Powered by Deep Web Technologies
Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids  

E-Print Network [OSTI]

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.the 5-km Deep Enhanced Geothermal Reservoir at Soultz-sous-

Pruess, Karsten

2007-01-01T23:59:59.000Z

2

Performance of Deep Geothermal Energy Systems .  

E-Print Network [OSTI]

??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation… (more)

Manikonda, Nikhil

2012-01-01T23:59:59.000Z

3

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

4

Enhanced Geothermal Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

5

Enhanced Geothermal Systems Technologies  

Broader source: Energy.gov [DOE]

Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

6

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

7

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

8

Geothermal Permeability Enhancement - Final Report  

SciTech Connect (OSTI)

The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

Joe Beall; Mark Walters

2009-06-30T23:59:59.000Z

9

Thermo2Pro: Knowledge dissemination for deep geothermal exploration  

E-Print Network [OSTI]

1/12 Thermo2Pro: Knowledge dissemination for deep geothermal exploration Philippe Calcagno1 territoires, Voreppe, France # now at Kitware, Villeurbanne, France p.calcagno@brgm.fr Keywords: Deep geothermal exploration, information system, Web tool, sedimentary basin, dissemination. Abstract

Paris-Sud XI, Université de

10

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL  

E-Print Network [OSTI]

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY of stimulation is induced shear on preexisting fractures, which increases their transmissibility by orders of magnitude. The processes that create fractured rock are discussed from the perspective of geology and rock

Stanford University

11

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

12

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

13

Enhanced Geothermal in Nevada: Extracting Heat From the Earth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable...

14

DOE and Partners Test Enhanced Geothermal Systems Technologies...  

Office of Environmental Management (EM)

DOE and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on...

15

Energy Department Announces $10 Million to Speed Enhanced Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Speed Enhanced Geothermal Systems into the Market Energy Department Announces 10 Million to Speed Enhanced Geothermal Systems into the Market February 24, 2014 - 11:46am...

16

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir...

17

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis...

18

Enhanced Geothermal Systems Documents for Public Comment - Now...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems Documents for Public Comment - Now Closed Enhanced Geothermal Systems Documents for Public Comment - Now Closed February 28, 2012 - 3:41pm Addthis ****...

19

Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems  

SciTech Connect (OSTI)

This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

McLarty, Lynn; Entingh, Daniel

2000-09-29T23:59:59.000Z

20

A Technology Roadmap for Strategic Development of Enhanced Geothermal...  

Energy Savers [EERE]

Development of Enhanced Geothermal Systems DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. DOE...

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

22

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

23

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

105.2 EGS Demonstrations 51.4 Innovative Exploration Technologies, 98.1 Ground Source Heat Pumps, 61.9 Geothermal Data, Development, Collection and Maintenance, 33.7 Low...

24

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Coast geopressured-geothermal wells: Two studies, Pleasantinduced by geopressured-geothermal well development. In:

Majer, Ernest L.

2006-01-01T23:59:59.000Z

25

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

26

Induced seismicity associated with enhanced geothermal system  

SciTech Connect (OSTI)

Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

2006-09-26T23:59:59.000Z

27

The influence of geothermal sources on deep ocean temperature, salinity, and flow fields  

E-Print Network [OSTI]

This thesis is a study of the effect of geothermal sources on the deep circulation, temperature and salinity fields. In Chapter 1 background material is given on the strength and distribution of geothermal heating. In ...

Speer, Kevin G. (Kevin George)

1988-01-01T23:59:59.000Z

28

Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry  

SciTech Connect (OSTI)

The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

2014-02-01T23:59:59.000Z

29

High-Temperature-High-Volume Lifting for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

for Enhanced Geothermal Systems Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of...

30

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...  

Open Energy Info (EERE)

geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and...

31

Creation of an Enhanced Geothermal System through Hydraulic and...  

Broader source: Energy.gov (indexed) [DOE]

an Enhanced Geothermal System on the margin of the Coso field through the hydraulic, thermal, andor chemical stimulation of one or more tight injection wells; to increase the...

32

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

5 4.6.4 Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Presentation Number: 031 Investigator: Horne, Roland (Stanford University)...

33

Final Report: Enhanced Geothermal Systems Technology Phase II...  

Open Energy Info (EERE)

Valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New...

34

High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

35

Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid  

E-Print Network [OSTI]

2006), “The Future of Geothermal Energy Impact of Enhanced2000), “A Hot Dry Rock Geothermal Energy Concept UtilizingEnergy has broadly defined Enhanced (or Engineered) Geothermal

Xu, Tianfu; Pruess, Karsten; Apps, John

2008-01-01T23:59:59.000Z

36

Temporary Cementitious Sealers in Enhanced Geothermal Systems  

SciTech Connect (OSTI)

Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper-try sealers. Two specific additives without sodium silicate as alkaline additive were developed in this project: One additive was the sodium carboxymethyl cellulose (CMC) as self-degradation promoting additive; the other was the hard-burned magnesium oxide (MgO) made from calcinating at 1,000-1,500 C as an expansive additive. The AASC and AASF cementitious sealers made by incorporating an appropriate amount of these additives met the following six criteria: 1) One dry mix component product; 2) plastic viscosity, 20 to 70 cp at 300 rpm; 3) maintenance of pumpability for at least 1 hour at 85 C; 4) compressive strength >2000 psi; 5) self-degradable by injection with water at a certain pressure; and 6) expandable and swelling properties; {ge}0.5% of total volume of the sealer.

Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

2011-12-31T23:59:59.000Z

37

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

Majer, Ernest L.

2006-01-01T23:59:59.000Z

38

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

39

Deep geothermal reservoirs evolution: from a modeling perspective BRGM, 3 Avenue Claude Guillemin, BP 36009 -45060 Orlans Cedex 2, France  

E-Print Network [OSTI]

Deep geothermal reservoirs evolution: from a modeling perspective S. Lopez1 1 BRGM, 3 Avenue Claude deep geothermal reservoirs evolution and management based on examples ranging from direct use of geothermal heat to geothermal electricity production. We will try to focus on French experiences

Paris-Sud XI, Université de

40

An Evaluation of Enhanced Geothermal Systems Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluation of Enhanced Geothermal

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...  

Open Energy Info (EERE)

osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has been applied to Raft River geothermal well RRG-9,...

42

Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems  

E-Print Network [OSTI]

stimulation of an enhanced geothermal system using a high pHTwenty-Ninth Workshop on Geothermal Reservoir Engineering,Calcite dissolution in geothermal reservoirs using chelants,

Xu, T.

2010-01-01T23:59:59.000Z

43

Tailored Working Fluids for Enhanced Binary Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

44

Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid  

E-Print Network [OSTI]

2006), “The Future of Geothermal Energy Impact of Enhanced2000), “A Hot Dry Rock Geothermal Energy Concept Utilizing

Xu, Tianfu; Pruess, Karsten; Apps, John

2008-01-01T23:59:59.000Z

45

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

for Competitive Geothermal Power Generation, Energy & Fuels,of Power Generation Prospects from Enhanced Geothermal

Pruess, K.

2010-01-01T23:59:59.000Z

46

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

SciTech Connect (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

47

Visualization of Microearthquake Data from Enhanced Geothermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

site operators - and the public - to see where microearthquakes are occurring as geothermal energy is produced at a site. The 3D visualizations are being made available via a Web...

48

Future Technologies to Enhance Geothermal Energy Recovery  

SciTech Connect (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

49

A Deep Geothermal Exploration Well At Eastgate, Weardale, Uk...  

