conditions now available to the U.S.A. and the international community for repositories include saturated and reduced water conditions, along with higher pressure and temperature (P, T) regimes. Chemical and structural changes to the clays, in either backfill/buffer or clay-rich host rock, may have significant effects on repository evolution. Reduction of smectite expansion capacity and rehydration potential due to heating could affect the isolation provided by EBS. Processes such as cementation by silica precipitation and authigenic illite could change the hydraulic and mechanical properties of clay-rich materials. Experimental studies of these repository conditions at high P,T have not been performed in the U.S. for decades and little has been done by the international community at high P,T. The experiments to be performed by LANL will focus on the importance of repository chemical and mineralogical conditions at elevated P,T conditions. This will provide input to the assessment of scientific basis for elevating the temperature limits in clay barriers.

Caporuscio, Florie A [Los Alamos National Laboratory; Cheshire, Michael C [Los Alamos National Laboratory; Newell, Dennis L [Los Alamos National Laboratory; McCarney, Mary Kate [Los Alamos National Laboratory

2012-08-22T23:59:59.000Z

66

Generic repository design concepts and thermal analysis (FY11).  

SciTech Connect

Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

2011-08-01T23:59:59.000Z

67

Repository Applications: Potential Benefits of Using Depleted Uranium (DU)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository Applications Repository Applications Repository Applications: Potential Benefits of Using Depleted Uranium (DU) in a Geological Repository The United States is investigating the Yucca Mountain (YM) site in Nevada for the disposal of radioactive spent nuclear fuel (SNF)—the primary waste from nuclear power plants. The SNF would be packaged and then emplaced 200 to 300 m underground in parallel disposal tunnels. The repository isolates the SNF from the biosphere until the radionuclides decay to safe levels. DU may improve the performance of geological repositories for disposal of SNF via three mechanisms: Radiation shielding for waste packages to protect workers Lowering the potential for long-term nuclear criticality in the repository Reducing the potential for releases of radionuclides from the SNF

68

Information Repository  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Information Repository Documents 3 Information Repository Documents WIPP Annual Waste Minimization Report Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report, dated November 14, 2013 Class 1 Permit Modifications and NMED Responses Class 1 Modification, August 29, 2013 WIPP Hazardous Waste Facility Permit EPA I.D. Number NM4890139088. (1. revise a course outline; 2. revise table and panel figures to include Panel 7; 3. update description related to Type B Packages; and 4. update TRUPACT-II and HalfPACT figures) JE Kieling, NMED dated October 13, 2013 Fee Assessment Class 1 Permit Modification WIPP Hazardous Waste Facility Permit EPA I.D. Number NM4890139088-TSDF (Revise a Course Outline; Revise Table and Panel Figures to Include Panel 7; Update Descriptions Related to Type B Packages; and Update TRUPACT-ll and HalfPACT Figures) JM Kieling, NMED dated September 23, 2013

69

Final Supplemental Environmental Impact Statement for a Geologic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Nevada Rail Transportation Corridor DOEEIS-0250F-S2 and Final Env Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear...

70

Final Supplemental Environmental Impact Statement for a Geologic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -...

71

Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project  

Science Conference Proceedings (OSTI)

The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale reservoirs, and continued global technology exchange.

Scott Reeves; George Koperna

2008-09-30T23:59:59.000Z

72

Repository performance confirmation.  

SciTech Connect

Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the Yucca Mountain license application identified a broad suite of monitoring activities. A revision of the plan was expected to winnow the number of activities down to a manageable size. As a result, an objective process for the next stage of performance confirmation planning was developed as an integral part of an overarching long-term testing and monitoring strategy. The Waste Isolation Pilot Plant compliance monitoring program at once reflects its importance to stakeholders while demonstrating adequate understanding of relevant monitoring parameters. The compliance criteria were stated by regulation and are currently monitored as part of the regulatory rule for disposal. At the outset, the screening practice and parameter selection were not predicated on a direct or indirect correlation to system performance metrics, as was the case for Yucca Mountain. Later on, correlation to performance was established, and the Waste Isolation Pilot Plant continues to monitor ten parameters originally identified in the compliance certification documentation. The monitoring program has proven to be effective for the technical intentions and societal or public assurance. The experience with performance confirmation in the license application process for Yucca Mountain helped identify an objective, quantitative methodology for this purpose. Revision of the existing plan would be based on findings of the total system performance assessment. Identification and prioritization of confirmation activities would then derive from performance metrics associated with performance assessment. Given the understanding of repository performance confirmation, as reviewed in this paper, it is evident that the performance confirmation program for the Yucca Mountain project could be readily re-engaged if licensing activities resumed.

Hansen, Francis D.

2011-09-01T23:59:59.000Z

73

DFT repositories and informatics  

Science Conference Proceedings (OSTI)

... includes: Establishing best practices for future and current practitioners,; Developing data-sharing tools and repositories,; ...

2013-07-18T23:59:59.000Z

74

Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)  

Science Conference Proceedings (OSTI)

Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

W.R. Keefer; J.W. Whitney; D.C. Buesch

2006-09-25T23:59:59.000Z

75

Environmental Impacts of Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

~~"'"""""""""'l.. _ _ 4 Environmental Impacts of Repository Construction, Operation and Monitoring, and Closure 4-iii Environmental Impacts of Repository Construction, Operations, Monitoring, and Closure TABLE OF CONTENTS Section Page 4. Environmental Impacts of Repository Construction, Operations, Monitoring, and Closure ..............4-1 4.1 Preclosure Environmental Impacts of Construction, Operations, Monitoring, and Closure of a Repository ...............................................................................................................................4-3 4.1.1 Impacts to Land Use and Ownership .......................................................................................4-4

76

National Geoscience Data Repository System. Final report  

SciTech Connect

The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

Schiffries, C.M.; Milling, M.E.

1994-03-01T23:59:59.000Z

77

A case study on the influence of THM coupling on the near field safety of a spent fuel repository in sparsely fractured granite  

E-Print Network (OSTI)

geological disposal of spent CANDU fuel in Canada, a safetyhypothetical repository for spent CANDU fuel in the Canadianbuffer. The waste form: CANDU reactors in Canada are fuelled

Nguyen, T.S.

2009-01-01T23:59:59.000Z

78

The National Repository at Yucca Mountain, Russ Dyer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository at Repository at Yucca Mountain Presented to: EM High Level Waste Corporate Board Presented by: Russ Dyer Chief Scientist Office of Civilian Radioactive Waste Management July 24, 2008 Idaho National Laboratory 2 SBBB-GeneralBriefing_070808Rev1.ppt Solving a national problem now * On June 3, 2008, the U.S. Department of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain 3 SBBB-GeneralBriefing_070808Rev1.ppt Repository license application * The LA seeks authorization to construct the nation's first geologic repository * It is a culmination of more than 25 years of scientific research and engineering * The LA describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive

79

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

Science Conference Proceedings (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

80

Supplement to the Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive at Yucca Mountain, Nye County, NV (DOE/EIS-0250F) (10/13/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

90 Federal Register 90 Federal Register / Vol. 71, No. 198 / Friday, October 13, 2006 / Notices 1 Coincident with this Notice of Intent, DOE is publishing an Amended Notice of Intent to prepare a Supplemental Yucca Mountain Rail Corridor and Rail Alignment EIS (DOE/EIS-0250F-S2 and DOE/ EIS-0369). That EIS will review the rail corridor analyses of the Yucca Mountain Final EIS, and update, as appropriate, and will analyze the proposed Mina corridor; it also will include detailed analyses of alternative alignments for the construction and operation of a rail line within the Mina corridor, as well as the Caliente corridor. 2 Section 114(f)(4) of the NWPA provides that any environmental impact statement ''prepared in connection with a repository * * * shall, to the extent practicable, be adopted by the Commission

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

National Geoscience Data Repository System, Phase III: Implementation and operation of the repository  

Science Conference Proceedings (OSTI)

The American Geological Institute's (AGI) National Geoscience Data Repository System (NGDRS) was initiated in response to the fact that billions of dollars worth of domestic geoscience data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the U.S. energy and minerals industry. Preservation and access to domestic geological and geophysical data are critical to the energy security and economic prosperity of the nation. There is a narrow window of opportunity to act before valuable data are destroyed. The data truly represent a national treasure and immediate steps must be taken to assure their preservation.

American Geological Institute

2000-03-13T23:59:59.000Z

82

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

DOE Green Energy (OSTI)

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01T23:59:59.000Z

83

Salt repository project closeout status report  

SciTech Connect

This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

1988-06-01T23:59:59.000Z

84

Repository seals requirements study  

SciTech Connect

The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. This report presents the results of a repository sealing requirements study. Sealing is defined as the permanent closure of the shafts, ramps, and exploratory boreholes. Sealing includes those components that would reduce potential inflows above the repository, or that would divert flow near the repository horizon to allow vertical infiltration to below the repository. Sealing of such features as emplacement drifts was not done in this study because the current capability to calculate fracture flow into the drifts is not sufficiently mature. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.

NONE

1997-11-03T23:59:59.000Z

85

Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment  

SciTech Connect

Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon a primary seal only but assumes that any leak can be contained by geologic processes before impacting mineral resources, fresh ground water, or ground surface. We examined the Texas Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. In the Texas Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the total depth of most wells (>2,400 m-8,000 ft). In addition, most faults, particularly growth faults, present at the primary injection level do not reach the surface. A potential methodology, which includes an integrated approach comprising the whole chain of potential events from leakage from the primary site to atmospheric impacts, is also presented. It could be followed by the State/Federal Government, as well as by the operators.

Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

2006-06-30T23:59:59.000Z

86

Seismic interpretation and regional geologic correlation established for offshore Togo, West Africa: a preliminary evaluation of hydrocarbon potential in deep water  

E-Print Network (OSTI)

Offshore Togo, West Africa provides exciting potential for hydrocarbon exploration. Previous exploration is limited to four wells, drilled prior to 1986 in shallow water. This investigation focuses on a 625 km² section of 3100 km² of high quality 3-D seismic data acquired by Petroleum Geo-Services Inc. (PGS), Houston, Texas. The study area ranges from approximately 180 m - 2500 m water depth. Research included regional geologic correlation, seismic interpretation, and structural modeling of the major fault systems and unconformities. Proven source and reservoir formations from existing oil and gas fields in neighboring countries are analogous to formations identified on seismic for offshore Togo. Structures suitable for hydrocarbon accumulation were identified on seismic within potentially productive formations. Based on the correlations, seismic interpretation and modeling, four possible exploration prospects were identified. The prospects were ranked according to exploration potential based on structural characteristics and original oil in place (OOIP) calculations. The existence of suitable structures for hydrocarbon accumulation in potentially productive formations makes offshore Togo highly prospective.

Gray, Max Daniel

2001-01-01T23:59:59.000Z

87

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

88

Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 3. Generator routines  

SciTech Connect

The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the third of four volumes of the description of the CIRMIS Data System.

Friedrichs, D.R.; Argo, R.S.

1980-01-01T23:59:59.000Z

89

Darshan » Updated data repository documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated data repository documentation June 18th, 2013 The documentation for the public ALCF IO Data Repository has been updated. Please note that there is a new technical report...

90

Normalized Access to Ontology Repositories  

Science Conference Proceedings (OSTI)

Ontology repositories, such as NCBO Bioportal, ONKI and Cupboard, help finding and using ontologies on the Semantic Web. However, currently each ontology repository constitutes a separate island with its own user interface, APIs, users, ontology languages ...

Kim Viljanen; Jouni Tuominen; Eetu Makela; Eero Hyvonen

2012-09-01T23:59:59.000Z

91

Preliminary analyses of scenarios for potential human interference for repositories in three salt formations  

Science Conference Proceedings (OSTI)

Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin.

Not Available

1985-10-01T23:59:59.000Z

92

Repository seals requirement study  

Science Conference Proceedings (OSTI)

The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.

NONE

1997-11-03T23:59:59.000Z

93

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

94

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

95

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

96

Potential Igneous Processes Relevant to the Yucca Mountain Repository: Extrusive-Release Scenario: Analysis and Implications  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. As part of the application, the DOE must provide estimates of the dose risk to a local population caused by low probability igneous eruptions that may occur through the repository after closure. To date, published estimates of such dose risks have included a large number of conservative assumptions such that it appears as if igneous eruptions provide ...

2004-07-01T23:59:59.000Z

97

Program on Technology Innovation: EPRI Yucca Mountain Spent Fuel Repository Evaluation  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is moving to prepare and submit a license application to the Nuclear Regulatory Commission (NRC) to initiate construction of a geologic repository at Yucca Mountain, Nevada, for the storage of spent nuclear fuel and high level radioactive waste. Throughout the nearly 20-year history of the project, EPRI has performed independent assessments of technical and scientific issues considered important to eventual repository licensing. This report presents background on the overal...

2007-12-19T23:59:59.000Z

98

Program on Technology Innovation: EPRI Yucca Mountain Spent Fuel Repository Evaluation  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is moving to prepare and submit a license application to the Nuclear Regulatory Commission (NRC) to initiate construction of a geologic repository at Yucca Mountain, Nevada, for the storage of spent nuclear fuel and high level radioactive waste. Throughout the more than 20-year history of the project, EPRI has performed independent assessments of technical and scientific issues considered important to eventual repository licensing. This report presents background on the ove...

2006-12-19T23:59:59.000Z

99

Program on Technology Innovation: Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of a geologic repository at Yucca Mountain, Nevada, for the storage of spent nuclear fuel and high level radioactive waste. Throughout the more than 20-year history of the project, EPRI has performed independent assessments of technical and scientific issues that are considered important to the eventual licensing of the repository. This report provides background on the overall project and d...

2005-12-01T23:59:59.000Z

100

Canister design for deep borehole disposal of nuclear waste  

E-Print Network (OSTI)

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A drop-in-concept for deep borehole canister emplacement  

E-Print Network (OSTI)

Disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock (i.e., "granite") is an interesting repository alternative of long standing. Work at MIT over the past two decades, and more recently ...

Bates, Ethan Allen

2011-01-01T23:59:59.000Z

102

Disaster and Failure Studies Repository  

Science Conference Proceedings (OSTI)

... Phase 2 will include a pilot repository of data collected from the 2010 Chile earthquake. This is scheduled to be completed in late 2012. ...

2013-05-13T23:59:59.000Z

103

Monte Carlo simulations for generic granite repository studies  

SciTech Connect

In a collaborative study between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) for the DOE-NE Office of Fuel Cycle Technologies Used Fuel Disposition (UFD) Campaign project, we have conducted preliminary system-level analyses to support the development of a long-term strategy for geologic disposal of high-level radioactive waste. A general modeling framework consisting of a near- and a far-field submodel for a granite GDSE was developed. A representative far-field transport model for a generic granite repository was merged with an integrated systems (GoldSim) near-field model. Integrated Monte Carlo model runs with the combined near- and farfield transport models were performed, and the parameter sensitivities were evaluated for the combined system. In addition, a sub-set of radionuclides that are potentially important to repository performance were identified and evaluated for a series of model runs. The analyses were conducted with different waste inventory scenarios. Analyses were also conducted for different repository radionuelide release scenarios. While the results to date are for a generic granite repository, the work establishes the method to be used in the future to provide guidance on the development of strategy for long-term disposal of high-level radioactive waste in a granite repository.

Chu, Shaoping [Los Alamos National Laboratory; Lee, Joon H [SNL; Wang, Yifeng [SNL

2010-12-08T23:59:59.000Z

104

Criticality issues with highly enriched fuels in a repository environment  

SciTech Connect

This paper presents preliminary analysis of a volcanic tuff repository containing a combination of low enrichment commercial spent nuclear fuels (SNF) and DOE-owned SNF packages. These SNFs were analyzed with respect to their criticality risks. Disposal of SNF packages containing significant fissile mass within a geologic repository must comply with current regulations relative to criticality safety during transportation and handling within operational facilities. However, once the repository is closed, the double contingency credits for criticality safety are subject to unremediable degradation, (e.g., water intrusion, continued presence of neutron absorbers in proximity to fissile material, and fissile material reconfiguration). The work presented in this paper focused on two attributes of criticality in a volcanic tuff repository for near-field and far-field scenarios: (1) scenario conditions necessary to have a criticality, and (2) consequences of a nuclear excursion that are components of risk. All criticality consequences are dependent upon eventual water intrusion into the repository and subsequent breach of the disposal package. Key criticality parameters necessary for a critical assembly are: (1) adequate thermal fissile mass, (2) adequate concentration of fissile material, (3) separation of neutron poison from fissile materials, and (4) sufficient neutron moderation (expressed in units of moderator to fissile atom ratios). Key results from this study indicated that the total energies released during a single excursion are minimal (comparable to those released in previous solution accidents), and the maximum frequency of occurrence is bounded by the saturation and temperature recycle times, thus resulting in small criticality risks.

Taylor, L.L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Sanchez, L.C.; Rath, J.S. [Sandia National Labs., Albuquerque, NM (United States)

1998-03-01T23:59:59.000Z

105

Final Environmental Impact Statement for a Geologic Repository...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

decision to shut down all nuclear powerplants in the country immediately (representing 20 percent of current power production), DOE would still be responsible for the permanent...

106

Chemotoxicity of nuclear waste repositories  

Science Conference Proceedings (OSTI)

In this paper published studies on chemotoxicity of nuclear waste repositories are reviewed. According to these studies, radiotoxicity is of primary concern. However, there also is a risk, primarily from genotoxic chemical substances, which could eventually reach the biosphere. Possible chemotoxic effects should be studied as an integral part of the risk assessment and risk management of repositories for nuclear waste.

Buchheim, B. (Nordostschweizerische Kraftwerke-AG, Parkstrasse 23, CH-5401 Baden (CH)); Persson, L. (Swedish Radiation Protection Inst., P.O. Box 60204, S-104 01 Stockholm (SE))

1992-03-01T23:59:59.000Z

107

Geology of the USW SD-12 Drill Hole, Yucca Mountain, Nevada  

E-Print Network (OSTI)

i SAND96-1368 Distribution Unlimited Release Category UC-814 Printed November 1996 Geology of the USW SD-12 Drill Hole Yucca Mountain, Nevada Christopher A. Rautman Geohydrology Department Sandia National Laboratories Albuquerque, New Mexico 87185-1324 Dale A. Engstrom Spectra Research Institute Albuquerque, New Mexico 87106 Abstract Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the "Systematic Drilling Program," as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and th...

Christopher Rautman Dale; Christopher A. Rautman; Dale A. Engstrom; Dale A. Engstrom

1996-01-01T23:59:59.000Z

108

Geology of the USW SD-9 Drill Hole, Yucca Mountain, Nevada  

E-Print Network (OSTI)

i SAND96-2030 Distribution Unlimited Release Category UC-814 Printed October 1996 Geology of the USW SD-9 Drill Hole, Yucca Mountain, Nevada Dale A. Engstrom Spectra Research Institute Albuquerque, New Mexico 87106 Christopher A. Rautman Geohydrology Department Sandia National Laboratories Albuquerque, New Mexico 87185 Abstract Drill hole USW SD-9 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the "Systematic Drilling Program," as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-9 drill hole is located in the northern part of the potential repository area, immediately to the west of the Main Test Level drift of Exploratory Studies Facility and south of the North Ramp decline. Drill hole USW SD-9 is 2223.1 ft (677.57 m) deep, and the core recovered essentially complete sections of ash-flow t...

Dale Engstrom And; Dale A. Engstrom; Dale A. Engstrom; Christopher A. Rautman; Christopher A. Rautman

1996-01-01T23:59:59.000Z

109

Business Case Slide 7: High-Volume: Repository - Diagram  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagram Previous Slide Next Slide Table of Contents High-Volume: Repository - Diagram Repository Tunnel Components...

