National Library of Energy BETA

Sample records for deep geologic repository

  1. License for the Konrad Deep Geological Repository

    SciTech Connect (OSTI)

    Biurrun, E.; Hartje, B.

    2003-02-24

    Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

  2. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    SciTech Connect (OSTI)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  3. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    SciTech Connect (OSTI)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  4. Repository size for deep geological disposal of partitioning and transmutation high level waste

    SciTech Connect (OSTI)

    Nishihara, Kenji; Nakayama, Shinichi; Oigawa, Hiroyuki

    2007-07-01

    In order to reveal the impact of the partitioning and transmutation (PT) technology on the geological disposal, we investigated the production and disposal of the radioactive wastes from the PT facilities including the dry reprocessing for the spent fuel from accelerator-driven system. After classifying the PT wastes according to the heat generations, the emplacement configurations in the repository were assumed for each group based on the several disposal concepts proposed for the conventional glass waste form. Then, the sizes of the repositories represented by the vault length, emplacement area and excavation volume were estimated. The repository sizes were reduced by PT technology for all disposal concepts. (authors)

  5. Development of an Integrated Natural Barrier Database System for Site Evaluation of a Deep Geologic Repository in Korea - 13527

    SciTech Connect (OSTI)

    Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong; Lee, Jeong-Hwan

    2013-07-01

    Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel and other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)

  6. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  7. Thermodynamic stability of actinide pyrochlore minerals in deep geologic

    Office of Scientific and Technical Information (OSTI)

    repository environments (Conference) | SciTech Connect Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Citation Details In-Document Search Title: Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Crystalline phases of pyrochlore (e.g., CaPuTi{sub 2}O{sub 7}, CaUTi{sub 2}O{sub 7}) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus

  8. Cigeo, the French Geological Repository Project - 13022

    SciTech Connect (OSTI)

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald

    2013-07-01

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  9. The French Geological Repository Project Cigeo - 12023

    SciTech Connect (OSTI)

    Harman, Alain; Labalette, Thibaud; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, Chatenay-Malabry (France)

    2012-07-01

    The French Agency for Radioactive Waste Management, ANDRA, was launched by law in 1991 to perform and develop the research programme for managing high level and intermediate level long-lived radioactive waste generated by the French nuclear fleet. After a 15-year intensive research programme, including the study of alternative solutions, an overall review and assessment of the results was organized, including a national public debate. As a result, the Parliament passed a Planning Act on radioactive waste management in 2006. Commissioning of a geological repository by 2025 was one of the most important decisions taken at that time. To reach this goal, a license application must be submitted and reviewed by the competent authorities by 2015. A detailed review and consultation process is, as well, defined in the Planning Act. Beside the legal framework the project needs to progress on two fronts. The first one is on siting. A significant milestone was reached in 2009 with the definition of a defined area to locate the underground repository facilities. This area was approved in March 2010 by the Government, after having collected the opinions and positions of all the interested parties, at both National and local levels. A new phase of dialogue with local players began to refine the implementation scenarios of surface facilities. The final site selection will be approved after a public debate planned for 2013. The second one is the industrial organization, planning and costing. The industrial project of this geological repository was called Cigeo (Centre Industriel de Stockage Geologique). Given the amount of work to be done to comply with the given time framework, a detailed organization with well-defined milestones must be set-up. Cigeo will be a specific nuclear facility, built and operated underground for over a hundred years. The consequence of this long duration is that the development of the repository facilities will take place in successive operational phases. The characteristics of the first waste packages received will determine the work and the corresponding investments by 2025 on the repository site. One of the main challenges will be to accommodate both activities of mining and nuclear operations at the same time and at the same location. From the technical standpoint, ventilation and fire risk cannot be managed through a simple transposition from current nuclear industry practices. The reversibility demand also leads to concrete proposals with regard to repository management flexibility and waste package retrievability. These proposals contribute to the dialogue with stakeholders to prepare for the public debate and a future law which will determine the reversibility conditions. New design developments are expected to be introduced in the application from the current studies conducted until 2014. The possibility of optimization beyond 2015 will be kept open taking into account the one hundred years operating time as well as the capability to integrate feedback gained from the first construction and operation works. The industrial committed work aims to reach the application stage by 2015. The license application procedure was defined by the 2006 Act. Subject to authorization, the construction might begin in 2017. (authors)

  10. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  11. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  12. Reference design description for a geologic repository: Revision 01

    SciTech Connect (OSTI)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified.

  13. Generic Deep Geologic Disposal Safety Case | Department of Energy

    Office of Environmental Management (EM)

    Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case

  14. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  15. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  16. Final Supplemental Environmental Impact Statement for a Geologic Repository

    Office of Environmental Management (EM)

    for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En | Department of Energy Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Final Supplemental Environmental Impact

  17. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  18. Preliminary paper - Development of the Reference Design Description for a geologic repository

    SciTech Connect (OSTI)

    Daniel, Russell B.; Rindskopf, M. Sam

    1997-11-20

    This report describes the current Reference Design Description (RDD) design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada.

  19. Handling encapsulated spent fuel in a geologic repository environment

    SciTech Connect (OSTI)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy`s Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site ({similar_to}100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground.

  20. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    SciTech Connect (OSTI)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  1. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    SciTech Connect (OSTI)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  2. Geologic repository design and disposal: GNEP spent fuel processing-waste volume

    SciTech Connect (OSTI)

    Bauer, T.H.; Wigeland, R.A.

    2007-07-01

    Previous work has shown that removal of key heat generating elements from spent fuel would allow greater utilization of space in a geologic repository such as Yucca Mountain by factors of 100 or more without increasing the estimated peak dose rate to an exposed individual. However, achieving such utilization increases within a repository storage drift requires the density of the remaining fission products, actinide elements, etc. to be increased by roughly the same factor as the utilization increase, itself. This paper analyzes several alternative drift configurations possible within a designated repository area that could: (1) allow greater volume for waste storage and (2) maintain significant utilization benefit. For a representative range of GNEP-generated waste streams, computed results show that increase in repository area space utilization by a factor {approx}100 can be maintained with such configurations as long as waste stream volume can be reduced from that of the original spent fuel by a factor of {approx}10. (authors)

  3. Biogeochemical Changes at Early Stage After the Closure of Radioactive Waste Geological Repository in South Korea

    SciTech Connect (OSTI)

    Choung, Sungwook; Um, Wooyong; Choi, Seho; Francis, Arokiasamy J.; Kim, Sungpyo; Park, Jin beak; Kim, Suk-Hoon

    2014-09-01

    Permanent disposal of low- and intermediate-level radioactive wastes in the subterranean environment has been the preferred method of many countries, including Korea. A safety issue after the closure of a geological repository is that biodegradation of organic materials due to microbial activities generates gases that lead to overpressure of the waste containers in the repository and its disintegration with the release of radionuclides. As part of an ongoing large-scale in situ experiment using organic wastes and groundwater to simulate geological radioactive waste repository conditions, we investigated the geochemical alteration and microbial activities at an early stage (~63 days) intended to be representative of the initial period after repository closure. The increased numbers of both aerobes and facultative anaerobes in waste effluents indicate that oxygen content could be the most significant parameter to control biogeochemical conditions at very early periods of reaction (<35 days). Accordingly, the values of dissolved oxygen and redox potential were decreased. The activation of anaerobes after 35 days was supported by the increased concentration to ~50 mg L-1 of ethanol. These results suggest that the biogeochemical conditions were rapidly altered to more reducing and anaerobic conditions within the initial 2 months after repository closure. Although no gases were detected during the study, activated anaerobic microbes will play more important role in gas generation over the long term.

  4. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    SciTech Connect (OSTI)

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300/sup 0/C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed.

  5. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    SciTech Connect (OSTI)

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  6. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Bradley,, D. J.; Serne,, R. J.; Soldat, J. K; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  7. Establish and Operate a Geologic Core and Sample Repository in Midland, Texas

    SciTech Connect (OSTI)

    Tyler, Noel

    2000-08-14

    Shell Oil Company donated its proprietary core and sample repository to the Bureau of Economic Geology, The University of Texas at Austin, in 1994. This collection of geologic materials is composed of 325,000 boxes of rocks and samples housed in a 32,700-ft{sup 2} warehouse in Midland, Texas. The material includes cores from more than 3,000 wells (75,000 boxes) and cuttings from more than 90,000 wells (260,000 boxes). In addition to the warehouse space, the repository consists of layout rooms, a processing room, and office space. The U.S. Department of Energy provided $375,000 under Grant Number DE-FG22-94BC14854 for organizing the collection, staffing the facility, and making the material available to the public for the first 5 years of operation. Shell Oil Company provided an endowment of $1.3 million to cover the cost of operating the facility after the fifth year of operation.

  8. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  9. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    SciTech Connect (OSTI)

    1996-10-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes.

  10. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    SciTech Connect (OSTI)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism. Preliminary results show that modeling of the borehole array, including the surrounding rock, predicts convective flow in the system with physical velocities of the order of 10-5 km/yr over 105 years. This results in an escape length on the order of kilometers, which is comparable to the repository depth. However, a correct account of the salinity effects reduces convection velocity and escape length of the radionuclides from the repository.

  11. Geological Repository Layout for Radioactive High Level Long Lived Waste in Argilite

    SciTech Connect (OSTI)

    Gaussen, J.L.

    2006-07-01

    In the framework of the 1991 French radioactive waste act, ANDRA has studied the feasibility of a geological repository in the argillite layer of the Bure site for high-level long-lived waste. This presentation is focused on the underground facilities that constitute the specific component of this project. The preliminary underground layout, which has been elaborated, is based on four categories of data: - the waste characteristics and inventory; - the geological properties of the host argillite; - the long term performance objectives of the repository; - the specifications in term of operation and reversibility. The underground facilities consist of two types of works: the access works (shafts and drifts) and the disposal cells. The function of the access works is to permit the implementation of two concurrent activities: the nuclear operations (transfer and emplacement of the disposal packages into the disposal cells) and the construction of the next disposal cells. The design of the drifts network which matches up to this function is also influenced by two other specifications: the minimisation of the drift dimensions in order to limit their influence on the integrity of the geological formation and the necessity of a safe ventilation in case of fire. The resulting layout is a network of 4 parallel drifts (2 of them being dedicated to the operation, the other two being dedicated to the construction activities). The average diameter of these access drifts is 7 meters. 4 shafts ensure the link between the surface and the underground. The most important function of the disposal cells is to contribute to the long-term performance of the repository. In this regard, the thermal and geotechnical considerations play an important role. The B wastes (intermediate level wastes) are not (or not very) exothermic. Consequently, the design of their disposal cells result mainly from geotechnical considerations. The disposal packages (made of concrete) are piled up in big cavities the diameter of which is about 10 meters and the length of which is about 250 meters. On the other hand, the design of the C waste disposal cells (vitrified waste) is mainly derived from their thermal power (about 500 W after a 60 year period of interim storage). The disposal cell is a tunnel the diameter of which is about 0,70 m and the length of which is about 40 m. The number of the disposal packages (made of steel) per cell, the spacing between two adjacent canisters within a given cell and the spacing between two adjacent cells are adjusted to limit the peak of temperature in the host formation at 100 deg. C. The disposal cells are also characterized by favourable design factors that would facilitate the potential retrieval of the wastes. The whole underground layout would represent a surface area of several km{sup 2}. (authors)

  12. Summary of key directives governing permanent disposal in a geologic repository

    SciTech Connect (OSTI)

    Sands, S.C. III

    1993-11-01

    This document was developed in support of the Idaho National Engineering Laboratory (INEL) Spent Fuel and Waste Management Technology Development Program (SF&WMTDP). It is largely comprised of flow diagrams summarizing the key regulatory requirements which govern permanent disposal in a geologic repository. The key purposes are (1) to provide an easy and effective tool for referencing or cross referencing federal directives (i.e., regulations and orders), (2) to provide a method for examining the requirements in one directive category against the requirements in another, and (3) to list actions that must be taken to ensure directive compliance. The document is categorically broken down into a Transportation section and a Mined Geologic Disposal System (MGDS) section to ensure that the interrelationship of the entire disposal system is considered. The Transportation section describes the transportation packaging requirements, testing methods, and safety requirements imposed on fissile material shipments. The MGDS section encompasses technical aspects involved in siting, licensing, waste interaction with the container, container design features, physical characteristics of the surrounding environment, facility design features, barrier systems, safety features, criticality considerations, migration restrictions, implementation guidelines, and so forth. For purposes of illustration, the worst case scenario is outlined. It is important that the approaches and considerations contained in this document be integrated into the efforts of the SF&WMTDP so that every applicable aspect of the regulatory requirements can be evaluated to avoid investing large sums of money into projects that do not take into account all of the aspects of permanent waste disposal. Not until an overall picture and clear understanding of these regulations is established can a basis be developed to govern the direction of future activities of the SF&WMTDP.

  13. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much of the enhanced geothermal focus on stimulating fracture development (e.g., fracking) at depth is not directly relevant to deep borehole disposal. For deep borehole...

  14. Viability Assessment of a Repository at Yucca Mountain

    Broader source: Energy.gov [DOE]

    The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution.

  15. EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain  for the disposal of spent nuclear fuel and high-level...

  16. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect (OSTI)

    J.S. Stuckless; D. O'Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  17. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Arnold, Bill W.; Brady, Patrick; Sutton, Mark; Travis, Karl; MacKinnon, Robert; Gibb, Fergus;...

  18. Assessment of effectiveness of geologic isolation systems. Test case release consequence analysis for a spent fuel repository in bedded salt

    SciTech Connect (OSTI)

    Raymond, J.R.; Bond, F.W.; Cole, C.R.; Nelson, R.W.; Reisenauer, A.E.; Washburn, J.F.; Norman, N.A.; Mote, P.A.; Segol, G.

    1980-01-01

    Geologic and geohydrologic data for the Paradox Basin have been used to simulate movement of ground water and radioacrtive contaminants from a hypothetical nuclear reactor spent fuel repository after an assumed accidental release. The pathlines, travel times and velocity of the ground water from the repository to the discharge locale (river) were determined after the disruptive event by use of a two-dimensional finite difference hydrologic model. The concentration of radioactive contaminants in the ground water was calculated along a series of flow tubes by use of a one-dimensional mass transport model which takes into account convection, dispersion, contaminant/media interactions and radioactive decay. For the hypothetical site location and specific parameters used in this demonstration, it is found that Iodine-129 (I-129) is tthe only isotope reaching the Colorado River in significant concentration. This concentration occurs about 8.0 x 10/sup 5/ years after the repository has been breached. This I-129 ground-water concentration is about 0.3 of the drinking water standard for uncontrolled use. The groundwater concentration would then be diluted by the Colorado River. None of the actinide elements reach more than half the distance from the repository to the Colorado River in the two-million year model run time. This exercise demonstrates that the WISAP model system is applicable for analysis of contaminant transport. The results presented in this report, however, are valid only for one particular set of parameters. A complete sensitivity analysis must be performed to evaluate the range of effects from the release of contaminants from a breached repository.

  19. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Michael B. Heiser; Clark B. Millet

    2005-10-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 × 10-ft) and Concept B (2 × 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 × 17.5-ft) canister (also called the “super canister”), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine "as-is" would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years.

  20. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  1. Impact of P and T on geological repositories an overview of the EURATOM red impact project

    SciTech Connect (OSTI)

    Westlen, Daniel; Norris, Simon; Gonzalez-Romero, Enrique M.; Greneche, Dominique; Boucher, Lionel; Marivoet, Jan; Zimmerman, Colin; von Lensa, Werner

    2007-07-01

    The European Commission project Red Impact is in a state of conclusion after three years. Within the project, the consequences of P and T on, mainly, geological disposal have been investigated. Six scenarios have been developed, including three considered to be deployable today, and three more advanced scenarios including P and T in different ways. The scenarios all have different strengths and weaknesses, which are discussed in the present paper. (authors)

  2. OPERATION OF A PUBLIC GEOLOGIC CORE AND SAMPLE REPOSITORY IN HOUSTON TEXAS

    SciTech Connect (OSTI)

    Scott W. Tinker

    2003-06-01

    In the spring of 2002, the Department of Energy provided an initial 1-year grant to the Bureau of Economic Geology (BEG) at The University of Texas at Austin (UT). The grant covered the one-year operational expenses of a worldclass core and cuttings facility located in Houston, Texas, that BP America donated to the BEG. The DOE investment of $300,000, matched by a $75,000 UT contribution, provided critical first-year funds that were heavily leveraged by the BP gift of $7.0 million in facilities and cash. DOE also provided a one-month extension and grant of $30,000 for the month of May 2003. A 5-year plan to grow a permanent endowment in order to manage the facility in perpetuity is well under way and on schedule. The facility, named the Houston Research Center, represents an ideal model for a strong Federal, university, and private partnership to accomplish a national good. This report summarizes the activities supported by the initial DOE grant during the first 13 months of operation and provides insight into the activities and needs of the facility in the second year of operation.

  3. Spent Fuel Reprocessing: More Value for Money Spent in a Geological Repository?

    SciTech Connect (OSTI)

    Kaplan, P.; Vinoche, R.; Devezeaux, J-G.; Bailly, F.

    2003-02-25

    Today, each utility or country operating nuclear power plants can select between two long-term spent fuel management policies: either, spent fuel is considered as waste to dispose of through direct disposal or, spent fuel is considered a resource of valuable material through reprocessing-recycling. Reading and listening to what is said in the nuclear community, we understand that most people consider that the choice of policy is, actually, a choice among two technical paths to handle spent fuel: direct disposal versus reprocessing. This very simple situation has been recently challenged by analysis coming from countries where both policies are on survey. For example, ONDRAF of Belgium published an interesting study showing that, economically speaking for final disposal, it is worth treating spent fuel rather than dispose of it as a whole, even if there is no possibility to recycle the valuable part of it. So, the question is raised: is there such a one-to-one link between long term spent fuel management political option and industrial option? The purpose of the presentation is to discuss the potential advantages and drawbacks of spent fuel treatment as an implementation of the policy that considers spent fuel as waste to dispose of. Based on technical considerations and industrial experience, we will study qualitatively, and quantitatively when possible, the different answers proposed by treatment to the main concerns of spent-fuel-as-a-whole geological disposal.

  4. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    SciTech Connect (OSTI)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  5. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    SciTech Connect (OSTI)

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)

  6. Systems study of the feasibility of high-level nuclear-waste fractionation for thermal stress control in a geologic repository: main report

    SciTech Connect (OSTI)

    McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

    1983-06-01

    This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. System costs are developed for a broad range of conditions comparing the Cs/Sr fractionation concept with disposal of 10-year-old vitrified HLW and vitrified HLW aged to achieve (through decay) the same heat output as the fractionated high-level waste (FHLW). All comparisons are based on a 50,000 metric ton equivalent (MTE) system. The FHLW and the Cs/Sr waste are both disposed of as vitrified waste but emplaced in separate areas of a basalt repository. The FHLW is emplaced in high-integrity packages at relatively high waste loading but low heat loading, while the Cs/Sr waste is emplaced in minimum-integrity packages at relatively high heat loading in a separate region of the repository. System cost comparisons are based on minimum cost combinations of canister diameter, waste concentration, and canister spacing in a basalt repository. The effects on both long- and near-term safety considerations are also addressed. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However, there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. 37 figures, 58 tables.

  7. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  8. Deep geologic burial of spent nuclear fuel: Is criticality a public health and safety issue?

    SciTech Connect (OSTI)

    McLaughlin, T.P.

    1996-12-31

    While the answer to the question posed in the title to this paper may never be complete, there is evidence that suggests that the technical answer is {open_quotes}no.{close_quotes} Certainly there will likely be vigorous public policy discussions as to the acceptability of criticality events at indeterminate times in the future even if the technical arguments for acceptably low risk are compelling. This paper attempts to further the technical discussions of criticality events associated with geologic disposal of fissile material being considered acceptably low risks to future inhabitants. Current U.S. regulations governing the deep geologic disposal of materials that may be capable of achieving the critical state are found in 10 CFR 60 of the Code of Federal Regulations. The pertinent paragraph, 60.131(b)(7), states: {open_quotes}Criticality control. All systems for processing, transporting, handling, storage, retrieval, emplacement, and isolation of radioactive waste shall be designed to ensure that a nuclear criticality accident is not possible unless at least two unlikely, independent, and concurrent or sequential changes have occurred in the conditions essential to nuclear criticality safety. Each system shall be designed for criticality safety under normal and accident conditions. The calculated effective multiplication factor (k{sub eff}) must be sufficiently below unity to show at least a 5% margin, after allowance for the bias in the method of calculation and the uncertainty in the experiments used to validate the method of calculation.{close_quotes}

  9. Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2008-09-18

    This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

  10. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

    SciTech Connect (OSTI)

    1985-05-01

    Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

  11. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    SciTech Connect (OSTI)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  12. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  13. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect (OSTI)

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  14. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along the Ohio River Valley corridor in the Appalachian Basin, which underlies large concentrations of CO{sub 2} emission sources. In addition, some wells in the Michigan basin are included. Assessment of the geologic and petrophysical properties of zones of interest has been conducted. Although a large number of formations have been evaluated across the geologic column, the primary focus has been on evaluating the Cambrian sandstones (Mt. Simon, Rose Run, Kerbel) and carbonates layers (Knox Dolomite) as well as on the Silurian-Devonian carbonates (Bass Island, Salina) and sandstones (Clinton, Oriskany, Berea). Factors controlling the development of porosity and permeability, such as the depositional setting have been explored. In northern Michigan the Bass Islands Dolomite appears to have favorable reservoir development. In west central Michigan the St. Peter sandstone exhibits excellent porosity in the Hart and Feuring well and looks promising. In Southeastern Kentucky in the Appalachian Basin, the Batten and Baird well provided valuable data on sequestration potential in organic shales through adsorption. In central and eastern Ohio and western West Virginia, the majority of the wells provided an insight to the complex geologic framework of the relatively little known Precambrian through Silurian potential injection targets. Although valuable data was acquired and a number of critical data gaps were filled through this effort, there are still many challenges ahead and questions that need answered. The lateral extent to which favorable potential injection conditions exist in most reservoirs is still generally uncertain. The prolongation of the characterization of regional geologic framework through partnership would continue to build confidence and greatly benefit the overall CO{sub 2} sequestration effort.