Open Energy Info (EERE)

granites as targets for geothermal resources. Authors DAC Manning, PL Younger, FW Smith, JM Jones, DJ Dufton and S. Diskin Published Journal Journal of the Geological...

50

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

Interactions in Enhanced Geothermal Systems (EGS) with CO 2Fluid, Proceedings, World Geothermal Congress 2010, Bali,Remain? Transactions, Geothermal Resources Council, Vol. 17,

Pruess, K.

2010-01-01T23:59:59.000Z

51

A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network [OSTI]

D.W. : A hot dry rock geothermal energy concept utilizingtwenty-?fth workshop on geothermal reservoir engineering,the development of enhanced geothermal systems? In: Paper

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

52

Imaging the Soultz Enhanced Geothermal Reservoir using double-difference tomography and microseismic data  

E-Print Network [OSTI]

We applied the double-difference tomography method to image the P and S-wave velocity structure of the European Hot Dry Rock geothermal reservoir (also known as the Soultz Enhanced Geothermal System) at Soultz-sous-Forets, ...

Piñeros Concha, Diego Alvaro

2010-01-01T23:59:59.000Z

53

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation ContractsCGNPC JV Jump to:Geothermal Lab Call

54

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation ContractsCGNPC JV Jump to:Geothermal Lab Call

55

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

observed during hydraulic fracturing experiments at themay be enhanced by hydraulic fracturing, high-rate water

Majer, Ernest L.

2006-01-01T23:59:59.000Z

56

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network [OSTI]

Geothermal System Overview ASHRAE Headquarters Building Dennis Meyer Director of Commercial Sales center #12;Geothermal Loop · Vertical closed-loop ­ 12 bores at 400 feet deep with 1.25" HDPE ­ Boreholes enhanced grout · Standard 2-pipe building loop with VFD pump #12;#12;#12;#12;ClimateMaster Geothermal

Oak Ridge National Laboratory

57

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid  

Broader source: Energy.gov [DOE]

The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

58

Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location  

Broader source: Energy.gov [DOE]

Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

59

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

SciTech Connect (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100’s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

60

Demonstration of an Enhanced Geothermal System at the Northwest...  

Broader source: Energy.gov (indexed) [DOE]

Bradys Hot Springs, Nevada Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program...

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Enhanced Geothermal Systems | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.DoubleInitiativesEnforcementSystems Enhanced

62

Enhanced Geothermal Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWasteDepartmentEnhanced

63

Thermally Enhanced Pipe for Geothermal Applications Stphane Gonthier  

E-Print Network [OSTI]

Geothermal Pipe · It's a thermally enhanced pipe · The pipe has a thermal conductivity of 0,40 BTU/hr ft °F Geoexchange Coalition 0,4 to 2,2 Btu hr-1 ft-1°F-1 (soil) 0,43 to 1,15 Btu hr-1 ft-1°F-1 (backfilling) 0,58 to 2,6 Btu hr-1 ft-1°F-1 (bedrock) 0,22 to 0,24 Btu hr-1 ft-1°F-1 (HDPE 3608) RESULT An insulator

64

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

SciTech Connect (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

65

Enhanced Geothermal Systems (EGS) R&D Program  

SciTech Connect (OSTI)

The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report the meat of the Workshop. Section 4.0 describes the nomination and clarification of technical thrusts, and Section 5.0 reports the results of prioritizing those thrusts via voting by the participants. Section 6.0 contains two discussions conducted after the work on research thrusts. The topics were ''Simulation'' and ''Stimulation''. A number of technical points that emerged here provide important guidance for both practical field work on EGS systems and for research.

Entingh, Daniel J.

1999-08-18T23:59:59.000Z

66

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal...  

Open Energy Info (EERE)

to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment...

67

Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research  

SciTech Connect (OSTI)

This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

2000-09-29T23:59:59.000Z

68

Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems  

SciTech Connect (OSTI)

The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ���±5���°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

William A. Challener

2014-12-04T23:59:59.000Z

69

First Commercial Success for Enhanced Geothermal Systems (EGS...  

Office of Environmental Management (EM)

work among project partners Ormat, GeothermEx, Lawrence Berkeley National Laboratory (LBNL), U.S. Geological Survey, and Sandia National Laboratories (SNL), among others. "There...

70

Towards the Understanding of Induced Seismicity in Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Gritto (PI), AIT Doug Dreger, UCB Oliver Heidbach, GFZ Larry Hutchings (Presenter), LBNL 2 | US DOE Geothermal Program UCB * EGS operations rely on small-scale seismicity to...

71

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Salak geothermal field in Indonesia. The ultimate goal is to characterize subsurface fracture system and reservoir permeability (possibly, their temporal evolution) using...

72

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Broader source: Energy.gov (indexed) [DOE]

precipitation with spatial and temporal flow variations in CO2brinerock systems Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)...

73

Demonstration of an Enhanced Geothermal System at the Northwest...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(EGS) Fact Sheet Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy EA-1733: Final...

74

Metal Organic Heat Carriers for Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. This project addresses Energy Conversion Barrier N -Inability to lower the temperature conditions under which EGS power generation is commercially viable.

75

Jules Verne or Joint Venture? Investigation of a Novel Concept for Deep Geothermal Energy Extraction.  

E-Print Network [OSTI]

?? Geothermal energy is an energy source with potential to supply mankind with both heat and electricity in nearly unlimited amounts. Despite this potential geothermal… (more)

Wachtmeister, Henrik

2012-01-01T23:59:59.000Z

76

Geothermal energy for the increased recovery of copper by flotation enhancement  

SciTech Connect (OSTI)

The possible use of geothermal energy (a) to speed the recovery of copper from ore flotation and/or leaching of flotation tailings and (b) to utilize geothermal brines to replace valuable fresh water in copper flotation operations was evaluated. Geothermal energy could be used to enhance copper and molybdenum recovery in mineral flotation by increasing the kinetics of the flotation process. In another approach, geothermal energy could be used to heat the leaching solution which might permit greater copper recovery using the same residence time in a tailings leach facility. Since there is no restriction on the temperature of the leaching fluid, revenues generated from the additional copper recovered would be greater for tailings leach operations than for other types of leach operations (for example, dump leaching operation) for which temperature restrictions exist. The estimated increase in total revenues resulting from two percent increase copper recovery in a 50,000 tons ore/day plant was estimated to be over $2,000,000 annually. It would require an estimated geothermal investment of about $2,130,000 for a geothermal well and pumping system. Thus, the capital investment would be paid out in about one year. Furthermore, considerable savings of fresh waters and process equipment are possible if the geothermal waters can be used directly in the mine-mill operations, which is believed to be practical.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

77

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

Brophy, P.

2012-01-01T23:59:59.000Z

78

Geothermal Energy at Oslo Airport Gardermoen.  

E-Print Network [OSTI]

?? Rock Energy is a Norwegian company with a patented solution for drilling deep geothermal wells, for exploitation of deep geothermal energy from Hot Dry… (more)

Huuse, Karine Valle

2012-01-01T23:59:59.000Z

79

ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS  

SciTech Connect (OSTI)

Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

2010-10-01T23:59:59.000Z

80

Seismic methods for resource exploration in enhanced geothermal systems  

SciTech Connect (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets  

E-Print Network [OSTI]

Earth-like planets within the liquid water habitable zone of M type stars may evolve into synchronous rotators. On these planets, the sub-stellar hemisphere experiences perpetual daylight while the opposing anti-stellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the anti-stellar side. Here we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the anti-stellar hemisphere. We also explore the persisten...