110

Geologic simulation model for a hypothetical site in the Columbia Plateau. [AEGIS  

Science Conference Proceedings (OSTI)

This report describes the structure and operation of the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Geologic Simulation Model, a computer simulation model of the geology and hydrology of an area of the Columbia Plateau, Washington. The model is used to study the long-term suitability of the Columbia Plateau Basalts for the storage of nuclear waste in a mined repository. It is also a starting point for analyses of such repositories in other geologic settings. The Geologic Simulation Model will aid in formulating design disruptive sequences (i.e. those to be used for more detailed hydrologic, transport, and dose analyses) from the spectrum of hypothetical geological and hydrological developments that could result in transport of radionuclides out of a repository. Quantitative and auditable execution of this task, however, is impossible without computer simulation. The computer simulation model aids the geoscientist by generating the wide spectrum of possible future evolutionary paths of the areal geology and hydrology, identifying those that may affect the repository integrity. This allows the geoscientist to focus on potentially disruptive processes, or series of events. Eleven separate submodels are used in the simulation portion of the model: Climate, Continental Glaciation, Deformation, Geomorphic Events, Hydrology, Magmatic Events, Meteorite Impact, Sea-Level Fluctuations, Shaft-Seal Failure, Sub-Basalt Basement Faulting, and Undetected Features. Because of the modular construction of the model, each submodel can easily be replaced with an updated or modified version as new information or developments in the state of the art become available. The model simulates the geologic and hydrologic systems of a hypothetical repository site and region for a million years following repository decommissioning. The Geologic Simulation Model operates in both single-run and Monte Carlo modes.

Petrie, G.M.; Zellmer, J.T.; Lindberg, J.W.; Foley, M.G.

1981-04-01T23:59:59.000Z

111

Environmental effects on corrosion in the Tuff repository  

SciTech Connect

Cortest Columbus is investigating the long-term performance of container materials used for high-level waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy`s application to construct a geologic repository for high-level radioactive waste. The scope of work consists of employing short-term techniques, to examine a wide range of possible failure modes. Long-term tests are being used to verify and further examine specific failure modes identified as important by the short-term studies. The original focus of the program was on the salt repository but the emphasis was shifted to the Tuff repository. This report summarizes the results of a literature survey performed under Task 1 of the program. The survey focuses on the influence of environmental variables on the corrosion behavior of candidate container materials for the Tuff repository. Environmental variables considered include: radiation, thermal and microbial effects. 80 refs., 44 figs., 44 tabs.

Beavers, J.A.; Thompson, N.G. [Cortest Columbus, Inc., OH (USA)

1990-02-01T23:59:59.000Z

112

Statistical approaches to leak detection for geological sequestration  

E-Print Network (OSTI)

Geological sequestration has been proposed as a way to remove CO? from the atmosphere by injecting it into deep saline aquifers. Detecting leaks to the atmosphere will be important for ensuring safety and effectiveness of ...

Haidari, Arman S

2011-01-01T23:59:59.000Z

113

NATIONAL GEOSCIENCE DATA REPOSITORY SYSTEM PHASE III: IMPLEMENTATION AND OPERATION OF THE REPOSITORY  

SciTech Connect

In the past six months the NGDRS program has continued to engaged new contacts, identify additional data transfer targets, and improve the metadata catalog for both easier use and long-term maintainability. With industry conditions continuing to rapidly change and evolve, the primary core and cuttings preservation strategy has evolved as well. With the severe lack of available public data repository space and the establishment of a major national geoscience data repository facility unlikely in the near future, the focus is on increasing public awareness and access to nonproprietary company data holdings that remain in the public and private sector. Efforts still continue to identify and facilitate the entry of new repository space into the public sector. Additionally, AGI has been working with the National Academy of Sciences Board on Earth Sciences and Resources staff to initiate a study and workshop to develop a policy recommendation on geoscience data preservation and prioritization of efforts. Additional data transfer efforts were undertaken during the first half of FY00. AGI is working with the Texas Bureau of Economic Geology to assist in the transfer of Altura's midland core holdings to the University of Texas. Phillips has made selected seismic data from the Santa Barbara Channel available for transfer. A pilot test has been initiated to determine the cost and potential success rate at transcription of the original tapes. Additionally, redesign of the GeoTrek metadata catalog was initiated, including both a redesign of the user interface as well as making GeoTrek fully a broker, accessing multiple databases at remote locations in real time.

Marcus Milling

2000-04-01T23:59:59.000Z

114

Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report  

Science Conference Proceedings (OSTI)

The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

Collins, A.G.; Crocker, M.E.

1987-12-01T23:59:59.000Z

115

RMOTC - Geologic & Resivoir Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic & Reservoir Data Data Sets Online Data Rooms Geologic & Reservoir Data Hills surrounding RMOTC Testing Facility Over the years, the field has become very well...

116

Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

In June 2008, the U.S. Department of Energy (DOE) submitted a license application to the U.S. Nuclear Regulatory Commission (NRC) for the construction of a geologic repository at Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. The license application was accepted for formal NRC review in September 2008. Throughout the more than 20-year history of the Yucca Mountain project, EPRI has performed independent assessments of key technical and scientific issues t...

2008-12-22T23:59:59.000Z

117

The OAI-PMH static repository and static repository gateway  

Science Conference Proceedings (OSTI)

Although the OAI-PMH specification is focused on making it straightforward for data providers to expose metadata, practice shows that in certain significant situations deployment of OAI-PMH conformant repository software remains problematic. In this ... Keywords: OAI-PMH, metadata harvesting

Patrick Hochstenbach; Henry Jerez; Herbert Van de Sompel

2003-05-01T23:59:59.000Z

118

Pathways: augmenting interoperability across scholarly repositories  

Science Conference Proceedings (OSTI)

In the emerging eScience environment, repositories of papers, datasets, software, etc., should be the foundation of a global and natively-digital scholarly communications system. The current infrastructure falls far short of this goal. Cross-repository ...

Simeon Warner; Jeroen Bekaert; Carl Lagoze; Xiaoming Liu; Sandy Payette; Herbert Van de Warner

2007-10-01T23:59:59.000Z

119

Enhancing Interactivity of Software and Data Repositories  

Science Conference Proceedings (OSTI)

... virtual repository of reusable mathematical software components (which we ... variety of types, eg, real, complex, symmetric, nonsymmetric, Hermitian. ...

120

Potential Igneous Processes Relevant to the Yucca Mountain Repository: Intrusive-Release Scenario  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. As part of the application, the DOE must provide estimates of the dose risk to a local population caused by low-probability intrusions of volcanic magma that may occur into the repository after closure. To date, published estimates of such dose risks have included a large number of conservative assumptions such that it appears as if the igneous intrus...

2005-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A digital metadata schema repository  

Science Conference Proceedings (OSTI)

The metadata schema of a digital archive describes the structure and attributes of metadata. Analysis and definition of metadata schema for a new digital archive must be carefully performed at the first stage. To ease the task, we implement a metadata ... Keywords: HTML, XML, digital archive, metadata schema repository, native XML database, web-based

Yen-Chun Lin; Hsiang-An Wang; Chien-Chung Huang; Wei Chen

2008-05-01T23:59:59.000Z

122

An evaluation of the feasibility of disposal of nuclear waste in very deep boreholes  

E-Print Network (OSTI)

Deep boreholes, 3 to 5 km into igneous rock, such as granite, are evaluated for next- generation repository use in the disposal of spent nuclear fuel and other high level waste. The primary focus is on the stability and ...

Anderson, Victoria Katherine, 1980-

2004-01-01T23:59:59.000Z

123

Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 4. Driller's logs, stratigraphic cross section and utility routines  

SciTech Connect

The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System.

Friedrichs, D.R.

1980-01-01T23:59:59.000Z

124

National Geoscience Data Repository System: Phase 2 final report  

SciTech Connect

The American Geological Institute (AGI) has completed Phase 2 of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the US for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. Phase 2 encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser. Also as part of the project, a national directory of geoscience data repositories was compiled to assess what data are currently available in existing facilities. The next step, Phase 3, will focus on the initiation of transfer of geoscience data from the private sector to the public domain and development of the web-based Geotrek metadata supercatalog.

NONE

1997-07-01T23:59:59.000Z

125

Fluid Flow Model Development for Representative Geologic Media | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

126

Report on Modeling Coupled Processes in the Near Field of a Clay Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Modeling Coupled Processes in the Near Field of a Clay on Modeling Coupled Processes in the Near Field of a Clay Repository Report on Modeling Coupled Processes in the Near Field of a Clay Repository Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world. Coupled thermal, hydrological, mechanical, and chemical (THMC) processes have a significant impact on the long-term safety of a clay repository. This report documents results from three R&D activities: (1) implementation and validation of constitutive relationships, (2) development of a discrete fracture network (DFN) model for investigating coupled processes in the excavation damaged zone, and (3) development of a THM model for the Full-Scale Emplacement Experiment tests at Mont Terri, Switzerland, for the

127

Source terms for analysis of accidents at a high level waste repository  

SciTech Connect

This paper describes an approach to identifying source terms from possible accidents during the preclosure phase of a high-level nuclear waste repository. A review of the literature on repository safety analyses indicated that source term estimation is in a preliminary stage, largely based on judgement-based scoping analyses. The approach developed here was to partition the accident space into domains defined by certain threshold values of temperature and impact energy density which may arise in potential accidents and specify release fractions of various radionuclides, present in the waste form, in each domain. Along with a more quantitative understanding of accident phenomenology, this approach should help in achieving a clearer perspective on scenarios important to preclosure safety assessments of geologic repositories. 18 refs., 3 tabs.

Mubayi, V.; Davis, R.E.; Youngblood, R.

1989-01-01T23:59:59.000Z

128

Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum  

Science Conference Proceedings (OSTI)

Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

1980-05-30T23:59:59.000Z

129

Repository receiving facility design support  

Science Conference Proceedings (OSTI)

This report provides preliminary design criteria and proposed design features to reduce the occupational radiation exposure and the transportation turnaround time during receipt of waste shipments at a Federal high-level nuclear waste repository. A cost/benefit analysis is provided. Much of the data presented in previous reports was revised and upgraded to reflect current estimates of waste generation/receipt volumes so as to provide a baseline comparison case for the cost/benefit analysis. The National Waste Repository in Basalt receiving facility operational manpower requirements, estimated occupational dose exposures and capital cost estimates were revised by scaling factors based on the volume receipts. All capital cost estimates were expressed in terms of 1983 dollars. The repository receiving facility was divided into two main areas. The cask handling facility for unloading shipments of spent fuel high-level vitrified wastes and spent fuel cladding hulls, and the TRU-waste handling facility for unloading 55-, 80-, and 600-drum shipments. In both areas, remote handling techniques were employed as much as practical. Occupational dose estimates were formulated based on an operational time and motion survey for truck and rail shipping packages and reference dose maps for each corresponding package. 9 references, 5 figures, 22 tables.

Cottrell, J.E.; Dabolt, R.J.; Steneck, P.D.

1983-07-01T23:59:59.000Z

130

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

131

The Analytical Repository Source-Term (AREST) model: Description and documentation  

Science Conference Proceedings (OSTI)

The geologic repository system consists of several components, one of which is the engineered barrier system. The engineered barrier system interfaces with natural barriers that constitute the setting of the repository. A model that simulates the releases from the engineered barrier system into the natural barriers of the geosphere, called a source-term model, is an important component of any model for assessing the overall performance of the geologic repository system. The Analytical Repository Source-Term (AREST) model being developed is one such model. This report describes the current state of development of the AREST model and the code in which the model is implemented. The AREST model consists of three component models and five process models that describe the post-emplacement environment of a waste package. All of these components are combined within a probabilistic framework. The component models are a waste package containment (WPC) model that simulates the corrosion and degradation processes which eventually result in waste package containment failure; a waste package release (WPR) model that calculates the rates of radionuclide release from the failed waste package; and an engineered system release (ESR) model that controls the flow of information among all AREST components and process models and combines release output from the WPR model with failure times from the WPC model to produce estimates of total release. 167 refs., 40 figs., 12 tabs.

Liebetrau, A.M.; Apted, M.J.; Engel, D.W.; Altenhofen, M.K.; Strachan, D.M.; Reid, C.R.; Windisch, C.F.; Erikson, R.L.; Johnson, K.I.

1987-10-01T23:59:59.000Z

132

Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt  

SciTech Connect

In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed.

Claiborne, H.C.

1982-09-01T23:59:59.000Z

133

Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada: 2004 Progress Report  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2004. The report summarizes EPRI work completed and in progress on evaluation of igneous c...

2004-09-28T23:59:59.000Z

134

IMPLEMENTATION AND OPERATION OF THE REPOSITORY  

Science Conference Proceedings (OSTI)

The NGDRS has facilitated 85% of cores, cuttings, and other data identified available for transfer to the public sector. Over 12 million linear feet of cores and cuttings, in addition to large numbers of paleontological samples and are now available for public use. To date, with industry contributions for program operations and data transfers, the NGDRS project has realized a 6.5 to 1 return on investment to Department of Energy funds. Large-scale transfers of seismic data have been evaluated, but based on the recommendation of the NGDRS steering committee, cores have been given priority because of the vast scale of the seismic data problem relative to the available funding. The rapidly changing industry conditions have required that the primary core and cuttings preservation strategy evolve as well. Additionally, the NGDRS clearinghouse is evaluating the viability of transferring seismic data covering the western shelf of the Florida Gulf Coast. AGI remains actively involved in working to realize the vision of the National Research Council's report of geoscience data preservation. GeoTrek has been ported to Linux and MySQL, ensuring a purely open-source version of the software. This effort is key in ensuring long-term viability of the software so that is can continue basic operation regardless of specific funding levels. Work has been on a major revision of GeoTrek, using the open-source MapServer project and its related MapScript language. This effort will address a number of key technology issues that appear to be rising for 2003, including the discontinuation of the use of Java in future Microsoft operating systems. The recent donation of BPAmoco's Houston core facility to the Texas Bureau of Economic Geology has provided substantial short-term relief of the space constraints for public repository space.

Marcus Milling

2003-10-01T23:59:59.000Z

135

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

136

Disaster and Failure Events Data Repository  

Science Conference Proceedings (OSTI)

... Phase 2 – HUB Technology Pilot: Chile Dataset • Develop event-specific, web-based repository ... study teams) Page 7. Phase 2 – Chile Dataset: ...

2012-12-07T23:59:59.000Z

137

CoRR - Computing Research Repository  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Repository (CoRR): new, recent, abs, find By Category: Artificial Intelligence (cs.AI) Computation and Language (cs.CL) Computational Complexity (cs.CC)...

138

Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum  

SciTech Connect

This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

Walton, W.C.; Voorhees, M.L.; Prickett, T.A.

1980-05-23T23:59:59.000Z

139

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

140

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microsoft Word - CCS Geologic Storage-Intro_2011l.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Geologic carbon sequestration involves the storage of carbon dioxide (CO 2 ) in deep underground geologic formations. The majority of geologic formations considered for CO 2 storage, deep saline or depleted oil and gas reservoirs, are layers of subsurface porous rock that are overlain by a layer or multiple layers of low-permeability rock. Under high pressures, CO 2 is a supercritical fluid, with the high- density characteristics of a liquid but behaves like a gas by filling all available volume. Coal seams are also a viable option for geologic storage. When CO 2 is injected into a coal formation it is adsorbed onto the coal surfaces and methane gas is released and produced in adjacent wells. NETL's Core R&D research is focused on developing the ability to characterize a geologic formation

142

Geologic CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

143

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

144

Preliminary Geologic Characterization of West Coast States for Geologic Sequestration  

SciTech Connect

Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

Larry Myer

2005-09-29T23:59:59.000Z

145

Best Practice Guidelines for Geologic Storage of Carbon Dioxide: Geologic Storage Options, Site Evaluation, and Monitoring/Mitigatio n  

Science Conference Proceedings (OSTI)

The purpose of this report is to set forth a set of "best practices" that support long-term, secure storage of captured carbon dioxide (CO2). For each of a suite of geologic storage options, the report establishes background and basic concepts, defines site selection criteria and procedures, and sets forth monitoring and mitigation options. The initial suite of geologic CO2 storage options to be addressed includes saline aquifers, depleted oil fields, depleted natural gas fields, and deep unmineable coal...

2004-12-22T23:59:59.000Z

146

Learning from the future of component repositories  

Science Conference Proceedings (OSTI)

An important aspect of the quality assurance of large component repositories is the logical coherence of component metadata. We argue that it is possible to identify certain classes of such problems by checking relevant properties of the possible future ... Keywords: component repository, quality assurance, speculative analysis

Pietro Abate; Roberto Di Cosmo; Ralf Treinen; Stefano Zacchiroli

2012-06-01T23:59:59.000Z

147

Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)  

SciTech Connect

This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

1986-06-01T23:59:59.000Z

148

Deep Lysimeter  

DOE Patents (OSTI)

A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

2004-06-01T23:59:59.000Z

149

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

150

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

151

Repository Reference Disposal Concepts and Thermal Load Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists...

152

EA-1404: Actinide Chemistry and Repository Science Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico SUMMARY This EA...

153

Focused Crawling of the Deep Web Using Service Class Descriptions  

Science Conference Proceedings (OSTI)

Dynamic Web data sources--sometimes known collectively as the Deep Web--increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deep Web. To address these challenges, we present DynaBot, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DynaBot has three unique characteristics. First, DynaBot utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DynaBot employs a modular, self-tuning system architecture for focused crawling of the DeepWeb using service class descriptions. Third, DynaBot incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.

Rocco, D; Liu, L; Critchlow, T

2004-06-21T23:59:59.000Z

154

Salt Repository Project schedule integration  

SciTech Connect

The Nuclear Waste Policy Act of 1982 defined the process and schedule leading to construction of a nuclear repository available to accept commercial nuclear waste by 1998. The significance of the efforts reported in this paper are that technical staff become equally convinced of the merit of scheduling when time permits, or magnitude requires, that they be intimately involved in the scheduling process. This particular project was also unique in the variety of technical disciplines forced to interact in order to determine schedule constraints between groups. This required a strong and experienced task force to bring the groups together, promulgate the technical principles of the scheduling methodology, and distill the proper logic. Finally, it was a necessity to be end-date constrained, and this required that management mandate realistic scopes of work as well as aggressive assumptions regarding durations of certain critical path activities.

Kopp, H.D.; LaFountain, L.J. (Battelle Memorial Institute, Amarillo, TX (USA))

1988-01-01T23:59:59.000Z

155

REMOTE SENSING GEOLOGICAL SURVEY  

E-Print Network (OSTI)

REMOTE SENSING IN GEOLOGICAL SURVEY OF BRAZIL August/2010 Mônica Mazzini Perrotta Remote Sensing Division Head #12;SUMMARY The Geological Survey of Brazil mission The Remote Sensing Division Main remote, Paleontology, Remote Sensing Director of Hydrology and Land Management But Remote Sensing Division gives

156

State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository  

Science Conference Proceedings (OSTI)

Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes.

Not Available

1980-07-16T23:59:59.000Z

157

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

158

Assessment of the geothermal resources of Indiana based on existing geologic data  

DOE Green Energy (OSTI)

The general geology of Indiana is presented including the following: physiography, stratigraphy, and structural features. The following indicators of geothermal energy are discussed: heat flow and thermal gradient, geothermal occurrences, seismic activity, geochemistry, and deep sedimentary basins. (MHR)

Vaught, T.L.

1980-12-01T23:59:59.000Z

159

Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)  

Science Conference Proceedings (OSTI)

The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

F. Hua; P. Pasupathi; N. Brown; K. Mon

2005-09-19T23:59:59.000Z

160

Genre Taxonomy: A Knowledge Repository of Communicative Actions  

E-Print Network (OSTI)

Room in Mox Corporation [Orlikowski and Yates, 1998] collaborative repository (place holder, response

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geology and Reservoir Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Service: 1-800-553-7681 Geology and Reservoir Simulation Background Natural gas from shale is becoming ever more recognized as an abundant and economically viable fuel in the...

162

MRS system study for the repository: Yucca Mountain Site Characterization Project; Volume 2  

SciTech Connect

The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ``MRS``) on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. This document contains A-D.

Sinagra, T.A. [Bechtel National, Inc., San Francisco, CA (USA); Harig, R. [Parsons, Brinckerhoff, Quade and Douglas, Inc., San Francisco, CA (USA)

1990-12-01T23:59:59.000Z

163

YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982  

Science Conference Proceedings (OSTI)

For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

NA

2002-03-26T23:59:59.000Z

164

Geologic flow characterization using tracer techniques  

DOE Green Energy (OSTI)

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

165

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

166

Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

base case where no gas injection occurs, and one each for N 2 and CO 2 injection at a rate of 500 Mcfd. The simulation well pattern is a quarter 5 -spot; reservoir parameters are...