  15. Repository Performance Confirmation - 12119

    SciTech Connect (OSTI)

    Hansen, F.D. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2012-07-01

    Repository performance confirmation links the technical bases of repository science and societal acceptance. Among the countless aspects of monitoring, performance confirmation holds a special place, involving distinct activities combining technical and social significance in radioactive waste management. Discussion is divided into four themes: 1. A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives, 2. A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain, 3. A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant, and 4. An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. Experience from two repository programs in the United States sheds light on how performance confirmation has been executed. Lessons learned can help the next generation of performance confirmation. (author)

  16. Development of an object-oriented simulation code for repository performance assessment

    SciTech Connect (OSTI)

    Tsujimoto, Keiichi; Ahn, J.

    1999-07-01

    As understanding for mechanisms of radioactivity confinement by a deep geologic repository improves at the individual process level, it has become imperative to evaluate consequences of individual processes to the performance of the whole repository system. For this goal, the authors have developed a model for radionuclide transport in, and release from, the repository region by incorporating multiple-member decay chains and multiple waste canisters. A computer code has been developed with C++, an object-oriented language. By utilizing the feature that a geologic repository consists of thousands of objects of the same kind, such as the waste canister, the repository region is divided into multiple compartments and objects for simulation of radionuclide transport. Massive computational tasks are distributed over, and executed by, multiple networked workstations, with the help of parallel virtual machine (PVM) technology. Temporal change of the mass distribution of 28 radionuclides in the repository region for the time period of 100 million yr has been successfully obtained by the code.

  17. Analysis Repository

    SciTech Connect (OSTI)

    DOE

    2012-03-16

    The Analysis Repository is a compilation of analyses and analytical models relevant to assessing hydrogen fuel and fuel cell issues. Projects in the repository relate to: hydrogen production, delivery, storage, fuel cells, and hydrogen vehicle technology; hydrogen production feedstock cost and availability; electricity production, central and distributed; energy resource estimation and forecasting.

  18. Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Repository Index Permit Renewal Application (Parts A and B) Submissions, September 2009, Department of Energy CBFO/Washington TRU Solutions Administrative Completeness Determination of the Amended Permit Renewal Application WIPP Hazardous Waste Facility Permit, JP Bearzi, NMED dated, November 25, 2009 Hazardous Waste Facility Permit effective January 2016 New Mexico Environment Department as modified by the Permittees on February 18, 2016 2016 Information Repository Documents 2015

  19. MIC evaluation and testing for the Yucca Mountain repository

    SciTech Connect (OSTI)

    Horn, J.M.; Rivera, A.; Lain, T.; Jones, D.A.

    1997-10-01

    The U.S. Department of Energy is engaged in a suitability study for a potential deep geological repository at Yucca Mountain (YM), Nevada, for the containment and storage of high-level nuclear waste. There is growing awareness that biotic factors could affect the integrity of the repository directly through microbially induced corrosion (MIC) of waste package (WP) materials and other repository elements. A program to determine the degree that microorganisms, especially bacteria, influence the corrosion of waste package materials has therefore been undertaken. These studies include testing candidate waste package materials for their susceptibility to MIC, and also seek to determine rates of biocorrosion under varying environmental conditions, as well as predict rates of waste package corrosion over the long term. Previous characterization of bacterial isolates derived from YM geologic material showed that many possessed biochemical activities associated with MIC, 2. Various Yucca Mountain microbes demonstrated the abilities to oxidize iron, reduce sulfate to sulfide, produce acids, and generate exopolysaccharides (or `slime`). Table 1 summarizes previously characterized YM organisms and their associated relevant activities. A subset of the characterized YM bacteria were spread on WP alloy coupons in systems designed to collect polarization resistance (Rp) data for corrosion rate calculations, and to determine cathodic and anodic potentiodynamic polarization to assess corrosion mechanisms. Coupons inoculated with bacteria were compared to those that remained sterile, to determine the bacterial contribution to overall corrosion rates.

  20. Geological aspects of the nuclear waste disposal problem

    SciTech Connect (OSTI)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  1. Generic repository design concepts and thermal analysis (FY11).

    SciTech Connect (OSTI)

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

  2. OSTI OAI Repository Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    changes, modifications, or deletions in the repository * deletedRecord: specifies the nature of deleted records; this repository does not maintain information about deletions *...

  3. Repository performance confirmation.

    SciTech Connect (OSTI)

    Hansen, Francis D.

    2011-09-01

    Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the Yucca Mountain license application identified a broad suite of monitoring activities. A revision of the plan was expected to winnow the number of activities down to a manageable size. As a result, an objective process for the next stage of performance confirmation planning was developed as an integral part of an overarching long-term testing and monitoring strategy. The Waste Isolation Pilot Plant compliance monitoring program at once reflects its importance to stakeholders while demonstrating adequate understanding of relevant monitoring parameters. The compliance criteria were stated by regulation and are currently monitored as part of the regulatory rule for disposal. At the outset, the screening practice and parameter selection were not predicated on a direct or indirect correlation to system performance metrics, as was the case for Yucca Mountain. Later on, correlation to performance was established, and the Waste Isolation Pilot Plant continues to monitor ten parameters originally identified in the compliance certification documentation. The monitoring program has proven to be effective for the technical intentions and societal or public assurance. The experience with performance confirmation in the license application process for Yucca Mountain helped identify an objective, quantitative methodology for this purpose. Revision of the existing plan would be based on findings of the total system performance assessment. Identification and prioritization of confirmation activities would then derive from performance metrics associated with performance assessment. Given the understanding of repository performance confirmation, as reviewed in this paper, it is evident that the performance confirmation program for the Yucca Mountain project could be readily re-engaged if licensing activities resumed.

  4. Final Supplemental Environmental Impact Statement for a Geologic...

    Office of Environmental Management (EM)

    Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County,...

  5. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    SciTech Connect (OSTI)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

  6. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect (OSTI)

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  7. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  8. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    SciTech Connect (OSTI)

    R.B. Rebak

    2006-08-28

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  9. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy the GDR logo, a blue wave opposed over an orange flame Geothermal Data Repository The Geothermal Data Repository (GDR) is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office. More Information. Search Submit data The Geothermal Data Repository (GDR) has been established to securely house data based on individual timelines, some of which have identified a specific release date. Please note:

  10. New Design for an HLW Repository (for Spent Fuel and Waste from Reprocessing) in a Salt Formation in Germany - 12213

    SciTech Connect (OSTI)

    Bollingerfehr, Wilhelm; Filbert, Wolfgang; Lerch, Christian; Mueller-Hoeppe, Nina; Charlier, Frank

    2012-07-01

    In autumn 2010, after a 10-year moratorium, exploration was resumed in Gorleben, the potential site for a German HLW repository. At the same time, the Federal Government launched a two-year preliminary safety analysis to assess whether the salt dome at Gorleben is suitable to host all heat-generating radioactive waste generated by German NPPs based on the waste amounts expected at that time. The revised Atomic Energy Act of June 2011 now stipulates a gradual phase-out of nuclear energy production by 2022, which is 13 years earlier than expected in 2010. A repository design was developed which took into account an updated set of data on the amounts and types of expected heat-generating waste, the documented results of the exploration of the Gorleben salt dome, and the new 'Safety Requirements Governing the Final Disposal of Heat-Generating Radioactive Waste' of 30 September, 2010. The latter has a strong influence on the conceptual designs as it requires that retrievability of all waste containers is possible within the repository lifetime. One design considered that all waste containers will be disposed of in horizontal drifts of a geologic repository, while the other design considered that all waste containers will be disposed of in deep vertical boreholes. For both options (emplacement in drifts/emplacement in vertical boreholes), the respective design includes a selection of waste containers, the layout of drifts, respectively lined boreholes, a description of emplacement fields, and backfilling and sealing measures. The design results were described and displayed and the differences between the two main concepts were elaborated and discussed. For the first time in both repository designs the requirement was implemented to retrieve waste canisters during the operational phase. The measures to fulfill this requirement and eventually the consequences were highlighted. It was pointed out that there arises the need to keep transport- and storage casks in adequate numbers and interim storage facilities available until the repository is closed. (authors)

  11. National Geoscience Data Repository System. Final report

    SciTech Connect (OSTI)

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  12. Establishing MICHCARB, a geological carbon sequestration research and

    Office of Scientific and Technical Information (OSTI)

    education center for Michigan, implemented through the Michigan Geological Repository for Research and Education, part of the Department of Geosciences at Western Michigan University (Technical Report) | SciTech Connect Establishing MICHCARB, a geological carbon sequestration research and education center for Michigan, implemented through the Michigan Geological Repository for Research and Education, part of the Department of Geosciences at Western Michigan University Citation Details

  13. Repository Reference Disposal Concepts and Thermal Load Management Analysis

    Energy Savers [EERE]

    | Department of Energy Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are

  14. Request Repository Mailing List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Request Repository Mailing List Request Repository Mailing List Use this form to request a

  15. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  16. Investigations on Repository Near-Field Thermal Modeling - Repository Science/Thermal Load Management & Design Concepts (M41UF033302)

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Fratoni, M; Greenberg, H R; Ross, A D

    2011-07-15

    The various layers of material from the waste package (such as components of the engineered barrier system and the host rock surface) to a given distance within the rock wall at a given distance can be described as concentric circles with varying thermal properties (see Figure 5.1-1). The selected model approach examines the contributions of the waste package, axial waste package neighbors and lateral neighboring emplacement drifts (see Section 5.2.1 and Appendix H, Section 2). In clay and deep borehole media, the peak temperature is driven by the central waste package whereas, in granite and salt, the contribution to the temperature rise by adjacent (lateral) waste packages in drift or emplacement borehole lines is dominant at the time of the peak temperature. Mathematical models generated using Mathcad software provide insight into the effects of changing waste package spacing for six waste forms, namely UOX, MOX, co-extraction, new extraction, E-Chem ceramic and E-Chem metal in four different geologic media (granite, clay, salt and deep borehole). Each scenario includes thermal conductivity and diffusivity for each layer between the waste package and the host rock, dimensions of representative repository designs (such as waste package spacing, drift or emplacement borehole spacing, waste package dimensions and layer thickness), and decay heat curves generated from knowledge of the contents of a given waste form after 10, 50, 100 and 200 years of surface storage. Key results generated for each scenario include rock temperature at a given time calculated at a given radius from the central waste package (Section 5.2.1 and Appendix H, Section 3), the corresponding temperature at the interface of the waste package and EBS material, and at each EBS layer in between (Section 5.2.2 and Appendix H, Section 4). This information is vital to understand the implications of repository design (waste package capacity, surface storage time, waste package spacing, and emplacement drift or borehole spacing) by comparing the peak temperature to the thermal limits of the concentric layers surrounding the waste package; specifically 100 C for the bentonite buffer in granite and clay repositories, 100 C for rock wall in a clay repository and 200 C at the rock wall for a salt repository. These thermal limits are both preliminary and approximate, and serve as a means to evaluate design options rather than determining compliance for licensing situations. The thermal behavior of a salt repository is more difficult to model because it is not a concentric geometry and because the crushed salt backfill initially has a much higher thermal resistance than intact salt. Three models were investigated, namely a waste package in complete contact with crushed salt, secondly a waste package in contact with intact salt, and thirdly a waste package in contact with 75% intact and 25% crushed salt. The latter model best depicts emplacement of a waste package in the corner of an intact salt alcove and subsequently covered with crushed salt backfill to the angle of repose. The most conservative model (crushed salt) had temperatures much higher than the other models and although bounding, is too conservative to use. The most realistic model (75/25) had only a small temperature difference from the simplest (non-conservative, intact salt) model, and is the one chosen in this report (see Section 5.2.3). A trade-study investigating three key variables (surface storage time, waste package capacity and waste package spacing) is important to understand and design a repository. Waste package heat can be reduced by storing for longer periods prior to emplacement, or by reducing the number of assemblies or canisters within that waste package. Waste package spacing can be altered to optimize the thermal load without exceeding the thermal limits of the host rock or EBS components. By examining each of these variables, repository footprint (and therefore cost) can be optimized. For this report, the layout was fixed for each geologic medium based on prior published designs in

  17. Salt repository project closeout status report

    SciTech Connect (OSTI)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  18. National Geoscience Data Repository System, Phase III: Implementation and operation of the repository

    SciTech Connect (OSTI)

    American Geological Institute

    2000-03-13

    The American Geological Institute's (AGI) National Geoscience Data Repository System (NGDRS) was initiated in response to the fact that billions of dollars worth of domestic geoscience data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the U.S. energy and minerals industry. Preservation and access to domestic geological and geophysical data are critical to the energy security and economic prosperity of the nation. There is a narrow window of opportunity to act before valuable data are destroyed. The data truly represent a national treasure and immediate steps must be taken to assure their preservation.

  19. Fluid Flow Model Development for Representative Geologic Media

    Broader source: Energy.gov [DOE]

    Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process (discrete fracture network) models.

  20. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Ho, Chih-Hsiang

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  1. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  2. Use of a United States mid-Pacific Island territory for a Pacific Island Repository System (PIRS): Extended summary

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1987-08-01

    The concept of using a mid-ocean island for a geologic high-level waste repository was investigated. The technical advantages include geographical isolation and near-infinite ocean dilution as a backup to repository geological waste isolation. The institutional advantages are reduced siting problems and the potential of creating an international waste repository. Establishment of international waste repository would allow cost sharing, aid US nonproliferation goals, and assure proper disposal of spent fuel from developing countries. The major uncertainties in this concept are rock conditions at waste disposal depths and costs. 13 refs., 2 tabs.

  3. Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment

    SciTech Connect (OSTI)

    Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

    2006-06-30

    Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon a primary seal only but assumes that any leak can be contained by geologic processes before impacting mineral resources, fresh ground water, or ground surface. We examined the Texas Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. In the Texas Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the total depth of most wells (>2,400 m-8,000 ft). In addition, most faults, particularly growth faults, present at the primary injection level do not reach the surface. A potential methodology, which includes an integrated approach comprising the whole chain of potential events from leakage from the primary site to atmospheric impacts, is also presented. It could be followed by the State/Federal Government, as well as by the operators.

  4. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    SciTech Connect (OSTI)

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel.

  5. 2016 Information Repository Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Information Repository Documents WIPP Annual Waste Minimization Report Class 1* Permit Modifications and NMED Responses Class 1 and Class 1* Modifications WIPP Hazardous Waste Facility Permit EPA I.D. Number NM4890139088-TSDF John E. Kieling/Hazardous Waste Bureau dated January 27, 2016 Class 1* Modification, requiring prior agency approval, seeking to Revise Closure Schedule Dates in Attachment G Class 1 Permit Modifications and NMED Responses Class 1 Permit Modification Notification to the

  6. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About DOE's Geothermal Data Repository The GDR is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies Office. In its May 2011 Strategic Plan, the U.S. Department of Energy (DOE) included the importance of data reusability in defining the success of their projects: DOE's success should be measured not when a project is completed or an experiment concluded, but when scientific and technical information is disseminated.

  7. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions What kinds of data should I submit? The DOE Geothermal Data Repository was established to receive, manage and make available all geothermal-relevant data generated from projects funded by the DOE Geothermal Technologies Office. This includes data from GTO-funded projects associated with any portion of the geothermal project life-cycle (exploration, development, operation), as well as data produced by GTO-funded research. What data formats are preferred? Preferred

  8. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin.

  9. Geology and alteration of the Coso Geothermal Area, Inyo County...

    Open Energy Info (EERE)

    Deep thermal fluid flow at Coso will be controlled entirely by structural permeability developed in otherwise tight and impermeable host rocks. Neither geologic mapping...

  10. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullman Dresden Newa September 7 - 9, 2015 September 7- Monday 08:00-08:30 Registration 08:30-08:50 Welcome by the organizers T. Lautsch, DBE F. Hansen, SNL W. Steininger, PTKA 08:50-09:15 Welcome by BMWi U. Borak, BMWi 09:15-09:30 Welcome by USDOE N. Buschman, US DOE 09:30-10:00 NEA Salt Club J. Mönig, GRS SAFETY CASE ISSUES 10:00-10:30 WIPP recovery F. Hansen, SNL 10:30-11:00 Coffee break and photo event

  11. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Salt Repository Research, Design, and Operation La Fonda Hotel Santa Fe, New Mexico September 7 - 11, 2014 Please join us Sunday September 7, 2014 for a welcome and reception at the La Fonda Hotel hosted by Sandia National Laboratories beginning at 6:00 PM. Day 1 Technical Agenda September 8 - Monday 08:00-08:45 Sign-in and distribution of meeting materials 08:45-09:45 Welcome addresses H.C. Pape (BMWi) US-DOE Offices Highlights of US/German Collaboration F. Hansen (SNL) W. Steininger (PTKA)

  12. SNL Information Repository subscription form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 SANDIA NATIONAL LABORATORIES HAZARDOUS WASTE INFORMATION REPOSITORY INDEX Subscription form for hard copy notices of updates Name: Address: City: State: Zip: Please check each...

  13. Coal repository. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    The Coal Repository Project was initiated in 1980 by the Department of Energy/Pittsburgh Energy Technology Center to provide a centralized system for the collection of well characterized coal samples, and distribution to organizations involved in the chemical beneficiation of coal and related research. TRW Energy Development Group, together with its subcontractor Commercial Testing and Engineering Company, established the Coal Repository at the TRW Capistrano Chemical Facility, which is the location of the DOE-owned Multi-Use Fuel and Energy Processes Test Plant (MEP). Twenty tons each of three coals (Illinois No. 6, Kentucky No. 11 (West), and Pittsburgh No. 8 (from an Ohio mine)) were collected, characterized, and stored under a nitrogen atmosphere. Ten tons of each coal are 3/8-inch x 0, five tons of each are 14-mesh x 0, and five tons of each are 100-mesh x 0. Although TRW was within budget and on schedule, Department of Energy funding priorities in this area were altered such that the project was terminated prior to completion of the original scope of work. 9 figures, 3 tables.

  14. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    SciTech Connect (OSTI)

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  15. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  16. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  17. AASG State Geothermal Data Repository for the National Geothermal Data System.

    Energy Science and Technology Software Center (OSTI)

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  18. Building America Field Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Field Data Repository Building America Webinar Series Noel Merket 16 April 2014 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. What is the BAFDR? 3 Do retrofits deliver promised energy savings? Photo by Dennis Shroeder, NREL 17957 BAFDR Project objectives Develop a repository of residential building characteristics data coupled with energy use data that can

  19. Nuclear waste repository research at the micro- to nanoscale

    SciTech Connect (OSTI)

    Schaefer, T.; Denecke, M. A.

    2010-04-06

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  20. Post Closure Safety of the Morsleben Repository

    SciTech Connect (OSTI)

    Preuss, J.; Eilers, G.; Mauke, R.; Moeller-Hoeppe, N.; Engelhardt, H.-J.; Kreienmeyer, M.; Lerch, C.; Schrimpf, C.

    2002-02-26

    After the completion of detailed studies of the suitability the twin-mine Bartensleben-Marie, situated in the Federal State of Saxony-Anhalt (Germany), was chosen in 1970 for the disposal of low and medium level radioactive waste. The waste emplacement started in 1978 in rock cavities at the mine's fourth level, some 500 m below the surface. Until the end of the operational phase in 1998 in total about 36,800 m{sup 3} of radioactive waste was disposed of. The Morsleben LLW/ILW repository (ERAM) is now under licensing for closure. After completing the licensing procedure the repository will be sealed and backfilled to exclude any undue future impact onto man or the environment. The main safety objective is to protect the biosphere from the harmful effects of the disposed radionuclides. Furthermore, classical or conventional requirements call for ruling out or minimizing other unfavorable environmental effects. The ERAM is an abandoned rock salt and potash mine. As a consequence it has a big void volume, however small parts of the cavities are backfilled with crushed salt rocks. Other goals of the closure concept are therefore a long-term stabilization of the cavities to prevent a dipping or buckling of the ground surface. In addition, groundwater protection shall be assured. For the sealing of the repository a closure concept was developed to ensure compliance with the safety protection objectives. The concept anticipates the backfilling of the cavities with hydraulically setting backfill materials (salt concretes). The reduction of the remaining void volume in the mine causes in the case of brine intrusions a limitation of the leaching processes of the exposed potash seams. However, during the setting process the hydration heat of the concrete will lead to an increase of the temperature and hence to thermally induced stresses of the concrete and the surrounding rocks. Therefore, the influence of these stresses and deformations on the stability of the salt body and the integrity of the geological barrier was examined by 2D and 3D thermo-mechanical computations. The compliance of the safety objectives are proved on the basis of safety evidence criteria. It can be concluded that the closure concept is able to serve all conventional and radiological safety objectives.

  1. Waste Isolation Safety Assessment Program. Task 4. Third Contractor Information Meeting. [Adsorption-desorption on geological media

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The study subject of this meeting was the adsorption and desorption of radionuclides on geologic media under repository conditions. This volume contans eight papers. Separate abstracts were prepared for all eight papers. (DLC)

  2. Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report

    SciTech Connect (OSTI)

    Collins, A.G.; Crocker, M.E.

    1987-12-01

    The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

  3. Summary report of first and foreign high-level waste repository concepts; Technical report, working draft 001

    SciTech Connect (OSTI)

    Hanke, P.M.

    1987-11-04

    Reference repository concepts designs adopted by domestic and foreign waste disposal programs are reviewed. Designs fall into three basic categories: deep borehole from the surface; disposal in boreholes drilled from underground excavations; and disposal in horizontal tunnels or drifts. The repository concepts developed in Sweden, Switzerland, Finland, Canada, France, Japan, United Kingdom, Belgium, Italy, Holland, Denmark, West Germany and the United States are described. 140 refs., 315 figs., 19 tabs.

  4. US/German Collaboration in Salt Repository Research, Design and Operation - 13243

    SciTech Connect (OSTI)

    Steininger, Walter; Hansen, Frank; Biurrun, Enrique; Bollingerfehr, Wilhelm

    2013-07-01

    Recent developments in the US and Germany [1-3] have precipitated renewed efforts in salt repository investigations and related studies. Both the German rock salt repository activities and the US waste management programs currently face challenges that may adversely affect their respective current and future state-of-the-art core capabilities in rock salt repository science and technology. The research agenda being pursued by our respective countries leverages collective efforts for the benefit of both programs. The topics addressed by the US/German salt repository collaborations align well with the findings and recommendations summarized in the January 2012 US Blue Ribbon Commission on America's Nuclear Future (BRC) report [4] and are consistent with the aspirations of the key topics of the Strategic Research Agenda of the Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) [5]. Against this background, a revival of joint efforts in salt repository investigations after some years of hibernation has been undertaken to leverage collective efforts in salt repository research, design, operations, and related issues for the benefit of respective programs and to form a basis for providing an attractive, cost-effective insurance against the premature loss of virtually irreplaceable scientific expertise and institutional memory. (authors)

  5. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  6. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  7. Sub-Seabed Repository for Nuclear Waste - a Strategic Alternative - 13102

    SciTech Connect (OSTI)

    McAllister, Keith R.