Haqq-Misra, Jacob

2014-01-01T23:59:59.000Z

82

Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems  

SciTech Connect (OSTI)

A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

2010-06-01T23:59:59.000Z

83

Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids  

E-Print Network [OSTI]

D.W. A Hot Dry Rock Geothermal Energy Concept Utilizingcombine recovery of geothermal energy with simultaneous1. Introduction Geothermal energy extraction is currently

Pruess, Karsten

2007-01-01T23:59:59.000Z

84

Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and ItsXVIIofPotentialSystems; 2010 Geothermal

85

International Partnership for Geothermal Technology - 2012 Peer...  

Broader source: Energy.gov (indexed) [DOE]

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

86

Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs  

SciTech Connect (OSTI)

The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

Kelkar, Sharad [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

87

Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems  

SciTech Connect (OSTI)

A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

2013-05-01T23:59:59.000Z

88

Stimulation Techniques Used In Enhanced Geothermal Systems: Perspectives From Geomechanics and Rock Physics  

SciTech Connect (OSTI)

Understanding the processes that enhance fluid flow in crustal rocks is a key step towards extracting sustainable thermal energy from the Earth. To achieve this, geoscientists need to identify the fundamental parameters that govern how rocks respond to stimulation techniques, as well as the factors that control the evolution of permeability networks. These parameters must be assessed over variety of spatial scales: from microscopic rock properties (such as petrologic, mechanical, and diagenetic characteristics) to macroscopic crustal behavior (such as tectonic and hydro-dynamic properties). Furthermore, these factors must be suitably monitored and/or characterized over a range of temporal scales before the evolutionary behavior of geothermal fields can be properly assessed. I am reviewing the procedures currently employed for reservoir stimulation of geothermal fields. The techniques are analyzed in the context of the petrophysical characteristics of reservoir lithologies, studies of wellbore data, and research on regional crustal properties. I determine common features of geothermal fields that can be correlated to spatiotemporal evolution of reservoirs, with particular attention to geomechanics and petrophysical properties. The study of these correlations can then help guide procedures employed when targeting new prospective geothermal resources.

Stephen L. Karner; Joel Renner

2005-01-01T23:59:59.000Z

89

The Future of Geothermal Energy  

E-Print Network [OSTI]

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

90

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

91

Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report  

SciTech Connect (OSTI)

Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260oC, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650oC, even exceeding 3000oC, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

Oglesby, Kenneth [Impact Technologies LLC; Woskov, Paul [MIT; Einstein, Herbert [MIT

2014-12-30T23:59:59.000Z

92

Enhanced Geothermal Systems Subprogram Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWasteDepartment ofEnhanced

93

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

SciTech Connect (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

94

Temporary Bridging Agents for use in Drilling and Completion of Enhanced Geothermal Systems  

SciTech Connect (OSTI)

CSI Technologies, in conjunction with Alta Rock Energy and the University of Utah have undergone a study investigating materials and mechanisms with potential for use in Enhanced Geothermal Systems wells as temporary diverters or lost circulation materials. Studies were also conducted with regards to particle size distribution and sealing effectiveness using a lab-scale slot testing apparatus to simulate fractures. From the slot testing a numerical correlation was developed to determine the optimal PSD for a given fracture size. Field trials conducted using materials from this study were also successful.

Watters, Larry; Watters, Jeff; Sutton, Joy; Combs, Kyle; Bour, Daniel; Petty, Susan; Rose, Peter; Mella, Michael

2011-12-21T23:59:59.000Z

95

Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems  

SciTech Connect (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

96

Ancestral Nesson anticline and associated geothermal anomalies: Enhanced hydrocarbon generation controlled by crustal structure  

SciTech Connect (OSTI)

Hydrocarbon generation in the Williston basin is influenced by crustal motions and geothermal gradient anomalies associated with the ancestral Nesson anticline, a long-lived crustal structure located along 103{degree} longitude. This structure and its effects are particularly important in Canada where most petroleum source rocks were not sufficiently buried to have generated hydrocarbons in a normal geothermal gradient environment. High geothermal gradients associated with this structure raise the oil window and expand the region of source rock thermal maturity. Ancestral Nesson structure subsided differentially throughout the Phanerozoic, controlling paleobathymetry and facies over its crest. During the Upper Ordovician the structure was positive; rich potential petroleum source rocks were deposited on the western flank of the structure, generally excluding them from the zone of elevated heat flows. The total petroleum potential of this oil-source system exceeds 5.5 billion bbl of oil equivalent in Canada alone. Unfortunately, its exclusion from the maturation anomaly results in no more than 200 million bbl of oil being expelled from these sources. During the Middle Devonian, the structure was a negative feature that formed a starved subbasin separating the Winnipegosis and Elm Point carbonate shelves. Rich potential petroleum source rocks that accumulated on the crest of the structure at that time now overlie the region of elevated heat that flows and enhanced hydrocarbon maturation. Two billion barrels of oil are estimated to have been expelled from this source rock. Understanding the history and tectonics of the ancestral Nesson anticline is fundamental to a correct appraisal of hydrocarbon resources in the Williston basin.

Osadetz, K.G.; Snowdon, L.R. (Geological Survey of Canada, Calgary, Alberta (Canada))

1989-09-01T23:59:59.000Z

97

Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid  

E-Print Network [OSTI]

Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofenhanced geothermal systems (EGS), predicting larger energy

Pruess, Karsten

2008-01-01T23:59:59.000Z

98

Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow  

SciTech Connect (OSTI)

Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

Moller, Nancy; Weare J. H.

2008-05-29T23:59:59.000Z

99

Federal Geothermal Research Program Update, FY 2000  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, Joel Lawrence

2001-08-01T23:59:59.000Z

100

Updated U.S. Geothermal Supply Curve  

SciTech Connect (OSTI)

This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.

Augustine, C.; Young, K. R.; Anderson, A.

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.  

SciTech Connect (OSTI)

The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

Taranik, James V.; Oppliger, Gary; Sawatsky, Don

2002-04-10T23:59:59.000Z

102

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

103

SMU Geothermal Conference 2011 - Geothermal Technologies Program...  

Energy Savers [EERE]

SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

104

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian… (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

105

300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objectives: Enable geothermal wellbore monitoring through the development of SiC based electronics and ceramic packaging capable of sustained operation at temperatures up to 300?C and 10 km depth. Demonstrate the technology with a temperature sensor system.

106

Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objectives: Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to 350?C) for development of geothermal systems.

107

On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent  

SciTech Connect (OSTI)

Dissolution of silica and calcite in the presence of a chelating agent (NTA) at a high pH was successfully demonstrated in laboratory experiments using a high-temperature flow reactor. (Note that the term 'silica' used here includes amorphous silica, quartz, and silicate glass bead). The mineral dissolution and associated porosity enhancement in the experiments were reproduced by reactive transport modeling using TOUGHREACT. The chemical stimulation method was applied by numerical modeling to a field geothermal injection well system to investigate its effectiveness. Parameters applicable to the quartz monzodiorite unit at the Enhanced Geothermal Systems (EGS) site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase, while avoiding precipitation of calcite at high temperature conditions. Consequently reservoir porosity and permeability can be enhanced especially near the injection well. Injection at a lower temperature of 120 C (over 160 C in the base-case) results in a porosity increase that is smaller close to the injection point, but extends to a larger radial distance. A slower kinetic rate results in less aggressive mineral dissolution close to the injection point and larger extent along the flow path, which is favorable for chemical stimulation.