167

Geology of Nevada: The  

E-Print Network (OSTI)

Geology plays a central role in Nevada’s human history, economy, and future. Cordilleran tectonics have created the Basin and Range landscape and interior drainage of the Great Basin, provided a rain shadow to make Nevada the nation’s driest state, and generated frequent earthquakes along normal and strike-slip faults. Geology is key to reducing risks from Nevada’s natural and anthropogenic hazards (earthquakes, flash floods, drought, land subsidence, erosion after wildland fires, landslides, swelling and collapsing soils, radon, arsenic, and others). Nevada’s geologic fortunes make it the leading state in the production of gold, silver, barite, lithium, and mercury and a major producer of geothermal power and gypsum. The metals are primarily related to igneous activity, with major pulses of magma during the Jurassic, Cretaceous, and Tertiary. Barite is mined from Paleozoic

Jonathan G. Price

2002-01-01T23:59:59.000Z

168

Phase III: Implementation and Operation of the Repository  

SciTech Connect

The metadata catalog was brought online for public access May 14, 1998. Since then dozens of users have registered and began to access the system. The system was demonstrated at the AAPG annual meeting in Salt Lake City and the EAGE (European Association of Geoscientists and Engineers) annual meeting in Leipzig, Germany. Hart Publications and PTTC ?NetworkNews? have published articles about the metadata catalog, and articles for the AAPG Explorer and GSA Today are being developed. A back-up system at AGI headquarters was established. In support of the metadata catalog system, a leased-line Internet connection and two servers were installed. Porting of the GeoTrek server software to the new systems has begun. The back-up system will be operational during the 3 rd quarter of 1998 and will serve the NGDRS needs during periods when access to the site in Houston is down. Additionally, experimentation with new data types and deployment schemes will be tested on the system at AGI. The NGDRS has picked-up additional endorsements from the American Association of State Geologists, the MMS Outer Continental Shelf Policy Committee, and a new endorsement is being formulated by the AAPG Core Preservation Committee for consideration by the AAPG Executive Committee. The Texas Bureau of Economic Geology (BEG) is currently geocoding the well locations for the metadata catalog. Also, they have solicited proposals for the development of a core inventory control system that will work hand-in-hand with GeoTrek. A contract for that system will probably be given during the 3 rd quarter of 1998. The Texas Railroad Commission proposes to test the application of GeoTrek for accessing data in a joint project with the BEG. Several data transfer projects are underway. Vastar has committed to the transfer of 2D Appalachian seismic lines to the NDGRS clearinghouse. Receiving repositories have been identified and the final preparations are being made for transfer to these public repositories. Discussions have been initiated with the State of Oregon concerning listing their 400 oil and gas well and 50 geothermal well cores and logs on the metadata catalog. Additionally, discussions continue with the Stapleton Development Corporation concerning the transfer of facilities in Denver for use as a central core repository. A letter of intent for the facility?s transfer is being reviewed.

None

1998-07-01T23:59:59.000Z

169

Impact of Drill and Blast Excavation on Repository Performance Confirmation  

Science Conference Proceedings (OSTI)

There has been considerable work accomplished internationally examining the effects of drill and blast excavation on rock masses surrounding emplacement openings of proposed nuclear waste repositories. However, there has been limited discussion tying the previous work to performance confirmation models such as those proposed for Yucca Mountain, Nevada. This paper addresses a possible approach to joining the available information on drill and blast excavation and performance confirmation. The method for coupling rock damage data from drill and blast models to performance assessment models for fracture flow requires a correlation representing the functional relationship between the peak particle velocity (PPV) vibration levels and the potential properties that govern water flow rates in the host rock. Fracture aperture and frequency are the rock properties which may be most influenced by drill and blast induced vibration. If it can be shown (using an appropriate blasting model simulation) that the effect of blasting is far removed from the waste package in an emplacement drift, then disturbance to the host rock induced in the process of drill and blast excavation may be reasonably ignored in performance assessment calculations. This paper proposes that the CANMET (Canada Center for Mineral and Energy Technology) Criterion, based on properties that determine rock strength, may be used to define a minimum PPV. This PPV can be used to delineate the extent of blast induced damage. Initial applications have demonstrated that blasting models can successfully be coupled with this criterion to predict blast damage surrounding underground openings. The Exploratory Studies Facility at Yucca Mountain has used a blasting model to generate meaningful estimates of near-field vibration levels and damage envelopes correlating to data collected from pre-existing studies conducted. Further work is underway to expand this application over a statistical distribution of geologic parameters, encompassing all the rock types that will be encountered for the proposed repository site at Yucca Mountain. This paper suggests that, based on predicted and verified vibration levels from blasting a distance equal to four standard deviations is unlikely to affect properties that govern water flow in the host rock. The authors propose this predicted distance and verification of vibration levels may be applied to the excavation of repository subsurface openings that may be most efficiently excavated by drill and blast methods with a reasonable assurance of safety.

R. Keller; N. Francis; J. Houseworth; N. Kramer

2000-08-21T23:59:59.000Z

170

EIDR :: Experimental Information and Data Repository  

NLE Websites -- All DOE Office Websites (Extended Search)

EIDR :: Experimental Information and Data Repository EIDR :: Experimental Information and Data Repository QUICK LINKS: About EIDR | EIDR FAQS | VIEW gene expression data | VIEW phenotype microarray data > Browse data by ... mouse over the below to display the menus experimental condition organism organism, experimental condition organism, type of laboratory analyses type of laboratory analyses Status of data import 2007-02-10 EIDR Overview EIDR is an information database for the ESPP project. It contains information about data generated by project participants, as well as links to data stored either in Biofiles or in the Experimental Data Repository. EIDR references data files that have been uploaded to LBNL using Biofiles, custom Web interfaces, or ftp. Information about the data includes design information about biomass production experiments, information about the lab analyses that generated the data, and links to more detailed information, displays, or analyses. You can browse for data using the menus in the Browse data by ... table to the left.

171

A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain  

SciTech Connect

A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1993-07-01T23:59:59.000Z

172

New Yucca Mountain Repository Design to be Simpler, Safer and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective untitled More...

173

Geological Sciences College of Science  

E-Print Network (OSTI)

postgraduate studies in Engineering Geology. `From going to mines and quarries, looking at what the job entails to his childhood when he would enjoy visiting mines and caves while on holidays around the UK, learning Geological Evolution of NZ and Antarctica GEOL 483 Coal & Petroleum Geology GEOL488 Special Topics

Hickman, Mark

174

Web-based metadata schema repository  

Science Conference Proceedings (OSTI)

The metadata schema of a digital archive describes the structure and attributes of metadata. Analysis and definition of metadata schema for a new digital archive must be carefully carried out and determined at the first stage of development. To ease ... Keywords: digital archive, extensible markup language, hyperText markup language, metadata schema repository, native XML database, web-based

Yen-Chun Lin; Hsiang-An Wang; Chien-Chung Huang; Wei Chen

2008-04-01T23:59:59.000Z

175

Repository synchronization in the OAI framework  

Science Conference Proceedings (OSTI)

The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) began as an alternative to distributed searching of scholarly eprint repositories. The model embraced by the OAI-PMH is that of metadata harvesting, where value-added services (by ...

Xiaoming Liu; Kurt Maly; Mohammad Zubair; Michael L. Nelson

2003-05-01T23:59:59.000Z

176

National Geoscience Data Repository System -- Phase III: Implementation and Operation of the Repository  

SciTech Connect

The National Geoscience Data Repository System, Phase III was an operational project focused on coordinating and facilitating transfers of at-risk geoscience data from the private sector to the public domain.

Keane, Christopher M.

2002-05-28T23:59:59.000Z

177

Distributed and collaborative learning objects repositories on grid networks  

Science Conference Proceedings (OSTI)

The paper deals with the design and a prototype implementation of a collaborative repository of scientific learning objects based on an efficient mechanism of filing and retrieving distributed knowledge on the Grid. The proposed repository can deal with ... Keywords: chemistry, grid, knowledge, learning objects, repository

Simonetta Pallottelli; Sergio Tasso; Nicola Pannacci; Alessandro Costantini; Noelia Faginas Lago

2010-03-01T23:59:59.000Z

178

Stress-corrosion-cracking studies on candidate container alloys for the Tuff Repository  

SciTech Connect

Cortest Columbus Technologies, Inc. (CC Technologies) investigated the long-term performance of container materials used for high-level waste package as part of the information needed by the Nuclear Regulatory Commission (NRC) to assess the Department of Energy`s application to construct to geologic repository for high-level radioactive waste. At the direction of the NRC, the program focused on the Tuff Repository. This report summarizes the results of Stress-Corrosion-Cracking (SCC) studies performed in Tasks 3, 5, and 7 of the program. Two test techniques were used; U-bend exposures and Slow-Strain-Rate (SSR) tests. The testing was performed on two copper-base alloys (Alloy CDA 102 and Alloy CDA 175) and two Fe-Cr-Ni alloys (Alloy 304L and Alloy 825) in simulated J-13 groundwater and other simulated solutions for the Tuff Repository. These solutions were designed to simulate the effects of concentration and irradiation on the groundwater composition. All SCC testing on the Fe-Cr-Ni Alloys was performed on solution-annealed specimens and thus issues such as the effect of sensitization on SCC were not addressed.

Beavers, J.A.; Durr, C.L. [Cortest Columbus Technologies, Inc., OH (United States)

1992-05-01T23:59:59.000Z

179

The consequences of failure should be considered in siting geologic carbon sequestration projects  

Science Conference Proceedings (OSTI)

Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

Price, P.N.; Oldenburg, C.M.

2009-02-23T23:59:59.000Z

180

Assistant Professor Quantitative Structural Geology or Geomechanics  

E-Print Network (OSTI)

/tectonics, hydrogeology, stable isotope geochemistry, environmental geology, sedimentology and stratigraphyAssistant Professor Quantitative Structural Geology or Geomechanics The Department of Geology structural geology with interest in the study of fractured reservoirs and geomechanics. The successful

Mohaghegh, Shahab

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrological/Geological Studies  

Office of Legacy Management (LM)

.\ .8.2 .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . . . . il.'; , . . y,.:.: . . . . . . . . ., ' . . ' . , . . . . . . . . . - . . . . . ... . . . . . : . . - . . . . . . . . . . . . . . . . . . . . . . .,. . . . . . . . .. 2 . . . . . . . . . . . ..... . . . . . . . . . . . . , .- , . : , . , . . . . ......... ... ) . . i - . . . . . . . . . . . . . . . . . . Prepared. Under . . . ~ ~ r e e m e n t - No. AT(29-2) -474 for the ~ e v a d a - - Operations Office U. S .. Atomic. ,Energy Commi~ssion

182

Application Of Electrical Resistivity And Gravimetry In Deep Geothermal  

Open Energy Info (EERE)

Resistivity And Gravimetry In Deep Geothermal Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The electrical resistivity method has been proven applicable to geothermal exploration because of the direct relationship between fluid and rock temperatures on the one hand electrical conductivity on the other. The problem of exploitation of a surface technique, such as resistivity, to the determination of geothermal gradients or 'hot spots' is complicated by the other geological parameters which affect resistivity: porosity, fluid salinity, cementation factor and clay content. However, by rational

183

Modeling and simulation in analyzing geological repositories for high level nuclear waste  

Science Conference Proceedings (OSTI)

Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms which can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. Electrical ... Keywords: modeling, nuclear energy, nuclear waste, nuclear waste storage, simulation

Dietmar P. F. Möller

2007-07-01T23:59:59.000Z

184

Long-Term Behavior of Waste Forms in a Geologic Repository  

Science Conference Proceedings (OSTI)

Oct 10, 2012... waste barrels and spent nuclear fuel and/or depleted uranium and for decontamination of corroded steel exposed to uranium and transuranic ...

185

Geologic repository work breakdown structure and dictionary---Development and evaluation phase (PE-02)  

Science Conference Proceedings (OSTI)

Revision 2 of the OGR Work Breakdown Structure and Dictionary -- Development and Evaluation Phase (PE-02) supersedes Revision 1, August 1989, in its entirety. The revision is to delete the Exploratory Shaft Facility'' work scape and replace it with Exploratory Studies Facility'' work scape.

Not Available

1991-08-01T23:59:59.000Z

186

Basis for Identification of Disposal Options for Research and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and experimental efforts on mined, geologic repositories in three media (salt, clayshale, and crystalline rocks), and the use of deep boreholes in crystalline rocks....

187

REPOSITORY SUBSURFACE LAYOUT OPTIONS AND ESF INTERFACE  

SciTech Connect

This report summarizes work completed by the repository subsurface design group during the 1993 fiscal year (FY93), and represents a portion of the ongoing, repository Advanced Conceptual Design (ACD) effort. The ACD work is being performed in accordance with guidance and controls established for the United States Department of Energy's (DOE) Yucca Mountain Project (YMP). This document draws information from other ACD reports prepared and submitted during the year, and from other program studies, including the Exploratory Studies Facility (ESF) Title II design. Site specific data gathered by the Surface Based Testing (SBT) program has been included to the extent that it became available early enough for use in the designs presented herein.

Dana J. Rogers

1993-12-20T23:59:59.000Z

188

EPRI Distribution Reliability Practices Repository V2  

Science Conference Proceedings (OSTI)

A key objective of EPRI's research into distribution reliability practices is to identify, document and provide practice summary descriptions to research participants in a format that facilitates comparison and aids decision-makers in identifying those practices in place at other utilities which can be applied to their utility to improve performance. This research report presents distribution reliability practice results from six different companies in a repository which places ...

2013-11-27T23:59:59.000Z

189

Draft Supplemental Environmental Impact Statement for a Geologice Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mounta  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v v COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor (DOE/EIS-0250F-S2D; the Nevada Rail Corridor SEIS), and Draft Environmental Impact Statement for a Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada (DOE/EIS-0369D; the Rail Alignment EIS) CONTACTS: For more information about this document, write or call: For general information on the DOE NEPA process, write or call: U.S. Department of Energy Office of Civilian Radioactive Waste Management

190

National Geoscience Data Repository System: Phase 2 -- Planning and pilot study. Progress report 1. quarter, February--April, 1995  

SciTech Connect

The American Geological Institute (AGI) recently completed the first phase of a multiphase program to study and implement a National Geoscience Data Repository System (NGDRS) to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that tens of billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. The NGDRS would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, reducing risks from earthquakes and other geologic hazards, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the US for increased recovery of domestic oil, gas, and mineral resources. The proposed Phase 2 study has four major components: planning and specification; directory of geoscience data centers; pilot projects; and steering committee operations.

1995-05-01T23:59:59.000Z

191

SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN  

Science Conference Proceedings (OSTI)

The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that present preliminary concepts for integrating the diverse set of control systems to be used within the subsurface repository facility (Presented in Section 7.3). (5) Develop initial concepts for an overall subsurface data communication system that can be used to integrate critical and data-intensive control systems (Presented in Section 7.4). (6) Discuss technology trends and control system design issues (Presented in Section 7.5).

C.J. Fernado

1998-09-17T23:59:59.000Z

192

The geomechanics of CO{sub 2} storage in deep sedimentary formations  

Science Conference Proceedings (OSTI)

This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO{sub 2} repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO{sub 2} storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. For such largescale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.

Rutqvist, J.

2011-11-01T23:59:59.000Z

193

Applying Information From Analogue Systems to the Evaluation of Radioactive Waste Repositories: Proceedings of the EPRI Natural Analogues Workshop - Palo Alto, California - October 9-10, 2003  

Science Conference Proceedings (OSTI)

Natural analogue studies involve investigations of geological, archaeological, or industrial systems that bear some similarity to material components or processes related to a repository or its surrounding environment. Since the initiation of natural analogue studies in the 1970s, their number has grown and their use has matured to become a common and important supporting activity in evaluating the safety of radioactive waste storage or disposal. This report documents the proceedings of EPRI's Natural An...

2003-12-09T23:59:59.000Z

194

DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Report on Techniques to Ensure Safe, Effective Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration March 17, 2009 - 1:00pm Addthis Washington, DC -- The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide (CO2) stored in geologic formations. The report, titled Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations, should prove to be an invaluable tool in reducing greenhouse gas emissions to the atmosphere through geologic sequestration. The report was prepared by NETL with input from the seven Regional Carbon

195

Calphad Data and File Repositories for the Development of Design ...  

Science Conference Proceedings (OSTI)

Increasing knowledge about these alloys requires updates and extension of existing databases with Calphad file and data repositories enabling more efficient ...

196

File and Data Repositories for CALPHAD and Beyond  

Science Conference Proceedings (OSTI)

Such a repository needs to include files with functional descriptions, data files used for refinement of the functional descriptions and auxiliary files. The files are  ...

197

Suggests lattice ZipData No Repository CRAN  

E-Print Network (OSTI)

Description A collection of artificial and real-world machine learning benchmark problems, including, e.g., several data sets from the UCI repository.

Friedrich Leisch; Evgenia Dimitriadou; Maintainer Friedrich Leisch

2010-01-01T23:59:59.000Z

198

Business Case Slide 6: High-Volume: Repository - Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume: Repository - Description Description of potential uses Structural component of cask (basket, wall) as a cermet Cermet: DUO2 particles embedded in steel matrix Fill material...

199

Business Case Slide 9: High-Volume: Repository - Potential Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository - Potential Benefits Potential benefits EM Any of the four applications could use most or all of the DU inventory which could avoid transportation and disposal cost No...

200

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

Flow path of radionuclides from repository and intofor sequestration of radionuclides, from the small quantityadvective transport of radionuclides in this region. 4)

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE Hydrogen and Fuel Cells Program: Analysis Repository Home...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity production, central and distributed Energy resource estimation and forecasting. The U.S. Department of Energy created this repository to help analysts, policy...

202

Strategic Basis for License Application Planning for a Potential Yucca Mountain Repository  

SciTech Connect

If Yucca Mountain, Nevada is designated as the site for development of a geologic repository for disposal of spent nuclear fuel and high-level radioactive waste, the Department of Energy (DOE) must obtain Nuclear Regulatory Commission (NRC) approval first for repository construction, then for an operating license, and, eventually, for repository closure and decommissioning. The licensing criteria defined in Code of Federal Regulations, Title 10, Part 63 (10 CFR Part 63) establish the basis for these NRC decisions. Submittal of a license application (LA) to the NRC for authorization to construct a repository at the Yucca Mountain site is, at this point, only a potential future action by the DOE. The policy process defined in the Nuclear Waste Policy Act (NWPA), as amended, for recommendation and designation of Yucca Mountain as a repository site makes it difficult to predict whether or when the site might be designated. The DOE may only submit a LA to the NRC if the site designation takes effect. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for development and timely submittal of a LA. This is particularly true given the need for the DOE to develop, load, and certify the operation of its electronic information system to provide access to its relevant records as part of the licensing support network (LSN) in compliance with NRC requirements six months prior to LA submittal. The DOE must also develop a LA, which is a substantially different document from those developed to support a Site Recommendation (SR) decision. The LA must satisfy NRC licensing criteria and content requirements, and address the acceptance criteria defined by the NRC in its forthcoming Yucca Mountain Review Plan (YMRP). The content of the LA must be adequate to facilitate NRC acceptance and docketing for review, and the LA and its supporting documents must provide the documented basis for the NR C findings required for a construction authorization. The LA must also support a licensing proceeding before an Atomic Safety and Licensing Board panel prior to NRC action on any decision to authorize construction. The DOE has established a strategic basis for planning that is intended to provide the framework for development of an integrated plan for activities leading to preparation and submittal of a LA.

Newberry, C. M.; Brocoum, S. J.; Gamble, R. P.; Murray, R. C.; Cline, M.

2002-02-26T23:59:59.000Z

203

Vision and framework for technical and management support to facilitate foreign spent fuel storage and geologic disposal in Russia  

SciTech Connect

This ''Technical and Management Support'' program would facilitate the transfer of spent fuel from commercial power plants in Taiwan to a storage and geologic repository site near Krasnoyarsk, Russia. This program resolves issues of disposition of Taiwan spent fuel (including US origin fuel) and provides revenue for Russia to develop an integrated spent fuel storage and radioactive waste management system including a geologic repository. LLNL has ongoing contracts and collaborations with all the principal parties and is uniquely positioned to facilitate the development of such a program. A three-phase approach over 20 years is proposed: namely, an initial feasibility investigation followed by an engineering development phase, and then implementation.