    2013-07-01

    It was recognized at the outset of nuclear power generation in the 1950's that the waste products would require isolation away from humans for periods in excess of 10,000 years. After years studying alternatives, the DOE recommended pursuing the development of a SNF/HLW disposal facility within Yucca Mountain in the desert of Nevada. That recommendation became law with passage of the NWPAA, effectively stopping development of other approaches to the waste problem. In the face of political resistance from the state of Nevada, the 2010 decision to withdraw the license application for the geologic repository at Yucca Mountain has delayed further the most mature option for safe, long-term disposal of SNF and HLW. It is time to revisit an alternative option, sub-seabed disposal within the US Exclusive Economic Zone (EEZ), which would permanently sequester waste out of the biosphere, and out of the reach of saboteurs or terrorists. A proposal is made for a full scale pilot project to demonstrate burying radioactive waste in stable, deep ocean sediments. While much of the scientific work on pelagic clays has been done to develop a sub-seabed waste sequestration capability, this proposal introduces technology from non-traditional sources such as riser-less ocean drilling and the Navy's Sound Surveillance System. The political decisions affecting the issue will come down to site selection and a thorough understanding of comparative risks. The sub-seabed sequestration of nuclear waste has the potential to provide a robust solution to a critical problem for this clean and reliable energy source. (authors)

  8. IMPLEMENTATION AND OPERATION OF THE REPOSITORY

    SciTech Connect (OSTI)

    Marcus Milling

    2003-10-01

    The NGDRS has facilitated 85% of cores, cuttings, and other data identified available for transfer to the public sector. Over 12 million linear feet of cores and cuttings, in addition to large numbers of paleontological samples and are now available for public use. To date, with industry contributions for program operations and data transfers, the NGDRS project has realized a 6.5 to 1 return on investment to Department of Energy funds. Large-scale transfers of seismic data have been evaluated, but based on the recommendation of the NGDRS steering committee, cores have been given priority because of the vast scale of the seismic data problem relative to the available funding. The rapidly changing industry conditions have required that the primary core and cuttings preservation strategy evolve as well. Additionally, the NGDRS clearinghouse is evaluating the viability of transferring seismic data covering the western shelf of the Florida Gulf Coast. AGI remains actively involved in working to realize the vision of the National Research Council's report of geoscience data preservation. GeoTrek has been ported to Linux and MySQL, ensuring a purely open-source version of the software. This effort is key in ensuring long-term viability of the software so that is can continue basic operation regardless of specific funding levels. Work has been on a major revision of GeoTrek, using the open-source MapServer project and its related MapScript language. This effort will address a number of key technology issues that appear to be rising for 2003, including the discontinuation of the use of Java in future Microsoft operating systems. The recent donation of BPAmoco's Houston core facility to the Texas Bureau of Economic Geology has provided substantial short-term relief of the space constraints for public repository space.

  9. Study of the isolation system for geologic disposal of radioactive wastes

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This study was conducted for the US Department of Energy by a Waste Isolation System Panel of the Board on Radioactive Waste Management under the National Research Council's Commission on Physical Sciences, Mathematics, and Resources. The panel was charged to review the alternative technologies available for the isolation of radioactive waste in mined geologic repositories, evaluate the need for and possible performance benefits from these technologies as potential elements of the isolation system, and identify appropriate technical criteria for choosing among them to achieve satisfactory overall performance of a geologic repository. Information has been acquired through examination of a large body of technical literature, briefings by representatives of government agencies and their industrial and university contractors, in-depth discussions with individual experts in the field, site visits, and calculations by panel members and staff, with deliberations extending over a period of approximately two years. The panel's principal findings are given. Chapters are devoted to: the geologic waste-disposal system; waste characteristics; waste package; conceptual design of repositories; geologic hydrologic, and geochemical properties of geologic waste-disposal systems; overall performance criterion for geologic waste disposal; performance analysis of the geologic waste-disposal system; and natural analogs relevant to geologic disposal. 336 references.

  10. Report on THMC Modeling of the Near Field Evolution of a Generic Clay Repository: Model Validation and Demonstration Rev 2

    Broader source: Energy.gov [DOE]

    Shale and clay-rich rock formations have been considered as potential host rocks for geological disposal of high-level radioactive waste throughout the world: modeling thermal, hydrological, mechanical, and chemical (THMC) of the near field of generic clay repository is discussed.

  11. Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.

    1982-09-01

    In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed.

  12. National Geothermal Data System - DOE Geothermal Data Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  13. Deep Lysimeter

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2004-06-01

    A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

  14. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect (OSTI)

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  15. Immersion studies on candidate container alloys for the Tuff Repository

    SciTech Connect (OSTI)

    Beavers, J.A.; Durr, C.L.

    1991-05-01

    Cortest Columbus Technologies (CC Technologies) is investigating the long-term performance of container materials used for high-level radioactive waste packages. This information is being developed for the Nuclear Regulatory Commission to aid in their assessment of the Department of Energy`s application to construct a geologic repository for disposal of high-level radioactive waste. This report summarizes the results of exposure studies performed on two copper-base and two Fe-Cr-Ni alloys in simulated Tuff Repository conditions. Testing was performed at 90{degrees}C in three environments; simulated J-13 well water, and two environments that simulated the chemical effects resulting from boiling and irradiation of the groundwater. Creviced specimens and U-bends were exposed to liquid, to vapor above the condensed phase, and to alternate immersion. A rod specimen was used to monitor corrosion at the vapor-liquid interface. The specimens were evaluated by electrochemical, gravimetric, and metallographic techniques following approximately 2000 hours of exposure. Results of the exposure tests indicated that all four alloys exhibited acceptable general corrosion rates in simulated J-13 well water. These rates decreased with time. Incipient pitting was observed under deposits on Alloy 825 and pitting was observed on both Alloy CDA 102 and Alloy CDA 715 in the simulated J-13 well water. No SCC was observed in U-bend specimens of any of the alloys in simulated J-13 well water. 33 refs., 48 figs., 23 tabs.

  16. REPOSITORY RECONFIGURATION OF PANELS 9 AND 10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 NMED COMMENTS ITEM 2 - REPOSITORY RECONFIGURATION OF PANELS 9 AND 10 Page 1 of 9 Repository Reconfiguration 2-1: PMR Table 4.1.1, Pages B-2 and B-3 Provide redline strike out text revising "Final Waste Volume" column to "Final Waste Volume Disposed" and to revising note 3 of the table to clearly state the volumes in this column only shows the volume of each panel and that the total final volume cannot exceed repository limits. Response: The revised redline/strikeout of the

  17. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  18. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect (OSTI)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

  19. Region-to-area screening methodology for the Crystalline Repository Project

    SciTech Connect (OSTI)

    1985-04-01

    The purpose of this document is to describe the Crystalline Repository Project's (CRP) process for region-to-area screening of exposed and near-surface crystalline rock bodies in the three regions of the conterminous United States where crystalline rock is being evaluated as a potential host for the second nuclear waste repository (i.e., in the North Central, Northeastern, and Southeastern Regions). This document indicates how the US Department of Energy's (DOE) General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories (10 CFR 960) were used to select and apply factors and variables for the region-to-area screening, explains how these factors and variable are to be applied in the region-to-area screening, and indicates how this methodology relates to the decision process leading to the selection of candidate areas. A brief general discussion of the screening process from the national survey through area screening and site recommendation is presented. This discussion sets the scene for detailed discussions which follow concerning the region-to-area screening process, the guidance provided by the DOE Siting Guidelines for establishing disqualifying factors and variables for screening, and application of the disqualifying factors and variables in the screening process. This document is complementary to the regional geologic and environmental characterization reports to be issued in the summer of 1985 as final documents. These reports will contain the geologic and environmental data base that will be used in conjunction with the methodology to conduct region-to-area screening.

  20. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  1. Geological Carbon Sequestration, Spelunking and You | Department of Energy

    Office of Environmental Management (EM)

    Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all

  2. Temperature-package power correlations for open-mode geologic disposal concepts.

    SciTech Connect (OSTI)

    Hardin, Ernest L.

    2013-02-01

    Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in a repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.

  3. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    SciTech Connect (OSTI)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

  4. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    SciTech Connect (OSTI)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

  5. Report on Modeling Coupled Processes in the Near Field of a Clay Repository

    Broader source: Energy.gov [DOE]

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world. Coupled thermal, hydrological, mechanical, and chemical (THMC) processes have a significant impact on the long-term safety of a clay repository. This report documents results from three R&D activities: (1) implementation and validation of constitutive relationships, (2) development of a discrete fracture network (DFN) model for investigating coupled processes in the excavation damaged zone, and (3) development of a THM model for the Full-Scale Emplacement Experiment tests at Mont Terri, Switzerland, for the purpose of model validation. One major goal is to provide a better understanding of the evolution of the excavation damage zone in clay repositories.

  6. THE DECISION TO RECOMMEND YUCCA MOUNTAIN AND THE NEXT STEPS TOWARD LICENSED REPOSITORY DEVELOPMENT

    SciTech Connect (OSTI)

    Barrett, L. H.

    2002-02-25

    After more than 20 years of carefully planned and reviewed scientific field work by the U.S. Department of Energy, the U.S. Geological Survey, and numerous other organizations, Secretary of Energy Abraham concluded in January that the Yucca Mountain site is suitable, within the meaning of the Nuclear Waste Policy Act, for development as a permanent nuclear waste and spent fuel repository. In February, the Secretary recommended to the President that the site be developed for licensed disposal of these wastes, and the President transmitted this recommendation to Congress. This paper summarizes key technical and national interest considerations that provided the basis for the recommendation. It also discusses the program's near-term plans for repository development if Congress designates the site.

  7. Integrating rock mechanics issues with repository design through design process principles and methodology

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1996-04-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as {open_quotes}design for manufacture{close_quotes} or {open_quotes}concurrent engineering{close_quotes} are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of {open_quotes}Design for Constructibility and Performance{close_quotes} is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance.

  8. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    SciTech Connect (OSTI)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

  9. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Content: Close Send 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...

  10. New Yucca Mountain Repository Design to be Simpler, Safer and...

    Office of Environmental Management (EM)

    New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective PDF icon...

  11. Fukushima Daiichi Information Repository FY13 Status

    SciTech Connect (OSTI)

    Curtis Smith; Cherie Phelan; Dave Schwieder

    2013-09-01

    The accident at the Fukushima Daiichi nuclear power station in Japan is one of the most serious in commercial nuclear power plant operating history. Much will be learned that may be applicable to the U.S. reactor fleet, nuclear fuel cycle facilities, and supporting systems, and the international reactor fleet. For example, lessons from Fukushima Daiichi may be applied to emergency response planning, reactor operator training, accident scenario modeling, human factors engineering, radiation protection, and accident mitigation; as well as influence U.S. policies towards the nuclear fuel cycle including power generation, and spent fuel storage, reprocessing, and disposal. This document describes the database used to establish a centralized information repository to store and manage the Fukushima data that has been gathered. The data is stored in a secured (password protected and encrypted) repository that is searchable and available to researchers at diverse locations.

  12. Scientific Visit on Crystalline Rock Repository Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visit on Crystalline Rock Repository Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  13. Hydrological/Geological Studies

    Office of Legacy Management (LM)

    .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . .

  14. Durable Media for Long-Term Preservation of Geological Repository Records

    SciTech Connect (OSTI)

    Aoki, K.; Fujii, N.; Kageyama, H.; Yoshimura, K.; Ohuchi, J.; Tsuboya, T.

    2008-07-01

    Durability of selected hard materials as information preserving media has been studied, leading to some promising results. Several engraving experiments on the selected materials confirmed that characters and patterns can be expressed along with shading and gradation. Engraving experiments on durable artificial materials were carried out by applying laser technologies. By selecting appropriate materials and engraving methods, characters and patterns can be expressed along with shading and gradation. These technologies can be applied to not only documentary records but also to markers and monuments. Among the materials, silicon carbide, which has strong resistance against heat wear and chemical impacts, corrosion resistance and wear resistance, showed satisfactory results in terms of accuracy. Thus, it is expected to be a promising material for the long-term record preservation. With respect to the density of characters in written records in the case of dot printing, it was estimated that, with 2-point characters, information totaling 6 to 8 pages of A-4 size can be engraved on a 10 cm x 10 cm plate. When a document that has 500 pages of A4 size paper is engraved on sintered silicon carbide plates, the total volume of recording media is evaluated as follows: - Size of plate: 10 cm x 10 cm; - Size of character to be engraved: 2-points ({approx} 0.7 mm; of readable size by naked eye or using a magnifying glass); - Number of pages of original document to be engraved on a plate: 8; - Number of pages of original document to be engraved on both sides of a plate: 16; - Number of plates needed for a series of document package: 500 / 16 = 32; - The thickness of a plate: 1 mm; - The total thickness of recording media: 32 mm; - Bulk of recording media preserving 500 pages of document: 10 cm x 10 cm x 32 cm. The examination has shown the possibility of long-term preservation of documentation records as a permanent system. A further examination is suggested concerning the assessment of the durability of the sintered silicon carbide plate against wear and chemical impacts. Preserving color pictures and photographs for a long-term duration is also proposed. In conclusion: We have proposed that the concept of a record preservation system is the combination of several different methods in order to impart redundancy to the communication function. The system should be robust that its overall function would not be influenced by partial damage, and also be flexible enough to adapt to the changes of background conditions in the future. Records and information should be preserved by way of both Relay System and Permanent System. The former would maintain record preservation and communication functions in the framework of social systems whereas the latter would consist of durable storehouse facilities, recording media and markers/monuments and be independent of any social systems and human control. Silicon carbide is one of the most promising materials for the Permanent System of Records Preservation. It is expected to be the potential candidate for long-term recording media with its superior characteristics of resistance against heat, wear and chemical impacts, and of engraving accuracy. (authors)

  15. An assessment of the effect on Olkiluoto repository capacity achievable with advanced fuel cycles

    SciTech Connect (OSTI)

    Juutilainen, P.; Viitanen, T.

    2013-07-01

    Previously a few scenarios have been simulated for transition from thermal to fast reactor fleet in Finland in order to determine how much the transuranic inventory could be reduced with the partitioning and transmutation (P-T) technologies. Those calculations, performed with COSI6 code developed by CEA, are extended in the present study, in which the effect of P-T on the capacity of the planned final disposal repository at Olkiluoto (Finland) is evaluated by taking into account the created fission products and transuranic residuals from the reprocessing operations. The decay heat is assumed to be the most restrictive factor in defining the waste disposal packing density. The repository capacity evaluation of this study is based on the comparison of the decay heats produced by the deposited waste in various scenarios. The reference scenario of this article involves only Light Water Reactors (LWR) in an open fuel cycle. The capacity requirement of the geological repository is estimated in a few closed fuel cycle scenarios, all including actinide transmutation with Fast Reactors (FR). The comparison between the P-T scenarios and reference is based on the decay heat production of the deposited waste. The COSI6 code is used for simulations to provide the repository decay heat curves. Applying the closed fuel cycle would change the disposal concept and schedule, because of which it is not quite straightforward to assess the impact of P-T on the capacity. However, it can be concluded that recycling the transuranic nuclides probably decreases the required volume for the disposal, but thermal dimensioning analysis is needed for more specific conclusions.

  16. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain,

    Office of Scientific and Technical Information (OSTI)

    Idaho using Multicomponent Geothermometry (Conference) | SciTech Connect Conference: Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry Citation Details In-Document Search Title: Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced

  17. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    SciTech Connect (OSTI)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  18. Geothermal Data Repository Reaches 500 Submissions | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Data Repository Reaches 500 Submissions Geothermal Data Repository Reaches 500 Submissions August 25, 2015 - 2:41pm Addthis Geothermal Data Repository Reaches 500 Submissions Arlene Anderson Technology Development Manager, Geothermal Technologies Program A map of the United States highlighting the locations of GDR users. Critical data about the subsurface is added to the GDR from sites all across the country. Credit: Jon Weers, NREL. July 15 marked an important milestone for the

  19. EXACT Software Repository v 1.1

    Energy Science and Technology Software Center (OSTI)

    2007-01-07

    The EXACT Software Repository contains a variety of software packages for describing, controlling, and analyzing computer experiments. The EXACT Python framework provides the experimentalist with convenient software tools to ease and organize the entire experimental process, including the description of factors and levels, the design of experiments, the control of experimental runs, the archiving of results, and analysis of results. The FAST package provides a Framework for Agile Software Testing. FAST manage the distributed executionmore » of EXACT, as well as summaries of test results.« less

  20. Deep Web video

    ScienceCinema (OSTI)

    None Available

    2012-03-28

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  1. Deep Web video

    SciTech Connect (OSTI)

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  2. Repository Reference Disposal Concepts and Thermal Load Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These help inform development of waste management strategies and decision making. PDF icon RepositoryReferenceDisposalConceptsThermalLoadManagementAnalysis More Documents & ...

  3. DOE Geothermal Data Repository: Getting More Mileage Out of Your...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (b) Keywords: GDR, NGDS, geothermal, data, repository, information, node, DOE, OSTI, Data.gov, metadata, license, submissions ABSTRACT All data submitted to the U.S....

  4. Sandia Energy - Study Could Help Improve Nuclear Waste Repositories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    underground clay formations for nuclear waste disposal, because clay offers low permeability and high radionuclide retention. Even when a repository isn't sited in clay,...

  5. Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-05-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 [1] and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository [2]. This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

  6. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  7. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  8. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect (OSTI)

    Price, P.N.; Oldenburg, C.M.

    2009-02-23

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  9. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    SciTech Connect (OSTI)

    K.C. Holt

    2006-03-13

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.

  10. The geomechanics of CO{sub 2} storage in deep sedimentary formations

    SciTech Connect (OSTI)

    Rutqvist, J.

    2011-11-01

    This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO{sub 2} repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO{sub 2} storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. For such largescale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.

  11. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  12. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  13. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  14. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    state multi layered cylindrical solution to simulate the temperature response of a deep geologic radioactive waste repository with multi layered natural and engineered...

  15. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    multi-layered cylindrical solution to simulate the temperature response of a deep geologic radioactive waste repository with multi-layered natural and engineered...

  16. Application of Analytical Heat Transfer Models of Multi-layered...

    Office of Scientific and Technical Information (OSTI)

    multi-layered cylindrical solution to simulate the temperature response of a deep geologic radioactive waste repository with multi-layered natural and engineered...

  17. Digging Crystal Deep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Digging Crystal Deep 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Digging Crystal Deep Los Alamos reengineers the insensitive high explosive responsible for keeping the B61 nuclear weapon safe against accidental detonation at the nanoscale-crystal level. October 25, 2015 Digging Crystal Deep The B61 aircraft-launched nuclear weapon New computer simulations make detailed predictions about how the explosive will behave and when it must

  18. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    SciTech Connect (OSTI)

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated.

  19. Deep in Data. Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository

    SciTech Connect (OSTI)

    Neymark, J.; Roberts, D.

    2013-06-01

    This paper describes progress toward developing a usable, standardized, empirical data-based software accuracy test suite using home energy consumption and building description data. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This could allow for modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data.

  20. National Geoscience Data Repository System, Phase II. Final report, January 30, 1995--January 28, 1997

    SciTech Connect (OSTI)

    1998-04-01

    The American Geological Institute (AGI) has completed Phase II of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the United States for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. To address this opportunity, AGI sought support from the Department of Energy (DOE) in 1994 to initiate the NGDRS Phase I feasibility study to determine the types and quantity of data that companies would be willing to donate. The petroleum and mining companies surveyed indicated that they were willing to donate approximately five million well logs, one hundred million miles of seismic reflection data, millions of linear feet of core and cuttings, and a variety of other types of scientific data. Based on the positive results of the Phase I study, AGI undertook Phase II of the program in 1995. Funded jointly by DOE and industry, Phase II encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser.

  1. RESOLUTION STRATEGY FOR GEOMECHANICALLY-RELATED REPOSITORY DESIGN FOR THERMAL-MECHANICAL EFFECTS (RDTME)

    SciTech Connect (OSTI)

    M. Board

    2003-04-01

    In September of 2000, the U.S. Nuclear Regulatory Commission (NRC) issued an Issue Resolution Status Report (NRC 2000). The Key Technical Issue (KTI) agreements on Repository Design and Thermal-Mechanical Effects (RDTME) were jointly developed at the Technical Exchange and Management Meeting held on February 6-8, 2001 in Las Vegas, Nevada. In that report, a number of geomechanically-related issues were raised regarding the determination of rock properties, the estimation of the impacts of geologic variability, the use of numerical models, and the examination of drift degradation and design approach to the ground support system for the emplacement drifts. Ultimately, the primary end products of the KTI agreement resolution processes are an assessment of the preclosure stability of emplacement drifts and the associated ground support requirements. There is also an assessment of the postclosure degradation of the excavations when subjected to thermal and seismic-related stresses as well as in situ loading over time.

  2. NSNFP Activities in Support of Repository Licensing for Disposal of DOE SNF

    SciTech Connect (OSTI)

    Henry H. Loo; Brett W.. Carlsen; Sheryl L. Morton; Larry L. Taylor; Gregg W. Wachs

    2004-09-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management is in the process of preparing the Yucca Mountain license application for submission to the Nuclear Regulatory Commission as the nation’s first geologic repository for spent nuclear fuel (SNF) and high-level waste. Because the DOE SNF will be part of the license application, there are various components of the license application that will require information relative to the DOE SNF. The National Spent Nuclear Fuel Program (NSNFP) is the organization that directs the research, development, and testing of treatment, shipment, and disposal technologies for all DOE SNF. This report documents the work activities conducted by the NSNFP and discusses the relationship between these NSNFP technical activities and the license application. A number of the NSNFP activities were performed to provide risk insights and understanding of DOE SNF disposal as well as to prepare for anticipated questions from the regulatory agency.

  3. The Economic, repository and proliferation implications of advanced nuclear fuel cycle

    SciTech Connect (OSTI)

    Deinert, Mark; Cady, K B

    2011-09-04

    The goal of this project was to compare the effects of recycling actinides using fast burner reactors, with recycle that would be done using inert matrix fuel burned in conventional light water reactors. In the fast reactor option, actinides from both spent light water and fast reactor fuel would be recycled. In the inert matrix fuel option, actinides from spent light water fuel would be recycled, but the spent inert matrix fuel would not be reprocessed. The comparison was done over a limited 100-year time horizon. The economic, repository and proliferation implications of these options all hinge on the composition of isotopic byproducts of power production. We took the perspective that back-end economics would be affected by the cost of spent fuel reprocessing (whether conventional uranium dioxide fuel, or fast reactor fuel), fuel manufacture, and ultimate disposal of high level waste in a Yucca Mountain like geological repository. Central to understanding these costs was determining the overall amount of reprocessing needed to implement a fast burner, or inert matrix fuel, recycle program. The total quantity of high level waste requiring geological disposal (along with its thermal output), and the cost of reprocessing were also analyzed. A major advantage of the inert matrix fuel option is that it could in principle be implemented using the existing fleet of commercial power reactors. A central finding of this project was that recycling actinides using an inert matrix fuel could achieve reductions in overall actinide production that are nearly very close to those that could be achieved by recycling the actinides using a fast burner reactor.