Xu, T.; Rose, P.; Fayer, S.; Pruess, K.

2009-05-01T23:59:59.000Z

108

Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems  

SciTech Connect (OSTI)

A major concern in the development of enhanced geothermal systems (EGS) is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past researches have tended to focus primarily on thermal and hydraulic stimulation. Recent studies suggest that chemical stimulation may improve the performance of EGS reservoirs. Geothermal injection wells are often drilled into formations containing reactive minerals such as calcite. Injecting aqueous chemical agents such as mineral acids, could be effective for mineral dissolution and porosity enhancement at distances of several meters around a well. An alternative to treatment with strong acids is the use of supercritical (SC) CO{sub 2} as stimulation agent for an aqueous-based EGS. Reactive transport modeling is used to investigate the effectiveness of this method. We used the thermal condition and mineralogical composition from a well of Desert Peak EGS site, to examine ways in which mixtures of water and CO{sub 2} can be injected to enhance porosity.

Xu, T.; Zhang, W.; Pruess, K.

2009-11-15T23:59:59.000Z

109

Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal  

SciTech Connect (OSTI)

Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

2002-06-15T23:59:59.000Z

110

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

111

Micro-earthquake monitoring and tri-axial drill-bit VSP in NEDO {open_quotes}Deep-seated geothermal reservoir survey{close_quotes} in Kakkonda, Japan  

SciTech Connect (OSTI)

New Energy and Industrial Technology Development Organization has been drilling well WD-1 and employing micro-earthquake monitoring and tri-axial drill-bit VSP as the exploration techniques for the deep geothermal reservoir in the Kakkonda geothermal field, Japan. The results of them are as follows: (1) More than 1000 micro-earthquakes were observed from December 23, 1994 to July 1, 1995 in the Kakkonda geothermal field. Epicenters are distributed NW-SE from a macroscopic viewpoint; they distribute almost in the same areas as the fractured zone in the Kakkonda shallow reservoir as pointed out by Doi et al. (1988). They include three groups trending NE-SW. Depths of hypocenters range from the ground surface to about -2.5 km Sea level; they seem to be deeper in the western part. (2) Well WD-1 drilled into a swarm of micro-earthquakes at depths 1200 to 2200 m and encountered many lost circulations in those depths. However, these earthquakes occurred before well WD-1 reached those depths. (3) The bottom boundary of micro-earthquake distribution has a very similar shape to that of the top of the Kakkonda granite, though all of the micro-earthquakes are plotted 300 m shallower than the top of the granite. (4) The TAD VSP shows a possibility of existence of seismic reflectors at sea levels around -2.0, -2.2 and -2.6 km. These reflectors seem to correspond to the top of the Pre-Tertiary formation, the top of the Kakkonda granite and reflectors within the Kakkonda granite.

Takahashi, M.; Kondo, T.; Suzuki, I. [Japan Metals and Chemicals Co., Ltd., Iwate (Japan)] [and others

1995-12-31T23:59:59.000Z

112

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010  

E-Print Network [OSTI]

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Combination basins turned out to represent new interesting targets, where geothermal potential may be important. Deep

Paris-Sud XI, Université de

113

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis  

SciTech Connect (OSTI)

This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

Roland N. Horne, Kewen Li, Mohammed Alaskar, Morgan Ames, Carla Co, Egill Juliusson, Lilja Magnusdottir

2012-06-30T23:59:59.000Z

114

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.

115

Federal Geothermal Research Program Update Fiscal Year 2000  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, J.L.

2001-08-15T23:59:59.000Z

116

Geothermal Power and Interconnection: The Economics of Getting...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21 st Century," Massachusetts Institute of Technology, 2006 hereinafter "MIT Report"; and Geothermal...

117

Purchase and Installation of a Geothermal Power Plant to Generate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation....

118

Geothermal: Sponsored by OSTI -- Microhole arrays for improved...  

Office of Scientific and Technical Information (OSTI)

Microhole arrays for improved heat mining from enhanced geothermal systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

119

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

120

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117  

SciTech Connect (OSTI)

Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

1982-01-01T23:59:59.000Z

122

Optimization of hybrid-water/air-cooled condenser in an enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

air-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system DOE Geothermal...

123

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network [OSTI]

as defined from deep geothermal wells at Baca. c o TABLE 1.log of Jemez Springs geothermal well. Los Alamos ScientificThe most productive geothermal wells are located in Redondo

Wilt, M.

2011-01-01T23:59:59.000Z

124

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

SciTech Connect (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

125

A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network [OSTI]

D.W. : A hot dry rock geothermal energy concept utilizingThe Future of Geothermal Energy. (Massachusetts Institute ofa renewed interest in geothermal energy, and particularly in

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

126

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

D.W. A Hot Dry Rock Geothermal Energy Concept UtilizingThe Future of Geothermal Energy, Massachusetts Institute ofcombine recovery of geothermal energy with simultaneous

Pruess, K.

2010-01-01T23:59:59.000Z

127

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network [OSTI]

Brown, D. A Hot Dry Rock Geothermal Energy Concept UtilizingThe resource base for geothermal energy is enormous, butproduction of geothermal energy is currently limited to

Pruess, Karsten

2006-01-01T23:59:59.000Z

128

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network [OSTI]

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

Pruess, Karsten

2006-01-01T23:59:59.000Z

129

A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network [OSTI]

D.W. : A hot dry rock geothermal energy concept utilizinga renewed interest in geothermal energy, and particularly inThe Future of Geothermal Energy. (Massachusetts Institute of

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

130

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network [OSTI]

Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofThe resource base for geothermal energy is enormous, but

Pruess, Karsten

2006-01-01T23:59:59.000Z

131

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation  

SciTech Connect (OSTI)

This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field�������¢����������������s main producers, and the chemical stimulation of target well 27-15.

Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah

2013-04-15T23:59:59.000Z

132

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation  

SciTech Connect (OSTI)

This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field�s main producers, and the chemical stimulation of target well 27-15.

Rose, Peter Eugene [Energy and Geoscience Institute at the Univerity of Utah

2013-04-15T23:59:59.000Z

133

Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer  

SciTech Connect (OSTI)

Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

2009-10-06T23:59:59.000Z

134

Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation ContractsCGNPC JV Jump to:Geothermal Lab Call Project

135

Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture  

SciTech Connect (OSTI)

A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

Zachritz, W.H., II; Polka, R.; Schoenmackers

1996-04-01T23:59:59.000Z

136

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

137

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL  

E-Print Network [OSTI]

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energy

Politècnica de Catalunya, Universitat

138

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion...  

Open Energy Info (EERE)

Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Abstract Coso Geothermal Exploratory Hole No. 1 (CGEH No. 1) is the first deep exploratory...

139

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

of an ORC (Organic Rankine Cycle) plant having a net power capacity of 1,5MWe. Surface equipments (turbine fluid geochemistry, the temperature field and the hydraulic properties of the deep crystalline basement). The geothermal wells were hydraulically and chemically stimulated between 2000 and 2007 in order to enhance

Stanford University

140

Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy  

SciTech Connect (OSTI)

Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal Energy Association Recognizes the National Geothermal...  

Energy Savers [EERE]

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

142

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Schroeder, Jenna N.

143

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

SciTech Connect (OSTI)

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Schroeder, Jenna N.