Halsey, W G; Jardine, L J; Smith, C F

1999-07-01T23:59:59.000Z

204

NSNFP Activities in Support of Repository Licensing for Disposal of DOE SNF  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management is in the process of preparing the Yucca Mountain license application for submission to the Nuclear Regulatory Commission as the nation’s first geologic repository for spent nuclear fuel (SNF) and high-level waste. Because the DOE SNF will be part of the license application, there are various components of the license application that will require information relative to the DOE SNF. The National Spent Nuclear Fuel Program (NSNFP) is the organization that directs the research, development, and testing of treatment, shipment, and disposal technologies for all DOE SNF. This report documents the work activities conducted by the NSNFP and discusses the relationship between these NSNFP technical activities and the license application. A number of the NSNFP activities were performed to provide risk insights and understanding of DOE SNF disposal as well as to prepare for anticipated questions from the regulatory agency.

Henry H. Loo; Brett W.. Carlsen; Sheryl L. Morton; Larry L. Taylor; Gregg W. Wachs

2004-09-01T23:59:59.000Z

205

Hawaii geologic map data | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii geologic map data Citation Hawaii geologic map data Internet. 2013....

206

Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste  

Science Conference Proceedings (OSTI)

The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

1982-08-01T23:59:59.000Z

207

National Geoscience Data Repository System, Phase II. Final report, January 30, 1995--January 28, 1997  

SciTech Connect

The American Geological Institute (AGI) has completed Phase II of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the United States for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. To address this opportunity, AGI sought support from the Department of Energy (DOE) in 1994 to initiate the NGDRS Phase I feasibility study to determine the types and quantity of data that companies would be willing to donate. The petroleum and mining companies surveyed indicated that they were willing to donate approximately five million well logs, one hundred million miles of seismic reflection data, millions of linear feet of core and cuttings, and a variety of other types of scientific data. Based on the positive results of the Phase I study, AGI undertook Phase II of the program in 1995. Funded jointly by DOE and industry, Phase II encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser.

NONE

1998-04-01T23:59:59.000Z

208

Range of Neutronic Parameters for Repository Criticality Analyses  

SciTech Connect

The ''Range of Neutronic Parameters for Repository Criticality Analyses'' technical report contains a summary of the benchmark criticality analyses (including the laboratory critical experiment [LCEs] and the commercial reactor criticals [CRCs]) used to support the validation of the criticality evaluation methods. This report also documents the development of the Critical Limits (CLs) for the repository criticality analyses.

W.J. Anderson

1999-09-28T23:59:59.000Z

209

Reusable learning objects: a survey of LOM-based repositories  

Science Conference Proceedings (OSTI)

In this paper, we survey the field of learning object repositories. Learning objects are typically relatively small content components that are meant to be reusable in different contexts. Associated to these learning objects are metadata, so that they ... Keywords: Learning Object Metadata (LOM), digital libraries, learning object repositories, metadata, reusable learning objects

Filip Neven; Erik Duval

2002-12-01T23:59:59.000Z

210

A Weighted Freshness Metric for Maintaining Search Engine Local Repository  

Science Conference Proceedings (OSTI)

Current search engines maintain a local repository to improve the search efficiency. A crawler is used to periodically poll the remote web pages to update the contents of the local repository. Due to the resource limitations, some local pages may be ...

Jianchao Han; Nick Cercone; Xiaohua Hu

2004-09-01T23:59:59.000Z

211

Characterizing the Evolution of the In-Drift Environment in a Proposed Yucca Mountain Repository  

SciTech Connect

This presentation provides a high-level summary of the approach taken to achieve a conceptual understanding of the chemical environments likely to exist in the proposed Yucca Mountain repository after the permanent closure of the facility. That conceptual understanding was then made quantitative through laboratory and modeling studies. This summary gives an overview of the in-drift chemical environment modeling that was needed to evaluate a Yucca Mountain repository: it describes the geological, hydrological, and geochemical aspects of the chemistry of water contacting engineered barriers and includes a summary of the technical basis that supports the integration of this information into the total system performance assessment. In addition, it presents a description of some of the most important data and processes influencing the in-drift environment, and describes how data and parameter uncertainty are propagated through the modeling. Sources of data include: (1) external studies regarding climate changes; (2) site-specific studies of the structure of the mountain and the properties of its rock layers; (3) properties of dust in the mountain and investigations of the potential for deliquescence on that dust to create solutions above the boiling point of water; (4) obtaining thermal data from a comprehensive thermal test addressing coupled processes; and (5) modeling the evolution of the in-drift environment at several scales. Model validation is also briefly addressed.

Dr. Abraham Van Luik

2004-11-15T23:59:59.000Z

212

Selection of candidate canister materials for high-level nuclear waste containment in a tuff repository  

Science Conference Proceedings (OSTI)

A repository located at Yucca Mountain at the Nevada Test Site is a potential site for permanent geological disposal of high-level nuclear waste. The repository can be located in a horizon in welded tuff, a volcanic rock, which is above the static water level at this site. The environmental conditions in this unsaturated zone are expected to be air and water vapor dominated for much of the containment period. Type 304L stainless steel is the reference material for fabricating canisters to contain the solid high-level wastes. Alternative stainless alloys are considered because of possible susceptibility of 304L to localized and stress forms of corrosion. For the reprocessed glass wastes, the canisters serve as the recipient for pouring the glass with the result that a sensitized microstructure may develop because of the times at elevated temperatures. Corrosion testing of the reference and alternative materials has begun in tuff-conditioned water and steam environments. 21 references, 8 figures, 8 tables.

McCright, R.D.; Weiss, H.; Juhas, M.C.; Logan, R.W.

1983-11-01T23:59:59.000Z

213

Continental Scientific Drilling Program thermal regimes: comparative site assessment geology of five magma-hydrothermal systems  

DOE Green Energy (OSTI)

The geology and salient aspects of geophysics and hydrogeochemistry of five high-grade geothermal systems in the USA are reviewed. On the basis of this information, a target location is suggested for a deep (5- to 8-km) borehole that will maximize the amount of scientific information to be learned at each of the five geothermal areas.

Goff, F.; Waters, A.C. (eds.)

1980-10-01T23:59:59.000Z

214

NETL: Geological and Environmental Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Systems Geological & Environmental Systems Onsite Research Geological and Environmental Sciences Geological and Environmental Sciences (GES) is a focus area of the National Energy Technology Laboratory's Office of Research and Development (ORD). ORD's other focus areas are Energy System Dynamics, Computational and Basic Sciences, and Materials Science and Engineering. Scientists and engineers in ORD conduct research at NETL's advanced research facilities in Morgantown, WV; Pittsburgh, PA; and Albany, OR, and at various offsite locations. GES tackles the challenge of clean energy production from fossil energy sources by focusing on the behavior of natural systems at both the earth's surface and subsurface, including prediction, control, and monitoring of fluid flow in porous and fractured media. Efforts include

215

Repository Subsurface Preliminary Fire Hazard Analysis  

Science Conference Proceedings (OSTI)

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

216

NERSC Visualization and Analysis for Nanoscale Control of Geologic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanocontrol of CO2 Nanocontrol of CO2 Visualization and Analysis for Nanoscale Control of Geologic Carbon Dioxide Goals * Collect experimental 2D-3D imaging data in order to investigate fluid-fluid and fluid-rock interactions; * Provide algorithms for better understanding of processes governing fluid-fluid and fluid-rock systems, related to geologic sequestration of CO2; * Develop image processing methods for analyzing experimental data and comparing it to simulations; * Detect/reconstruct material interfaces, quantify contact angles, derive contact angle distribution, etc. Impact * Unveil knowledge required for developing technology to store CO2 safely in deep surface rock formations, thus reducing amount of CO2 in atmosphere; More Personnel * CRD: Wes Bethel, Dani Ushizima, Gunther Weber (SciDAC-e award)

217

Repository surface design site layout analysis  

SciTech Connect

The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond.

Montalvo, H.R.

1998-02-27T23:59:59.000Z

218

NATIONAL GEOSCIENCE DATA REPOSITORY SYSTEM PHASE III: IMPLEMENTATION AND OPERATION OF THE REPOSITORY  

SciTech Connect

In the past six months the NGDRS program has seen a new spike in activity, particularly in October 2000. This new spike in activity is the result of increased activities in the petroleum sector, including new funding to examine infrastructure issues facing many of the companies over the long-term. With industry conditions continuing to rapidly change and evolve, the primary core and cuttings preservation strategy has evolved as well. With the severe lack of available public data repository space and the establishment of a major national geoscience data repository facility unlikely in the near future, the focus is on increasing public awareness and access to nonproprietary company data holdings that remain in the public and private sector. Efforts still continue to identify and facilitate the entry of new repository space into the public sector. Additionally, AGI has been working with the National Academy of Sciences Board on Earth Sciences and Resources staff to initiate a study and workshop to develop a policy recommendation on geoscience data preservation and prioritization of efforts. Additional data transfer efforts were undertaken during the second half of FY00. Altura's Permian Basin core was contributed to the Texas BEG's facility in Midland. Transcription and evaluation of selected seismic data from the Santa Barbara Channel previously owned by Phillips was completed. Additionally, Chevron has released over 180,000 boxes of cores to the public through the NGDRS metadata catalog.

Marcus Milling

2000-12-01T23:59:59.000Z

219

National Geoscience Data Repository System: Phase 2, Planning and pilot study. Progress report, February--April 1995  

SciTech Connect

The American Geological Institute (AGI) recently completed the first phase of a multiphase program to study and implement a National Geoscience Data Repository System (NGDRS) to capture and preserve valuable geoscientific data. They study was initiated in response to the fact that tens of billions of dollars worth of domestic eological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. The NGDRS would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, reducing risks from earthquakes and other geologic hazards, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for increased recovery of domestic oil, gas, and mineral resources. Progress is reported on the second phase of this program.

NONE

1995-05-01T23:59:59.000Z

220

Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect

This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Response to West Cumbria MRWS consultation: Why a deep nuclear waste repository should not be  

E-Print Network (OSTI)

: BNFL) Carter, R. (EPSRC) Castro Diaz, L. (Regenesys / Linacre) Chandrapalan, P. (CASE: Regenesys International Ltd Alcoa Extrusions Armourers and Brasiers Company BNFL British Aerospace Military Aircraft

222

Remote sensing data exploiration for geologic characterization of difficult targets : Laboratory Directed Research and Development project 38703 final report.  

SciTech Connect

Characterizing the geology, geotechnical aspects, and rock properties of deep underground facility sites can enhance targeting strategies for both nuclear and conventional weapons. This report describes the results of a study to investigate the utility of remote spectral sensing for augmenting the geological and geotechnical information provided by traditional methods. The project primarily considered novel exploitation methods for space-based sensors, which allow clandestine collection of data from denied sites. The investigation focused on developing and applying novel data analysis methods to estimate geologic and geotechnical characteristics in the vicinity of deep underground facilities. Two such methods, one for measuring thermal rock properties and one for classifying rock types, were explored in detail. Several other data exploitation techniques, developed under other projects, were also examined for their potential utility in geologic characterization.

Costin, Laurence S.; Walker, Charles A.; Lappin, Allen R.; Hayat, Majeed M. (University of New Mexico, Albuquerque, NM); Ford, Bridget K.; Paskaleva, Biliana (University of New Mexico, Albuquerque, NM); Moya, Mary M.; Mercier, Jeffrey Alan (University of Arizona, Tucson, AZ); Stormont, John C. (University of New Mexico, Albuquerque, NM); Smith, Jody Lynn

2003-09-01T23:59:59.000Z

223

SCHOOLOFENGINEERING Table of Contents  

E-Print Network (OSTI)

of a deep geological repository for spent nuclear fuel. 3. Radiation/light induced processes at solid nuclear fuel The political decision to build and take into use a deep geological repository for long term storage of spent nuclear fuel will largely depend on the outcome of thorough scientifically based safety

Varela, Carlos

224

Coring in deep hardrock formations  

DOE Green Energy (OSTI)

The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

Drumheller, D.S.

1988-08-01T23:59:59.000Z

225

Progress report on the results of testing advanced conceptual design metal barrier materials under relevant environmental conditions for a tuff repository  

SciTech Connect

This report discusses the performance of candidate metallic materials envisioned for fabricating waste package containers for long-term disposal at a possible geological repository at Yucca Mountain, Nevada. Candidate materials include austenitic iron-base to nickel-base alloy (AISI 304L, AISI 316L, and Alloy 825), high-purity copper (CDA 102), and copper-base alloys (CDA 613 and CDA 715). Possible degradation modes affecting these container materials are identified in the context of anticipated environmental conditions at the repository site. Low-temperature oxidation is the dominant degradation mode over most of the time period of concern (minimum of 300 yr to a maximum of 1000 yr after repository closure), but various forms of aqueous corrosion will occur when water infiltrates into the near-package environment. The results of three years of experimental work in different repository-relevant environments are presented. Much of the work was performed in water taken from Well J-13, located near the repository, and some of the experiments included gamma irradiation of the water or vapor environment. The influence of metallurgical effects on the corrosion and oxidation resistance of the material is reviewed; these effects result from container fabrication, welding, and long-term aging at moderately elevated temperatures in the repository. The report indicates the need for mechanisms to understand the physical/chemical reactions that determine the nature and rate of the different degradation modes, and the subsequent need for models based on these mechanisms for projecting the long-term performance of the container from comparatively short-term laboratory data. 91 refs., 17 figs., 16 tabs.

McCright, R.D.; Halsey, W.G.; Van Konynenburg, R.A.

1987-12-01T23:59:59.000Z

226

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

227

Deep Vadose Zone  

Energy.gov (U.S. Department of Energy (DOE))

The Mission of the Deep Vadose Zone Applied Field Research Initiative is to protect water resources across the DOE complex over the long-term by developing effective solutions to solve DOE’s most...

228

Exploration for deep coal  

Science Conference Proceedings (OSTI)

The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

NONE

2008-12-15T23:59:59.000Z

229

Thermohydrologic behavior and repository design at Yucca Mountain  

DOE Green Energy (OSTI)

Radioactive decay of nuclear waste emplaced at Yucca Mountain will produce an initial heat flux many times larger than the heat flux in some natural geothermal systems. This heat flux will change the thermal and hydrologic environment at Yucca Mountain significantly, affecting both the host rock and conditions within the emplacement tunnels (drifts). Understanding the thermohydrologic behavior in this coupled natural and engineered system is critical to the assessment of the viability of Yucca Mountain as a nuclear-waste repository site and for repository design decision-making. We report results from a study that uses our multi-scale modeling approach to explore the relationship between repository design, thermohydrologic behavior, and key repository performance measures.

Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

2000-10-01T23:59:59.000Z

230

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

231

Business Case Slide 11: High-Volume: Repository - Program Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Focus Previous Slide Next Slide Table of Contents High-Volume: Repository - Program Focus Program focus (ORNL) Fill and cermets are being pursued Both put DUO2 close to...

232

Business Case Slide 10: High-Volume: Repository - Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues Previous Slide Next Slide Table of Contents High-Volume: Repository - Issues Issues Technical basis for using DUO2 as a geochemical barrier Technical issues DUO2 alteration...

233

Repository Synchronization in the OAI Framework Xiaoming Liu  

E-Print Network (OSTI)

Repository Synchronization in the OAI Framework Xiaoming Liu Research Library Los Alamos Research Laboratory Los Alamos, NM, 87544 liu x@lanl.gov Kurt Maly Mohammad Zubair Michael L. Nelson Computer Science

Nelson, Michael L.

234

ROARS: a scalable repository for data intensive scientific computing  

Science Conference Proceedings (OSTI)

As scientific research becomes more data intensive, there is an increasing need for scalable, reliable, and high performance storage systems. Such data repositories must provide both data archival services and rich metadata, and cleanly integrate with ...

Hoang Bui; Peter Bui; Patrick Flynn; Douglas Thain

2010-06-01T23:59:59.000Z

235

Method for storing spent nuclear fuel in repositories  

DOE Patents (OSTI)

A method for storing radioactive spent fuel in repositories containing sulfur as the storage medium is disclosed. Sulfur is non-corrosive and not subject to radiation damage. Thus, storage periods of up to 100 years are possible.

Schweitzer, Donald G. (Bayport, NY); Sastre, Cesar (Shoreham, NY); Winsche, Warren (Bellport, NY)

1981-01-01T23:59:59.000Z

236

GSA Data Repository item 0000 Supplemental data for  

E-Print Network (OSTI)

GSA Data Repository item 0000 Supplemental data for Exhumation History of the Alam Kuh Area Data Repository item 0000 Item PDF file name U-Pb data table for Akapol zircon samples (97AK101, 97AK102, and 19-12-1) Akapol_zircon_data.PDF U-Pb data table for Alam Kuh zircon samples (19-29-1) Alam_Kuh_zircon_data

Harrison, Mark

237

Improving Repository Performance by Using a Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

a Fill a Fill Improving Repository Performance by Using a Fill The use of fills, semi-independent of the specific fill material, can improve package performance. The first barrier to prevent releases from the spent nuclear fuel is the waste package itself. The longer the waste package remains intact, the lower the ultimate releases from the spent nuclear fuel. In a typical waste package over half of the interior space is empty space. There are coolant channels in the spent fuel and square fuel assemblies can not fully fill a round waste package. After the package is buried, it will begin to corrode and the walls will thin. Rock falls may cause early failure of the waste package. However, if the package is full, it is more difficult to crush a full package and fail the exterior wall. The behavior of a waste package over time is similar to a soda can. Empty cans are easy to crush. Full, sealed cans are difficult to crush because the fluid inside supports the can.

238

Technical framework to facilitate foreign spent fuel storage and geologic disposal in Russia  

SciTech Connect

The option of storage and eventual geologic disposal in Russia of spent fuel of US origin used in Taiwan provides a unique opportunity that can benefit many parties. Taiwan has a near term need for a spent fuel storage and geologic disposal solution, available financial resources, but limited prospect for a timely domestic solution. Russia has significant spent fuel storage and transportation management experience, candidate storage and repository sites, but limited financial resources available for their development. The US has interest in Taiwan energy security, national security and nonproliferation interests in Russian spent fuel storage and disposal and interest in the US origin fuel. While it is understood that such a project includes complex policy and international political issues as well as technical issues, the goal of this paper is to begin the discussion by presenting a technical path forward to establish the feasibility of this concept for Russia.

Jardine, L J; Halsey, W G; Cmith, C F

2000-01-31T23:59:59.000Z

239

Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media  

Science Conference Proceedings (OSTI)

This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.

Ababou, R.

1991-08-01T23:59:59.000Z

240

GEOLOGY, April 2010 315 INTRODUCTION  

E-Print Network (OSTI)

GEOLOGY, April 2010 315 INTRODUCTION The redox evolution of the oceans through Earth history shaped; Erbacher et al., 2005). In this study we use variations in the isotope composition of U, a trace element and Palmer, 1991). As recently observed, the burial of U into sediments is associated with isotope fraction

Pross, Jörg

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Characteristics of potential repository wastes. Volume 1  

Science Conference Proceedings (OSTI)

This document, and its associated appendices and microcomputer (PC) data bases, constitutes the reference OCRWM data base of physical and radiological characteristics data of radioactive wastes. This Characteristics Data Base (CDB) system includes data on spent nuclear fuel and high-level waste (HLW), which clearly require geologic disposal, and other wastes which may require long-term isolation, such as sealed radioisotope sources. The data base system was developed for OCRWM by the CDB Project at Oak Ridge National Laboratory. Various principal or official sources of these data provided primary information to the CDB Project which then used the ORIGEN2 computer code to calculate radiological properties. The data have been qualified by an OCRWM-sponsored peer review as suitable for quality-affecting work meeting the requirements of OCRWM`s Quality Assurance Program. The wastes characterized in this report include: light-water reactor (LWR) spent fuel and immobilized HLW.

Not Available

1992-07-01T23:59:59.000Z

242

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Fracture characteristics in the sedimentary and metamorphic rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis is placed on fracture identification using borehole

243

LIFE Materials: Fuel Cycle and Repository Volume 11  

Science Conference Proceedings (OSTI)

The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

Shaw, H; Blink, J A

2008-12-12T23:59:59.000Z

244

Risk assessment framework for geologic carbon sequestration sites  

E-Print Network (OSTI)

Framework for geologic carbon sequestration risk assessment,for geologic carbon sequestration risk assessment, Energyfor Geologic Carbon Sequestration, Int. J. of Greenhouse Gas

Oldenburg, C.