  4. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    SciTech Connect (OSTI)

    Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

    2006-07-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

  5. The National Repository at Yucca Mountain, Russ Dyer

    Office of Environmental Management (EM)

    Repository at Yucca Mountain Presented to: EM High Level Waste Corporate Board Presented by: Russ Dyer Chief Scientist Office of Civilian Radioactive Waste Management July 24, 2008 Idaho National Laboratory 2 SBBB-GeneralBriefing_070808Rev1.ppt Solving a national problem now * On June 3, 2008, the U.S. Department of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain 3 SBBB-GeneralBriefing_070808Rev1.ppt Repository

  6. Characteristics of potential repository wastes. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.

  7. EM Gains Insight from Germany on Salt-Based Repositories

    Broader source: Energy.gov [DOE]

    KARLSRUHE and PEINE, Germany – EM officials recently took part in workshops in Germany to benefit from the exchange of research and experience operating salt-based repositories for radioactive waste.

  8. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    SciTech Connect (OSTI)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  9. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    SciTech Connect (OSTI)

    Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

    1980-01-01

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

  10. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    SciTech Connect (OSTI)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  11. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  12. Environmental Assessment for Actinide Chemistry and Repository Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. Environmental Assessment for Actinide Chemistry and Repository Science Laboratory Final - January, 2006 This document has been provided to you in PDF format. Please install Adobe Acrobat Reader before accessing these documents. Some of the Chapters containing complex graphics have been split into multiple parts to allow for more

  13. GE Global Research Sourcing External Document & Process Repository | GE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Research GE Global Research Sourcing External Document & Process Repository Home > GE Global Research Sourcing External Document & Process Repository Supplier Integrity Guide Purchase Order Related Documents: GE Global Research Special Terms of the Contract (security requirements for on-site contractors) New York State Direct Pay Tax Permit This is a tax form that informs suppliers GE Global Research will self-assess and remit sales taxes to New York State. Michigan State

  14. Laboratory increases shipments of waste to WIPP repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab increases shipments to WIPP repository Laboratory increases shipments of waste to WIPP repository The campaign will eliminate LANL's existing backlog of approximately 1,500 drums of legacy transuranic waste awaiting shipment to WIPP. February 11, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  15. National Geothermal Data System - DOE Geothermal Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation | Department of Energy - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) and DOE's node on the NGDS. PDF icon ngds_gdr_general_presentation.pdf More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" National Geothermal Data System (NGDS) Fact

  16. Project Management Lessons Learned (PMLL) Repository | Department of Energy

    Energy Savers [EERE]

    Information Systems » Project Management Lessons Learned (PMLL) Repository Project Management Lessons Learned (PMLL) Repository The Department of Energy utilizes Project Management Lessons Learned (PMLL) in the execution of DOE capital asset projects to improve current and future projects. Integrated Project Team's (IPTs), both from the Contractor and Federal staff, submit the PMLLs during the execution of capital asset projects. These first-hand accounts address the challenges they encountered

  17. Progress report on the results of testing advanced conceptual design metal barrier materials under relevant environmental conditions for a tuff repository

    SciTech Connect (OSTI)

    McCright, R.D.; Halsey, W.G.; Van Konynenburg, R.A.

    1987-12-01

    This report discusses the performance of candidate metallic materials envisioned for fabricating waste package containers for long-term disposal at a possible geological repository at Yucca Mountain, Nevada. Candidate materials include austenitic iron-base to nickel-base alloy (AISI 304L, AISI 316L, and Alloy 825), high-purity copper (CDA 102), and copper-base alloys (CDA 613 and CDA 715). Possible degradation modes affecting these container materials are identified in the context of anticipated environmental conditions at the repository site. Low-temperature oxidation is the dominant degradation mode over most of the time period of concern (minimum of 300 yr to a maximum of 1000 yr after repository closure), but various forms of aqueous corrosion will occur when water infiltrates into the near-package environment. The results of three years of experimental work in different repository-relevant environments are presented. Much of the work was performed in water taken from Well J-13, located near the repository, and some of the experiments included gamma irradiation of the water or vapor environment. The influence of metallurgical effects on the corrosion and oxidation resistance of the material is reviewed; these effects result from container fabrication, welding, and long-term aging at moderately elevated temperatures in the repository. The report indicates the need for mechanisms to understand the physical/chemical reactions that determine the nature and rate of the different degradation modes, and the subsequent need for models based on these mechanisms for projecting the long-term performance of the container from comparatively short-term laboratory data. 91 refs., 17 figs., 16 tabs.

  18. Deep Sky Astronomical Image Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  19. Deep Vadose Zone - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Range Deep Vadose Zone Program Plan, (Rev. 0) - (PDF) Implementation Plan for the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC) - (PDF) Ecology's groundwater...

  20. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  1. Idaho Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    The Idaho Geological Survey is located in Boise, Idaho. About Information on past oil and gas exploration wells in Idaho was transferred to the Idaho Geological Survey in...

  2. Chinese Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Chinese Geological Survey Jump to: navigation, search Name: Chinese Geological Survey Place: China Sector: Geothermal energy Product: Chinese body which is involved in surveys of...

  3. Exploration for deep coal

    SciTech Connect (OSTI)

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  4. Geologic interpretation of gravity anomalies

    SciTech Connect (OSTI)

    Andreyev, B.A.; Klushin, I.G.

    1990-04-19

    This Russian textbook provides a sufficiently complete and systematic illumination of physico-geologic and mathematical aspect of complex problem of interpretation of gravity anomalies. The rational methods of localization of anomalies are examined in detail. All methods of interpreting gravity anomalies are described which have found successful application in practice. Also given are ideas of some new methods of the interpretation of gravity anomalies, the prospects for further development and industrial testing. Numerous practical examples to interpretation are given. Partial Contents: Bases of gravitational field theory; Physico-geologic bases of gravitational prospecting; Principles of geologic interpretation of gravity anomalies; Conversions and calculations of anomalies; Interpretation of gravity anomalies for bodies of correct geometric form and for bodies of arbitrary form; Geologic interpretation of the results of regional gravitational photographing; Searches and prospecting of oil- and gas-bearing structures and of deposits of ore and nonmetalliferous useful minerals.

  5. Characteristics of potential repository wastes. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This document, and its associated appendices and microcomputer (PC) data bases, constitutes the reference OCRWM data base of physical and radiological characteristics data of radioactive wastes. This Characteristics Data Base (CDB) system includes data on spent nuclear fuel and high-level waste (HLW), which clearly require geologic disposal, and other wastes which may require long-term isolation, such as sealed radioisotope sources. The data base system was developed for OCRWM by the CDB Project at Oak Ridge National Laboratory. Various principal or official sources of these data provided primary information to the CDB Project which then used the ORIGEN2 computer code to calculate radiological properties. The data have been qualified by an OCRWM-sponsored peer review as suitable for quality-affecting work meeting the requirements of OCRWM`s Quality Assurance Program. The wastes characterized in this report include: light-water reactor (LWR) spent fuel and immobilized HLW.

  6. Arizona Geological Society Digest 22

    National Nuclear Security Administration (NNSA)

    Arizona Geological Society Digest 22 2008 437 Tectonic infuences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacifc - North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by

  7. Geologic mapping for groundwater resource protection and assessment

    SciTech Connect (OSTI)

    Shafer, J.M. . Earth Sciences and Resources Inst.); Berg, R.C. )

    1993-03-01

    Groundwater is a vital natural resource in the US and around the world. In order to manage and protect this often threatened resource one must better understand its occurrence, extent, and susceptibility to contamination. Geologic mapping is a fundamental approach to developing more detailed and accurate assessments of groundwater resources. The stratigraphy and lithology of earth materials provide the framework for groundwater systems, whether they are deep confined aquifers or shallow, water table environments. These same earth materials control, in large part, the rates of migration of water and contaminants into and through groundwater systems thus establishing the potential yields of the systems and their vulnerability to contamination. Geologic mapping is used to delineate and display the vertical sequencing of earth materials either in cross-section or over lateral areas as in the stack-unit geologic map. These geologic maps, along with supportive hydrogeologic information, are used to identify the three-dimensional positioning and continuity of aquifer and non-aquifer earth materials. For example, detailed stack-unit mapping to a depth of 30 meters has been completed for a portion of a northern Illinois county. Groundwater contamination potentials were assigned to various vertical sequences of materials. Where aquifers are unconfined, groundwater contamination potentials are greatest. Conversely, other considerations being equal, the thicker the confining unit, the lower the contamination potential. This information is invaluable for land use decision-making; water supply assessment, development, and management; and environmental protection planning.

  8. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect (OSTI)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  9. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  10. Proceedings of the scientific visit on crystalline rock repository development.

    SciTech Connect (OSTI)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.

  11. Salt Repository Project shaft design guide: Revision 0

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    The Salt Repository Project (SRP) Shaft Design Guide (SDG) and the accompanying SRP Input to Seismic Design define the basic approach for developing appropriate shaft designs for a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The SDG is based on current mining industry standards and practices enhanced to meet the special needs of an underground nuclear waste repository. It provides a common approach for design of both the exploratory and repository shafts. The SDG defines shaft lining and material concepts and presents methods for calculating the loads and displacements that will be imposed on lining structures. It also presents the methodology and formulae for sizing lining components. The SDG directs the shaft designer to sources of geoscience and seismic design data for the Deaf Smith County, Texas repository site. In addition, the SDG describes methods for confirming shaft lining design by means of computer analysis, and it discusses performance monitoring needs that must be considered in the design. 113 refs., 18 figs., 14 tabs.

  12. Code requirements for concrete repository and processing facilities

    SciTech Connect (OSTI)

    Hookham, C.J. [Black & Veatch, Ann Arbor, MI (United States); Palaniswamy, R. [Bechtel Savannah River, Inc., North Augusta, SC (United States)

    1993-04-01

    The design and construction of facilities and structures for the processing and safe long-term storage of low- and high-level radioactive wastes will likely employ structural concrete. This concrete will be used for many purposes including structural support, shielding, and environmental protection. At the present time, there are no design costs, standards or guidelines for repositories, waste containers, or processing facilities. Recently, the design and construction guidelines contained in American Concrete Institute (ACI), Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349), have been cited for low-level waste (LLW) repositories. Conceptual design of various high-level (HLW) repository surface structures have also cited the ACI 349 Code. However, the present Code was developed for nuclear power generating facilities and its application to radioactive waste repositories was not intended. For low and medium level radioactive wastes, concrete has a greater role and use in processing facilities, engineered barriers, and repository structures. Because of varied uses and performance/safety requirements this review of the current ACI 349 Code document was required to accommodate these special classes of structures.

  13. Modeling the degradation of a metallic waste form intended for geologic disposal

    SciTech Connect (OSTI)

    Bauer, T.H.; Morris, E.E.

    2007-07-01

    Nuclear reactors operating with metallic fuels have led to development of robust metallic waste forms intended to immobilize hazardous constituents in oxidizing environments. Release data from a wide range of tests where small waste form samples have been immersed in a variety of oxidizing solutions have been analyzed and fit to a mechanistically-derived 'logarithmic growth' form for waste form degradation. A bounding model is described which plausibly extrapolates these fits to long-term degradation in a geologic repository. The resulting empirically-fit degradation model includes dependence on solution pH, temperature, and chloride concentration as well as plausible estimates of statistical uncertainty. (authors)

  14. Implementation of the Brazilian National Repository - RBMN Project - 13008

    SciTech Connect (OSTI)

    Cassia Oliveira de Tello, Cledola

    2013-07-01

    Ionizing radiation in Brazil is used in electricity generation, medicine, industry, agriculture and for research and development purposes. All these activities can generate radioactive waste. At this point, in Brazil, the use of nuclear energy and radioisotopes justifies the construction of a national repository for radioactive wastes of low and intermediate-level. According to Federal Law No. 10308, Brazilian National Commission for Nuclear Energy (CNEN) is responsible for designing and constructing the intermediate and final storages for radioactive wastes. Additionally, a restriction on the construction of Angra 3 is that the repository is under construction until its operation start, attaining some requirements of the Brazilian Environmental Regulator (IBAMA). Besides this NPP, in the National Energy Program is previewed the installation of four more plants, by 2030. In November 2008, CNEN launched the Project RBMN (Repository for Low and Intermediate-Level Radioactive Wastes), which aims at the implantation of a National Repository for disposal of low and intermediate-level of radiation wastes. This Project has some aspects that are unique in the Brazilian context, especially referring to the time between its construction and the end of its institutional period. This time is about 360 years, when the area will be released for unrestricted uses. It means that the Repository must be safe and secure for more than three hundred years, which is longer than half of the whole of Brazilian history. This aspect is very new for the Brazilian people, bringing a new dimension to public acceptance. Another point is this will be the first repository in South America, bringing a real challenge for the continent. The current status of the Project is summarized. (authors)

  15. Remote sensing data exploiration for geologic characterization of difficult targets : Laboratory Directed Research and Development project 38703 final report.

    SciTech Connect (OSTI)

    Costin, Laurence S.; Walker, Charles A.; Lappin, Allen R.; Hayat, Majeed M. (University of New Mexico, Albuquerque, NM); Ford, Bridget K.; Paskaleva, Biliana (University of New Mexico, Albuquerque, NM); Moya, Mary M.; Mercier, Jeffrey Alan; Stormont, John C.; Smith, Jody Lynn

    2003-09-01

    Characterizing the geology, geotechnical aspects, and rock properties of deep underground facility sites can enhance targeting strategies for both nuclear and conventional weapons. This report describes the results of a study to investigate the utility of remote spectral sensing for augmenting the geological and geotechnical information provided by traditional methods. The project primarily considered novel exploitation methods for space-based sensors, which allow clandestine collection of data from denied sites. The investigation focused on developing and applying novel data analysis methods to estimate geologic and geotechnical characteristics in the vicinity of deep underground facilities. Two such methods, one for measuring thermal rock properties and one for classifying rock types, were explored in detail. Several other data exploitation techniques, developed under other projects, were also examined for their potential utility in geologic characterization.

  16. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect (OSTI)

    J.H. Payer

    2005-03-10

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

  17. International Symposium on Site Characterization for CO2Geological Storage

    SciTech Connect (OSTI)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  18. ALCF I/O Data Repository (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ALCF IO Data Repository Citation Details In-Document Search Title: ALCF IO Data Repository You are accessing a document from the Department of Energy's (DOE) SciTech Connect....

  19. Impact of Pyrophoric Events on Long-Term Repository Performance

    SciTech Connect (OSTI)

    Richard Gregg

    2005-09-01

    This paper provides an overview of a feature, event, and process (FEP) screening argument developed for the issue of pyrophoricity as it pertains to the post-closure interment of Department of Energy (DOE) spent nuclear fuel (DSNF) at the Yucca Mountain Repository.

  20. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep...

  1. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository

    Broader source: Energy.gov [DOE]

    Geothermal Data Repository presentation by Arlene Anderson and Jon Weers at the 2013 Annual Peer Review in Colorado.

  2. Deep Energy Retrofits & State Applications

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications

  3. Nevada potential repository preliminary transportation strategy Study 2. Volume 1

    SciTech Connect (OSTI)

    1996-02-01

    The objectives of this study were to build on the findings of the Nevada Potential Repository Preliminary Transportation Strategy Study 1 (CRWMS M&O 1995b), and to provide additional information for input to the repository environmental impact statement (EIS) process. In addition, this study supported the future selection of a preferred rail corridor and/or heavy haul route based on defensible data, methods, and analyses. Study research did not consider proposed legislation. Planning was conducted according to the Civilian Radioactive Waste Management Program Plan (DOE 1994a). The specific objectives of Study 2 were to: eliminate or reduce data gaps, inconsistencies, and uncertainties, and strengthen the analysis performed in Study 1; develop a preliminary list of rail route evaluation criteria that could be used to solicit input from stakeholders during scoping meetings. The evaluation criteria will be revised based on comments received during scoping; restrict and refine the width of the four rail corridors identified in Study 1 to five miles or less, based on land use constraints and engineering criteria identified and established in Study 2; evaluate national-level effects of routing spent nuclear fuel and high-level waste to the four identified branch lines, including the effects of routing through or avoiding Las Vegas; continue to gather published land use information and environmental data to support the repository EIS; continue to evaluate heavy haul truck transport over three existing routes as an alternative to rail and provide sufficient information to support the repository EIS process; and evaluate secondary uses for rail (passenger use, repository construction, shared use).

  4. Nervana Neon - Scalable Deep Learning library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neon Nervana Neon - Scalable Deep Learning library Description and Overview neon is an easy to use, python-based scalable Deep Learning library. Deep Learning has recently achieved...

  5. Deep Energy Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance High Performance Enclosure Strategies: Part I Existing Home Part I, Existing Home Deep Energy Retrofits Anastasia Herk IBACOS Project Partners Manufacturers, Contractors, NYSERDA, Engineers 2 Goals of Research Project: * Evaluate cost and performance trade offs between: - Spray-foam exterior walls - Rigid foam exterior walls - Home Performance with Energy Star Home (HPwES) on steroids * 50% peak load and annual heating load reduction * R-30Target for Center of Wall * .25 CFM50

  6. Using FEP's List and a PA Methodology for Evaluating Suitable Areas for the LLW Repository in Italy

    SciTech Connect (OSTI)

    Risoluti, P.; Ciabatti, P.; Mingrone, G.

    2002-02-26

    In Italy following a referendum held in 1987, nuclear energy has been phased out. Since 1998, a general site selection process covering the whole Italian territory has been under way. A GIS (Geographic Information System) methodology was implemented in three steps using the ESRI Arc/Info and Arc/View platforms. The screening identified approximately 0.8% of the Italian territory as suitable for locating the LLW Repository. 200 areas have been identified as suitable for the location of the LLW Repository, using a multiple exclusion criteria procedure (1:500,000), regional scale (1:100.000) and local scale (1:25,000-1:10,000). A methodology for evaluating these areas has been developed allowing, along with the evaluation of the long term efficiency of the engineered barrier system (EBS), the characterization of the selected areas in terms of physical and safety factors and planning factors. The first step was to identify, on a referenced FEPs list, a group of geomorphological, geological, hydrogeological, climatic and human behavior caused process and/or events, which were considered of importance for the site evaluation, taking into account the Italian situation. A site evaluation system was established ascribing weighted scores to each of these processes and events, which were identified as parameters of the new evaluation system. The score of each parameter is ranging from 1 (low suitability) to 3 (high suitability). The corresponding weight is calculated considering the effect of the parameter in terms of total dose to the critical group, using an upgraded AMBER model for PA calculation. At the end of the process an index obtained by a score weighted sum gives the degree of suitability of the selected areas for the LLW Repository location. The application of the methodology to two selected sites is given in the paper.

  7. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  8. Hawaii geologic map data | Open Energy Information

    Open Energy Info (EERE)

    geologic map data Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii geologic map data Published USGS, Date Not Provided DOI Not Provided Check for...

  9. AASG State Geological Survey | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AASG State Geological Survey AASG State Geological Survey presentation at the April 2013 peer review meeting held in Denver, Colorado.Contributions to the NGDSAASG State Geological Survey PDF icon aasg__geo_survey_peer2013.pdf More Documents & Publications State Geological Survey Contributions to the National Geothermal Data System National Geothermal Data System Architecture Design, Testing and Maintenance National Geothermal Data Systems Data Acquisition and Access

  10. Hanford Borehole Geologic Information System (HBGIS)

    SciTech Connect (OSTI)

    Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

    2005-09-26

    This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

  11. Montana Bureau of Mines and Geology Website | Open Energy Information

    Open Energy Info (EERE)

    Web Site: Montana Bureau of Mines and Geology Website Abstract Provides access to digital information on Montana's geology. Author Montana Bureau of Mines and Geology...

  12. Oregon Department of Geology and Mineral Industries | Open Energy...

    Open Energy Info (EERE)

    Geology and Mineral Industries Jump to: navigation, search Logo: Oregon Department of Geology and Mineral Industries Name: Oregon Department of Geology and Mineral Industries...

  13. International Collaboration Activities in Different Geologic Disposal

    Energy Savers [EERE]

    Environments | Department of Energy Collaboration Activities in Different Geologic Disposal Environments International Collaboration Activities in Different Geologic Disposal Environments This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several

  14. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect (OSTI)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  15. Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories

    SciTech Connect (OSTI)

    Rutqvist, J.; Backstrom, A.; Chijimatsu, M.; Feng, X.-T.; Pan, P.-Z.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Huang, X.-H.; Rinne, M.; Shen, B.

    2008-10-23

    This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elastoplastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because decreasing thermal stress.

  16. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

    SciTech Connect (OSTI)

    1985-05-01

    Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.

  17. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­‐burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­‐fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  18. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  19. DOE Geothermal Data Repository … Tethering Data to Information: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Geothermal Data Repository - Tethering Data to Information Preprint Jon Weers National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy To be presented at the Thirty-Ninth Workshop of Geothermal Reservoir Engineering Stanford, California February 24-26, 2014 Conference Paper NREL/CP-6A20-61403 February 2014 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under

  20. A deep earthquake goes supershear

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2014-09-01

    Seismic analysis of an aftershock off Russia’s Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  1. Deep Vadose Zone Field Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HANFORD ADVISORY BOARD, RAP March 6, 2013 Presented by: John Morse DEEP VADOSE ZONE ACTIVITIES Page 2 Deep Vadose Zone Areas Page 3 Deep Vadose Zone Field Activities FY 2014 Fieldwork Began in 2011 Page 4 Deep Vadose Zone Field Activities, Continued Page 5 0 20,000 40,000 60,000 80,000 100,000 120,000 0 500 1,000 1,500 2,000 2,500 3,000 Cumulative Gallons Removed Weekly Gallons Removed Perched Water Removal Shut down to address increased contamination levels and replace submersible pump Page 6 0

  2. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design

    SciTech Connect (OSTI)

    Hambley, D.F.; Russell, J.E.; Whitfield, R.G.; McGinnis, L.D.; Harrison, W.; Jacoby, C.H.; Bump, T.R.; Mraz, D.Z.; Busch, J.S.; Fischer, L.E.