2014-12-16T23:59:59.000Z

144

Energy 101: Geothermal Energy  

ScienceCinema (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-06-23T23:59:59.000Z

145

Energy 101: Geothermal Energy  

SciTech Connect (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-05-27T23:59:59.000Z

146

Quantitative Monitoring for Enhanced Geothermal Systems Using Double-Difference Waveform Inversion with Spatially-Variant Total-Variation Regularization  

SciTech Connect (OSTI)

Double-difference waveform inversion is a promising tool for quantitative monitoring for enhanced geothermal systems (EGS). The method uses time-lapse seismic data to jointly inverts for reservoir changes. Due to the ill-posedness of waveform inversion, it is a great challenge to obtain reservoir changes accurately and efficiently, particularly when using timelapse seismic reflection data. To improve reconstruction, we develop a spatially-variant total-variation regularization scheme into double-difference waveform inversion to improve the inversion accuracy and robustness. The new regularization scheme employs different regularization parameters in different regions of the model to obtain an optimal regularization in each area. We compare the results obtained using a spatially-variant parameter with those obtained using a constant regularization parameter. Utilizing a spatially-variant regularization scheme, the target monitoring regions are well reconstructed and the image noise is significantly reduced outside the monitoring regions. Our numerical examples demonstrate that the spatially-variant total-variation regularization scheme provides the flexibility to regularize local regions based on the a priori spatial information without increasing computational costs and the computer memory requirement.

Lin, Youzuo [Los Alamos National Laboratory; Huang, Lianjie [Los Alamos National Laboratory; Zhang, Zhigang [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

147

Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant  

SciTech Connect (OSTI)

This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.

Manohar S. Sohal

2005-09-01T23:59:59.000Z

148

Geothermal: Sponsored by OSTI -- USER?S GUIDE of TOUGH2-EGS-MP...  

Office of Scientific and Technical Information (OSTI)

Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0 Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

149

United States Department Of The Navy Geothermal Exploration Leading...  

Open Energy Info (EERE)

Navy Geothermal Exploration Leading To Shallow And Intermediate-Deep Drilling At Hawthorne Ammunition Depot, Hawthorne, Nv Jump to: navigation, search OpenEI Reference LibraryAdd...

150

U.S. and Australian Advanced Geothermal Projects Face Setbacks...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EGS involves injecting water at high pressure into deep, hot rock formations to fracture the rock, creating either a new geothermal reservoir of hot water embedded in hot...

151

An Updated Numerical Model Of The Larderello-Travale Geothermal...  

Open Energy Info (EERE)

between the geothermal field and the surrounding deep aquifers, and the field sustainability. All the available geoscientific data collected in about one century of...

152

Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001  

SciTech Connect (OSTI)

The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

Schochet, Daniel N.; Cunniff, Roy A.

2001-02-01T23:59:59.000Z

153

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010  

E-Print Network [OSTI]

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 1 The ENGINE Coordination Action (ENhanced Geothermal Innovative Network for Europe) Philippe Calcagno1 , Albert Genter2 Geothermal System, resource investigation, resource assessment, exploitation, European Commission

Paris-Sud XI, Université de

154

Geographic Information Systems- Tools For Geotherm Exploration...  

Open Energy Info (EERE)

Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Jump to: navigation, search OpenEI Reference...

155

Protocol for Addressing Induced Seismicity Associated with Enhanced...  

Office of Environmental Management (EM)

Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This...

156

1 INTRODUCTION The geothermal Bouillante area is located on the  

E-Print Network [OSTI]

1 INTRODUCTION The geothermal Bouillante area is located on the western coast of Basse and isotopic composition of the deep geothermal fluids using well and spring waters. The predictable nature the production stage and for future exploration drilling related to the development of the geothermal field. 2

Paris-Sud XI, Université de

157

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

SciTech Connect (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

158

Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly  

E-Print Network [OSTI]

Geothermal-Heat Extraction As a source of renewable energy, geothermal-heat extraction has become increasingly important in recent years. Proper design of a geothermal system, be it for deep or for shallow well? 40 MWh/a are required for heating the building. Assume an energy efficiency of 70%. Create a 2D

Kornhuber, Ralf

159

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

1996-02-01T23:59:59.000Z

160

European Geothermal Congress 2013 Pisa, Italy, 3-7 June 2013  

E-Print Network [OSTI]

European Geothermal Congress 2013 Pisa, Italy, 3-7 June 2013 1 Relative chronology of deep Rhine Graben, the deep geothermal reservoirs constitute fractured dominated systems. However constitute recharge drain. 1. INTRODUCTION In France, the geothermal heating production is mainly located

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Decision analysis for geothermal energy  

E-Print Network [OSTI]

One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

Yost, Keith A

2012-01-01T23:59:59.000Z

162

Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

163

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University unit at the Enhanced Geothermal System (EGS) site at Desert Peak (Nevada) were used. Results indicate

Stanford University

164

2009 Geothermal, Co-Production, and GSHP Supply Curves  

Broader source: Energy.gov (indexed) [DOE]

- Enhanced Geothermal Systems (EGS) (update) - Co-Produced Fluids (new) - Ground Source Heat Pumps (GSHP) (new) Overview 3 | US DOE Geothermal Program eere.energy.gov HydroEGS...

165

DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the methodology and results for a probabilistic risk analysis of research, development, and demonstration work-primarily for enhanced geothermal systems (EGS)-sponsored by the U.S. Department of Energy Geothermal Technologies Program.

Young, K. R.; Augustine, C.; Anderson, A.

2010-02-01T23:59:59.000Z

166

Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: Develop chemical energy carrier (CEC) systems to recover thermal energy from enhanced geothermal systems (EGS) in the form of chemical energy, in addition to sensible and latent energy.

167

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

168

Assessment of the geothermal resources of Indiana based on existing geologic data  

SciTech Connect (OSTI)

The general geology of Indiana is presented including the following: physiography, stratigraphy, and structural features. The following indicators of geothermal energy are discussed: heat flow and thermal gradient, geothermal occurrences, seismic activity, geochemistry, and deep sedimentary basins. (MHR)

Vaught, T.L.

1980-12-01T23:59:59.000Z

169

Final Technical Report - 300Ã?Â?Ã?°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems  

SciTech Connect (OSTI)

A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300���°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200���°C to 300���°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.

Cheng-Po Chen; David Shaddock; Peter Sandvik; Rich Saia; Amita Patil, Alexey Vert; Tan Zhang

2012-11-30T23:59:59.000Z

170

Modeling brine-rock interactions in an enhanced geothermal systemdeep fractured reservoir at Soultz-Sous-Forets (France): a joint approachusing two geochemical codes: frachem and toughreact  

SciTech Connect (OSTI)