2010-01-01T23:59:59.000Z

245

Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration  

E-Print Network (OSTI)

workshop on geologic carbon sequestration, 2002. Benson,verification of geologic carbon sequestration, Geophys. Res.CO 2 from geologic carbon sequestration sites, Vadose Zone

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

246

Geology and Groundwater Investigation Many Devils Wash, Shiprock...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico Geology and...

247

Hanford Borehole Geologic Information System (HBGIS)  

Science Conference Proceedings (OSTI)

This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

2005-09-26T23:59:59.000Z

248

Challenges of deep drilling  

SciTech Connect

Deep drilling poses major problems when high temperatures, high pressures, and acid gases are encountered. A combination of these items usually requires extensive planning, exotic materials, long drilling times, and heavy expenditures. Only 2 wells have been drilled below 30,000 ft in the US, the deeper a 31,441-ft hole in 1974. The deepest well in the world is reported to be in the Soviet Union, recently drilled below 34,895 ft, with a target depth of 15,000 m (49,212 ft). A review of current deep drilling technology and its capabilities is given.

Chadwick, C.E.

1981-07-01T23:59:59.000Z

249

A case study on the influence of THM coupling on the near field safety of a spent fuel repository in sparsely fractured granite  

Science Conference Proceedings (OSTI)

In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed for a hypothetical repository in the Canadian Shield. The assessment shows that such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical (THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100 C, however the load on the container can marginally exceed the design value of 15 MPa. However, the most important finding from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing systems.

Nguyen, T.S.; Borgesson, L.; Chijimatsu, M.; Hernelind, J.; Jing, L.; Kobayashi, A.; Rutqvist, J.

2009-03-01T23:59:59.000Z

250

Proceedings of the scientific visit on crystalline rock repository development.  

Science Conference Proceedings (OSTI)

A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.

Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka [RAWRA, Czech Republic

2013-02-01T23:59:59.000Z

251

Salt Repository Project shaft design guide: Revision 0  

Science Conference Proceedings (OSTI)

The Salt Repository Project (SRP) Shaft Design Guide (SDG) and the accompanying SRP Input to Seismic Design define the basic approach for developing appropriate shaft designs for a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The SDG is based on current mining industry standards and practices enhanced to meet the special needs of an underground nuclear waste repository. It provides a common approach for design of both the exploratory and repository shafts. The SDG defines shaft lining and material concepts and presents methods for calculating the loads and displacements that will be imposed on lining structures. It also presents the methodology and formulae for sizing lining components. The SDG directs the shaft designer to sources of geoscience and seismic design data for the Deaf Smith County, Texas repository site. In addition, the SDG describes methods for confirming shaft lining design by means of computer analysis, and it discusses performance monitoring needs that must be considered in the design. 113 refs., 18 figs., 14 tabs.

Not Available

1987-12-01T23:59:59.000Z

252

Transportation analysis for the concept of regional repositories  

SciTech Connect

Over the past several years, planning associated with the National Waste Terminal Storage (NWTS) program assumed the use of one or two large, centrally located repository facilities. Recently, an alternative approach has been proposed which consists of the use of multiple, smaller regional repositories. In this report, several regional concepts were studied and the transportation requirements for the shipment of spent fuel to the regional repositories were estimated. In general, the transportation requirements decrease as the number of repositories increase. However, as far as transportation is concerned, the point of diminishing returns is reached at approximately one repository in each of three to four regions. Additional savings beyond this point are small. A series of sensitivity studies is also included to demonstrate the impact on the total transportation requirements of varying cask capacity, rail speed, or truck speed. Since most of the projected fuel shipments are to be made by rail, varying the capacity of the rail cask or varying average rail transport speed will have a major effect on overall transportation requirements.

Joy, D.S.; Hudson, B.J.

1980-06-01T23:59:59.000Z

253

Novel Concepts Research in Geologic Storage of CO2  

Science Conference Proceedings (OSTI)

As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the January-March 2007 period of the project. As discussed in the report, the main accomplishment was an announcement by AEP to move forward with a {approx}100,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. This decision was the outcome of last several years of research under the current DOE funded project involving the technology, site-specific characterization, modeling, risk assessment, etc. This news marks a significant accomplishment for DOE's research program to translate the theoretical potential for carbon sequestration into tangible measures and approaches for the region. The program includes a 30-megawatt thermal product validation at the Mountaineer Plant where up to 100,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Plans include further steps at Mountaineer with capture and storage at a very expedited pace. Work continued on the design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase of the project has reached a major milestone. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

Neeraj Gupta

2007-03-31T23:59:59.000Z

254

Novel Concepts Research in Geologic Storage of CO2  

Science Conference Proceedings (OSTI)

As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the April-June 2007 period of the project. As discussed in the report, the main accomplishments related to preparation to move forward with a 100,000-300,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. The program includes a 10 to 30-megawatt thermal product validation at the Mountaineer Plant where up to 300,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, reservoir storage simulations, and assessment of monitoring technologies as they apply to the project site were developed for the project. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

Neeraj Gupta

2007-06-30T23:59:59.000Z

255

Geological/geophysical study progresses  

SciTech Connect

Robertson Research (U.S.) Inc. of Houston is working on the second of a planned three-phase regional geological and geochemical study of Paleozoic rocks in the Williston Basin. The studies cover the entire Williston Basin in North Dakota, South Dakota, Montana, Saskatchewan and Manitoba. Each report is based largely on original petrographic, well log, and geochemical data that were developed by Robertson.

Savage, D.

1983-10-01T23:59:59.000Z

256

Assessment of effectiveness of geologic isolation systems. A conceptual simulation model for release scenario analysis of a hypothetical site in Columbia Plateau Basalts  

SciTech Connect

This report is a status report for an evolving methodology for release scenario development for underground nuclear waste repositories. As such, it is intended for use as a reference point and a preliminary description of an evolving geoscience methodology. When completed this methodology will be used as a tool in developing disruptive release scenarios for analyzing the long-term safety of geological nuclear waste repositories. While a basalt environment is used as an example, this report is not intended to reflect an actual site safety assessment for a repository in a media. It is rather intended to present a methodology system framework and to provide discussions of the geological phenomena and parameters that must be addressed in order to develop a methodology for potential release scenarios. It is also important to note that the phenomena, their interrelationships, and their relative importance along with the overall current structure of the model will change as new geological information is gathered through additional peer review, geotechnical input, site specific field work, and related research efforts.

Stottlemyre, J.A.; Petrie, G.M.; Benson, G.L.; Zellmer, J.T.

1981-01-01T23:59:59.000Z

257

Improving Repository Performance by Using DU Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Dioxide Fill DU Dioxide Fill Improving Repository Performance by Using DU Dioxide Fill Fills may improve repository performance by acting as sacrificial materials, which delay the degradation of SNF uranium dioxide. Because fill and SNF have the same chemical form of uranium (uranium dioxide), the DU dioxide in a repository is the only fill which has the same behavior as that of the SNF. In the natural environment, some uranium ore deposits have remained intact for very long periods of time. The outer parts of the ore deposit degrade while the inner parts of the deposit are protected. The same approach is proposed herein for protecting SNF. The application could use half or more of the DU inventory in the United States. Behavior of Uranium and Potential Behavior of a Waste Package with SNF and Fill

258

Environmental Assessment for Actinide Chemistry and Repository Science  

NLE Websites -- All DOE Office Websites (Extended Search)

questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. Environmental Assessment for Actinide Chemistry and Repository Science Laboratory Final - January, 2006 This document has been provided to you in PDF format. Please install Adobe Acrobat Reader before accessing these documents. Some of the Chapters containing complex graphics have been split into multiple parts to allow for more detail in the graphics and ease in downloading. Cover Sheet, Table of Contents, List of Tables, List of Figures, and Acronyms and Abbreviations Chapter 1 - Introduction and Statement of Purpose and Need Chapter 2 - Proposed Action and Alternatives Chapter 3 - Existing Environment

259

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

260

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Long-term Repository Benefits of Using Cermet Waste Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Benefits Long-Term Benefits Long-term Repository Benefits of Using Cermet Waste Packages A cermet waste package may improve the long-term performance of the YM repository by two mechanisms: reducing (1) the potential for nuclear criticality in the repository and (2) the long-term release rate of radionuclides from the waste package. In the natural environment, the centers of uranium ore deposits have remained intact for very long time periods while the outer edges of the ore deposit have degraded. A cermet waste package may operate in the same way. The sacrificial, slow degradation of the waste package and the DU oxide protects the SNF uranium dioxide in the interior of the package long after the package has failed. Page 2 of 4 Follow the link below to learn more about Cermets:

262

Waterproofing and Strengthening Volcanic Tuff in Waste Repositories  

Science Conference Proceedings (OSTI)

Waste repositories from surface trenches and shafts at Los Alamos to drilled tunnels at Yucca Mountain are being built in volcanic Tuff, a soft compacted material that is permeable to water and air. US Department of Energy documents on repository design identify the primary design goal of 'preventing water from reaching the waste canisters, dissolving the canisters and carrying the radioactive waste particles away from the repository'. Designers expect to achieve this by use of multiple barriers along with careful placement of the repository both well above the water table and well above the ground level in a mountain. Though repositories are located in areas that have a historically dry climate to minimize the impact of rainfall infiltration, global warming phenomena may have the potential to alter regional climate patterns - potentially leading to higher infiltration rates. Conventional methods of sealing fractures within volcanic tuff may not be sufficiently robust or long lived to isolate a repository shaft from water for the required duration. A new grouting technology based on molten wax shows significant promise for producing the kind of long term sealing performance required. Molten wax is capable of permeating a significant distance through volcanic tuff, as well as sealing fractures by permeation that is thermally dependent instead of chemically or time dependent. The wax wicks into and saturates tuff even if no fractures are present, but penetrates and fills only the heated area. Heated portions of the rock fill like a vessel. The taffy-like wax has been shown to waterproof the tuff, and significantly increase its resistance to fracture. This wax was used in 2004 for grouting of buried radioactive beryllium waste at the Idaho National Laboratory, chiefly to stop the water based corrosion reactions of the waste. The thermoplastic material contains no water and does not dry out or change with age. Recent studies indicate that this kind of wax material may be inherently resistant to bio-degradation. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

263

Double Diffusive Natural Convection in a Nuclear Waste Repository  

Science Conference Proceedings (OSTI)

In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport.

Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

2006-03-28T23:59:59.000Z

264

Geology and alteration of the Coso Geothermal Area, Inyo County, California  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology and alteration of the Coso Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Geology and alteration of the Coso geothermal area were mapped in conjunction with geophysical surveys and a deep drill test (CGEH-1) to facilitate selection of a follow-up drill site. The oldest rocks exposed at Coso are intermediate to mafic metamorphic rocks of uncertain age intruded by dikes and pods of quartz latite porphyry and felsite, and by a small

265

On leakage and seepage from geological carbon sequestration sites  

SciTech Connect

Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by means of numerical simulation and derive the trends in seepage flux and near-surface CO{sub 2} concentrations that will arise from variations in fundamental hydrogeological properties.

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-07-18T23:59:59.000Z

266

(Re)Use in public scientific workflow repositories  

Science Conference Proceedings (OSTI)

Scientific workflows help in designing, managing, monitoring, and executing in-silico experiments. Since scientific workflows often are complex, sharing them by means of public workflow repositories has become an important issue for the community. However, ... Keywords: scientific workflows, similarity measures, workflow reuse

Johannes Starlinger; Sarah Cohen-Boulakia; Ulf Leser

2012-06-01T23:59:59.000Z

267

Graphical user interface (GUI) testing: Systematic mapping and repository  

Science Conference Proceedings (OSTI)

Context: GUI testing is system testing of a software that has a graphical-user interface (GUI) front-end. Because system testing entails that the entire software system, including the user interface, be tested as a whole, during GUI testing, test cases-modeled ... Keywords: Bibliometrics, GUI application, Paper repository, Systematic mapping, Testing

Ishan Banerjee, Bao Nguyen, Vahid Garousi, Atif Memon

2013-10-01T23:59:59.000Z

268

Pathways core: a data model for cross-repository services  

Science Conference Proceedings (OSTI)

As part of the NSF-funded Pathways project, we have created an interoperable data model to facilitate object re-use and a broad spectrum of cross-repository services. The resulting Pathways Core data model is designed to be lightweight to implement, ... Keywords: data model, interoperability, scholarly communication

Jeroen Bekaert; Xiaoming Liu; Herbert Van de Sompel; Carl Lagoze; Sandy Payette; Simeon Warner

2006-06-01T23:59:59.000Z

269

Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository  

SciTech Connect

Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k{sub d}) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone.

Andrews, R.W.; Dale, T.F.; McNeish, J.A.

1994-03-01T23:59:59.000Z

270

Using semantic templates to study vulnerabilities recorded in large software repositories  

Science Conference Proceedings (OSTI)

Software repositories are rich sources of information about vulnerabilities that occur during a product's lifecycle. Although available, such information is scattered across numerous databases. Furthermore, in large software repositories, a single vulnerability ... Keywords: CVE, CWE, buffer overflow, fix patterns, ontology, semantic template, software repository, vulnerability

Yan Wu; Robin A. Gandhi; Harvey Siy

2010-05-01T23:59:59.000Z

271

The Choquet integral analytic hierarchy process for radwaste repository site selection in Taiwan  

Science Conference Proceedings (OSTI)

The Radwaste Repository Site Selection In Taiwan have received considerable continuous improvement by the fuzzy Choquet integral aggregation operator. It allows expressing scenario that are either hosted externally by the repository safety assessment ... Keywords: AHP method, choquet integral, radioactive waste repository

Chen Lin

2008-03-01T23:59:59.000Z

272

Assessment of effectiveness of geologic isolation systems. Perspectives on the geological and hydrological aspects of long-term release scenario analyses  

SciTech Connect

Information that may be relevant to individuals involved with analyzing long-term release scenarios of specific repositories for nuclear waste is presented. The bulk of the information is derived from recent studies in West Germany and the United States. Emphasis is on the specific geological and hydrological phenomena that, alone or in concert, could potentially perturb the area around specific repository sites. Research is continuing on most of the topics discussed within this report. Because research is ongoing, statements and conclusions described in this document are subject to change. The main topics of this report are: (1) fracturing, (2) geohydrology, (3) magmatic activity, and (4) geomorphology. Therefore, the site-specific nature of the problem cannot be overemphasized. As an example of how one might combine the many synergistic and time-dependent parameters into a concise format the reader is referred to A Conceputal Simulation Model for Release Scenario Analysis of a Hypothetical Site in Columbia Plateau Basalts, PNL-2892. For additional details on the topics in this report, the reader is referred to the Pacific Northwest Laboratory (PNL) consultant report listed in the bibliography.

Stottlemyre, J.A.; Wallace, R.W.; Benson, G.L.; Zellmer, J.T.

1980-06-01T23:59:59.000Z

273

Nevada potential repository preliminary transportation strategy Study 2. Volume 1  

SciTech Connect

The objectives of this study were to build on the findings of the Nevada Potential Repository Preliminary Transportation Strategy Study 1 (CRWMS M&O 1995b), and to provide additional information for input to the repository environmental impact statement (EIS) process. In addition, this study supported the future selection of a preferred rail corridor and/or heavy haul route based on defensible data, methods, and analyses. Study research did not consider proposed legislation. Planning was conducted according to the Civilian Radioactive Waste Management Program Plan (DOE 1994a). The specific objectives of Study 2 were to: eliminate or reduce data gaps, inconsistencies, and uncertainties, and strengthen the analysis performed in Study 1; develop a preliminary list of rail route evaluation criteria that could be used to solicit input from stakeholders during scoping meetings. The evaluation criteria will be revised based on comments received during scoping; restrict and refine the width of the four rail corridors identified in Study 1 to five miles or less, based on land use constraints and engineering criteria identified and established in Study 2; evaluate national-level effects of routing spent nuclear fuel and high-level waste to the four identified branch lines, including the effects of routing through or avoiding Las Vegas; continue to gather published land use information and environmental data to support the repository EIS; continue to evaluate heavy haul truck transport over three existing routes as an alternative to rail and provide sufficient information to support the repository EIS process; and evaluate secondary uses for rail (passenger use, repository construction, shared use).

NONE

1996-02-01T23:59:59.000Z

274

Gable named Geological Society of America Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

member of a large team that received a Laboratory Distinguished Performance Award for the Yucca Mountain Project. About the Geological Society of America Established in 1888, The...

275

Geothermal: Sponsored by OSTI -- Geologic flow characterization...  

Office of Scientific and Technical Information (OSTI)

Geologic flow characterization using tracer techniques Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

276

NETL: Geological Sequestration Training and Research Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL...

277

Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices  

Science Conference Proceedings (OSTI)

Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.

NONE

1985-05-01T23:59:59.000Z

278

Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories  

SciTech Connect

This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elastoplastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because decreasing thermal stress.

Rutqvist, J.; Backstrom, A.; Chijimatsu, M.; Feng, X.-T.; Pan, P.-Z.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Huang, X.-H.; Rinne, M.; Shen, B.

2008-10-23T23:59:59.000Z

279

Basic research for assessment of geologic nuclear waste repositories: What solubility and speciation studies of transuranium elements can tell us  

Science Conference Proceedings (OSTI)

Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results from solubility and speciation experiments of {sup 237}NpO{sub 2} {sup +}, {sup 239}Pu{sup 4+}, and {sup 241}Am{sup 3+}/Nd{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a candidate high-level nuclear waste disposal site) at three different temperatures (25{degrees}, 60{degrees}, and 90{degrees}C) and pH values (6, 7, and 8.5) are presented and compared with published modeling calculations. The comparison results indicate that there is a great need for experimental data on the solubility and speciation of transuranium elements under a wide range of conditions, for example, pH, Eh, temperature, and composition of groundwaters. Additionally, the influence of alpha radiation and the radiolysis of the secondary transuranium solids on solubility and speciation should be studies. Solubility studies and model calculations should be extended to other important long-lived nuclear waste radionuclides such as nickel, zirconium, cadmium, radium, and thorium. 14 refs., 13 figs., 5 tabs.

Nitsche, H.

1990-12-01T23:59:59.000Z

280

Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories  

E-Print Network (OSTI)

SKB TR-06-09. Swedish Nuclear Fuel and Waste Management Co,and tunnel boring. Swedish Nuclear Fuel and Waste Management

Rutqvist, J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The use of numerical models in support of site characterization and performance assessment studies for geological repositories  

E-Print Network (OSTI)

and B. Stetsenko, Forecast of Radionuclides Migration fromLIT); identify key radionuclides and source term (ROM); Farof groundwater flow and radionuclide transport; calculate

Neerdael, B.

2011-01-01T23:59:59.000Z

282

3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological  

Open Energy Info (EERE)

D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Details Activities (0) Areas (0) Regions (0) Abstract: Many Geological Survey Organisations (GSOs) are using 3D modelling software technology for a vast variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs have to adapt available software and to modify it to their special requirements, defining their own best practice. The Geological Survey of the Bavarian Environment Agency has developed procedures and workflows for a variety of

283

3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report  

SciTech Connect

The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

Wagoner, J

2009-02-23T23:59:59.000Z

284

3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report  

SciTech Connect

The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

Wagoner, J

2009-04-24T23:59:59.000Z

285

System-level modeling for geological storage of CO2  

SciTech Connect

One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-04-24T23:59:59.000Z

286

A Summary of Properties Used to Evaluate INEEL Calcine Disposal in the Yucca Mountain Repository  

SciTech Connect

To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities.

Dahl, C.A.

2003-07-14T23:59:59.000Z

287

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

flow in geologic heat pipes. Journal of Contaminantnear-field effects (e.g. , heat pipes, heterogeneity of rockinto the formation of heat-pipes near the emplacement drift,

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

288

FERNANDO GILBES-SANTAELLA DEPARTMENT OF GEOLOGY  

E-Print Network (OSTI)

University of Puerto Rico Mayagüez Campus Faculty of Arts and Sciences Department of Geology + Spectral Analyses and Sedimentation of the West Coast Beaches of Puerto Rico Undergraduate Research Final, and mineralogy along the west coast of Puerto Rico. These sand sediments were sampled at different geologic

Gilbes, Fernando

289

Christopher U.S. Geological Survey  

E-Print Network (OSTI)

Christopher Magirl U.S. Geological Survey 934 Broadway Suite 300 Tacoma, Washington 98402 Phone; Hydraulic modeling; Computer programming (C/C++, Fortran, Perl), Field survey; Geographic information Research Hydrologist U.S. Geological Survey, Tacoma, Washington. September 2009 ­ present · Analyzing

290

Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration  

E-Print Network (OSTI)

Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

Zhou, R.