    1987-02-01

    Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration (vertical emplacement) on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions.

  3. Groundwater geochemical modeling and simulation of a breached high-level radioactive waste repository in the northern Tularosa Basin, New Mexico

    SciTech Connect (OSTI)

    Chappell, R.W.

    1989-01-01

    The northern Tularosa Basin in south-central New Mexico was ranked favorably as a potential location for a high-level radioactive waste repository by a US Geological Survey pilot screening study of the Basin and Range Province. The favorable ranking was based chiefly on hydrogeologic and descriptive geochemical evidence. A goal of this study was to develop a methodology for predicting the performance of this or any other basin as a potential repository site using geochemical methods. The approach involves first characterizing the groundwater geochemistry, both chemically and isotopically, and reconstructing the probable evolutionary history of, and controls on the ground water chemistry through modeling. In the second phase of the approach, a hypothetically breached repository is introduced into the system, and the mobility of the parent radionuclide, uranium, in the groundwater is predicted. Possible retardation of uranium transport in the downgradient flow direction from the repository by adsorption and mineral precipitation is then considered. The Permian Yeso Formation, the primary aquifer in the northern Tularosa Basin, was selected for study, development and testing of the methodology outlined above. The Yeso Formation contains abundant gypsum and related evaporite minerals, which impart a distinctive chemical signature to the ground water. Ground water data and solubility calculations indicate a conceptual model of irreversible gypsum and dolomite dissolution with concomitant calcite precipitation. Recharge areas are apparent from temperature, {delta}{sup 18}O and {delta}{sup 2} H, and {sup 3}H trends in the aquifer. Corrected {sup 14}C ages range between modern and 31,200 years, and suggest an average ground water velocity of 0.83 m/yr.

  4. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  5. Gable named Geological Society of America Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gable named Geological Society of America Fellow Gable named Geological Society of America Fellow GSA members are elected to fellowship in recognition of their distinguished contributions to the geosciences. July 10, 2013 Carl Gable Carl Gable Gable received a doctorate in Geophysics from Harvard University and joined Los Alamos as a postdoc in 1989. The Geological Society of America (GSA) has selected Carl Gable of the Laboratory's Computational Earth Science group to be a Fellow. GSA members

  6. Geology of the lower Yellow Creek Area, Northwestern Colorado

    SciTech Connect (OSTI)

    Hail, W.J.

    1990-01-01

    The lower Yellow Creek area is located in Rio Blanco and Moffat Counties of northwestern Colorado, about midway between the towns of Rangely and Meeker. The study area is in the northwestern part of the Piceance Creek basin, a very deep structural and sedimentary basin that formed during the Laramide orogeny. Potentially important resources in the area are oil shale and related minerals, oil and gas, coal, and uranium. Topics discussed in the report include: Stratigraphy (Subsurface rocks, Cretaceous rocks, Tertiary rocks, and Quaternary deposits); Structure (Midland anticline, graben at Pinyon Ridge, and Crooked Wash syncline, Folds and faults in the vicinity of the White River, Red Wash syncline and central graben zone, Yellow Creek anticlinal nose); Economic geology (Oil shale and associated minerals, Coal, Oil and gas, Uranium, Gravel).

  7. Regional geophysics, Cenozoic tectonics and geologic resources...

    Open Energy Info (EERE)

    and geologic resources of the Basin and Range Province and adjoining regions Author G.P. Eaton Conference Basin and Range Symposium and Great Basin Field Conference; Denver,...

  8. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wyoming State Geological Survey Abbreviation: WSGS Address: P.O. Box 1347 Place: Laramie, Wyoming Zip: 82073 Year Founded: 1933 Phone Number:...

  9. Panel 2, Geologic Storage of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anna S. Lord Geologist Geotechnology & Engineering Department & Peter H. Kobos Principal Staff Economist, Ph.D. Earth Systems Department 2 Geologic Storage Why underground storage? ...

  10. Optimising the Performance of the Low Level Waste Repository - 12144

    SciTech Connect (OSTI)

    Huntington, Amy; Baker, Andrew; Cummings, Richard; Shevelan, John; Sumerling, Trevor

    2012-07-01

    The Low Level Waste Repository (LLWR) is the United Kingdom's principal facility for the disposal of low-level waste (LLW). The LLWR made a major submission to its environmental regulator (the Environment Agency) on 1 May 2011, the LLWR's 2011 Environmental Safety Case (ESC). One of the key regulatory requirements is that all aspects of the construction, operation and closure of the disposal facility should be optimised. An optimised Site Development Plan for the repository was developed and produced as part of the ESC. The Site Development Plan covers all aspects of the construction, operation and closure of the disposal facility. This includes the management of past and future disposals, emplacement strategies, design of the disposal vaults, and the closure engineering for the site. The Site Development Plan also covers the period of active institutional control, when disposals at the site have ceased, but it is still under active management, and plans for the long-term sustainable use of the site. We have a practical approach to optimisation based on recorded judgements and realistic assessments of practicable options framed within the demands of UK policy for LLW management and the characteristics the LLWR site and existing elements of the facility. The final performance assessments undertaken for the ESC were based on the Site Development Plan. The ESC will be used as a tool to inform future decision-making concerning the repository design, operation and the acceptance of wastes, as set out in the evolving Site Development Plan. Maintaining the ESC is thus essential to ensure that the Site Development Plan takes account of an up-to-date understanding and analysis of environmental performance, and that the Plan continues to be optimised. (authors)

  11. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gdr.openei.org Geothermal Data Repository Program Name or Ancillary Text eere.energy.gov Geothermal Data Repository GDR Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Jon Weers National Renewable Energy Laboratory Arlene Anderson (DOE) U.S. Department of Energy GTO 2013 Program Peer Review April 22, 2013 Lava Butte in Newberry National Volcanic Monument, Oregon 9/15/2005, courtesy WikiMedia Commons Energy Efficiency & Renewable Energy gdr.openei.org

  12. Coupled Model for Heat and Water Transport in a High Level Waste Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Salt | Department of Energy Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that

  13. A Modular, Standards-based Digital Object Repository

    Energy Science and Technology Software Center (OSTI)

    2005-08-01

    The aDORe repository architecture, designed and implemented for ingesting, storing, and accessing a vast collection of Digital Objects. aDORe was originally created for use at the Research Library of the Los Alamos National Laboratory. The aDORe architecture is highly modular and standards-based. In the architecture, the MPEG-21 Digital Item Declaration Language is used as the XML-based format to represent Digital Objects that can consist of multiple datastreams as Open Archival Information System Archival Information Packagesmore » (OAIS AIPs).« less

  14. Proceedings of 3rd US/German Workshop on Salt Repository Research, Design, and Operation

    Broader source: Energy.gov [DOE]

    The report provides summary and materials from the third U.S./German Workshop on Salt Repository Research, Design and Operation (held in New Mexico, October 2012).

  15. US/German Workshop on Salt Repository Research, Design and Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following information: We have obtained the necessary DOE and Sandia approvals to start planning the 7 th USGerman Workshop on Salt Repository Research, Design, and Operation to...

  16. EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

  17. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect (OSTI)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  18. Deep in Data: Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository: Preprint

    SciTech Connect (OSTI)

    Neymark, J.; Roberts, D.

    2013-06-01

    An opportunity is available for using home energy consumption and building description data to develop a standardized accuracy test for residential energy analysis tools. That is, to test the ability of uncalibrated simulations to match real utility bills. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This may facilitate the possibility of modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data. This paper describes progress toward, and issues related to, developing a usable, standardized, empirical data-based software accuracy test suite.

  19. Dessicant materials screening for backfill in a salt repository

    SciTech Connect (OSTI)

    Simpson, D.R.

    1980-10-01

    Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)/sub 2/ which carbonates with CO/sub 2/ in air to form CaCO/sub 3/ and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO/sub 2/ from the repository atmosphere.

  20. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  1. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  2. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  3. GPFA-AB_Phase1GeologicReservoirsContentModel10_26_2015.xls

    SciTech Connect (OSTI)

    Teresa E. Jordan

    2015-09-30

    This dataset conforms to the Tier 3 Content Model for Geologic Reservoirs Version 1.0. It contains the known hydrocarbon reservoirs within the study area of the GPFA-AB Phase 1 Task 2, Natural Reservoirs Quality Analysis (Project DE-EE0006726). The final values for Reservoir Productivity Index (RPI) and uncertainty (in terms of coefficient of variation, CV) are included. RPI is in units of liters per MegaPascal-second (L/MPa-s), quantified using permeability, thickness of formation, and depth. A higher RPI is more optimal. Coefficient of Variation (CV) is the ratio of the standard deviation to the mean RPI for each reservoir. A lower CV is more optimal. Details on these metrics can be found in the Reservoirs_Methodology_Memo.pdf uploaded to the Geothermal Data Repository Node of the NGDS in October of 2015.

  4. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-03-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  5. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-09-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  6. CPTAC Assay Portal: a repository of targeted proteomic assays

    SciTech Connect (OSTI)

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John; Kennedy, Jacob; Mani, DR; Zimmerman, Lisa J.; Meyer, Matthew R.; Mesri, Mehdi; Rodriguez, Henry; Abbateillo, Susan E.; Boja, Emily; Carr, Steven A.; Chan, Daniel W.; Chen, Xian; Chen, Jing; Davies, Sherri; Ellis, Matthew; Fenyo, David; Hiltket, Tara; Ketchum, Karen; Kinsinger, Christopher; Kuhn, Eric; Liebler, Daniel; Lin, De; Liu, Tao; Loss, Michael; MacCoss, Michael; Qian, Weijun; Rivers, Robert; Rodland, Karin D.; Ruggles, Kelly; Scott, Mitchell; Smith, Richard D.; Thomas, Stefani N.; Townsend, Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Paulovich, Amanda G.

    2014-06-27

    To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigators to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.

  7. DOE Geothermal Data Repository - Tethering Data to Information: Preprint

    SciTech Connect (OSTI)

    Weers, J.; Anderson, A.

    2014-02-01

    Data are not inherently information. Without context, data are just numbers, figures, names, or points on a line. By assigning context to data, we can validate ideas, form opinions, and generate knowledge. This is an important distinction to information scientists, as we recognize that the context in which we keep our data plays a big part in generating its value. The mechanisms used to assign this context often include their own data, supplemental to the data being described and defining semantic relationships, commonly referred to as metadata. This paper provides the status of the DOE Geothermal Data Repository (DOE GDR), including recent efforts to tether data submissions to information, discusses the important distinction between data and information, outlines a path to generate useful knowledge from raw data, and details the steps taken in order to become a node on the National Geothermal Data System (NGDS).

  8. Comparison of methods for geologic storage of carbon dioxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Comparison of methods for geologic storage of carbon dioxide in saline formations Citation Details In-Document Search Title: Comparison of methods for geologic...

  9. Summary of geology of Colorado related to geothermal potential...

    Open Energy Info (EERE)

    Journal Article: Summary of geology of Colorado related to geothermal potential Author L.T. Grose Published Journal Colorado Geological Survey Bulletin, 1974 DOI Not Provided...

  10. Regional Geology: GIS Database for Alternative Host Rocks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines ...

  11. Idaho Geological Survey and University of Idaho Explore for Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

  12. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report covers the ...

  13. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage You are accessing a ...

  14. State Geological Survey Contributions to the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Geological Survey Contributions to the National Geothermal Data System State Geological Survey Contributions to the National Geothermal Data System Project objectives: Deploy...

  15. North Carolina Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Address: 1612 Mail Service Center Place: North Carolina Zip: 27699-1612 Website: www.geology.enr.state.nc.us Coordinates: 35.67, -78.66 Show Map Loading map......

  16. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect (OSTI)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  17. Panel 2, Geologic Storage of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-3954P Geologic Storage of Hydrogen Anna S. Lord Geologist Geotechnology & Engineering Department & Peter H. Kobos Principal Staff Economist, Ph.D. Earth Systems Department 2 Geologic Storage Why underground storage?

  18. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    SciTech Connect (OSTI)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    2013-07-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  19. Geology of the USW SD-12 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-11-01

    Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the {open_quotes}Systematic Drilling Program,{close_quotes} as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and the core recovered essentially complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. A virtually complete section of the Calico Hills Formation was also recovered, as was core from the entire Prow Pass Tuff formation of the Crater Flat Group.

  20. Deep Vadose Zone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Vadose Zone Deep Vadose Zone The Mission of the Deep Vadose Zone Applied Field Research Initiative is to protect water resources across the DOE complex over the long-term by developing effective solutions to solve DOE's most challenging deep vadose zone characterization, remediation, monitoring, and prediction challenges. PDF icon Deep Vadose Zone More Documents & Publications Remediation of Mercury and Industrial Contaminants Hanford Site C Tank Farm Meeting Summary - May 2010 Advanced

  1. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  2. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  3. WIPP Celebrates 14th Anniversary

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – The Waste Isolation Pilot Plant (WIPP) recently marked its 14th year as America’s only operational deep geologic repository for the disposal of radioactive waste.

  4. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  5. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  6. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  7. Proceedings of 3rd US/German Workshop on Salt Repository Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Mexico on October 8-11, 2012. Approximately 60 salt research scientists from Germany and the United States met to discuss repository science state of the art. Workshop...

  8. Model Development and Analysis of the Fate and Transport of Water in a Salt Based Repository

    Broader source: Energy.gov [DOE]

    The study summarizes the initial work on numerical modeling, simulations, and experimental results related to nuclear waste storage in a salt repository.  The study reflects the project's...

  9. Effect of separation efficiency on repository loading values in fuel cycle scenario analysis codes

    SciTech Connect (OSTI)

    Radel, T.E.; Wilson, P.P.H.; Grady, R.M.; Bauer, T.H.

    2007-07-01

    Fuel cycle scenario analysis codes are valuable tools for investigating the effects of various decisions on the performance of the nuclear fuel cycle as a whole. Until recently, repository metrics in such codes were based on mass and were independent of the isotopic composition of the waste. A methodology has been developed for determining peak repository loading for an arbitrary set of isotopics based on the heat load restrictions and current geometry specifications for the Yucca Mountain repository. This model was implemented in the VISION fuel cycle scenario analysis code and is used here to study the effects of separation efficiencies on repository loading for various AFCI fuel cycle scenarios. Improved separations efficiencies are shown to have continuing technical benefit in fuel cycles that recycle Am and Cm, but a substantial benefit can be achieved with modest separation efficiencies. (authors)

  10. U.S. Department of Energy Awards a Contract to USA Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm ...

  11. 6th US/German Workshop on Salt Repository Research, Design and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIST of Participants 6th USGerman Workshop on Salt Repository Research, Design and Operations LAST NAME FIRST NAME COMPANY EMAIL Vlzke Holger BAM Holger.Voelzke@bam.de Mauke...

  12. Instructions for Preparing Occupational Exposure Data for Submittal to REMS Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting Guide 1 INSTRUCTIONS FOR PREPARING OCCUPATIONAL EXPOSURE DATA FOR SUBMITTAL TO THE RADIATION EXPOSURE MONITORING SYSTEM (REMS) REPOSITORY 1. TRANSMITTAL LETTER. A transmittal letter containing the following information at a minimum will accompany each submittal to the REMS repository.  Data filename.  Operating system used to create the data file.  Contact name and phone number of individual knowledgeable about the submittal.  The number of records included in the

  13. New Yucca Mountain Repository Design to be Simpler, Safer and More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective | Department of Energy New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective PDF icon untitled More Documents & Publications Audit Report: OAS-L-07-08 EIS-0250-S1: Final Supplemental Environmental Impact Statement EIS-0250-S1: Notice of Intent to Prepare a Supplement to the Final Environmental Impact Statement

  14. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  15. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper ...

  16. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  17. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  18. Nevada potential repository preliminary transportation strategy: Study 1

    SciTech Connect (OSTI)

    None,

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated.

  19. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

  20. NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Data Repository Supports Accurate Home Energy Analysis The Residential Buildings Research Group at the National Renewable Energy Laboratory (NREL) has developed a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The Field Data Repository currently includes data collected from historical programs where

  1. Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range

    SciTech Connect (OSTI)

    Berri, Dulcy A.; Korosec, Michael A.

    1983-01-01

    The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

  2. Impacts of a high-burnup spent fuel on a geological disposal system design

    SciTech Connect (OSTI)

    Cho, D.K.; Lee, Y.; Lee, J.Y.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon-city (Korea, Republic of)

    2007-07-01

    The influence of a burnup increase of a spent nuclear fuel on a deep geological disposal system was evaluated in this study. First, the impact of a burnup increase on each aspect related to thermal and nuclear safety concerns was quantified. And then, the tunnel length, excavation volume, and the raw materials for a cast insert, copper, bentonite, and backfill needed to constitute a disposal system were comprehensively analyzed based on the spent fuel inventory to generate 1 Terawatt-year (TWa), to establish the overall effects and consequences on a geological disposal. As a result, impact of a burnup increase on the criticality safety and radiation shielding was shown to be negligible. The disposal area, however, is considerably affected because of a higher thermal load. And, it is reasonable to use a canister such as the Korean Reference Disposal Canister (KDC-1) containing 4 spent fuels up to 50 GWD/MtU, and to use a canister containing 3 spent fuels beyond 50 GWD/MtU. Although a considerable increased, 33 % in the tunnel length and 30 % in the excavation volume, was observed as the burnup increases from 50 to 60 GWD/MtU, because a decrease in the canister needs can offset an increase in the excavation volume, it can be concluded that a burnup increase of a spent fuel is not a critical concern for a geological disposal of a spent fuel. (authors)

  3. ORS 516 - Department of Geology and Mineral Industries | Open...

    Open Energy Info (EERE)

    6 - Department of Geology and Mineral Industries Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 516 - Department of Geology...

  4. FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

    Open Energy Info (EERE)

    FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D...

  5. Subsurface geology of the Raft River geothermal area, Idaho ...

    Open Energy Info (EERE)

    geology of the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Subsurface geology of the Raft River...

  6. Factors Affecting the Disposal Capacity of a Repository at Yucca Mountain

    SciTech Connect (OSTI)

    Nutt, W.M.; Peters, M.T.; Wigeland, R.A.; Kouts, C.; Kim, D.; Gomberg, S.

    2007-07-01

    The development of a repository at Yucca Mountain is proceeding in accordance with the Nuclear Waste Policy Act (NWPA). The current design of the proposed repository emplaces 63,000 metric tons of heavy metal (MTHM) of commercial spent nuclear fuel and 7,000 MTHM-equivalent of Department of Energy-owned spent nuclear fuel and high level nuclear waste. Efforts are underway to complete the pre-closure and postclosure safety analyses in accordance with 10 CFR 63. This will be included in a license application for construction of the repository that is currently planned to be submitted to the U.S. Nuclear Regulatory Commission (NRC) no later than June of 2008. The Global Nuclear Energy Partnership (GNEP) aims to 'recycle nuclear fuel using new proliferation-resistant technologies to recover more energy and reduce waste'. The Nation's decision to choose to recycle spent nuclear fuel in an advanced nuclear fuel cycle, such as that being considered under the GNEP, would present the opportunity to change the current approach for managing and disposing nuclear waste. The total amount of waste that could be disposed in a repository at Yucca Mountain would be a key component of a new waste management strategy should a decision be made in the future to utilize the proposed Yucca Mountain repository to dispose of wastes generated under the GNEP. (authors)

  7. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs.

  8. Map of Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

  9. Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New

    Office of Environmental Management (EM)

    Mexico | Department of Energy Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico PDF icon Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico More Documents & Publications Natural Contamination from the Mancos Shale Application of Environmental Isotopes to the

  10. RECOVERY ACT: Geologic Sequestration Training and Research

    Office of Scientific and Technical Information (OSTI)

    RECOVERY ACT: Geologic Sequestration Training and Research Final Scientific/Technical Report Reporting Period Start Date: December 1, 2009 Reporting Period End Date: June 30, 2013 Peter M. Walsh,* Richard A. Esposito,†* Konstantinos Theodorou,‡* Michael J. Hannon, Jr.,* Aaron D. Lamplugh,§* and Kirk M. Ellison†* *University of Alabama at Birmingham †Southern Company, Birmingham, AL ‡Jefferson State Community College, Birmingham, AL §John A. Volpe National Transportation Systems

  11. geologic-sequestration | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL has partnered with Tuskegee University (TU) to provide fundamental research and hands-on training and networking opportunities to undergraduate students at TU in the area of CO2 capture and transport with a focus on the development of the most economical separation methods for pre-combustion CO2 capture. The bulk of

  12. NEVADA BUREAU OF MINES AND GEOLOGY

    National Nuclear Security Administration (NNSA)

    " ,,"'1' NEVADA BUREAU OF MINES AND GEOLOGY BULLETIN 104 OIL AND GAS DEVELOPMENTS IN NEVADA LARRY J. GARSIDE, RONALD H. HESS, KERYL L. FLEMING, AND BECKY S. WEIMER I 1988 .,", " "- "" ~-". - CONTENTS INTRODUCTION 3 LYON COUNTY 41 Sources of infonnation 3 Well data 42 Regulation 3 Organization of bulletin and NYE COUNTY 42 explanation of tenns 3 Railroad Valley field summaries 44 Acknowledgments 5 Well data 47 HISTORICAL SUMMARY 5 PERSHING COUNTY 79 Well

  13. Expected near-field thermal environments in a sequentially loaded spent-fuel or high-level waste repository in salt

    SciTech Connect (OSTI)

    Rickertsen, L.D.; Arbital, J.G.; Claiborne, H.C.

    1982-01-01

    This report describes the effect of realistic waste emplacement schedules on repository thermal environments. Virtually all estimates to date have been based on instantaneous loading of wastes having uniform properties throughout the repository. However, more realistic scenarios involving sequential emplacement of wastes reflect the gradual filling of the repository over its lifetime. These cases provide temperatures that can be less extreme than with the simple approximation. At isolated locations in the repository, the temperatures approach the instantaneous-loading limit. However, for most of the repository, temperature rises in the near-field are 10 to 40 years behind the conservative estimates depending on the waste type and the location in the repository. Results are presented for both spent-fuel and high-level reprocessing waste repositories in salt, for a regional repository concept, and for a single national repository concept. The national repository is filled sooner and therefore more closely approximates the instantaneously loaded repository. However, temperatures in the near-field are still 20/sup 0/C or more below the values in the simple model for 40 years after startup of repository emplacement operations. The results suggest that current repository design concepts based on the instantaneous-loading predictions are very conservative. Therefore, experiments to monitor temperatures in a test and evaluation facility, for example, will need to take into account the reduced temperatures in order to provide data used in predicting repository performance.

  14. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

  15. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.