The modeling of coupled thermal, hydrological, and chemical (THC) processes in geothermal systems is complicated by reservoir conditions such as high temperatures, elevated pressures and sometimes the high salinity of the formation fluid. Coupled THC models have been developed and applied to the study of enhanced geothermal systems (EGS) to forecast the long-term evolution of reservoir properties and to determine how fluid circulation within a fractured reservoir can modify its rock properties. In this study, two simulators, FRACHEM and TOUGHREACT, specifically developed to investigate EGS, were applied to model the same geothermal reservoir and to forecast reservoir evolution using their respective thermodynamic and kinetic input data. First, we report the specifics of each of these two codes regarding the calculation of activity coefficients, equilibrium constants and mineral reaction rates. Comparisons of simulation results are then made for a Soultz-type geothermal fluid (ionic strength {approx}1.8 molal), with a recent (unreleased) version of TOUGHREACT using either an extended Debye-Hueckel or Pitzer model for calculating activity coefficients, and FRACHEM using the Pitzer model as well. Despite somewhat different calculation approaches and methodologies, we observe a reasonably good agreement for most of the investigated factors. Differences in the calculation schemes typically produce less difference in model outputs than differences in input thermodynamic and kinetic data, with model results being particularly sensitive to differences in ion-interaction parameters for activity coefficient models. Differences in input thermodynamic equilibrium constants, activity coefficients, and kinetics data yield differences in calculated pH and in predicted mineral precipitation behavior and reservoir-porosity evolution. When numerically cooling a Soultz-type geothermal fluid from 200 C (initially equilibrated with calcite at pH 4.9) to 20 C and suppressing mineral precipitation, pH values calculated with FRACHEM and TOUGHREACT/Debye-Hueckel decrease by up to half a pH unit, whereas pH values calculated with TOUGHREACT/Pitzer increase by a similar amount. As a result of these differences, calcite solubilities computed using the Pitzer formalism (the more accurate approach) are up to about 1.5 orders of magnitude lower. Because of differences in Pitzer ion-interaction parameters, the calcite solubility computed with TOUGHREACT/Pitzer is also typically about 0.5 orders of magnitude lower than that computed with FRACHEM, with the latter expected to be most accurate. In a second part of this investigation, both models were applied to model the evolution of a Soultz-type geothermal reservoir under high pressure and temperature conditions. By specifying initial conditions reflecting a reservoir fluid saturated with respect to calcite (a reasonable assumption based on field data), we found that THC reservoir simulations with the three models yield similar results, including similar trends and amounts of reservoir porosity decrease over time, thus pointing to the importance of model conceptualization. This study also highlights the critical effect of input thermodynamic data on the results of reactive transport simulations, most particularly for systems involving brines.

Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz,Francois-D.; Pruess, Karsten.

2006-12-31T23:59:59.000Z

171

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

172

Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations  – a novel approach for expanding geothermal energy utilization.  

E-Print Network [OSTI]

??This thesis research presents a new method to harness geothermal energy by combining it with geologic carbon dioxide (CO2) sequestration. CO2 is injected into deep,… (more)

Randolph, Jimmy Bryan

2011-01-01T23:59:59.000Z

173

Application Of Electrical Resistivity And Gravimetry In Deep...  

Open Energy Info (EERE)

Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Electrical...

174

Energy Department Explores Deep Direct Use | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department Explores Deep Direct Use Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and...

175

Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li,1 B and Sr isotopes characterization2  

E-Print Network [OSTI]

1 Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li,1 B and Sr isotopes 13 In this study, we report chemical and isotope data for 23 geothermal water samples collected geothermal waters collected from deep boreholes16 in different geothermal fields (Ohaaki, Wairakei, Mokai

Paris-Sud XI, Université de

176

3-D Magnetotelluric Investigations for geothermal exploration in Martinique (Lesser Antilles). Characteristic Deep Resistivity Structures, and Shallow Resistivity Distribution Matching Heliborne TEM Results  

E-Print Network [OSTI]

Within the framework of a global French program oriented towards the development of renewable energies, Martinique Island (Lesser Antilles, France) has been extensively investigated (from 2012 to 2013) through an integrated multi-methods approach, with the aim to define precisely the potential geothermal ressources, previously highlighted (Sanjuan et al., 2003). Amongst the common investigation methods deployed, we carried out three magnetotelluric (MT) surveys located above three of the most promising geothermal fields of Martinique, namely the Anses d'Arlet, the Montagne Pel{\\'e}e and the Pitons du Carbet prospects. A total of about 100 MT stations were acquired showing single or multi-dimensional behaviors and static shift effects. After processing data with remote reference, 3-D MT inversions of the four complex elements of MT impedance tensor without pre-static-shift correction, have been performed for each sector, providing three 3-D resistivity models down to about 12 to 30 km depth. The sea coast effe...

Coppo, Nicolas; Girard, Jean-François; Wawrzyniak, Pierre; Hautot, Sophie; Tarits, Pascal; Jacob, Thomas; Martelet, Guillaume; Mathieu, Francis; Gadalia, Alain; Bouchot, Vincent; Traineau, Hervé

2015-01-01T23:59:59.000Z

177

Geothermal materials development activities  

SciTech Connect (OSTI)

This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

Kukacka, L.E.

1993-06-01T23:59:59.000Z

178

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

179

Tracer Methods for Characterizing Fracture Creation in Enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture...

180

Tracer Methods for Characterizing Fracture Stimulation in Enhanced...  

Broader source: Energy.gov (indexed) [DOE]

Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing...

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

182

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

183

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

184

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Basalt K Eburru Geothermal Area Eburru Geothermal Area East African Rift System Kenya Rift Basalt Fukushima Geothermal Area Fukushima Geothermal Area Northeast Honshu Arc...

185

Geothermal Energy Resources (Louisiana)  

Broader source: Energy.gov [DOE]

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

186

Geothermal Data Systems  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

187

Foulger, G.R., Microearthquake Analysis Techniques For Geothermal Applications, EOS Trans. AGU, Fall Meet. Suppl., Abstract S32B-02 (invited), 2009.  

E-Print Network [OSTI]

urgency to develop renewable energy resources, including geothermal power, and in particular EnhancedFoulger, G.R., Microearthquake Analysis Techniques For Geothermal Applications, EOS Trans. AGU And Induced Microearthquakes Microearthquake Analysis Techniques For Geothermal Applications The increased

Foulger, G. R.

188

Geothermal: Sponsored by OSTI -- State geothermal commercialization...  

Office of Scientific and Technical Information (OSTI)

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980 Geothermal Technologies Legacy Collection HelpFAQ | Site...

189

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

190

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

191

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...  

Open Energy Info (EERE)

R.A. Cunniff, R.L. Bowers (2003) Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New Mexico Additional References Retrieved from "http:...

192

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010  

E-Print Network [OSTI]

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 1 3D Flow Modelling of the Medium-Term Circulation Test Performed in the Deep Geothermal Site of Soultz-Sous-forêts (France) Sylvie Gentier, Xavier Rachez, Tien Dung Tran Ngoc, Mariane Peter-Borie, Christine Souque BRGM, Geothermal

Paris-Sud XI, Université de

193

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

194

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

195

Geothermal: About  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal

196

Oregon: a guide to geothermal energy development  

SciTech Connect (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

1980-06-01T23:59:59.000Z

197

Alaska: a guide to geothermal energy development  

SciTech Connect (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

198

Washington: a guide to geothermal energy development  

SciTech Connect (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-01-01T23:59:59.000Z

199

Laboratory and Field Experimental Studies of CO2 as Heat Transmission Fluid in Enhanced Geothermal Systems (EGS)  

Broader source: Energy.gov [DOE]

Project objectives: obtain basic information on the performance of CO2-based EGS; and enhance and calibrate modeling capabilities for such systems.