2010-01-01T23:59:59.000Z

291

Sorption of 237Np by UO2 under Repository Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

237 Np by UO 2 under Repository Conditions M. Jonathan Haire E. V. Zakharova T. V. Kazakovskaya Oak Ridge National Laboratory Institute of Physical Chemistry Institute of Experimental Physics Oak Ridge, Tennessee 37831-6166 Moscow, Russia, 117915 Sarov, Russia, 607190 Phone: (865) 574-7141 Phone: 7 095 335 1742 Phone: 7 42796 73369 e-mail: hairemj@ornl.gov e-mail: zakharova@ipc.rssi.ru e-mail: kaz@astra.vniief.ru Abstract - The primary radioisotope contributor to the calculated long-term radiation dose to the public at the Yucca Mountain spent nuclear fuel (SNF) repository site boundary is neptunium-237 ( 237 Np). Russian experiments have shown that Np(V) and Np(IV) are sorbed onto UO 2 . If Np were sorbed by UO 2 in spent fuel rather than being transported to the site

292

and could possibly serve as a repository for  

NLE Websites -- All DOE Office Websites (Extended Search)

and could possibly serve as a repository for and could possibly serve as a repository for captured CO 2 emissions. The formation is covered by layers of low permeability rock and possesses several properties that are conducive to CO 2 storage, such as the appropriate depth, thickness, porosity, and permeability. Prior to drilling the test well, MRCSP conducted a seismic survey at the site and obtained necessary permits for the injection test from the U.S. Environmental Protection Agency (EPA) and the Kentucky Division of Oil and Gas. Following the permitting process, the researchers injected clean brine in order to determine formation properties like the maximum injection rate and then injected approximately 1,000 metric tons of CO 2 in two, 500-meter-ton steps. The injection rate, pressure, temperature,

293

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01T23:59:59.000Z

294

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

295

Method of deep drilling  

DOE Patents (OSTI)

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

296

2013 AAOCS Deep Frying Course  

Science Conference Proceedings (OSTI)

This workshop is designed to bring together various topics pertaining to deep-frying principles and frying oils. It is a must-attend for anyone interested in deep-frying and frying oils from personnel dealing with frying oils, lipid technologists, m

297

Geology of the USW SD-7 Drill Hole, Yucca Mountain, Nevada  

E-Print Network (OSTI)

i SAND96-1474 Distribution Unlimited Release Category UC-814 Printed September 1996 Geology of the USW SD-7 Drill Hole Yucca Mountain, Nevada Christopher A. Rautman Geohydrology Department Sandia National Laboratories Albuquerque, New Mexico 87185 Dale A. Engstrom Spectra Research Institute Albuquerque, New Mexico 87106 Abstract The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7...

Rautman And Engstrom; C. A. Rautman; D. A. Engstrom; Christopher A. Rautman; Dale A. Engstrom

1996-01-01T23:59:59.000Z

298

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program...

299

On leakage and seepage from geological carbon sequestration sites  

E-Print Network (OSTI)

from Geologic Carbon Sequestration Sites Orlando Lawrencefrom Geologic Carbon Sequestration Sites Farrar, C.D. , M.L.1999. Reichle, D. et al. , Carbon sequestration research and

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-01-01T23:59:59.000Z

300

Florida Geological Survey - 2011 Monthly Oil and Gas Production...  

Open Energy Info (EERE)

Florida Geological Survey - 2011 Monthly Oil and Gas Production Data The Florida Geological Survey is where data related to oil, gas, and geothermal resources for the state of...

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pages that link to "Idaho Geological Survey" | Open Energy Information  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Idaho Geological Survey" Idaho Geological Survey Jump to: navigation, search What links...

302

Changes related to "Idaho Geological Survey" | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Idaho Geological Survey" Idaho Geological Survey Jump to: navigation, search This is a...

303

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND...

304

Global Warming in Geologic Time  

Science Conference Proceedings (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

Archer, David (University of Chicago)

2008-02-27T23:59:59.000Z

305

Proceedings of 3rd US/German Workshop on Salt Repository Research, Design,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proceedings of 3rd US/German Workshop on Salt Repository Research, Proceedings of 3rd US/German Workshop on Salt Repository Research, Design, and Operation Proceedings of 3rd US/German Workshop on Salt Repository Research, Design, and Operation The 3rd U.S./German Workshop on Salt Repository Research, Design and Operation was held in Albuquerque and Carlsbad, New Mexico on October 8-11, 2012. Approximately 60 salt research scientists from Germany and the United States met to discuss repository science state of the art. Workshop topics included: 1) Safety case for heat-generating waste disposal in salt; 2) Benchmark modeling in preparation for thermomechanical field-scale tests; and 3) Reconsolidation of granular salt. Collaboration being pursued by U.S. and German salt repository researchers is presented in the report.

306

Utah Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Utah Geological Survey Utah Geological Survey Name Utah Geological Survey Address 1594 W. North Temple Place Salt Lake City, Utah Zip 84114-6100 Phone number 801.537.3300 Website http://geology.utah.gov/ Coordinates 40.7713859°, -111.9367973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7713859,"lon":-111.9367973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Geology of Kilauea Volcano | Open Energy Information  

Open Energy Info (EERE)

Geology of Kilauea Volcano Geology of Kilauea Volcano Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology of Kilauea Volcano Abstract This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, bul the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems lhat develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water, of some of these hydrothermal convection systems are known through studies of surface geology,and drill holes. Observations of eruptions during the past

308

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

309

United States Geological Survey Geospatial Information Response  

E-Print Network (OSTI)

requirements, capabilities, and operations in response to a natural or man-made disaster1 United States Geological Survey Geospatial Information Response Information Response Team (GIRT) Standard Operating Procedures (SOP) contains the GIRT

Fleskes, Joe

310

Geological Assessment of the Greenhouse Effect  

Science Conference Proceedings (OSTI)

Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the ...

Thomas J. Crowley

1993-12-01T23:59:59.000Z

311

Midwest Geological Sequestration Consortium--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

312

The Cost of Carbon Dioxide Capture and Storage in Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CosT of Carbon DioxiDe CapTure CosT of Carbon DioxiDe CapTure anD sTorage in geologiC formaTions The sequestration of carbon dioxide (CO 2 ) in geologic formations is a viable option for achieving deep reductions in greenhouse gas emissions without hindering economic prosperity. Due to the abundance of fossil fuels in the United States and around the globe as compared to other energy sources, there is strong interest in geologic sequestration, but cost is a key issue. The volume of CO 2 emitted from power plants and other energy systems is enormous compared to other emissions of concern. For example, a pulverized coal (PC) boiler operating on Illinois #6 coal (2.5 percent sulfur) may generate 0.03 pounds of sulfur dioxide per kilowatt hour (kWh) and emit CO 2 at a rate of 1.7 pounds per kWh.

313

Repository Integration Program: RIP performance assessment and strategy evaluation model theory manual and user`s guide  

SciTech Connect

This report describes the theory and capabilities of RIP (Repository Integration Program). RIP is a powerful and flexible computational tool for carrying out probabilistic integrated total system performance assessments for geologic repositories. The primary purpose of RIP is to provide a management tool for guiding system design and site characterization. In addition, the performance assessment model (and the process of eliciting model input) can act as a mechanism for integrating the large amount of available information into a meaningful whole (in a sense, allowing one to keep the ``big picture`` and the ultimate aims of the project clearly in focus). Such an integration is useful both for project managers and project scientists. RIP is based on a `` top down`` approach to performance assessment that concentrates on the integration of the entire system, and utilizes relatively high-level descriptive models and parameters. The key point in the application of such a ``top down`` approach is that the simplified models and associated high-level parameters must incorporate an accurate representation of their uncertainty. RIP is designed in a very flexible manner such that details can be readily added to various components of the model without modifying the computer code. Uncertainty is also handled in a very flexible manner, and both parameter and model (process) uncertainty can be explicitly considered. Uncertainty is propagated through the integrated PA model using an enhanced Monte Carlo method. RIP must rely heavily on subjective assessment (expert opinion) for much of its input. The process of eliciting the high-level input parameters required for RIP is critical to its successful application. As a result, in order for any project to successfully apply a tool such as RIP, an enormous amount of communication and cooperation must exist between the data collectors, the process modelers, and the performance. assessment modelers.

NONE

1995-11-01T23:59:59.000Z

314

Measurement and Accounting of CO2 Stored in Deep Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Program Storage Program John Litynski, PE Carbon Storage Technology Manager Carbon Storage Program Infrastructure Annual Review Meeting Nov 15-17, 2011 2 Sources: U.S. data from EIA, Annual Energy Outlook 2011; World data from IEA, World Energy Outlook 2010, Current Policies Scenario 716 QBtu / Year 79% Fossil Energy 114 QBtu / Year 78% Fossil Energy + 14% Energy Demand 2008 100 QBtu / Year 84% Fossil Energy 487 QBtu / Year 81% Fossil Energy 29,259 mmt CO 2 42,589 mmt CO 2 5,838 mmt CO 2 6,311 mmt CO 2 Energy Demand 2035 United States World + 47% * Primarily traditional biomass, wood, and waste. 3 U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY CARBON STORAGE PROGRAM with ARRA Projects 2012 Structure Benefits

315

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

Volcano hazards at Newberry Volcano, Oregon, US Geologicalhttp://vulcan.wr.usgs.gov/Volcanoes/Newberry/Hazards/OFR97-

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

316

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

Histories Summary Conclusions and Remarks i UNDERGROUND NATURAL GASnatural gases in the Permian Basin, West Texas: Identifying the regional source and filling history,Natural Gas Storage Summary Conclusions and Remarks NUCLEAR WASTE DISPOSAL: LESSONS LEARNED FOR CO 2 SEQUESTRATION Introduction History

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

317

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

fluids rather than drilling-fluid contamination of permeabledrilling and construction of new Class I wells. Information concerning fluid

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

318

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

From One 500 MW Natural Gas Power Plant Weyburn EOR ProjectFrom One 500 MW Natural Gas Power Plant Weyburn EOR ProjectPower Plant Emissions Total Global Annual Human Expired CO 2 (6000 x 10 people) US Annual Natural Gas

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

319

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

Scenario Selection Procedure, NUREG/CR-1667, SAND80-1429,in risk analysis: The NUREG-1150 methodology, NuclearUse of expert judgement in NUREG-1150, Nuclear Engineering

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

320

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

people) US Annual Natural Gas Production/Consumption - 1998people) US Annual Natural Gas Production/Consumption - 1998Annual Natural Gas Production/Consumption, 1998, U.S. DOE,

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

natural gases in the Permian Basin, West Texas: IdentifyingUT Val-Verde Basin, Permian Basin Cooper- Eromanga Basin,

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

322

Measurement and Accounting of CO2 Stored in Deep Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

mmt CO 2 Energy Demand 2035 United States World + 47% * Primarily traditional biomass, wood, and waste. 3 U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY NATIONAL ENERGY...

323

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

Nuclear Energy Agency), Uncertainty Analysis for Performance Assessments of Radioactive Waste DisposalEnergy and Nuclear Regulatory Commission, recognized the need for nuclear waste disposal.

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

324

Measurement and Accounting of CO2 Stored in Deep Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Updates * Validation Field Tests * Large Scale CO 2 Storage Projects * Best Practice Manuals Update * Importance of CO 2 Storage Reservoir Classes 4 Sequestration Program Updates...

325

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

P.L.Determeyer, Natural gas storage: Historical developmentNatural Resources Canada, Natural Gas Storage: A CanadianU.S. underground natural gas storage working-gas capacity

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

326

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

P.L.Determeyer, Natural gas storage: Historical development2000. Total U.S. Natural Gas Storage Capacity – 1999, U.S.EIA) web page, U.S. natural gas storage, 2001. http://

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

327

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

and E.R. Slatick, Carbon Dioxide Emission Factors for Coal,oxygen-deficiency is a factor. CARBON DIOXIDE - CO 2 MSDS (Carbon Dioxide will be reached before oxygen-deficiency is a factor.

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

328

Measurement and Accounting of CO2 Stored in Deep Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

University of North Dakota The University of Texas at El Paso (2) Colorado State University Western Kentucky University 2009 ARRA CCS University Research and Training...

329

Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations  

E-Print Network (OSTI)

MMTC Total Global Crude Oil Reserves 1998, U.S. DOE 2000,Total Global Crude Oil Reserves - 1999 Total Global Natural1998 Total US Crude Oil Reserves - 1998 Largest Single US

Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

2002-01-01T23:59:59.000Z

330

Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At  

Open Energy Info (EERE)

Geophysical Evidence For Intra-Basin And Footwall Faulting At Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A 'nested graben' structural model, in which multiple faults successively displace rocks downward to the deepest part of the basin, is supported by recent field geologic analysis and correlation of results to geophysical data for Dixie Valley. Aerial photographic analysis and detailed field mapping provide strong evidence for a deep graben separated from the ranges to the east and west by multiple normal faults that affect the Tertiary/Quaternary basin-fill sediments. Correlation with seismic

331

Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Details Activities (4) Areas (1) Regions (0) Abstract: The Phase I prototype hot dry rock (HDR) geothermal system was developed in Precambrian basement rocks at Fenton Hill, New Mexico. Core and cuttings samples from the four deep wells indicate that the reservoir of this Phase I HDR system lies within a homogeneous biotite granodiorite body of very low permeability. Natural fractures, although present, are

332

Reaction Mechanisms in Petroleum: From Experimentation to Upgrading and Geological Conditions  

E-Print Network (OSTI)

Among the numerous questions that arise concerning the exploitation of petroleum from unconventional reservoirs, lie the questions of the composition of hydrocarbons present in deep seated HP-HT reservoirs or produced during in-situ upgrading steps of heavy oils and oil shales. Our research shows that experimental hydrocarbon cracking results obtained in the laboratory cannot be extrapolated to geological reservoir conditions in a simple manner. Our demonstration is based on two examples: 1) the role of the hydrocarbon mixture composition on reaction kinetics (the "mixing effect") and the effects of pressure (both in relationship to temperature and time). The extrapolation of experimental data to geological conditions requires investigation of the free-radical reaction mechanisms through a computed kinetic model. We propose a model that takes into account 52 reactants as of today, and which can be continuously improved by addition of new reactants as research proceeds. This model is complete and detailed enou...

Lannuzel, Frédéric; Bounaceur, Roda; Marquaire, Paul-Marie; Michels, Raymond

2009-01-01T23:59:59.000Z

333

Suggests e1071, scatterplot3d ZipData No Repository CRAN  

E-Print Network (OSTI)

Description A collection of artificial and real-world machine learning benchmark problems, including, e.g., several data sets from the UCI repository.

Friedrich Leisch; Maintainer Friedrich Leisch

2010-01-01T23:59:59.000Z

334

Business Case Slide 8: High-Volume: Repository - Basis for Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume: Repository - Basis for Use Basis for use DUO2 in or near cask should be a geochemical barrier Establish reducing conditions Inhibit spent fuel dissolution Keep...

335

EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

336

Science@WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

At the dawn of discovery ... Science@WIPP The deep geologic repository at WIPP is more than a place to dispose of transuranic (TRU) waste its also a science laboratory....

337

Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America  

E-Print Network (OSTI)

Deep Geologic Repository for Used Nuclear Fuel. CTECH ReportManagement of Used Nuclear Fuel in Canada. In: Geologicaland, depending on the nuclear fuel cycle (i.e. , after

Oldenburg, C.

2010-01-01T23:59:59.000Z

338

Disposition of excess fissile materials in deep boreholes  

SciTech Connect

As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. Plutonium utilization options have in common the generation of high-level radioactive waste which will be disposed of in a mined geologic disposal system to be developed for spent reactor fuel and defense high level waste. Other final disposition forms, such as plutonium metal, plutonium oxide and plutonium immobilized without high-level radiation sources may be better suited to placement in a custom facility. This paper discusses a leading candidate for such a facility; deep (several kilometer) borehole disposition. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. The safety argument centers around ancient groundwater indicating lack of migration, and thus no expected communication with the accessible environment until the plutonium has decayed.

Halsey, W.G. [Lawrence Livermore National Lab., CA (United States); Danker, W. [USDOE, Washington, DC (United States); Morley, R. [Los Alamos National Lab., NM (United States)

1995-09-01T23:59:59.000Z

339

Computer use in petroleum and stratigraphy section of Kentucky Geological Survey  

SciTech Connect

The Kentucky Geological Survey is the official repository for the records of all wells drilled for oil and gas in Kentucky. Information contained in these records is extremely valuable to the oil and gas industry in the exploration for and development of hydrocarbon deposits. This information is also valuable in the search for coal, limestone, lead, zinc, fluorspar, gypsum, and other resources. Information on an estimated 225,000 wells drilled in Kentucky is on file at the Survey. Information is currently being added to the files at the rate of 4000-5000 wells per year. To date, approximately 75,000 well completions have been encoded, entered into the computer, and proofread. On-line well data include basic well identification, location, completion information, and a catalog of available well-record documents. These computerized data are available in the form of customized printouts, computer-generated well-location base maps, and machine readable 5.25-in. flexible diskettes. The Kentucky Geological Survey has initiated a long-term project to preserve the well-record information as digital images stored on optical disks. Hardware to scan documents has been acquired, and preliminary procedures for handling materials are being formulated. Software to support extended document storage and indexing is under development.

Nuttall, B.C.

1987-09-01T23:59:59.000Z

340

Deep in Data: Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository: Preprint  

SciTech Connect

An opportunity is available for using home energy consumption and building description data to develop a standardized accuracy test for residential energy analysis tools. That is, to test the ability of uncalibrated simulations to match real utility bills. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This may facilitate the possibility of modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data. This paper describes progress toward, and issues related to, developing a usable, standardized, empirical data-based software accuracy test suite.

Neymark, J.; Roberts, D.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dessicant materials screening for backfill in a salt repository  

SciTech Connect

Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)/sub 2/ which carbonates with CO/sub 2/ in air to form CaCO/sub 3/ and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO/sub 2/ from the repository atmosphere.

Simpson, D.R.

1980-10-01T23:59:59.000Z

342

Contact zones and hydrothermal systems as analogues to repository conditions  

SciTech Connect

Radioactive waste isolation efforts in the US are currently focused on examining basalt, tuff, salt, and crystalline rock as candidate rock types to encompass waste repositories. As analogues to near-field conditions, the distributions of radio- and trace-elements have been examined across contacts between these rocks and dikes and stocks that have intruded them. The intensive study of the Stripa quartz monzonite has also offered the opportunity to observe the distribution of uranium and its daughters in groundwater and its relationship to U associated with fracture-filling and alteration minerals. Investigations of intrusive contact zones to date have included (1) a tertiary stock into Precambrian gneiss, (2) a stock into ash flow tuff, (3) a rhyodacite dike into Columbia River basalt, and (4) a kimberlite dike into salt. With respect to temperature and pressure, these contact zones may be considered "worst-case scenario" analogues. Results indicate that there has been no appreciable migration of radioelements from the more radioactive intrusives into the less radioactive country rocks, either in response to the intrusions or in the fracture-controlled hydrological systems that developed following emplacement. In many cases, the radioelements are locked up in accessory minerals, suggesting that artificial analogues to these would make ideal waste forms. Emphasis should now shift to examination of active hydrothermal systems, studying the distribution of key elements in water, fractures, and alteration minerals under pressure and temperature conditions most similar to those expected in the near-field environment of a repository. 14 refs.

Wollenberg, H.A.; Flexser, S.

1984-10-01T23:59:59.000Z

343

SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION  

SciTech Connect

Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other concerns as well. There is less clarity regarding the legal and regulatory issues around site characterization for large CCS injection volumes. In particular, it is not clear what would constitute due diligence for a potential selection and operation of a commercial site. This is complicated by a lack of clarity around permitting issues and subsurface ownership. However, there are many natural, industrial, regulatory, and legal analogs for these questions. However, solutions will need to evolve within the set of laws and practices current to the State. The chief conclusion of this chapter is that there is enough knowledge today to characterize a site for geological carbon sequestration safely and effective permitting and operation. From this conclusion and others flow a set of recommendations that represent potential actions for decision makers.