  16. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III THE OHIO RIVER VALLEY CO2 STORAGE PROJECT

    SciTech Connect (OSTI)

    Neeraj Gupta

    2005-05-26

    As part of the Department of Energy's (DOE) initiation on developing new technologies for storage of carbon dioxide in geologic reservoir, Battelle has been awarded a project to investigate the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. This project is the Phase III of Battelle's work under the Novel Concepts in Greenhouse Gas Management grant. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations and potentially in nearby deep coal seams. The current technical progress report summarizes activities completed for the January through March 2005 period of the project. As discussed in the report, the technical activities focused on development of injection well design, preparing a Class V Underground Injection Control permit, assessment of monitoring technologies, analysis of coal samples for testing the capture system by Mitsubishi Heavy Industry, and presentation of project progress at several venues. In addition, related work has progressed on a collaborative risk assessment project with Japan research institute CREIPI and technical application for the Midwest Regional Carbon Sequestration Partnership.

  17. Evaluating the Long-Term Safety of a Repository at Yucca Mountain 

    SciTech Connect (OSTI)

    Van Luik, Abe

    2009-07-17

    Regulations require that the repository be evaluated for its health and safety effects for 10,000 years for the Site Recommendation process. Regulations also require potential impacts to be evaluated for up to a million years in an Environmental Impact Statement. The Yucca Mountain Project is in the midst of the Site Recommendation process. The Total System Performance Assessment (TSPA) that supports the Site Recommendation evaluated safety for these required periods of time. Results showed it likely that a repository at this site could meet the licensing requirements promulgated by the Nuclear Regulatory Commission. The TSPA is the tool that integrates the results of many years of scientific investigations with design information to allow evaluations of potential far-future impacts of building a Yucca Mountain repository. Knowledge created in several branches of physics is part of the scientific basis of the TSPA that supports the Site Recommendation process.

  18. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  19. Methods of calculating the post-closure performance of high-level waste repositories

    SciTech Connect (OSTI)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  20. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    SciTech Connect (OSTI)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  1. Repository site definition in basalt: Pasco Basin, Washington

    SciTech Connect (OSTI)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  2. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Stahl, D.; Svinicki, K.

    1996-07-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository.

  3. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    SciTech Connect (OSTI)

    Smith, M.W.; Shadle, L.J.; Hill, D.

    2007-01-01

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  4. HepSim: A Repository with Predictions for High-Energy Physics Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chekanov, S. V.

    2015-01-01

    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.

  5. U.S. Department of Energy Awards a Contract to USA Repository Services for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management and Operating Contractor Support for the Yucca Mountain Project | Department of Energy a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today awarded a $2.5 billion management

  6. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  7. DeepStream Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Bangor, United Kingdom Zip: LL57 4EZ Product: DeepStream Technologies produces digital sensors and controls that measure, monitor, and manage energy usage. References:...

  8. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

  9. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  10. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  11. Determination of Importance Evaluation for the ESF Enhanced Charcterization of the Repository Block Cross Drift

    SciTech Connect (OSTI)

    S. Goodin

    2002-01-09

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein.

  12. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    SciTech Connect (OSTI)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  13. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect (OSTI)

    Klaus Lackner; Charles Harvey; Bruce Watson

    2008-01-14

    Carbon dioxide injection into deep sea sediments below 2700 m water depth and a few hundred meters to fifteen hundred meters deep in the sediment column may provide permanent geologic storage by gravitational trapping. At high pressures and low temperatures common in deep sea sediments a few hundred meters below sea floor, CO{sub 2} will be in its liquid phase and will be denser than the overlying pore fluid. The lower density of the pore fluid provides a cap to the denser CO{sub 2} and ensures gravitational trapping in the short term. The overall storage capacity for CO{sub 2} in such deep sea formations below the ocean floor is primarily determined by the permeability, and will vary with seafloor depth, geothermal gradient, porosity, and pore water salinity. Furthermore, the dissemination of the injected CO{sub 2} in the sediments and potential chemical reactions between CO{sub 2}, pore fluid and sediments will define its fate in the storage reservoir. The main objectives of our research was to evaluate the potential for sub-seabed CO{sub 2} storage in deep sea sediments using a range of approaches including experiments, permeability analysis, and modeling. Over the course of the three-year award, our results support an important role for sub-seabed storage in a diverse portfolio of carbons sequestration options. Our analysis has shown the feasibility of this type of storage, and also emphasizes that escape or leakage from such sites would be negligible. The most difficult challenge is to overcome the low permeability of typical deep-sea sediments, and a variety of approaches are suggested for future research.

  14. Technical Basis for Evaluating Surface Barriers to Protect Groundwater from Deep Vadose Zone Contamination

    SciTech Connect (OSTI)

    Fayer, Michael J.; Ward, Anderson L.; Freedman, Vicky L.

    2010-02-03

    This document presents a strategy for evaluating the effectiveness of surface barriers for site-specific deep vadose zone remediation. The strategy provides a technically defensible approach to determine the depth to which a surface barrier can effectively isolate contaminants in the vadose at a specific site as a function of subsurface properties, contaminant distribution, barrier design, and infiltration control performance. The strategy also provides an assessment of additional data and information needs with respect to surface barrier performance for deep vadose zone applications. The strategy addresses the linkage between surface barriers and deep vadose zone in situ remediation activities, monitoring issues, and emerging science, technology, and regulatory objectives. In short, the report documents the existing knowledge base, identifies knowledge needs (based on data gaps), and suggests tasks whose outcomes will address those knowledge needs. More important, the report serves as a starting point to engage the regulator and stakeholder community on the viability of deploying surface barriers for deep vadose zone contamination. As that engagement unfolds, a systematic methodology can be formalized and instituted. The strategy is focused on deep vadose zone contamination and the methods needed to determine the impact to groundwater from those deep vadose zone contaminants. Processes that affect surface barrier performance, recharge in the areas surrounding the surface barrier, and the near-surface vadose zone beneath the barrier are acknowledged but are not addressed by this strategy. In addition, the collection of site-specific data on contaminant distribution and geologic structure and properties are programmatic responsibilities and are not provided by this strategy.

  15. Precise rare earth analysis of geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1982-01-01

    Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

  16. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    SciTech Connect (OSTI)

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases.

  17. Wireless Transmission of Monitoring Data out of an Underground Repository: Results of Field Demonstrations Performed at the HADES Underground Laboratory - 13589

    SciTech Connect (OSTI)

    Schroeder, T.J.; Rosca-Bocancea, E.; Hart, J.

    2013-07-01

    As part of the European 7. framework project MoDeRn, Nuclear Research and Consultancy Group (NRG) performed experiments in order to demonstrate the feasibility of wireless data transmission through the subsurface over large distances by low frequency magnetic fields in the framework of the geological disposal of radioactive waste. The main objective of NRG's contribution is to characterize and optimize the energy use of this technique within the specific context of post-closure monitoring of a repository. For that, measurements have been performed in the HADES Underground Research Laboratory (URL) located at Mol, Belgium, at 225 m depth. The experimental set-up utilizes a loop antenna for the transmitter that has been matched to the existing infrastructure of the HADES. Between 2010 and 2012 NRG carried out several experiments at the HADES URL in order to test the technical set-up and to characterize the propagation behavior of the geological medium and the local background noise pattern. Transmission channels have been identified and data transmission has been demonstrated at several frequencies, with data rates up to 10 bit/s and bit error rates <1%. A mathematical model description that includes the most relevant characteristics of the transmitter, transmission path, and receiver has been developed and applied to analyze possible options to optimize the set-up. With respect to the energy-efficiency, results so far have shown that data transmission over larger distances through the subsurface is a feasible option. To support the conclusions on the energy need per bit of transmitted data, additional experiments are foreseen. (authors)

  18. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  19. CMI Education Course Inventory: Geology Engineering/Geochemistry | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Course Inventory: Geology Engineering/Geochemistry Geology Engineering/Geochemistry Of the six CMI Team members that are educational institutions, five offer courses in Geology. These are Colorado School of Mines, Iowa State University, Purdue University, University of California, Davis and Rutgers University. The following links go to the class list on the CMI page for that school. Colorado School of Mines Iowa State University Purdue University University of California,

  20. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross?sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  1. Site Characterization of Promising Geologic Formations for CO2 Storage |

    Energy Savers [EERE]

    Department of Energy Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and

  2. Regional Geology: GIS Database for Alternative Host Rocks and Potential

    Energy Savers [EERE]

    Siting Guidelines | Department of Energy Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used for siting guidelines, both in the US and other countries. The Used Fuel Disposition Campaign

  3. State Geological Survey Contributions to the National Geothermal Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy State Geological Survey Contributions to the National Geothermal Data System State Geological Survey Contributions to the National Geothermal Data System Project objectives: Deploy and populate the National Geothermal Data System (NGDS) with state-specific data by creating a national, sustainable, distributed, interoperable network of state geological survey-based data providers that will develop, collect, serve, and maintain geothermal-relevant data that

  4. Geologic Sequestration Training and Research Projects | Department of

    Office of Environmental Management (EM)

    Energy Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training opportunities for graduate and undergraduate students that will provide the human capital and skills required for implementing and deploying carbon capture and storage technologies. The

  5. Concept and Design of the JAEA KMS for Geological Disposal of HLW

    SciTech Connect (OSTI)

    Makino, Hitoshi; Osawa, Hideaki; Nakano, Katsushi; Naito, Morimasa; Umeki, Hiroyuki; Takase, Hiroyasu; McKinley, Ian G.

    2007-07-01

    The information explosion resulting from modern technology is identified as a critical problem for deep geological disposal of high-level radioactive waste (HLW). A paradigm shift is needed in the basic concept for information management. This recognition had led to the development of a 'next generation' Knowledge Management System (the JAEA KMS) that makes maximum use of recent developments in Information Technology (IT) and the methodology of Knowledge Engineering (KE) as applied in other technical fields. This paper provides a brief outline of the key concepts of the JAEA KMS and then overviews recent progress towards development of an operational system, including a 'wish list' of expected functions of the JAEA KMS, a perspective on applicability of existing methodologies and an introduction to the concept of an 'intelligent assistant'. (authors)

  6. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    SciTech Connect (OSTI)

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  7. State Geological Survey Contributions to NGDS Data Development...

    Open Energy Info (EERE)

    Arizona Geological Survey Awardee Website http:www.azgs.az.gov Partner 1 Microsoft Research Partner 2 Energy Industry Metadata Standards Working Group Partner 4 String...

  8. Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL

    Office of Scientific and Technical Information (OSTI)

    Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL SCIENCES The main objective of this project is to...

  9. Paleomagnetism, Potassium-Argon Ages, and Geology of Rhyolites...

    Open Energy Info (EERE)

    and Dalrymple, 1966). Authors Richard R. Doell, G. Brent Dalrymple, Robert Leland Smith and Roy A. Bailey Published Journal Geological Society of America Memoirs, 1968 DOI...

  10. Geophysics, Geology and Geothermal Leasing Status of the Lightning...

    Open Energy Info (EERE)

    Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

  11. Development of a Geological and Geomechanical Framwork for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geomechanical Framwork for the Analysis of MEQ in EGS Experiments Development of a Geological and Geomechanical Framwork for the Analysis of MEQ in EGS Experiments Development of a...

  12. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing...

  13. Rock Physics of Geologic Carbon Sequestration/Storage Dvorkin...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Dvorkin, Jack; Mavko, Gary 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES This report covers the results of developing the rock...

  14. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  15. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...

    Open Energy Info (EERE)

    and geologic deposits are indicated on the map. (MHR) Cartographers Fraser E. Goff and J. N. Gardner Published Los Alamos National Laboratory, NM, 1980 DOI Not Provided...

  16. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  17. Geology and Mineral Deposits of Churchill County, Nevada | Open...

    Open Energy Info (EERE)

    Mineral Deposits of Churchill County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and Mineral Deposits of Churchill County, Nevada...

  18. United States Geological Survey, LSC | Open Energy Information

    Open Energy Info (EERE)

    Testing Facilities Name United States Geological Survey, LSC Address Leetown Science Center, Conte Anadromous Fish Laboratory, 1 Migratory Way Place Turners Falls,...

  19. Geologic Study of the Coso Formation | Open Energy Information

    Open Energy Info (EERE)

    Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history....

  20. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    Springs GRED III Project: Final Report Geology, Petrology, Geochemistry, Hydrothermal Alteration, and Fluid Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to...

  1. United States Geological Survey, HIF | Open Energy Information

    Open Energy Info (EERE)

    HIF Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, HIF Address Building 2101 Stennis Space Center Place Mississippi Zip...

  2. Geology and alteration of the Raft River geothermal system, Idaho...

    Open Energy Info (EERE)

    Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology and alteration of the Raft River geothermal...

  3. Pre-Investigation Geological Appraisal Of Geothermal Fields ...

    Open Energy Info (EERE)

    by few or faults. The probable conditions are therefore inferred from study of geological environment, structure and stratigraphy, and the type and distribution of thermal springs...

  4. Geologic analysis of Devonian Shale cores

    SciTech Connect (OSTI)

    1982-02-01

    Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

  5. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  6. Test of factorization in diffractive deep inelastic scattering...

    Office of Scientific and Technical Information (OSTI)

    Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep ...

  7. Deep Sky Astronomical Image Database Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  8. Presentation at the Weatherization Program Deep Dive Briefing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 U.S. Department of...

  9. Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep Retrofit Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep Retrofit The Alliance for Residential ...

  10. Deep Borehole Disposal of Nuclear Waste: Science Needs. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste: Science Needs. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste: Science Needs. Abstract not provided. ...

  11. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Research Development and Demonstration Roadmap for Deep Borehole Disposal. Citation Details In-Document Search Title: Research Development and Demonstration Roadmap for Deep...

  12. MHK Technologies/Deep Green | Open Energy Information

    Open Energy Info (EERE)

    MHK TechnologiesDeep Green < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Green.jpg Technology Profile Primary Organization Minesto AB...

  13. National Library of Energy : Main View : Deep Federated Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Library of Energy Search Powered By Deep Web Technologies New Search Preferences Powered by Deep Web Technologies energy.gov Office of Scientific and Technical Information...

  14. Tanzania-Developing Energy Enterprises Project (DEEP) | Open...

    Open Energy Info (EERE)

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Tanzania-Developing Energy Enterprises Project (DEEP) Name Tanzania-Developing Energy Enterprises...

  15. Uganda-Developing Energy Enterprises Project (DEEP) | Open Energy...

    Open Energy Info (EERE)

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Uganda-Developing Energy Enterprises Project (DEEP) Name Uganda-Developing Energy Enterprises Project...

  16. Kenya-Developing Energy Enterprises Project (DEEP) | Open Energy...

    Open Energy Info (EERE)

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Kenya-Developing Energy Enterprises Project (DEEP) Name Kenya-Developing Energy Enterprises Project...

  17. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  18. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  19. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  20. Geologic Map and GIS Data for the Wabuska Geothermal Area

    SciTech Connect (OSTI)

    Hinz, Nick

    2013-09-30

    Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross?section.

  1. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.; Mackley, Rob D.

    2005-08-01

    This revision of the geologic data catalog incorporates new boreholes drilled after September 2002 as well as other older wells, particularly from the 600 Area, omitted from the earlier catalogs. Additionally, borehole geophysical log data have been added to the catalog. This version of the geologic data catalog now contains 3,519 boreholes and is current with boreholes drilled as of November 2004.

  2. Behavior of REE in geological and biological systems

    SciTech Connect (OSTI)

    Laul, J.C.; Weimer, W.C.

    1981-05-01

    The REE abundances when normalized to primordial (chondritic) abundances behave as a smooth function of the REE ionic radii in both the geological and biological systems. The REE are hardly fractionated chemically through various stages of their transformation from soil-soil extract-plant-geological systems.

  3. Geologic Map and GIS Data for the Patua Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  4. Selection and durability of seal materials for a bedded salt repository: preliminary studies

    SciTech Connect (OSTI)

    Roy, D.M.; Grutzeck, M.W.; Wakeley, L.D.

    1983-11-01

    This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables.

  5. Multiscale Thermohydrologic Model Supporting the Licence Application for the Yucca Mountain Repository

    SciTech Connect (OSTI)

    T.A> Buscheck; Y. Sun; Y. Hao

    2006-03-28

    The MultiScale ThermoHydrologic Model (MSTHM) predicts thermal-hydrologic (TH) conditions within emplacement tunnels (drifts) and in the adjoining host rock at Yucca Mountain, Nevada, which is the proposed site for a radioactive waste repository in the US. Because these predictions are used in the performance assessment of the Yucca Mountain repository, they must address the influence of variability and uncertainty of the engineered- and natural-system parameters that significantly influence those predictions. Parameter-sensitivity studies show that the MSTHM predictions adequately propagate the influence of parametric variability and uncertainty. Model-validation studies show that the influence of conceptual-model uncertainty on the MSTHM predictions is insignificant compared to that of parametric uncertainty, which is propagated through the MSTHM.

  6. A Review Corrosion of TI Grade 7 and Other TI Alloys in Nuclear Waste Repository Environments

    SciTech Connect (OSTI)

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-05-11

    Titanium alloy degradation modes are reviewed in relation to their performance in repository environments. General corrosion, localized corrosion, stress corrosion cracking, hydrogen induced cracking, microbially influenced corrosion, and radiation-assisted corrosion of Ti alloys are considered. With respect to the Ti Grade 7 drip shields selected for emplacement in the repository at Yucca Mountain, general corrosion, hydrogen induced cracking, and radiation-assisted corrosion will not lead to failure within the 10,000 year regulatory period; stress corrosion cracking (in the absence of disruptive events) is of no consequence to barrier performance; and localized corrosion and microbially influenced corrosion are not expected to occur. To facilitate the discussion, Ti Grades 2, 5, 7, 9, 11, 12, 16, 17, 18, and 24 are included in this review.

  7. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  8. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Component Library: An Online Repository to Facilitate Building Energy Model Creation Preprint Katherine Fleming, Nicholas Long, and Alex Swindler To be presented at the ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-54710 May 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  9. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    SciTech Connect (OSTI)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  10. 2014 US/German Workshop on Salt Repository Research, Design, and Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US/German Workshop on Salt Repository Research, Design, and Operation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  11. 2015 US/German Workshop on Salt Repository Research, Design, and Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US/German Workshop on Salt Repository Research, Design, and Operation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  12. 2016 US/German Workshop on Salt Repository Research, Design, and Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US/German Workshop on Salt Repository Research, Design, and Operation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  13. This fact sheet describes the repository design activities the U.S. Department o

    Office of Legacy Management (LM)

    repository design activities the U.S. Department of Energy is conducting at the Monticello Mill Tailings Site in Monticello, Utah. These activities are being performed in accordance with Federal and State environ- mental laws. Background The purpose of the Monticello cleanup projects is to minimize the risks to the public and the environment from exposure to mill tailings and the radon gas they produce. The Monticello Mill Tailings Site cleanup remedy was se- lected in the Record of Decision in

  14. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    SciTech Connect (OSTI)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  15. Gas Generation and Release in Near-Surface Repository at Armenian NPP - 13372

    SciTech Connect (OSTI)

    Grigoryan, G.; Amirjanyan, A.; Hovhannisyan, A.; Gondakyan, Y.

    2013-07-01

    The potential nuclear waste repository at Armenian Nuclear Power Plant (ANPP) can store Low and Intermediate Level Radioactive waste (LL/ILW). In this kind of near-surface repository for radioactive waste, significant quantities of gases may be generated as a result of microbial degradation and corrosion. A discussion is presented of the microbial and chemical degradation of cellulose. For the release of gas, it is assumed that the complete conversion of cellulosic wastes to gases by the action of microbes, is, in principle, permitted. Released radioactive gases such as {sup 14}CO{sub 2} and {sup 14}CH{sub 4} could have a direct pathway to the atmosphere. The potential impact of gas generation, accumulation and migration on the long-term of repository, should therefore be assessed properly. We present here safety assessment result of gas producing radioactive waste disposal by the inhalation dose to a maximally exposed individual above ground, based on some conservative assumptions about release from waste as well as gas generation calculations. (authors)

  16. Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities

    SciTech Connect (OSTI)

    1997-12-31

    A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

  17. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO2 Geological Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; Lu, C.; Mansoor, K.; Carroll, S. A.

    2012-12-20

    The risk of CO2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO2/brine saturation are connected to the fault-leakage model as a boundary condition. CO2 andmore » brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  18. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  19. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  20. Deep Energy Retrofits & State Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Energy Retrofits & State Applications Deep Energy Retrofits & State Applications This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications PDF icon deepenergyretrofitsandstateapplications.pdf More Documents & Publications Deep Energy Retrofits & State Applications Energy Efficiency In Correctional Facilities & Opportunities for State Energy Office Engagement

  1. Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository

    SciTech Connect (OSTI)

    Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

    2001-02-01

    The U.S.Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, “EM shall design and fabricate … DOE SNF canisters for shipment to RW.” (1) It also states, “EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71.” (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

  2. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect (OSTI)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  3. Structure of Precambrian crust in the U. S. from COCORP deep seismic profiling

    SciTech Connect (OSTI)

    Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1992-01-01

    COCORP and industry seismic reflection profiles probing beneath the thin veneer of Paleozoic sedimentary rocks of the US mid-continent are mapping a complex, largely unknown three dimensional mosaic of major fault zones and sutures, a highly variable Moho, and extensive sequences of unexplored volcanic and/or sedimentary strata. Key features of the Precambrian suggested by COCORP and other deep profiling include: Pervasive, distributed reflectivity, often diffractive, dominating the middle and lower crust. Moho that is rarely reflective, usually evident as a downward transition of distributed crustal reflectivity into mantle transparency. Volcano-clastic filled graben of the late Proterozoic Keweenawan rift buried beneath Paleozoic strata in Kansas and Michigan. Extensive, subhorizontal Precambrian stratification in the upper crust beneath the east- central US and the Texas-Oklahoma border region, argued to be either an extensive volcano-clastic basin, a voluminous felsic volcanic outpouring or a major intrusive sill complex. Crustal penetrating, dipping reflection zones that mark known (Grenville front) or inferred (Cashocton zone, Trans-Hudson orogen) shear zones. Non-reflective ( ) basement beneath the Appalachian foreland suggesting transparent massifs'' that serve as collisional buttresses during terrane accretion. Deep structure is sometimes at odds with simple extrapolations of surface geology. Clearly deep seismic profiling has only begun to reveal the buried craton in the US. It is time for an integrated program for the systematic exploration of this special scientific frontier.

  4. Status report on the geology of the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  5. Joint EM-NE-International Study of Glass Behavior over Geologic Time Scales - 12303

    SciTech Connect (OSTI)

    Ryan, J.V.; Schreiber, D.K.; Strachan, D.M.; Vienna, J.D. [Pacific Northwest National Laboratory, P. O. Box 999, Richland, WA 99352 (United States); Ebert, W.L. [Argonne National Laboratory, Argonne, IL 60439 (United States); Icenhower, J.P. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States)

    2012-07-01

    Vitrification has been chosen as the best demonstrated available technology for waste immobilization worldwide. To date, the contributions of physical and chemical processes controlling the long-term glass dissolution rate in geologic disposal remain uncertain, leading to a lack of international consensus on a rate law for glass corrosion. Existing rate laws have overcome uncertainty through conservatism, but a thorough mechanistic understanding of waste form durability in geologic environments would improve public and regulator confidence. If it is possible to take credit for the true durability of the waste form in repository system evaluations, then it is possible to design the repository with less conservatism with concomitant cost savings. To gain a fundamental understanding of the dissolution rate law, six nations have joined together to formulate a joint plan for collaborative research into the mechanisms controlling the long-term corrosion of glass. This report highlights the technical program plan behind the US portion of this effort, with an emphasis on the current understanding (and limitations) of several mechanistic theories for glass corrosion. Some recent results are presented to provide an example of the ongoing research. Atom probe tomography has been used to provide a high-resolution analysis of elemental concentration gradients present at the hydrated glass / pristine glass interface in SON68 after 25.75 years of corrosion in a simulated granitic groundwater at 90 deg. C. The most valuable result of these initial studies is the success of the technique. Characterization by APT had never been previously demonstrated for glass corrosion layers. The resolution of APT is a powerful addition to the tools with which we can investigate the mechanisms dominating glass corrosion. Some other key results of this study include the observation that the elemental interfacial width between the hydrated glass and pristine glass appears to be much sharper (?2 nm for B, Na and Al) than had been previously measured using nanoSIMS (?240 nm). It is not clear whether the APT analysis and nanoSIMS characterizations were possibly performed on topographically unique regions, or whether nanoSIMS overestimated the elemental width. However, the APT data seems very convincing that the elemental width can be much sharper than was previously thought. This result calls into question some of the assumptions made for the diffusion-control models of glass dissolution, since such a sharp profile would not match the diffusion coefficients used to date. Other results, such as the observation of apparently layered concentration profiles, show that gel evolution is not as simple as is currently assumed in nearly every model. This task is a good example of the collaborative nature of the I-TEAM effort. Based on experimental needs and differences in expertise, scientists from DOE and CEA worked together to change the level of understanding in the field. These types of interactions are nearly ubiquitous among the tasks in the technical program plan. With the excellence of the team in place and the willingness of the participants to work together for a common understanding, the stated goal of consensus on the mechanistic basis for radionuclide release from glass is well within reach. (authors)

  6. Source: U.S. Energy Information Administration, based on DrillingInfo Inc., New York State Geological Survey, Ohio State Geological Survey, Pennsylvania Bureau of

    Gasoline and Diesel Fuel Update (EIA)

    Source: U.S. Energy Information Administration, based on DrillingInfo Inc., New York State Geological Survey, Ohio State Geological Survey, Pennsylvania Bureau of Topographic & Geologic Survey, West Virginia Geological & Economic Survey, and U.S. Geological Survey. Note: Map includes production wells from January 2003 through December 2014. Structure map of the Marcellus Formation Thickness map of the Marcellus Formation Source: U.S. Energy Information Administration, based on

  7. Geologic and tectonic characteristics of rockbursts

    SciTech Connect (OSTI)

    Adushkin, V.V.; Charlamov, V.A.; Kondratyev, S.V.; Rybnov, Y.S.; Shemyakin, V.M.; Sisov, I.A.; Syrnikov, N.M.; Turuntaev, S.B.; Vasilyeva, T.V.

    1995-06-01

    The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that case to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.

  8. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Underdown, D.R.; Das, K.

    1982-01-01

    Much work has been done in the development and evaluation of various materials for use as proppants for hydraulic fracturing. Sand is most often used as a frac proppant in shallow wells. Deep wells having high closure stresses require a proppant such as sintered bauxite which will not crush under such adverse conditions. Proppants such as ceramic and zirconium oxide beads and resin coated sand have been developed for deep hydraulic fracturing; however, use of these materials has been limited. A new frac proppant has been developed which exhibits the properties necessary for use in deep hydraulic fracturing. This frac proppant is produced by precuring a specially modified phenol-formaldehyde resin onto sand. The new frac proppant maintains conductivity and resists crushing, similar to that of sintered bauxite at high closure stress. 11 references.

  9. New proppant for deep hydraulic fracturing

    SciTech Connect (OSTI)

    Das, K.; Underdown, D.R.

    1985-01-01

    Much work has focused on developing and evaluating various materials for use as proppants for hydraulic fracturing. Sand is used most often as a fracturing proppant in shallow wells. Deep wells with high closure stresses require a proppant, such as sintered bauxite, that will not crush under adverse conditions. Ceramic and zirconium oxide beads and resin-coated sand proppants also have been developed for deep hydraulic fracturing. A new fracturing proppant has been developed that exhibits the properties necessary for use in deep hydraulic fracturing. This proppant is produced by precuring a specially modified phenolformaldehyde resin onto sand. The new proppant maintains conductivity and resists crushing much better than does sand. The new proppant was compared to intermediate-density sintered bauxitic proppants and cured-in-place proppants and the tests were confirmed by an independent laboratory.

  10. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    SciTech Connect (OSTI)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

  11. Deep Energy Retrofit Case Studies: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Energy Retrofit Case Studies: Lessons Learned. Alea German Alliance for Residential Building Innovation June 25, 2014 Davis Energy Group | June 25, 2014 ‹#› Agenda * Background / motivation * Results from 3 CA retrofits - Sonoma Passive House Retrofit - Stockton Hot Dry Retrofit - Sunnyvale Marine Deep Retrofit Davis Energy Group | June 25, 2014 ‹#› Background * >60 million homes in the U.S. over 30 yrs old * Huge potential - Energy savings ‹#› Davis Energy Group | June 25,

  12. Geological and geophysical studies of a geothermal area in the...

    Open Energy Info (EERE)

    geology; structure; surveys; tectonics; United States; volcanic rocks Authors Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover and D.B. Published U....

  13. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  14. Geologic Map of the Jemez Mountains, New Mexico | Open Energy...

    Open Energy Info (EERE)

    MexicoInfo GraphicMapChart Abstract Abstract unavailable Cartographers Robert Leland Smith, Roy A. Bailey and Clarence Samuel Ross Published U.S. Geological Survey, 1970 DOI Not...

  15. Geologic Mapping of the Valles Caldera National Preserve, New...

    Open Energy Info (EERE)

    and Bland) are now complete and two others will be finished by 2006 (Valle Toledo and Valle San Antonio). Eventually, the geology of the Valles caldera will be published as a...

  16. A Geological and Geophysical Study of Chena Hot Springs, Alaksa...

    Open Energy Info (EERE)

    Alaksa Jump to: navigation, search OpenEI Reference LibraryAdd to library M.Sc. Thesis: A Geological and Geophysical Study of Chena Hot Springs, AlaksaThesisDissertation...

  17. Geology of Southwestern New Mexico | Open Energy Information

    Open Energy Info (EERE)

    to library Conference Paper: Geology of Southwestern New Mexico Authors R.E. Clemons and G.H. Mack Conference 39th Field Conference; ConferencePlace"ConferencePlace"...

  18. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  19. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...

    Open Energy Info (EERE)

    Kilauea Volcano, HawaiiInfo GraphicMapChart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability:...

  20. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Pershing County, Nevada, in: Gold and Silver Deposits of Western Nevada Authors Hastings, J.S., Burkhart, T.H., and Richardson and R.E. Published Geological Society of Nevada 1993...

  1. Geologic interpretation of gravity and magnetic data in the Salida...

    Open Energy Info (EERE)

    interpretation of gravity and magnetic data in the Salida region, Colorado Authors J.E. Case and R.F. Sikora Published U.S. Geological Survey Open-File Report, 1984 Report...

  2. Geology, Water Geochemistry And Geothermal Potential Of The Jemez...

    Open Energy Info (EERE)

    Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. Process for structural geologic analysis of topography and point data

    DOE Patents [OSTI]

    Eliason, Jay R. (Richland, WA); Eliason, Valerie L. C. (Richland, WA)

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  4. Geological Society of America selects Los Alamos scientist Claudia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a stable-isotope geochemist whose research spans the traditional fields of geology, soil science and climate science. July 9, 2015 Claudia Mora Claudia Mora Contact Los Alamos...

  5. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geologic Uncertainty Cover Image: 3D visualization of directionally drilled boreholes in the Gulf of Mexico, field MC109, showing NETL's interpretation of two reservoir sand intervals. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty DOE/NETL-2015/1694 Prepared by: Mari Nichols-Haining, Jennifer Funk, Kathy Bruner, John Oelfke, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  6. Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Liquid Metal Heat Exchanger for Geologic Deposits Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryResearchers at ORNL developed a down-well heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract hydrocarbons for energy needs. The apparatus provides more efficient heat transfer than existing technologies for hydrocarbon extraction. It also holds promise for in situ remediation of contaminated

  7. Rock Physics of Geologic Carbon Sequestration/Storage (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Rock Physics of Geologic Carbon Sequestration/Storage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon Sequestration/Storage This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock�s elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the

  8. Radionuclide Interaction and Transport in Representative Geologic Media |

    Energy Savers [EERE]

    Department of Energy Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the

  9. Geologic Carbon Dioxide Storage Field Projects Supported by DOE's

    Office of Environmental Management (EM)

    Sequestration Program | Department of Energy Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2

  10. Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CBFOM.F. Sharif, WTS dated May 3, 2012 Administrative Completeness Determination and Fee Assessment for Class 1 Permit Modification. JE Kieling, NMED dated February 17, 2012 Class...

  11. Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Update- Equipment used for Internal Communications Contingency Plan Update Editorial Change in Attachment D, Section D-4d(10) Contingency Plan Update- Contact...

  12. Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Permit Modifications and NMED Responses Class 1 Permit Modification Notifications - Editorial Corrections to the new Permit issued November 31, 2010, E Ziemianski, CBFOMF Sharif...

  13. Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2011 Class 1 Permit Modification Notification to Revise TRU-Pact III Management Language and Revise Procedure Reference for the Bolting Station in Table E-1, E Ziemianski,...

  14. Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Descriptions Related to Type B Packages, Update TRUPACT-II and Half PACT Figures, Jose R FrancoCBFO and M F SharifNWP dated August 29, 2013 Class 2 Permit Modifications and...

  15. A FRAMEWORK FOR THE ANALYSIS OF LOCALIZED CORROSION AT THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    SciTech Connect (OSTI)

    Dr. J.H. Payer

    2006-04-18

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository: (1) the most likely degradation process; (2) controls the delay time for radionuclide transport from the waste package; and (3) determines when packages will be penetrated and the shape size and distribution of those penetrations. In this presentation a framework for the analysis of localized corrosion is presented and demonstrated for a scenario: (1) water chemistry of mixed salt solutions (sodium chloride-potassium nitrate); and (2) time-temperature-relative humidity profiles for a hot, mid and cool temperature waste package.

  16. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    SciTech Connect (OSTI)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.; Ryan, Joseph V.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.

  17. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    SciTech Connect (OSTI)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  18. Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

    Broader source: Energy.gov [DOE]

    Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

  19. Gradual degradation of concrete fiber containers and preliminary Safety analysis for the Slovak near-surface repository

    SciTech Connect (OSTI)

    Duran, Juraj

    2007-07-01

    Available in abstract form only. Full text of publication follows: National Radioactive Waste Repository will be used for safe disposal of low and intermediate-level radioactive wastes in Mochovce, Slovak Republic. The Preliminary Safety Analysis Report (PSAR) has developed a conceptual model that strongly overestimated radiological exposures for the Normal Evolution Scenario (NES). Radioactive waste management required additional measures for safe disposal of radioactive waste to minimize the potential consequence to the workers and the public. Use of Fiber Reinforced Containers (FRC) is proposed to enhance the performance of the potential repository for safe disposal of radioactive waste and reduce the probability of exposure. This paper contains the description of models, methods, results from experimental measurements and input data, which were used for probabilistic calculations of the lifetime FRC. The Cumulative Distribution Function (CDF) for the FRC lifetime was used to modify the conceptual model for NES. The model assumed gradual degradation of the FRC and gradual intrusion of water to the repository volume. These assumptions are in contrary to the ones in the PSAR that assumed instantaneous degradation of the FRC and instantaneous fill-up of the repository volume. The model showed that the new assumptions resulted in less radiological consequences, which allows for final design modifications of the repository. (author)

  20. Radionuclide release from spent fuel under geologic disposal conditions: An overview of experimental and theoretical work through 1985

    SciTech Connect (OSTI)

    Reimus, P.W.; Simonson, S.A.

    1988-04-01

    This report presents an overview of experimental and theoretical work on radionuclide release from spent fuel and uranium dioxide (UO/sub 2/) under geologic disposal conditions. The purpose of the report is to provide a source book of information that can be used to develop models that describe radionuclide release from spent fuel waste packages. Modeling activities of this nature will be conducted within the Waste Package Program (WPP) of the Department of Energy's Salt Repository Project (SRP). The topics discussed include experimental methods for investigating radionuclide release, how results have been reported from radionuclide release experiments, theoretical studies of UO/sub 2/ and actinide solubility, results of experimental studies of radionuclide release from spent fuel and UO/sub 2/ (i.e., the effects of different variables on radionuclide release), characteristics of spent fuel pertinent to radionuclide release, and status of modeling of radionuclide release from spent fuel. Appendix A presents tables of data from spent fuel radionuclide release experiments. These data have been digitized from graphs that appear in the literature. An annotated bibliography of literature on spent fuel characterization is provided in Appendix B.

  1. STOMP-ECKEChem: An Engineering Perspective on Reactive Transport in Geologic Media

    SciTech Connect (OSTI)

    White, Mark D.; Fang, Yilin

    2012-04-04

    ECKEChem (Equilibrium, Conservation, Kinetic Equation Chemistry) is a reactive transport module for the STOMP suite of multifluid subsurface flow and transport simulators that was developed from an engineering perspective. STOMP comprises a suite of operational modes that are distinguished by the solved coupled conservation equations with capabilities for a variety of subsurface applications (e.g., environmental remediation and stewardship, geologic sequestration of greenhouse gases, gas hydrate production, and oil shale production). The ECKEChem module was designed to provide integrated reactive transport capabilities across the suite of STOMP simulator operational modes. The initial application for the ECKEChem module was in the simulation of the mineralization reactions that occurred with the injection of supercritical carbon dioxide into deep Columbia River basalt formations, where it was implemented in the STOMP-CO2 simulator. The STOMP-ECKEChem solution approach to modeling reactive transport in multifluid geologic media is founded on an engineering perspective: (1) sequential non-iterative coupling between the flow and reactive transport is sufficient, (2) reactive transport can be modeled by operator splitting with local geochemistry and global transport, (3) geochemistry can be expressed as a system of coupled nonlinear equilibrium, conservation and kinetic equations, (4) a limited number of kinetic equation forms are used in geochemical practice. This chapter describes the conceptual approach to converting a geochemical reaction network into a series of equilibrium, conservation and kinetic equations, the implementation of ECKEChem in STOMP, the numerical solution approach, and a demonstration of the simulator on a complex application involving desorption of uranium from contaminated field-textured sediments.

  2. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

  3. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Bullard, K.L.

    1994-08-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  4. Implications of Plutonium isotopic separation on closed fuel cycles and repository design

    SciTech Connect (OSTI)

    Forsberg, C.

    2013-07-01

    Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

  5. Energy Department selects Battelle team for a deep borehole field...

    Energy Savers [EERE]

    Battelle team for a deep borehole field test in North Dakota Energy Department selects Battelle team for a deep borehole field test in North Dakota January 5, 2016 - 5:31pm ...

  6. Deep East Texas Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Deep East Texas Elec Coop Inc Jump to: navigation, search Name: Deep East Texas Elec Coop Inc Place: Texas Phone Number: 1-800-392-5986 Website: www.deepeast.com Facebook: https:...

  7. Co2 Deep Store Ltd | Open Energy Information

    Open Energy Info (EERE)

    Deep Store Ltd Jump to: navigation, search Name: Co2 Deep Store Ltd Place: Scotland, United Kingdom Zip: AB11 7LH Sector: Carbon Product: UK based organization focused on the...

  8. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    N50-60E,N50-60W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro brecciation accompanied...

  9. Subtask 2.17 - CO{sub 2} Storage Efficiency in Deep Saline Formations

    SciTech Connect (OSTI)

    Gorecki, Charles; Liu, Guoxiang; Braunberger, Jason; Klenner, Robert; Ayash, Scott; Dotzenrod, Neil; Steadman, Edward; Harju, John

    2014-02-01

    As the field of carbon capture and storage (CCS) continues to advance, and large-scale implementation of geologic carbon dioxide (CO{sub 2}) storage progresses, it will be important to understand the potential of geologic formations to store meaningful amounts of CO{sub 2}. Geologic CO{sub 2} storage in deep saline formations (DSFs) has been suggested as one of the best potential methods for reducing anthropogenic CO{sub 2} emission to the atmosphere, and as such, updated storage resource estimation methods will continue to be an important component for the widespread deployment of CCS around the world. While there have been several methodologies suggested in the literature, most of these methods are based on a volumetric calculation of the pore volume of the DSF multiplied by a storage efficiency term and do not consider the effect of site-specific dynamic factors such as injection rate, injection pattern, timing of injection, pressure interference between injection locations, and overall formation pressure buildup. These volumetric methods may be excellent for comparing the potential between particular formations or basins, but they have not been validated through real-world experience or full-formation injection simulations. Several studies have also suggested that the dynamic components of geologic storage may play the most important role in storing CO{sub 2} in DSFs but until now have not directly compared CO{sub 2} storage resource estimates made with volumetric methodologies to estimates made using dynamic CO{sub 2} storage methodologies. In this study, two DSFs, in geographically separate areas with geologically diverse properties, were evaluated with both volumetric and dynamic CO{sub 2} storage resource estimation methodologies to compare the results and determine the applicability of both approaches. In the end, it was determined that the dynamic CO{sub 2} storage resource potential is timedependent and it asymptotically approaches the volumetric CO{sub 2} storage resource potential over very long periods of time in the two systems that were evaluated. These results indicate that the volumetric assessments can be used as long as the appropriate storage efficiency terms are used and it is understood that it will take many wells over very long periods of time to fully realize the storage potential of a target formation. This subtask was funded through the Energy & Environmental Research Center (EERC)– U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  10. Evaluation of research and development for terminal isolation of nuclear wastes

    SciTech Connect (OSTI)

    Burton, B.W.

    1982-08-01

    The National Waste Terminal Storage program is responsible for identifying and constructing a geologic repository for spent reactor fuel, high-level waste, and transuranic waste. Extensive research and development work is in progress in the areas of site selection, waste treatment and waste form development, model development and validation, and long-term repository performance assessment. Many potential technologies are under investigation, but specific technologies cannot be identified until a repository site is selected. It is too early in the program to assess the adequacy of environmental control technologies for deep geologic disposal.

  11. Site Development, Operations, and Closure Plan Topical Report 5 An Assessment of Geologic Carbon Sequestration Options in the Illinois Basin. Phase III

    SciTech Connect (OSTI)

    Finley, Robert; Payne, William; Kirksey, Jim

    2015-06-01

    The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.

  12. NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science Computational Researchers Test Advanced Machine Learning Tools for HPC December 8, 2015 Contact: Kathy Kincade, kkincade@lbl.gov, 510-495-2124 braindeeplearning Researchers in Berkeley Lab's Biological Systems and Engineering Division are using a deep learning library to analyze recordings of the human brain during speech production. Image: Kris Bouchard Deep

  13. Presentation at the Weatherization Program Deep Dive Briefing, November 4,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 | Department of Energy Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program presentation at Weatherization Deep Dive meeting, November 4, 2009. PDF icon wap_deep_dive.pdf More Documents & Publications Designing Effective Incentives to Drive Residential

  14. Building America Webinar: A National Summary of Deep Energy Retrofits |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A National Summary of Deep Energy Retrofits Building America Webinar: A National Summary of Deep Energy Retrofits This presentation by Brennan Less is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. PDF icon BA Webinar_less_6-25-14.pdf More Documents & Publications Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet)

  15. Building America Webinar: Deep Energy Retrofit Case Studies: Lessons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learned | Department of Energy Deep Energy Retrofit Case Studies: Lessons Learned Building America Webinar: Deep Energy Retrofit Case Studies: Lessons Learned This presentation by Alea German is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. PDF icon BA Webinar_german_6-25-14.pdf More Documents & Publications Building America Webinar: Introduction - Who's Successfully Doing Deep Energy Retrofits? Critical Question #8: When are

  16. Deep Challenges for Foundation Performance at Savannah River Site |

    Office of Environmental Management (EM)

    Department of Energy Deep Challenges for Foundation Performance at Savannah River Site Deep Challenges for Foundation Performance at Savannah River Site Deep Challenges for Foundation Performance at Savannah River Site Frank H. Syms and Brent Gutierrez October 22, 2014 PDF icon Deep Challenges for Foundation Performance at Savannah River Site More Documents & Publications H-Tank Farm Waste Determination SRS FTF Section 3116 Basis for Determination F-Tank Farm Performance Assessment, Rev

  17. Small diameter, deep bore optical inspection system

    DOE Patents [OSTI]

    Lord, David E. (Livermore, CA); Petrini, Richard R. (Livermore, CA); Carter, Gary W. (Livermore, CA)

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  18. Benchmark field study of deep neutron penetration

    SciTech Connect (OSTI)

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  19. Quantitative damage evaluation of localized deep pitting

    SciTech Connect (OSTI)

    Al Beed, A.A.; Al Garni, M.A.

    2000-04-01

    Localized deep pitting is considered difficult to precisely measure and evaluate using simple techniques and daily-use analysis approaches. A case study was made of carbon steel heat exchangers in a typical fresh cooling water environment that experienced severe pitting. To effectively and precisely evaluate the encountered pitting damage, a simple measurement and analyses approach was devised. In this article, the pitting measurement technique and the damage evaluation approach are presented and discussed in detail.

  20. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect (OSTI)

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  1. Completion practices in deep sour Tuscaloosa wells

    SciTech Connect (OSTI)

    Huntoon, G.G.