Friedmann, S J

2007-08-31T23:59:59.000Z

344

NETL: Carbon Storage - Geologic Characterization Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Geologic Characterization Efforts RCSP Geologic Characterization Efforts The U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) in 2003 to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon storage in different regions of the United States and Canada. The RCSP Initiative is being implemented in three phases: (1) Characterization Phase (2003-2005) to collect data on CO2 stationary sources and geologic formations and develop the human capital to support and enable future carbon storage field tests, (2) Validation Phase (2005-2011) to evaluate promising CO2 storage opportunities through a series of small-scale (<1 million metric tons of CO2) field tests, and (3) Development Phase (2008-2018+) that involves the injection of 1 million metric tons or more of CO2 by each RCSP into regionally significant geologic formations. In addition to working toward developing human capital, encouraging stakeholder networking, and enhancing public outreach and education on carbon capture and storage (CCS), the RCSPs are conducting extensive geologic characterization across all three project phases, as well as CO2 stationary source identification and re-evaluation over time.

345

Geological assessment of the greenhouse effect  

SciTech Connect

Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

Crowley, T.J. (Texas A M Univ., College Station, TX (United States))

1993-12-01T23:59:59.000Z

346

Bureau of Economic Geology. 1978 annual report  

DOE Green Energy (OSTI)

Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

Not Available

1978-01-01T23:59:59.000Z

347

Investigation of deep and low-sulfur coal possibilities in Ohio  

SciTech Connect

Clean-air legislation and the oil embargo of the early 1970s resulted in a reevaluation of fossil fuels and substitutes that could supply the future energy demands of America. Consequently, a need to explore and evaluate the potential of deep and especially low-sulfur coal resources in the Appalachian basin was created. In 1968, the Division of Geological Survey began the first of what has been a series of core-drilling projects to investigate these potential deep-coal resources in Ohio. Over a 10-year period, 1968-1978, three deep-coal drilling projects, consisting of 60 holes and resulting in 55,440 ft of core, were completed by contract drilling companies. Continued interest expressed by the division's constituency combined with a legislative mandate to map and report on the geology and mineral resources of the state prompted the division in 1981, to acquire the drilling equipment needed to perform these tasks. Since 1985, drilling for evaluation of deep-coal resources has been performed in conjunction with bed-rock mapping. As of this writing, the division's drilling rigs have been involved in 13 projects generating over 63,000 ft of core.

Slucher, E.R.; Crowell, D.L. (Ohio Dept. of Natural Resources, Columbus (USA))

1989-08-01T23:59:59.000Z

348

Common Metadata for Climate Modelling Digital Repositories CIM-enabled OASIS  

E-Print Network (OSTI)

Common Metadata for Climate Modelling Digital Repositories CIM-enabled OASIS CERFACS Technical-1.2.1 Scientific Digital Repositories DOCUMENT Deliverable D5.7 Month 36 Deliverable Title CIM-enabled OASIS to manipulate the CIM Authors S. Valcke, J.M. Epitalon, M.P. Moine, CERFACS Document Status Final Document Link

349

Benchmarking DAML+OIL Repositories Yuanbo Guo, Jeff Heflin, and Zhengxiang Pan  

E-Print Network (OSTI)

Benchmarking DAML+OIL Repositories Yuanbo Guo, Jeff Heflin, and Zhengxiang Pan Department, heflin, zhp2}@cse.lehigh.edu Abstract. We present a benchmark that facilitates the evaluation of DAML+OIL repositories in a standard and systematic way. This benchmark is intended to evaluate the performance of DAML+OIL

Heflin, Jeff

350

FORT UNION DEEP  

Science Conference Proceedings (OSTI)

Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

Lyle A. Johnson Jr.

2002-09-01T23:59:59.000Z

351

FORT UNION DEEP  

Science Conference Proceedings (OSTI)

Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

Lyle A. Johnson Jr.

2002-03-01T23:59:59.000Z

352

Brine flow in heated geologic salt.  

Science Conference Proceedings (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

353

An Assessment of Geological Carbon Sequestration Options in the Illinois Basin  

SciTech Connect

The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

Robert Finley

2005-09-30T23:59:59.000Z

354

EM Gains Insight from Germany on Salt-Based Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gains Insight from Germany on Salt-Based Repositories Gains Insight from Germany on Salt-Based Repositories EM Gains Insight from Germany on Salt-Based Repositories December 14, 2011 - 12:00pm Addthis Participants in the workshops in Germany toured Asse II, one of Germany’s two salt-based repositories, to gain insights into that facility’s technical challenges and proposed solutions. Pictured, left to right, are an Asse II employee, Bernhard Kienzler of the Karlsruhe Institute of Technology, CBFO Chief Scientist Roger Nelson, CBFO International Programs Manager Dr. Abraham Van Luik, and Andrew Wolfsberg, Acting Deputy Division Leader for Earth and Environmental Sciences at Los Alamos National Laboratory. Participants in the workshops in Germany toured Asse II, one of Germany's two salt-based repositories, to gain insights into that facility's

355

An evaluation of near-field host rock temperatures for a spent fuel repository  

SciTech Connect

A repository heat transfer analysis has been performed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy's Performance Assessment Scientific Support Program. The objective of this study was to evaluate the near-field thermal environmental conditions for a spent fuel repository system. A spent fuel logistics analysis was performed using a waste management system simulation model, WASTES-II, to evaluate the thermal characteristics of spent fuel received at the repository. A repository-scale thermal analysis was performed using a finite difference heat transfer code, TEMPEST, to evaluate the near-field host rock temperature. The calculated temporal and spatial distributions of near-field host rock temperatures provide input to the repository source term model in evaluations of engineered barrier system performance. 9 refs., 10 figs., 2 tabs.

Altenhofen, M.K.; Lowery, P.S.

1988-11-01T23:59:59.000Z

356

Method of fracturing a geological formation  

DOE Patents (OSTI)

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

357

Geological isotope anomalies as signatures of nearby supernovae  

E-Print Network (OSTI)

Nearby supernova explosions may cause geological isotope anomalies via the direct deposition of debris or by cosmic-ray spallation in the earth's atmosphere. We estimate the mass of material deposited terrestrially by these two mechanisms, showing the dependence on the supernova distance. A number of radioactive isotopes are identified as possible diagnostic tools, such as Be-10, Al-26, Cl-36, Mn-53, Fe-60, and Ni-59, as well as the longer-lived I-129, Sm-146, and Pu-244. We discuss whether the 35 and 60 kyr-old Be-10 anomalies observed in the Vostok antarctic ice cores could be due to supernova explosions. Combining our estimates for matter deposition with results of recent nucleosynthesis yields, we calculate the expected signal from nearby supernovae using ice cores back to \\sim 300 kyr ago, and we discuss using deep ocean sediments back to several hundred Myr. In particular, we examine the prospects for identifying isotope anomalies due to the Geminga supernova explosion, and signatures of the possibility...

Ellis, Jonathan Richard; Schramm, David N; Ellis, John; Fields, Brian D; Schramm, David N

1996-01-01T23:59:59.000Z

358

Petroleum geology of the Gulf of California, Mexico  

Science Conference Proceedings (OSTI)

The Gulf of California basin proper is a very young (late Miocene) feature in northwestern Mexico, produced by the tectonic interaction of the Pacific and American plates. Sediments are mostly siliciclastic with thicknesses that may exceed 8,000 m (26,248 ft). Exploratory drilling started in 1979 and since then, ten offshore and seven onshore wells have been spudded. Foremost among the former the Extremeno 1 well tested from a thin deltaic sand 4,115 m deep (13,501 ft) a daily flow of 6.2 million ft{sup 3} of gas and 130 bbl of gas condensate through a 0.25 in. choke with a pressure of 280 kg/cm{sup 2} (3,981 psi). In the southern part of the basin, the offshore Huichol 1 well was also a gas and condensate producer, albeit noncommercial. Geologically, the basin's favorable generation and trapping conditions make up a very attractive scenario for a future petroleum producing province, once exploration priorities are considered timely.

Guzman, A.E. (Petroleos Mexicanos (PEMEX), San Luis Potosi, Mexico)

1990-05-01T23:59:59.000Z

359

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Geological Sequestration Consortium The Midwest Geological Sequestration Consortium (MGSC) is a consortium of the geologic surveys of Illinois, Indiana, and Kentucky joined by private corporations, professional business associations, the Interstate Oil and Gas Compact Commission, three Illinois state agencies, and university researchers to assess carbon capture, transportation, and geologic storage processes and their costs and viability in the Illinois Basin region. The Illinois State Geological Survey is the Lead Technical Contractor for MGSC, which covers all of Illinois, southwest Indiana, and western Kentucky. To avoid atmospheric release of CO

360

Chemistry of transuranium elements in salt-base repository  

SciTech Connect

The mobility and potential release of actinides into the accessible environment continues to be the key performance assessment concern of nuclear repositories. Actinide, in particular plutonium speciation under the wide range of conditions that can exist in the subsurface is complex and depends strongly on the coupled effects of redox conditions, inorganic/organic complexation, and the extent/nature of aggregation. Understanding the key factors that define the potential for actinide migration is, in this context, an essential and critical part of making and sustaining a licensing case for a nuclear repository. Herein we report on recent progress in a concurrent modeling and experimental study to determine the speciation of plutonium, uranium and americium in high ionic strength Na-CI-Mg brines. This is being done as part of the ongomg recertification effort m the Waste Isolation Pilot Plant (WIPP). The oxidation-state specific solubility of actinides were established in brine as function of pC{sub H+}, brine composition and the presence and absence of organic chelating agents and carbonate. An oxidation-state invariant analog approach using Nd{sup 3+} and Th{sup 4+} was used for An{sup 3+} and An{sup 4+} respectively. These results show that organic ligands and hydrolysis are key factors for An(III) solubility, hydrolysis at pC{sub H+} above 8 is predominate for An(IV) and carbonates are the key factor for U(VI) solubility. The effect of high ionic strength and brine components measured in absence of carbonates leads to measurable increased in overall solubility over analogous low ionic strength groundwater. Less is known about the bioreduction of actinides by halo-tolerant microorganisms, but there is now evidence that bioreduction does occur and is analogous, in many ways, to what occurs with soil bacteria. Results of solubility studies that focus on Pitzer parameter corrections, new species (e.g. borate complexation), and the thermodynamic parameters for modeling are discussed.

Borkowski, Marian [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Khaing, H [Los Alamos National Laboratory; Swanson, J [Los Alamos National Laboratory; Ams, D [Los Alamos National Laboratory

2010-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

None

2003-09-30T23:59:59.000Z

362

STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS  

SciTech Connect

The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

Stephen Wolhart

2003-06-01T23:59:59.000Z

363

GEOLOGY FIELD TRIPS IN THE APPALACHIAN MOUNTAINS  

E-Print Network (OSTI)

-- Exploration for Petroleum and Natural Gas (optional laboratory) 87 -- The Obelisk: Revisited 96 -- References recording past events. Rather than letters and words, rock characteristics such as shape, color, composition of answers to questions about the nature of geological data gathered through the field trips and laboratory

Engelder, Terry

364

Geological Carbon Storage: The Roles of Government  

E-Print Network (OSTI)

Geological Carbon Storage: The Roles of Government and Industry in Risk Management ROSE MURPHY Carbon Storage: The Roles of Government and Industry in Risk Management ro s e m ur phy an d m a r k jac c a rd Carbon dioxide capture and storage (ccs) offers the promise that humanity can continue

365

The KU Geologic Record Volume 1, 2004  

E-Print Network (OSTI)

of the articles. KU has one of the strongest research groups in the world working on car- bonate rocks. GeotimesPhil- lips) was cited as the example of resurgent focus on hydro- thermal oil and gas reser- voirs. These are systems in which hot fluids move though rocks and enhance porosity. Such studies integrate hydro- geology

Peterson, Blake R.

366

Geology of magma systems: background and review  

DOE Green Energy (OSTI)

A review of basic concepts and current models of igneous geology is presented. Emphasis is centered on studies of magma generation, ascent, emplacement, evolution, and surface or near-surface activity. An indexed reference list is also provided to facilitate future investigations.

Peterfreund, A.R.

1981-03-01T23:59:59.000Z

367

Bomb-Pulse Chlorine-36 At The Proposed Yucca Mountain Repository Horizon: An Investigation Of Previous Conflicting Results And Collection Of New Data  

Science Conference Proceedings (OSTI)

Previous studies by scientists at Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride ({sup 36}Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository Block (ECRB) at Yucca Mountain as the tunnels were excavated. The data were interpreted as an indication that fluids containing 'bomb-pulse' {sup 36}Cl reached the repository horizon in the {approx}50 years since the peak period of above-ground nuclear testing. Moreover, the data support the concept that so-called fast pathways for infiltration not only exist but are active, possibly through a combination of porous media, faults and/or other geologic features. Due to the significance of {sup 36}Cl data to conceptual models of unsaturated zone flow and transport, the United States Geological Survey (USGS) was requested by the Department of Energy (DOE) to design and implement a study to validate the LANL findings. The USGS chose to drill new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL) for {sup 36}Cl/Cl using both active and passive leaches, with the USGS/LLNL concluding that the active leach extracted too much rock-Cl and the passive leach did not show bomb-pulse ratios. Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points, including the conceptual strategy for sampling, interpretation and use of tritium ({sup 3}H) data, and the importance and interpretation of blanks, in addition to the presence or absence of bomb-pulse {sup 36}Cl, an evaluation by an independent entity, the University of Nevada, Las Vegas (UNLV), using new samples was initiated. This report is the result of that study. The overall objectives of the UNLV study were to investigate the source or sources of the conflicting results from the previous validation study, and to obtain additional data to determine whether or not there are bomb-pulse isotopes at the repository horizon. To that en4 we have engaged in discussions with previous investigators, reviewed reports, and analyzed archived samples. We have also collected new samples of rock from the ESF, soil profiles from the surface of Yucca Mountain, and opportunistic samples of seep water from inside the south ramp of the ESF.

J. Cizdziel

2006-07-28T23:59:59.000Z

368

The Potential of Deep Seismic Profiling for Hydrocarbon Exploration _ B. Pinet, C. Bois (Editors) and Editions Technip, Paris 1990, pp. 141-160  

E-Print Network (OSTI)

for deep hydrocarbon exploration at the time of World War II when the demand for oil rose (Sloss, 1987 producer of oil, gas, lignite and potash. The major bordering, and to, some extent, controlling structures) Geological Survey of Canada, 1 Observatory Crescent, Ottawa, Ontario KIA OY3, Canada. (2) ARCO Oil & Gas Co

Jones, Alan G.

369

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network (OSTI)

from geologic carbon sequestration sites: unsaturated zone2 from geologic carbon sequestration sites: CO 2 migrationGeologic Carbon Sequestration as a Global Strategy to

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

370

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration  

E-Print Network (OSTI)

of geologic carbon sequestration. Geophys Res Lett 2005;from geologic carbon sequestration sites: Unsaturated zoneverification of geologic carbon sequestration Jennifer L.

Lewicki, Jennifer L.; Hilley, George E.; Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

371

Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment  

E-Print Network (OSTI)

to two geologic carbon sequestration sites, Energy Procedia,for Geologic Carbon Sequestration Based on Effectivefor geologic carbon sequestration risk assessment, Energy

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

372

Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites  

E-Print Network (OSTI)

for Geologic Carbon Sequestration Based on EffectiveFaults at Geologic Carbon Sequestration Sites Yingqi Zhang*,faults at geologic carbon sequestration (GCS) sites is a

Zhang, Yingqi

2009-01-01T23:59:59.000Z

373

Case studies of the application of the Certification Framework to two geologic carbon sequestration sites  

E-Print Network (OSTI)

from geologic carbon sequestration sites: unsaturated zoneverification of geologic carbon sequestration, Geophys. Res.to two geologic carbon sequestration sites Curtis M.

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

374

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

375

Loop Current and Deep Eddies  

Science Conference Proceedings (OSTI)

In contrast to the Loop Current and rings, much less is known about deep eddies (deeper than 1000 m) of the Gulf of Mexico. In this paper, results from a high-resolution numerical model of the Gulf are analyzed to explain their origin and how ...

L-Y. Oey

2008-07-01T23:59:59.000Z

376

Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

Berri, Dulcy A.; Korosec, Michael A.

1983-01-01T23:59:59.000Z

377

The Cove Fort-Sulphurdale KGRA, a geologic and geophysical case study  

DOE Green Energy (OSTI)

Geological, geochemical and geophysical data are presented for one of the major geothermal systems in the western United States. Regional data indicate major tectonic structures which are still active and provide the conduits for the geothermal system. Detailed geologic mapping has defined major glide blocks of Tertiary volcanics which moved down from the Tushar Mountains and locally act as a leaky cap to portions of the presently known geothermal system. Mapping and geochemical studies indicate three periods of mineralization have affected the area, two of which are unrelated to the present geothermal activity. The geologic relationships demonstrate that the major structures have been opened repeatedly since the Tertiary. Gravity and magnetic data are useful in defining major structures beneath alluvium and basalt cover, and indicate the importance of the Cove Fort-Beaver graben and the Cove Creek fault in localizing the geothermal reservoir. These structures and a high level of microearthquake activity also suggest other target areas within the larger thermal anomaly. Electrical resistivity surveys and thermal gradient holes both contribute to the delineation of the known reservoir. Deep exploration wells which test the reservoir recorded maximum temperatures of 178 C and almost isothermal behavior beginning at 700 to 1000 m and continuing to a depth of 1800 m. Costly drilling, high corrosion rates and low reservoir pressure coupled with the relatively low reservoir temperatures have led to the conclusion that the reservoir is not economic for electric power production at present. Plans are underway to utilize the moderate-temperature fluids for agribusiness, and exploration continues for a deep high-temperature reservoir.

Ross, Howard P.; Moore, Joseph N.; Christensen, Odin D.

1982-09-01T23:59:59.000Z

378

A Summary of INEEL Calcine Properties Used to Evaluate Direct Calcine Disposal in the Yucca Mountain Repository  

Science Conference Proceedings (OSTI)

To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities.

C. A. Dahl

2003-07-01T23:59:59.000Z

379

Map of Geologic Sequestration Training and Research Projects  

Energy.gov (U.S. Department of Energy (DOE))

A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

380

MICHAEL T. HREN UNIVERISTY OF MICHIGAN DEPARTMENT OF GEOLOGICAL SCIENCES  

E-Print Network (OSTI)

(Geological & Env. Sciences) ­ Stanford University · Stable Isotope Biogeochemistry, Laboratory Methods., Chamberlain, C.P. (In Prep for Geology) Compound- specific stable isotope records of Cenozoic climateMICHAEL T. HREN UNIVERISTY OF MICHIGAN · DEPARTMENT OF GEOLOGICAL SCIENCES 2534 C.C. LITTLE

Hren, Michael

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

2007-05-11T23:59:59.000Z

382

United States Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Survey Survey Jump to: navigation, search Logo: United States Geological Survey Name United States Geological Survey Address USGS National Center 12201 Sunrise Valley Drive Place Reston, VA Zip 20192 Region Northeast - NY NJ CT PA Area Year founded 1879 Phone number 703-648-5953 Website http://www.usgs.gov/ Coordinates 38.947077°, -77.370315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.947077,"lon":-77.370315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

North Carolina Geological Survey | Open Energy Information  

Open Energy Info (EERE)

State North Carolina State North Carolina Name North Carolina Geological Survey Address 1612 Mail Service Center City, State Raleigh, North Carolina Zip 27699-1612 Website http://www.geology.enr.state.n Coordinates 35.67°, -78.66° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.67,"lon":-78.66,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Idaho Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Name Idaho Geological Survey Name Idaho Geological Survey Address 300 North 6th Street Suite 103 City, State Boise, Idaho Zip 83720-0050 Website http://www.idahogeology.org/Dr Coordinates 43.615992°, -116.199217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.615992,"lon":-116.199217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Deep borehole disposition of surplus fissile materials-The site selection process  

Science Conference Proceedings (OSTI)

One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth`s surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future.

Heiken, G.; WoldeGabriel, G.; Morley, R.; Plannerer, H

1996-05-01T23:59:59.000Z

386

ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT  

Science Conference Proceedings (OSTI)

The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.

Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

2012-04-25T23:59:59.000Z

387

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-01-01T23:59:59.000Z

388

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-10-01T23:59:59.000Z

389

U.S. Department of Energy Awards a Contract to USA Repository Services for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Contract to USA Repository a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today awarded a $2.5 billion management and operating (M&O) contract to USA Repository Services (USA-RS), a wholly-owned subsidiary of the URS Corporation. USA-RS will be supported by principal subcontractors: Shaw Environmental and Infrastructure, Inc., and AREVA Federal Services, Inc. "If we are to meet growing energy demand and slow the growth of greenhouse gas emissions, nuclear power must be a larger part of our energy mix; it is

390

U.S. Department of Energy Awards a Contract to USA Repository Services for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Awards a Contract to USA Repository U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today awarded a $2.5 billion management and operating (M&O) contract to USA Repository Services (USA-RS), a wholly-owned subsidiary of the URS Corporation. USA-RS will be supported by principal subcontractors: Shaw Environmental and Infrastructure, Inc., and AREVA Federal Services, Inc. "If we are to meet growing energy demand and slow the growth of greenhouse gas emissions, nuclear power must be a larger part of our energy mix; it is

391

This fact sheet describes the repository design activities the U.S. Department o  

Office of Legacy Management (LM)

repository design activities the U.S. Department of Energy is conducting at the Monticello repository design activities the U.S. Department of Energy is conducting at the Monticello Mill Tailings Site in Monticello, Utah. These activities are being performed in accordance with Federal and State environ- mental laws. Background The purpose of the Monticello cleanup projects is to minimize the risks to the public and the environment from exposure to mill tailings and the radon gas they produce. The Monticello Mill Tailings Site cleanup remedy was se- lected in the Record of Decision in August 1990 and recon- firmed in December 1994. It includes permanent disposal of mill tailings and contaminated materials in a repository to be constructed on U.S. Department of Energy (DOE)- owned land south of the millsite in Monticello, Utah. The repository will hold approximately 2.6 to 3.0 million cubic

392

University of Wisconsin: NSpace: Exploring Architectural Design Principles for a Next-Generation Institutional Repository  

E-Print Network (OSTI)

plugin to generate Eclipse project configuration files for each of the NSpace subprojects: $ cd nspace $ maven -Dgoal=eclipse multiproject:goal This will also download and cache all of the JAR dependencies for NSpace in your local Maven repository...

Simpson, Mike; Downing, Jim

2005-07-07T23:59:59.000Z

393

aDORe: A Modular, Standards-Based Digital Object Repository  

Science Conference Proceedings (OSTI)

This paper describes the aDORe repository architecture designed and implemented for ingesting, storing, and accessing a vast collection of Digital Objects at the Research Library of the Los Alamos National Laboratory. The aDORe architecture is highly ...

Herbert Van De Sompel; Jeroen Bekaert; Xiaoming Liu; Luda Balakireva; Thorsten Schwander

2005-09-01T23:59:59.000Z

394

Proceedings of 3rd US/German Workshop on Salt Repository Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Mexico on October 8-11, 2012. Approximately 60 salt research scientists from Germany and the United States met to discuss repository science state of the art. Workshop...

395

Risk-informing decisions about high-level nuclear waste repositories  

E-Print Network (OSTI)

Performance assessments (PAs) are important sources of information for societal decisions in high-level radioactive waste (HLW) management, particularly in evaluating safety cases for proposed HLW repository development. ...

Ghosh, Suchandra Tina, 1973-

2004-01-01T23:59:59.000Z

396

Hanford Site Guidelines for Preparation and Presentation of Geologic Information  

Science Conference Proceedings (OSTI)

A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

2010-04-30T23:59:59.000Z

397

The consequences of failure should be considered in siting geologic carbon sequestration projects  

E-Print Network (OSTI)

2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

Price, P.N.

2009-01-01T23:59:59.000Z

398

Geology of the Breitenbush River Area, Linn and Marion Counties, Oregon  

DOE Green Energy (OSTI)

The report is comprised of a geologic map and accompanying descriptive text highlighting structural geology, mineralization, and geothermal resources. (ACR)

Priest, G.R.; Woller, N.M.; Ferns, M.L.

1987-01-01T23:59:59.000Z

399

Facilitating the Deposit of Experimental Chemistry Data in Institutional Repositories: Project SPECTRa  

E-Print Network (OSTI)

restrictions. One conspicuous component of the OA movement has been the development of repositories as a means of managing the deposit, dissemination and preservation of research outputs in digital form. The Directory of Open Access Repositories, Open... the needs of the chemistry research community The project selected three distinct areas of chemistry research – synthetic organic chemistry, crystallography and computational chemistry - for investigation. Each of these proved to have specific...

Morgan, Peter

400

Structure for a Living Requirements Repository for Long Term Operation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report describes the structure and specifications for a relational repository that will capture long-term requirements (LTRs) and their dependencies on underlying technologies. In addition, it presents principles and prototypical examples for graphical models that supplement the relational repository and support the development, capture, and re-use of long-term instrumentation and control architectural elements to support plant modifications that enable long-term ...

2013-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A performance goal-based seismic design philosophy for waste repository facilities  

SciTech Connect

A performance goal-based seismic design philosophy, compatible with DOE`s present natural phenomena hazards mitigation and ``graded approach`` philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed.

Hossain, Q.A.

1994-02-01T23:59:59.000Z

402

Reference design and operations for deep borehole disposal of high-level radioactive waste.  

SciTech Connect

A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

2011-10-01T23:59:59.000Z

403

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

404

Communication Between U.S. Nuclear Waste Technical Review Board  

E-Print Network (OSTI)

Lessons Learned from Yucca Mountain and Other Programs June 2011 A Report to Congress and the Secretary's efforts to develop a deep geologic repository for high-activity waste1 at Yucca Mountain in Nevada Commission (NRC) to construct a repository at Yucca Mountain. An important part of the Board's mission

405

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

2007-02-28T23:59:59.000Z

406

Underground reconnaissance and environmental monitoring related to geologic CO2 sequestration studies at the DUSEL Facility, Homestake Mine, South Dakota  

SciTech Connect

Underground field reconnaissance was carried out in the Deep Underground Science and Engineering Laboratory (DUSEL) to identify potential locations for the planned geologic carbon sequestration experimental facility known as DUSEL CO{sub 2}. In addition, instrumentation for continuous environmental monitoring of temperature, pressure, and relative humidity was installed at various locations within the Homestake mine. The motivation for this work is the need to locate and design the DUSEL CO{sub 2} facility currently being planned to host CO{sub 2} and water flow and reaction experiments in long column pressure vessels over large vertical length scales. Review of existing geologic data and reconnaissance underground revealed numerous potential locations for vertical experimental flow columns, with limitations of existing vertical boreholes arising from limited vertical extent, poor continuity between drifts, and small diameter. Results from environmental monitoring over 46 days reveal spatial and temporal variations related to ventilation, weather, and ongoing dewatering of the mine.

Dobson, Patrick F.; Salve, Rohit

2009-11-20T23:59:59.000Z

407

Environmental resources of selected areas of Hawaii: Geological hazards  

DOE Green Energy (OSTI)

This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

Staub, W.P.; Reed, R.M.

1995-03-01T23:59:59.000Z

408

UPDATE TO THE YUCCA MOUNTAIN REPOSITORY LICENSE APPLICATION  

E-Print Network (OSTI)

The purpose of this letter is to transmit the U.S. Department of Energy's (DOE) first update to the Yucca Mountain Repository LA, which meets the requirements of 10 CFR § 63.22(c) to update the application on notification of the appointment of an Atomic Safety and Licensing Board. DOE initially transmitted its LA for construction authorization to the U.S. Nuclear Regulatory Commission (NRC) on June 3, 2008. In accordance with 10 CFR § 63.22(e), DOE certifies that this revision reflects the updated LA as of October 16, 2008. Changes made to this revision were determined not to be significant and did not impact the conclusions of the LA. The update was initiated soon after the docketing of the LA by the NRC in anticipation of notification of the appointment of an Atomic Safety and Licensing Board. Due to the lengthy process required to maintain configuration control between the paper version and the electronic version, and the time required to print the paper version, DOE is submitting the update prepared as of that time. Enclosed are optical storage media which contain: 1) the first update of the LA, with revised sections clearly identified as Revision 1, and text and figure changes noted with marginal change bars; and 2) updates to the primary reference documents to the LA, affecting 36 of the original 196 references. In addition, enclosed in paper format are: 1) a detailed listing of the contents of the optical storage media submitted with this letter; 2) a summary of the specific LA changes that have been made, including the sections revised and a description of each change; and 3) copies of the individual LA pages affected by changes since the June 3, 2008, submittal. The updates to the primary reference

Michael F. Weber

2009-01-01T23:59:59.000Z

409

Geophysics III. Geologic interpretation of seismic data  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on geologic interpretation of seismic data interpretation. Each of the 21 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

410

Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt  

Open Energy Info (EERE)

No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Abstract The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and Central Faults, two

411

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt  

Open Energy Info (EERE)

1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and

412

Preliminary subsurface hydrologic considerations: Columbia River Plateau Physiographic Province. Assessment of effectiveness of geologic isolation systems  

SciTech Connect

This report contains a discussion of the hydrologic conditions of the Columbia River Plateau physiographic province. The Columbia River Plateau is underlain by a thick basalt sequence. The Columbia River basalt sequence contains both basalt flows and sedimentary interbeds. These sedimentary interbeds, which are layers of sedimentary rock between lava flows, are the main aquifer zones in the basalt sequence. Permeable interflow zones, involving the permeable top and/or rubble bottom of a flow, are also water-transmitting zones. A number of stratigraphic units are present in the Pasco Basin, which is in the central part of the Columbia River Plateau. At a conceptual level, the stratigraphic sequence from the surface downward can be separated into four hydrostratigraphic systems. These are: (1) the unsaturated zone, (2) the unconfined aquifer, (3) the uppermost confined aquifers, and (4) the lower Yakima basalt hydrologic sequence. A conceptual layered earth model (LEM) has been developed. The LEM represents the major types of porous media (LEM units) that may be encountered at a number of places on the Columbia Plateau, and specifically in the Pasco Basin. The conceptual LEM is not representative of the actual three-dimensional hydrostratigraphic sequence and hydrologic conditions existing at any specific site within the Columbia Plateau physiographic province. However, the LEM may be useful for gaining a better understanding of how the hydrologic regime may change as a result of disruptive events that may interact with a waste repository in geologic media.

Veatch, M.D.

1980-04-01T23:59:59.000Z

413

Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements  

SciTech Connect

There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

1986-10-01T23:59:59.000Z

414

Evaluation of the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Using Total System Performance Assessment: Phase 6  

Science Conference Proceedings (OSTI)

A successful license application for the candidate spent-fuel and high-level waste repository at Yucca Mountain depends on a robust demonstration of long-term safety. This report presents EPRI's evaluation of, and makes a case for, the suitability of the Yucca Mountain repository using a Total System Performance Assessment (TSPA). The report discusses factors that make the Yucca Mountain repository system suitable for continued development and initiation of the licensing process. Information in this Phas...

2002-02-28T23:59:59.000Z

415

Quick egress from deep underground  

SciTech Connect

A method of storage of missiles deep underground in a protected environment capable of withstanding nuclear blasts while allowing access for maintenance and rapid egress when necessary-- even after exposure to severe environments due to an explosion at or near the surface of the earth. To accomplish this, the objects to be stored are contained in a closed container of positive buoyancy in quicksand. A shaft is excavated in the earth and filled with sand. The water content of the sand backfill is controlled and maintained at that percentage of saturation which will provide the best compromise between rapidity and ease of container egress on one hand and resistance to hostile surface environments on the other. Means for the introduction of additional water at the bottom of the sand-filled shaft are provided. When the sand column is fluidized by the injection of water at the bottom thereof, quicksand is formed in the shaft and the container can be drawn to the bottom by a tether line. When water injection is stopped, the sand returns to its normal solid condition and provides a protective layer for the buried container while restraining it in its deep buried position. The sand, in its normal tightly packed solid condition also acts to preserve the egress path to the surface by preventing the entry of dislodged earth material in the attack environment. To access the container for maintenance or for use of the contents, the shaft is again fluidized allowing the container to float to the surface.

Funston, N.E.

1976-09-21T23:59:59.000Z

416

Expected near-field thermal environments in a sequentially loaded spent-fuel or high-level waste repository in salt  

SciTech Connect

This report describes the effect of realistic waste emplacement schedules on repository thermal environments. Virtually all estimates to date have been based on instantaneous loading of wastes having uniform properties throughout the repository. However, more realistic scenarios involving sequential emplacement of wastes reflect the gradual filling of the repository over its lifetime. These cases provide temperatures that can be less extreme than with the simple approximation. At isolated locations in the repository, the temperatures approach the instantaneous-loading limit. However, for most of the repository, temperature rises in the near-field are 10 to 40 years behind the conservative estimates depending on the waste type and the location in the repository. Results are presented for both spent-fuel and high-level reprocessing waste repositories in salt, for a regional repository concept, and for a single national repository concept. The national repository is filled sooner and therefore more closely approximates the instantaneously loaded repository. However, temperatures in the near-field are still 20/sup 0/C or more below the values in the simple model for 40 years after startup of repository emplacement operations. The results suggest that current repository design concepts based on the instantaneous-loading predictions are very conservative. Therefore, experiments to monitor temperatures in a test and evaluation facility, for example, will need to take into account the reduced temperatures in order to provide data used in predicting repository performance.

Rickertsen, L.D.; Arbital, J.G.; Claiborne, H.C.

1982-01-01T23:59:59.000Z

417

A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories  

E-Print Network (OSTI)

emplacement drift at Yucca Mountain. Journal of Contaminantniches in tuff units at Yucca Mountain. Proceedings of thetunnels, similar to the Yucca Mountain repository concept in

Rutqvist, Jonny

2008-01-01T23:59:59.000Z

418

Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository  

E-Print Network (OSTI)

Repository at Yucca Mountain. In Materials Research Societystudies using the Yucca Mountain unsaturated zone model.Unsaturated Zone, Yucca Mountain, Nevada. Water Resources

Haukwa, C.B.; Wu, Yu-Shu; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

419

NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Data Field Data Repository Supports Accurate Home Energy Analysis The Residential Buildings Research Group at the National Renewable Energy Laboratory (NREL) has developed a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The Field Data Repository currently includes data collected from historical programs where residential building characteristics (building geometry, insulation levels, equipment types, etc.), generally collected through energy audits, have been connected to measured energy use. With an emphasis on older homes, the repository contains datasets from Home Energy Rating System

420

Precise rare earth analysis of geological materials  

Science Conference Proceedings (OSTI)

Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

Laul, J.C.; Wogman, N.A.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Challenges of deep drilling. Part 2  

SciTech Connect

This installment delineates current deep drilling technology limitations and discusses needed advances for the future. Problem areas are identified as material and seal problems in wellhead equipment, new fluid carriers for well stimulation, quality control/inspection/testing for equipment and performance flaws, arctic environment conditions, and experienced personnel. The main factors of operating environment that challenge advanced deep drilling are identified as temperature extremes, pressure extremes, acid gases, and deep-water presence.

Chadwick, C.E.

1981-08-01T23:59:59.000Z

422

Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic  

DOE Green Energy (OSTI)

Carbon dioxide injection into deep sea sediments below 2700 m water depth and a few hundred meters to fifteen hundred meters deep in the sediment column may provide permanent geologic storage by gravitational trapping. At high pressures and low temperatures common in deep sea sediments a few hundred meters below sea floor, CO{sub 2} will be in its liquid phase and will be denser than the overlying pore fluid. The lower density of the pore fluid provides a cap to the denser CO{sub 2} and ensures gravitational trapping in the short term. The overall storage capacity for CO{sub 2} in such deep sea formations below the ocean floor is primarily determined by the permeability, and will vary with seafloor depth, geothermal gradient, porosity, and pore water salinity. Furthermore, the dissemination of the injected CO{sub 2} in the sediments and potential chemical reactions between CO{sub 2}, pore fluid and sediments will define its fate in the storage reservoir. The main objectives of our research was to evaluate the potential for sub-seabed CO{sub 2} storage in deep sea sediments using a range of approaches including experiments, permeability analysis, and modeling. Over the course of the three-year award, our results support an important role for sub-seabed storage in a diverse portfolio of carbons sequestration options. Our analysis has shown the feasibility of this type of storage, and also emphasizes that escape or leakage from such sites would be negligible. The most difficult challenge is to overcome the low permeability of typical deep-sea sediments, and a variety of approaches are suggested for future research.

Klaus Lackner; Charles Harvey; Bruce Watson

2008-01-14T23:59:59.000Z

423

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

Geo- logic Carbon Dioxide Sequestration: An Analysis of86 MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP,MONITORING OF GEOLOGIC CARBON SEQUESTRATION B. R. Strazisar,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

424

System-level modeling for geological storage of CO2  

E-Print Network (OSTI)

Gas Reservoirs for Carbon Sequestration and Enhanced Gasfrom geologic carbon sequestration sites, Vadose Zonethe feasibility of carbon sequestration with enhanced gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

425

April 7, 2008 Dr. Mark Myers, Director US Geological Survey ...  

Science Conference Proceedings (OSTI)

... US Geological Survey 12201 Sunrise Valley Drive, Mail ... The Central and Eastern United States hazard ... coastal California and the Basin and Range ...

2011-01-26T23:59:59.000Z

426

Reactive transport modeling for CO2 geological sequestration  

E-Print Network (OSTI)

Geochemical detection of carbon dioxide in dilute aquifers.geological storage of carbon dioxide. Int. J. Greenhouse GasIPCC special report on carbon dioxide capture and storage.

Xu, T.

2013-01-01T23:59:59.000Z

427

Geothermal: Sponsored by OSTI -- Geological occurrence of gas...  

Office of Scientific and Technical Information (OSTI)

Geological occurrence of gas hydrates at the Blake Outer Ridge, western North Atlantic Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

428

Geological Problems in Radioactive Waste Isolation: Second Worldwide Review  

E-Print Network (OSTI)

c. contamination from Chernobyl m. Technologic complexity a.and Complications from the Chernobyl Disaster . . . .5by radionuclides from Chernobyl Geological division of

2010-01-01T23:59:59.000Z

429

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Monograph M11 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

430

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

NA, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Citation...

431

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...  

Open Energy Info (EERE)

SURVEY, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,...

432

Recovery Act: Site Characterization of Promising Geologic Formations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act: Site Characterization of Promising Geologic Formations for CO2 Storage A Report on the The Department of Energy's (DOE's) Carbon Sequestration Program within the...

433

Modeling wetland loss in coastal Louisiana: Geology, geography ...  

U.S. Energy Information Administration (EIA)

Habitat change in coastal Louisiana from 1955/6 to 1978 was analyzed to determine the influence of geological and man-made changes on landscape ...

434

Geology, Water Geochemistry And Geothermal Potential Of The Jemez...  

Open Energy Info (EERE)

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

435

Liquid Metal Heat Exchanger for Geologic Deposits - Energy ...  

Researchers at ORNL developed a down-well heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract ...

436

COMPUTER MODELING OF NUCLIDE ADSORPTION ON GEOLOGIC MATERIALS  

E-Print Network (OSTI)

aqueous transport of radionuclides through geologic media,lead J the exchange of radionuclide mass between the aqueousdistribution of a given radionuclide between the solid and

Silva, R.J.

2010-01-01T23:59:59.000Z

437

Simulation Framework for Regional Geologic CO2 Storage Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Development Office of the Ohio Air Quality Development Authority; Ohio, Indiana, and Kentucky Geological Surveys; Western Michigan University; and Battelle's Pacific Northwest...

438

Geologic Distribution of U.S. Proved Reserves, 2009  

U.S. Energy Information Administration (EIA)

Geologic Distribution of U.S. Proved Reserves, 2009 Although proved reserves of crude oil, lease condensate, and natural gas have historically been

439

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Progress Report No. 1. During the next six months, efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation as documented in Technical Progress Report No. 2. This report details work done with Anadarko and ChevronTexaco in the Table Rock Field in Wyoming.

None

2004-03-31T23:59:59.000Z

440

Science Accelerator : Main View : Deep Federated Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Us | OSTI HOME ADVANCED SEARCH ALERTS ABOUT RESOURCE DESCRIPTIONS Powered by Deep Web Technologies Science Accelerator QR Code | RSS | RSS Archive | Share | Widget Help |...

Note: This page contains sample records for the topic "deep geologic repository" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.