    1984-01-01

    Successful development of the Tuscaloosa trend in Louisiana has required unique completion practices to produce the trend's deep sour formations. Amoco's operations in the Tuscaloosa formation are between 16,000 and 21,000 ft (4877 and 6400 m), and a range of pressure environments, high temperatures, and corrosive elements is encountered. Application of proved completion practices and equipment has resulted in several techniques that enhance the safety, longevity, and production capacity of these wells. The design of deep Tuscaloosa completions is assisted by a series of correlations developed to project bottomhole and surface shut-in tubing pressures, temperature gradients, and flow capacities for deep sour wells. This paper discusses material selection, completion practices, completion fluids, wellhead equipment, packer designs, corrosion-inhibition systems, and safety and monitoring equipment used in the Tuscaloosa trend. The design of a wellhead surface installation used to detect equipment failure, to pump kill fluids, and to circulate corrosion inhibitors is reviewed. A case study illustrates the methods used in completing a Tuscaloosa well with surface pressures exceeding 16,000 psi (110.3 MPa). Deep high-pressure sour-gas wells can be completed safely if all the elements of the environment that will affect the mechanical integrity of the wellbore are considered in the completion designs. The development of higher-strength material capable of withstanding SSC is needed if wells are completed in formations deeper than 22,000 ft (6700 m). Further research is necessary on the use of alloy steels and nonferrous metals for sour service. Effective high-temperature corrosion inhibitors for heavy zinc bromide completion fluids must be developed before these brines can be used in the Tuscaloosa. The testing of new inhibitors for use in highpressure sour-gas completions should be continued.

  2. Database for Regional Geology, Phase 1- A Tool for informing Regional

    Office of Environmental Management (EM)

    Evaluations of Alternative Geologic Media and Decision Making | Department of Energy Database for Regional Geology, Phase 1- A Tool for informing Regional Evaluations of Alternative Geologic Media and Decision Making Database for Regional Geology, Phase 1- A Tool for informing Regional Evaluations of Alternative Geologic Media and Decision Making The report describes implementation and planning of websites that allow visualization or manipulation of data in the UFD GIS Database; e.g., the

  3. Use of seismic attributes in geological description of carbonate rocks

    SciTech Connect (OSTI)

    Castrejon-Vacio, F.; Porres-Luna, A.A.

    1994-12-31

    Seismic attributes have been used widely in order to obtain geological description of petroleum reservoirs, especially as a support for the definition of horizontal continuity of strata, with special emphasis on terrigeneous formations. Nevertheless the application of seismic attributes to the study of carbonate and naturally fractured reservoirs has been limited. This paper shows the application of seismic attributes and seismic inversion to the geological and petrophysical characterization of a naturally fractured reservoir with complex lithology, which is characteristic of the most important producing formations in Mexico. The results from these techniques provide the basis for the definition of a realistic geological model, which is of prime concern for the reservoir`s characterization, numerical studies and EOR applications.

  4. Niagara Falls Storage Site, Lewiston, New York: geologic report

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  5. On Leakage from Geologic Storage Reservoirs of CO2

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  6. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

  7. Deep Sludge Gas Release Event Analytical Evaluation

    SciTech Connect (OSTI)

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.

  8. Application of micro-PIXE method to ore geology

    SciTech Connect (OSTI)

    Murao, S.; Hamasaki, S.; Sie, S. H.; Maglambayan, V. B.; Hu, X.

    1999-06-10

    Specific examples of ore mineral analysis by micro-PIXE are presented in this paper. For mineralogical usage it is essential to construct a specimen chamber which is designed exclusively for mineral analysis. In most of the analysis of natural minerals, selection of absorbers is essential in order to obtain optimum results. Trace element data reflect the crystallographic characteristics of each mineral and also geologic settings of sampling locality, and can be exploited in research spanning mineral exploration to beneficiation. Micro-PIXE thus serves as a bridge between small-scale mineralogical experiments and understanding of large-scale geological phenomenon on the globe.

  9. Title Geology of the Great Basin. Copyright Issue Entire Book

    National Nuclear Security Administration (NNSA)

    Geology of the Great Basin. Copyright Issue Entire Book Author Fiero, B. 101084 Document Date 1/1/86 Document Type Book ERC Index number 05.09.128 Box Number 1672-1 Recipients Unversity of Nevada Reno Press ADI " Geology of the Great Basin Cover photograph: ^prings, Black Rock Desert, Nevada. John The document contained in this file has not been saved as an electronic file because it is copyrighted material. A hard copy of this document can be found in Box Number 0526-4

  10. A Deep Geothermal Exploration Well At Eastgate, Weardale, Uk...

    Open Energy Info (EERE)

    granites as targets for geothermal resources. Authors DAC Manning, PL Younger, FW Smith, JM Jones, DJ Dufton and S. Diskin Published Journal Journal of the Geological...

  11. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    SciTech Connect (OSTI)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  12. Transport of Organic Contaminants Mobilized from Coal through Sandstone Overlying a Geological Carbon Sequestration Reservoir

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.; Shewell, Jesse L.

    2014-02-01

    Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50°C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core were monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.

  13. Advantages of co-located spent fuel reprocessing, repository and underground reactor facilities

    SciTech Connect (OSTI)

    Mahar, James M.; Kunze, Jay F.; Wes Myers, Carl; Loveland, Ryan

    2007-07-01

    The purpose of this work is to extend the discussion of potential advantages of the underground nuclear park (UNP) concept by making specific concept design and cost estimate comparisons for both present Generation III types of reactors and for some of the modular Gen IV or the GNEP modular concept. For the present Gen III types, we propose co-locating reprocessing and (re)fabrication facilities along with disposal facilities in the underground park. The goal is to determine the site costs and facility construction costs of such a complex which incorporates the advantages of a closed fuel cycle, nuclear waste repository, and ultimate decommissioning activities all within the UNP. Modular power generation units are also well-suited for placement underground and have the added advantage of construction using current and future tunnel boring machine technology. (authors)

  14. DOE Geothermal Data Repository: Getting More Mileage Out of Your Data: Preprint

    SciTech Connect (OSTI)

    Weers, Jon; Anderson, Arlene

    2015-09-21

    All data submitted to the U.S. Department of Energy's Geothermal Data Repository (GDR) is eventually made public. The metadata for these data submissions is searchable in multiple data catalogs, including the GDR catalog and the data catalog on OpenEI.org. Because it is a node on the National Geothermal Data System (NGDS), all data on the GDR are also discoverable through both the regular Identifier (DOI), and as a byproduct of this assignment, these submissions are automatically registered in the Office of Science and Technical Information (OSTI) DataCite catalog. From there, these data are federated to additional sites both domestic and international, including Science.gov and WorldWideScience.org. This paper will explore in detail the wide reach of data submitted to the GDR from and how this exposure can dramatically increase the utility of submitted data.

  15. Environmental Stress Pathway Project (ESSP) Data in EIDR, the Experimental Information and Data Repository

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Arkin, Adam [LBNL; Hazen, Terry [LBNL

    ESPP is developing computational models that describe and predict the behavior of gene regulatory networks in microbes in response to the environmental conditions found in DOE waste sites. The research takes place within the Virtual Institue for Microbial Stress and Survival (VIMSS). ESPP data files are stored on one of the VIMSS file servers. They include data generated by project participants, as well as links to data stored either in BioFiles or in the Experimental Data Repository. A searchable information database, EIDR, provides links to the data files and information about the data, including design information about biomass production experiments, information about the lab analyses that generated the data, and links to more detailed information, displays, or analyses. EIDR contains more than 3000 data uploads. (Specialized Interface)

  16. Nucleic Acid Database: a Repository of Three-Dimensional Information about Nucleic Acids

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Berman, H. M.; Olson, W. K.; Beveridge, D. L.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S. H.; Srinivasan, A. R.; Schneider, B.

    The Nucleic Acid Database (NDB) provides 3-D structural information about nucleic acids.  It is a relational database designed to facilitate the easy search for nucleic acid structures using any of the stored primary or derived structural features. Reports can then be created describing any properties of the selected structures and structures may be viewed in several different formats, including the mmCIF format, the NDB Atlas format, the NDB coordinate format, or the PDB coordinate format. Browsing structure images created directly from coordinates in the repository can also be done. More than 7000 structures have been released as of May 2014. This website also includes a number of specialized tools and interfaces. The NDB Project is funded by the National Institutes of Health and has been funded by the National Science Foundation and the Department of Energy in the past.

  17. Packaging Strategies for Criticality Safety for "Other" DOE Fuels in a Repository

    SciTech Connect (OSTI)

    Larry L Taylor

    2004-06-01

    Since 1998, there has been an ongoing effort to gain acceptance of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the national repository. To accomplish this goal, the fuel matrix was used as a discriminating feature to segregate fuels into nine distinct groups. From each of those groups, a characteristic fuel was selected and analyzed for criticality safety based on a proposed packaging strategy. This report identifies and quantifies the important criticality parameters for the canisterized fuels within each criticality group to: (1) demonstrate how the “other” fuels in the group are bounded by the baseline calculations or (2) allow identification of individual type fuels that might require special analysis and packaging.

  18. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  19. Environmental impact of Yucca Mountain repository after Urex+1a separation

    SciTech Connect (OSTI)

    Djokic, Denia; Ahn, Joonhong

    2007-07-01

    The environmental impact of Yucca Mountain Repository (YMR), expressed as the radiotoxicity of radionuclides released from failed waste packages, has been evaluated for the case of partitioning and vitrification the 63,000 MT of commercial spent nuclear fuel (CSNF) currently designated for disposal. A parametric study on the effect of fuel cycle parameters on environmental impact has also been conducted. CSNF inventory has been evaluated by using ORIGEN2. UREX+1a separation is considered as the base case, and the removal of individual nuclide groups has also been investigated. Of particular interest is the effect of Cs/Sr removal on the waste loading of a canister. An existing waste-conditioning model for high-level liquid waste (HLLW) solidification with borosilicate glass is used to determine the composition and waste loading of a vitrified waste canister by a set of waste loading constraints. A previously developed release model has been applied to evaluate the environmental impact of the vitrified waste packages in YMR. Numerical results show that while the removal of Tc and Cs/Sr does not have an effect on the environmental impact profile, it is linearly sensitive to separation efficiency of actinides. The uncertainty associated with the environmental impact resulting from the uncertainties of radionuclide solubility values has been computed. It was determined that in the case of U, TRU, Tc, and Cs/Sr inventory reduction by a factor of 100 and subsequent vitrification, the repository footprint would decrease by a factor of 3.4, implying that 3.4 times more electricity generation could be accommodated while the environmental impact is up to a factor of 100 smaller than the direct disposal case. (authors)

  20. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    SciTech Connect (OSTI)

    Z.E. Peterman; P.L. Cloke

    2000-12-13

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO{sub 2}, 76.29; Al{sub 2}O{sub 3}, 12.55; FeO, 0.14; Fe{sub 2}O{sub 3}, 0.97; MgO, 0.13; CaO, 0.50; Na{sub 2}O, 3.52; K{sub 2}O, 4.83; TiO{sub 2}, 0.11; and MnO, 0.07.

  1. Integration of geology, geostatistics, well logs and pressure data to model a heterogeneous supergiant field in Iran

    SciTech Connect (OSTI)

    Samimi, B.; Bagherpour, H.; Nioc, A.

    1995-08-01

    The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than the flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.

  2. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  3. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance.

  4. Coiled tubing facilitates deep underbalanced workover

    SciTech Connect (OSTI)

    Adams, L.S.; Overstreet, C.C.

    1997-03-31

    A recent workover shows the technical capability and cost effectiveness of coiled tubing for cleaning out scale in a 22,611-ft, low pressure, high-temperature gas well. The well, operated by Chevron USA Production Co., is in the Fort Stockton Gas Unit 5-1 Gomez (Ellenburger) field, in West Texas. The development of reliable 100,000-psi minimal yield strength coiled tubing was a major factor that allowed this work to succeed. The methods demonstrated by this workover are becoming a standard for deep well cleanouts in the Gomez (Ellenburger) field. The paper describes coiled tubing advantages, well history, and implementation.

  5. Deep Secrets of the Neutrino: Physics Underground

    SciTech Connect (OSTI)

    Rowson, P.C.

    2010-03-23

    Among the many beautiful, unexpected and sometimes revolutionary discoveries to emerge from subatomic physics, probably none is more bizarre than an elementary particle known as the 'neutrino'. More than a trillion of these microscopic phantoms pass unnoticed through our bodies every second, and indeed, through the entire Earth - but their properties remain poorly understood. In recent years, exquisitely sensitive experiments, often conducted deep below ground, have brought neutrino physics to the forefront. In this talk, we will explore the neutrino - what we know, what we want to know, and how one experiment in a New Mexico mine is trying to get there.

  6. Database for Regional Geology, Phase 1: A Tool for Informing Regional Evaluations of Alternative Geologic Media and Decision Making

    SciTech Connect (OSTI)

    Perry, Frank Vinton; Kelley, Richard E.; Birdsell, Suzanne M.; Lugo, Alexander Bryan; Dobson, Patrick; Houseworth, James

    2014-11-12

    Reported is progress in the following areas: Phase 1 and 2 websites for the regional geology GIS database; terrane maps of crystalline basement rocks; inventory of shale formations in the US; and rock properties and in-situ conditions for shale estimated from sonic velocity measurements.

  7. National Grid Deep Energy Retrofit Pilot

    SciTech Connect (OSTI)

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  8. Cost reduction in deep water production systems

    SciTech Connect (OSTI)

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  9. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO2 Geological Sequestration

    SciTech Connect (OSTI)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; Lu, C.; Mansoor, K.; Carroll, S. A.

    2012-12-20

    The risk of CO2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO2/brine saturation are connected to the fault-leakage model as a boundary condition. CO2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.

  10. DOE's Deep Capabilities and Wide Possibilities Highlighted at Executive

    Energy Savers [EERE]

    Summit on Marine and Hydrokinetic Research and Development | Department of Energy Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development DOE's Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development March 4, 2016 - 2:42pm Addthis It's said that still water runs deep. But when it comes to marine and hydrokinetic technology development, the Department of

  11. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena

    Office of Scientific and Technical Information (OSTI)

    XCL-2 (Journal Article) | SciTech Connect Journal Article: The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2 Citation Details In-Document Search Title: The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2 Presented here is the complete genome sequence ofThiomicrospira crunogena XCL-2, representative of ubiquitouschemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-seahydrothermal vents. This gammaproteobacterium has a single

  12. Building America Webinar: Results from Phased Deep Retrofits in Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phased Deep Retrofits in Florida D. Parker, D. Chasar, K. Sutherland, J. Montemurno, J. Kono Florida Solar Energy Center June, 2014 Phased Deep Retrofit (PDR) Project * Detailed residential field metering project in FPL Service Territory * Cooperative project between U.S. DOE and FPL * Sixty heavily metered homes evaluated over 2 years * Shallow retrofit in all & then deep retrofits in 10 * Collecting data of unique value to FPL/DOE PDR: Extensive end-use metering * January - July 2013: 60

  13. Building America Webinar: Results from Phased Deep Retrofits in Florida |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Results from Phased Deep Retrofits in Florida Building America Webinar: Results from Phased Deep Retrofits in Florida This presentation by Danny Parker is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. PDF icon BA Webinar_parker_6-25-14.pdf More Documents & Publications Building America Team (BA-PIRC) - 2014 BTO Peer Review Building America Whole-House Solutions for Existing Homes: Pilot Demonstration of

  14. Building America Efficient Solutions for Existing Homes Case Study: Deep

    Energy Savers [EERE]

    Energy Retrofit of 1910 House, Portland, Oregon | Department of Energy Deep Energy Retrofit of 1910 House, Portland, Oregon Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 100-year-old home in Portland, Oregon, audited by Pacific Northwest National Laboratory for a deep energy

  15. Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? |

    Energy Savers [EERE]

    Department of Energy Who's Successfully Doing Deep Energy Retrofits? Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? The webinar on June 25, 2014, focused on specific Building America projects that highlighted real-world examples of deep energy retrofits (DER) that are meeting with technical and market success. Presenters focused on technical strategies, modeled and actual performance results, and project costs. Danny Parker, Building America Partnership for

  16. Energy Department Explores Deep Direct Use | Department of Energy

    Office of Environmental Management (EM)

    Explores Deep Direct Use Energy Department Explores Deep Direct Use Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Deep Direct Use (DDU) geothermal applications utilize natural geothermal fluid for a full spectrum of cascading uses, including

  17. Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,

    Office of Environmental Management (EM)

    Borehole Seals Design, and RD&D Needs | Department of Energy Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and

  18. Geology and recognition criteria for veinlike uranium deposits of the lower to middle Proterozoic unconformity and strata-related types. Final report

    SciTech Connect (OSTI)

    Dahlkamp, F.J.; Adams, S.S.

    1981-01-01

    The discovery of the Rabbit Lake deposit, Saskatchewan, in 1968 and the East Alligator Rivers district, Northern Territory, Australia, in 1970 established the Lower-Middle Proterozoic veinlike-type deposits as one of the major types of uranium deposits. The term veinlike is used in order to distinguish it from the classical magmatic-hydrothermal vein or veintype deposits. The veinlike deposits account for between a quarter and a third of the Western World's proven uranium reserves. Lower-Middle Proterozoic veinlike deposits, as discussed in this report include several subtypes of deposits, which have some significantly different geologic characteristics. These various subtypes appear to have formed from various combinations of geologic processes ranging from synsedimentary uranium precipitation through some combination of diagenesis, metamorphism, metasomatism, weathering, and deep burial diagenesis. Some of the deposit subtypes are based on only one or two incompletely described examples; hence, even the classification presented in this report may be expected to change. Geologic characteristics of the deposits differ significantly between most districts and in some cases even between deposits within districts. Emphasis in this report is placed on deposit descriptions and the interpretations of the observers.

  19. The Macolumn: Desperately seeking software. [Geologic software for the Apple Macintosh

    SciTech Connect (OSTI)

    Busbey, A.B.

    1988-08-01

    The Apple Macintosh has been available since 1984, but there has been little development of commercial geological software for it. The author briefly reviews what geological software is available for the Macintosh

  20. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Soda Lake Well Lithology Data and Geologic Cross-Sections Title: Soda Lake Well Lithology Data and Geologic Cross-Sections Comprehensive catalogue of drill-hole data in ...

  1. Preliminary Safety Analysis of the Gorleben Site: Geological Database - 13300

    SciTech Connect (OSTI)

    Weber, Jan Richard; Mrugalla, Sabine; Dresbach, Christian; Hammer, Joerg

    2013-07-01

    The Gorleben salt dome is 4 km wide and nearly 15 km long. It is composed of different salt rock types of the Zechstein (Upper Permian) series and extends to the Zechstein basis in a depth of more than 3 km. In the course of the salt dome formation the salt was moved several kilometers. During the uplift of the salt the initially plane-bedded strata of the Zechstein series were extensively folded. In this process anhydrite as a competent layer was broken to isolated blocks. In the core of the salt dome the Hauptsalz, which is characterized by a particularly high creeping capacity, forms a homogeneous halite body with a volume of several cubic kilometres. The Hauptsalz contains gaseous and liquid hydrocarbons in separated zones of decimeter to meter dimensions. The overall hydrocarbon content is far below 0.01 %. At the flanks the salt dome consists of salt rocks with lower creeping capacities. Brine reservoirs with fluid volumes in the range of liters to hundreds of cubic meters exist in certain regions of this part of the salt dome. The water content of the Hauptsalz is below 0.02 %. Interconnected pores do not exist in the salt rock outside of fluid bearing or fractured areas, i.e. the salt rock is impermeable. The exploration of the Gorleben site as a potential site for a HLW-repository started in 1979 and is still in progress. To date no scientific findings contest the suitability of the site for a safe HLW-repository. (authors)

  2. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  3. NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... applied for this purpose are standard machine learning approaches, which are likely ... method for recognizing patterns in brain signals, he added. "Using deep learning, our team ...

  4. MHK Technologies/Deep Ocean Water Application Facility DOWAF...

    Open Energy Info (EERE)

    the temperature differential between the warm surface and the cold deep seawater The OTEC heat engine converts the thermal energy into usable mechanical energy which in turn is...

  5. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    May 27, 2015 EA-1943: Draft Environmental Assessment Long Baseline Neutrino FacilityDeep Underground Neutrino Experiment (LBNFDUNE) at Fermilab, Batavia, Illinois and the...

  6. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  7. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Development and Demonstration Roadmap for Deep Borehole Disposal. Arnold, Bill W.; MacKinnon, Robert J.; Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE...

  8. Building America Webinar: Introduction- Who's Successfully Doing Deep Energy Retrofits?

    Broader source: Energy.gov [DOE]

    This presentation provides the introduction for the Building America webinar, Who's Successfully Doing Deep Energy Retrofits, presented on June 25, 2014.

  9. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    ESRP. Masking much of the deep thermal potential of the ... apply the RTEst model to water compositions measured from ... on Geothermal Reservoir Engineering,Stanford,02242014,02...

  10. Application Of Electrical Resistivity And Gravimetry In Deep...

    Open Energy Info (EERE)

    Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Electrical...

  11. CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing to Encourage Deep Retrofits - 2015 Peer Review Presenter: Rudy Terry, Philadelphia Industrial Development Corp. View the Presentation CBEI: Demonstrating On-Bill...

  12. Building America Webinar: A National Summary of Deep Energy Retrofits...

    Energy Savers [EERE]

    Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) 2015 Race to Zero Competition Winner Team Summaries...

  13. Analysis Procedure And Equipment For Deep Geoelectrical Soundings...

    Open Energy Info (EERE)

    A brief description is given of a digital geoelectrical acquisition data system and of some examples of data filtering relative to a deep dipole-dipole sounding...

  14. Technique Reveals Critical Physics in Deep Regions of Solar Cells...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minority-carrier lifetime deep within photovoltaic samples to help develop more efficient solar cells. When developing a solar photovoltaic (PV) cell, designers benefit from having...

  15. Deep River, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Deep River, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3856546, -72.4356422 Show Map Loading map... "minzoom":false,"mappi...

  16. Deep River Center, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Deep River Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3729131, -72.4435674 Show Map Loading map......

  17. Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the ...

  18. ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND RECOMMENDATIONS 2014 ULTRA-DEEPWATER ADVISORY COMMITTEE COMMITTEE FINDINGS AND RECOMMENDATIONS i Table of Contents Research and ...

  19. Using Cloud-Resolving Model Simulations of Deep Convection to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so extending them to a global model with many different environments is not straightforward. For example, deep convection creates abundant cloudiness and yet little is known...

  20. DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING...

    Office of Scientific and Technical Information (OSTI)

    CATACLYSMIC VARIABLE: LSQ172554.8-643839 Citation Details In-Document Search Title: DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING CATACLYSMIC VARIABLE: ...