200

Federal Geothermal Research Program Update - Fiscal Year 2004  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Patrick Laney

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Federal Geothermal Research Program Update Fiscal Year 2004  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Not Available

2005-03-01T23:59:59.000Z

202

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

203

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

that are associated with the Northern German Basin, a geothermal power plant will need to incorporate an Enhanced to reduce the probability of downtime in such geothermal power systems in order to achieve higher plant geothermal power plants in Germany. There are three potential regions for geothermal energy production

Stanford University

204

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

an Enhanced Geothermal System (EGS) power generation project in Desert Peak (Nevada) geothermal field. As partPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL SYSTEM K.M. Kovac1 , Susan J. Lutz2 , Peter S. Drakos3 , Joel Byersdorfer4 , and Ann Robertson

Stanford University

205

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

The concept of Enhanced Geothermal Systems (EGS) has long been recognized by geothermal energy experts as being the necessary technology for substantially increasing the contribution of geothermal energy DOE sponsored study led by MIT entitled "The Future of Geothermal Energy", hereafter referred

Stanford University

206

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

207

Optimization of hybrid-water/air-cooled condenser in an enhanced...  

Open Energy Info (EERE)

hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

208

Geothermal probabilistic cost study  

SciTech Connect (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

209

Director, Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

210

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

211

Hot Dry Rock; Geothermal Energy  

SciTech Connect (OSTI)

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

None

1990-01-01T23:59:59.000Z

212

Geothermal: Sponsored by OSTI -- A study of geothermal drilling...  

Office of Scientific and Technical Information (OSTI)

A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

213

Geothermal: Sponsored by OSTI -- GEOTHERMAL / SOLAR HYBRID DESIGNS...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

214

Geothermal: Sponsored by OSTI -- Development of a geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan Geothermal Technologies Legacy Collection HelpFAQ | Site...

215

Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...  

Office of Scientific and Technical Information (OSTI)

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

216

Geothermal: Sponsored by OSTI -- Calpine geothermal visitor center...  

Office of Scientific and Technical Information (OSTI)

Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers Geothermal Technologies Legacy Collection HelpFAQ |...

217

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

218

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

219

Geothermal Power and Interconnection: The Economics of Getting to Market  

SciTech Connect (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

220

Geothermal Progress Monitor report No. 11  

SciTech Connect (OSTI)

This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

Not Available

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

222

Alternative Geothermal Power Production Scenarios  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

223

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

224

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

225

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

226

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

227

Deep temperatures in the Paris Basin using tectonic Damien Bonte1,3  

E-Print Network [OSTI]

Claude Keywords: Temperature, Modelling, Paris Basin, geothermal energy. ABSTRACT The determination of deep temperatures in a basin is one of the key parameters in the exploration of geothermal energy parameters in the exploration of geothermal energy. This study, carried out as part of 2 project, presents

Paris-Sud XI, Université de

228

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

SciTech Connect (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

229

Geothermal News  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phonegeothermal/900546 Geothermal News en

230

Geothermal Tomorrow 2008  

SciTech Connect (OSTI)

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

Not Available

2008-09-01T23:59:59.000Z

231

Alaska geothermal bibliography  

SciTech Connect (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

1987-05-01T23:59:59.000Z

232

Geothermal Technologies Newsletter  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

233

Geothermal development in Australia  

SciTech Connect (OSTI)

In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

Burns, K.L. [Los Alamos National Lab., NM (United States); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia); Buckingham, N.W. [Glenelg Shire Council, Portland, VIC (Australia); Harrington, H.J. [Australian National Univ., Canberra, ACT (Australia)]|[Sydney Univ., NSW (Australia)

1995-03-01T23:59:59.000Z

234

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

235

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

Stanford University

236

Models of Geothermal Brine Chemistry  

SciTech Connect (OSTI)

Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

Nancy Moller Weare; John H. Weare

2002-03-29T23:59:59.000Z

237

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

238

Neutron imaging for geothermal energy systems  

SciTech Connect (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

239

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

240

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal: Sponsored by OSTI -- Deep Geothermal Drilling Using Millimeter  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATEDOEFinal REducationalChapterWave

242

Minor actinide waste disposal in deep geological boreholes  

E-Print Network [OSTI]

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

243

Canister design for deep borehole disposal of nuclear waste  

E-Print Network [OSTI]

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

244

Guidebook to Geothermal Finance  

SciTech Connect (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

245

Federal Geothermal Research Program Update Fiscal Year 1998  

SciTech Connect (OSTI)

This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

Keller, J.G.

1999-05-01T23:59:59.000Z

246

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production  

Broader source: Energy.gov [DOE]

Project objective: Develop and demonstrate high-temperature ESP motor windings for use in Enhanced Geothermal Systems and operation at 300?C.

247

Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

- Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

Faulds, James E.

248

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

in Geysers geothermal cooling towers.   Geothermal in  Geysers  Geothermal  Cooling  Towers.   Aminzadeh, processes  –  Geothermal  resources  near  cooling 

Brophy, P.

2012-01-01T23:59:59.000Z

249

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

250

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

251

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

252

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

253

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

254

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

255

Geothermal Technologies Newsletter Archives  

Broader source: Energy.gov [DOE]

Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

256

Other Geothermal Energy Publications  

Broader source: Energy.gov [DOE]

Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

257

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

258

South Dakota geothermal handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

Not Available

1980-06-01T23:59:59.000Z

259

Geothermal Government Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

260

Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach  

E-Print Network [OSTI]

Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies and the Diamant areas). The lithium isotopic signatures of the geothermal fluids collected from deep reservoirs during formation of Li- bearing secondary minerals by the uptake of lithium into the alteration minerals

Boyer, Edmond

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine  

E-Print Network [OSTI]

Cycle Analysis on Ocean Geothermal Power Generation using Multi-staged Turbine 2013. 09. 11 Korea ORC #12;Cycle simulation Solver : HYSYS Basic simulation design T-S diagram Pump Turbine Evaporator & turbine : iso-entropic process Pump Turbine Evaporator Condenser 4 1 2 3 Geothermal water Deep seawater

262

Geothermal energy in Nevada  

SciTech Connect (OSTI)

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

263

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

Bresee, J. C.

2011-01-01T23:59:59.000Z

264

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

SciTech Connect (OSTI)

This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

Ashwood, A.; Bharathan, D.

2011-03-01T23:59:59.000Z

265

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

measurements in geothermal wells," Proceedings, Secondin Larderello Region geothermal wells for reconstruction of

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

266

CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES  

E-Print Network [OSTI]

geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

Stanford University

267

Reference book on geothermal direct use  

SciTech Connect (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

268

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains  with  geothermal  power.  Geothermal Resources gains  with  geothermal  power.  Geothermal Resources of Tables:  Table 1:  Geothermal Power Plants Operating at 

Brophy, P.

2012-01-01T23:59:59.000Z

269

Abraham Hot Springs Geothermal Area Northern Basin and Range...  

Open Energy Info (EERE)

Range Geothermal Region Big Windy Hot Springs Geothermal Area Alaska Geothermal Region Bingham Caribou Geothermal Area Yellowstone Caldera Geothermal Region Birdsville...

270

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University is of primary concern in geothermal reservoir engineering. Based on a tracer circulation test performed at the European Enhanced Geothermal System (EGS) test site at Soultz-sous-Forêts, France, three different

Stanford University

271

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

272

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

273

Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...  

Office of Scientific and Technical Information (OSTI)

Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

274

Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...  

Office of Scientific and Technical Information (OSTI)

Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

275

Colorado Potential Geothermal Pathways  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

276

Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes  

SciTech Connect (OSTI)

We report on the growth of low-defect thick films of AlN and AlGaN on trenched AlGaN/sapphire templates using migration enhanced lateral epitaxial overgrowth. Incoherent coalescence-related defects were alleviated by controlling the tilt angle of growth fronts and by allowing Al adatoms sufficient residence time to incorporate at the most energetically favorable lattice sites. Deep ultraviolet light emitting diode structures (310 nm) deposited over fully coalesced thick AlN films exhibited cw output power of 1.6 mW at 50 mA current with extrapolated lifetime in excess of 5000 hours. The results demonstrate substantial improvement in the device lifetime, primarily due to the reduced density of growth defects.

Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y.; Gaska, R. [Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209 (United States); Shur, M. S. [Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy New York 12180 (United States)

2008-08-04T23:59:59.000Z

277

USER’S GUIDE of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0  

SciTech Connect (OSTI)

TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

Xiong, Yi [Colorado School of Mines; Fakcharoenphol, Perapon [Colorado School of Mines; Wang, Shihao [Colorado School of Mines; Winterfeld, Philip H. [Colorado School of Mines; Zhang, Keni [Lawrence Berkeley National Laboratory; Wu, Yu-Shu [Colorado School of Mines

2013-12-01T23:59:59.000Z

278

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

279

Stanford Geothermal Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

280

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal Life Cycle Calculator  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

282

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

283

Geothermal Technologies Office: Projects  

Broader source: Energy.gov (indexed) [DOE]

Exploration Technologies (6) Geopressured Resources (1) Geothermal Analysis (14) Heat Pumps (8) High-Temperature Cements (2) High-Temperature Downhole MWD Tools for...

284

Geothermal Outreach Publications  

Broader source: Energy.gov [DOE]

Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

285

Potential of geothermal energy in China .  

E-Print Network [OSTI]

??This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in… (more)

Sung, Peter On

2010-01-01T23:59:59.000Z

286

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

287

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

288

A Technical Databook for Geothermal Energy Utilization  

E-Print Network [OSTI]

A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

Phillips, S.L.

1981-01-01T23:59:59.000Z

289

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network [OSTI]

an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

290

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

291

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

292

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

293

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

Sudo!, G.A

2012-01-01T23:59:59.000Z

294

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

295

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

296

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

297

NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS  

E-Print Network [OSTI]

School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

Goldstein, N.E.

2011-01-01T23:59:59.000Z

298

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network [OSTI]

that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

299

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

Pope, W.L.

2011-01-01T23:59:59.000Z

300

Geothermal Progress Monitor. Report No. 18  

SciTech Connect (OSTI)

The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

NONE

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

302

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

303

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

304

Geothermal energy: a brief assessment  

SciTech Connect (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

305

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network [OSTI]

: Organic Rankine Cycle) with maximal installed net capacity of 1.5MWe (Figure 1). Several deep geothermal wells penetrated a hidden fractured granite located in this Tertiary graben. For the sub

Boyer, Edmond

306

Geothermal Financing Workbook  

SciTech Connect (OSTI)

This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

Battocletti, E.C.

1998-02-01T23:59:59.000Z

307

Geothermal energy program summary  

SciTech Connect (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

308

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

309

ADVANCED CEMENTS FOR GEOTHERMAL WELLS  

SciTech Connect (OSTI)

Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

SUGAMA,T.

2007-01-01T23:59:59.000Z

310

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

Sudo!, G.A

2012-01-01T23:59:59.000Z

311

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

312

Updating the Classification of Geothermal Resources- Presentation  

Broader source: Energy.gov [DOE]

USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

313

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

314

Updating the Classification of Geothermal Resources  

Broader source: Energy.gov [DOE]

USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

315

Cuttings Analysis At International Geothermal Area, Philippines...  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area, Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique...

316

Rural Cooperative Geothermal Development Electric & Agriculture...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects lowsilveriaruralelectriccoop.pdf More Documents & Publications Southwest Alaska Regional Geothermal...

317

Readily Available Data Help to Overcome Geothermal Deployment...  

Broader source: Energy.gov (indexed) [DOE]

Articles Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development The National Geothermal Data System deploys free,...

318

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

Bloomster, C.H.

2010-01-01T23:59:59.000Z

319

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

into  sustainable  geothermal  energy:  The  S.E.   Geysers seismicity and geothermal  energy.  Geothermal Resources into  sustainable  geothermal  energy:  The  S.E.   Geysers 

Brophy, P.

2012-01-01T23:59:59.000Z

320

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

induced seismicity and geothermal  energy.  Geothermal into  sustainable  geothermal  energy:  The  S.E.   Geysers into  sustainable  geothermal  energy:  The  S.E.   Geysers 

Brophy, P.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal Energy Summary  

SciTech Connect (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

322

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

Rutqvist, J.

2008-01-01T23:59:59.000Z

323

Geothermal: Sponsored by OSTI -- Use of a Geothermal-Solar Hybrid...  

Office of Scientific and Technical Information (OSTI)

Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

324

Advanced Electric Submersible Pump Design Tool for Geothermal Applications  

SciTech Connect (OSTI)

Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

Xuele Qi; Norman Turnquist; Farshad Ghasripoor

2012-05-31T23:59:59.000Z

325

Tracer Methods for Characterizing Fracture Stimulation in Enhanced...  

Broader source: Energy.gov (indexed) [DOE]

80 4.6.7 Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS) Presentation Number: 034 Investigator: Pruess, Karsten (Lawrence Berkeley...

326

Geothermal Resources Act (Texas)  

Broader source: Energy.gov [DOE]

The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide...

327

Residential Geothermal Systems Credit  

Broader source: Energy.gov [DOE]

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

328

Geothermal Orientation Handbook  

SciTech Connect (OSTI)

This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

None

1984-07-01T23:59:59.000Z

329

Geothermal Energy: Current abstracts  

SciTech Connect (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

330

Geothermal: Sponsored by OSTI -- User manual for geothermal energy...  

Office of Scientific and Technical Information (OSTI)

User manual for geothermal energy assisted dairy complex computer programs: PREBLD, MODEL0, MODEL1, MODEL2, FRMAT2, PREPI2, NET2, DAIRY and DAIRY1 Geothermal Technologies Legacy...

331

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal  

Broader source: Energy.gov [DOE]

The Geothermal Energy Association (GEA) is holding a State of the Geothermal Industry Briefing on Tuesday, February 24th at the Hyatt Regency Capitol Hill in Washington, DC. This program will...

332

The Krafla Geothermal System. A Review of Geothermal Research...  

Open Energy Info (EERE)

System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal...

333

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

334

Identification of fluid-flow paths in the Cerro Prieto geothermal field  

SciTech Connect (OSTI)

A hydrogeologic model of the Cerro Prieto geothermal field has been developed based on geophysical and lithologic well logs, downhole temperature, and well completion data from about 90 deep wells. The hot brines seem to originate in the eastern part of the field, flowing in a westward direction and rising through gaps in the shaly layers which otherwise act as partial caprocks to the geothermal resource.

Halfman, S.E.; Lippmann, M.J.; Zelwer, R.; Howard, J.H.

1982-05-01T23:59:59.000Z

335

Geothermal: Sponsored by OSTI -- Development of a Geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada...

336

THE FUTURE OF GEOTHERMAL ENERGY  

SciTech Connect (OSTI)

Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

J. L. Renner

2006-11-01T23:59:59.000Z

337

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

338

Geothermal Heat Pump Grant Program  

Broader source: Energy.gov [DOE]

The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

339

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

340

Enthalpy restoration in geothermal energy processing system  

DOE Patents [OSTI]

A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

Matthews, Hugh B. (Boylston, MA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal Resources and Transmission Planning  

Broader source: Energy.gov [DOE]

This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

342

South Dakota Geothermal Energy Handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

Not Available

1980-06-01T23:59:59.000Z

343

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

344

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

345

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office No. DE-AT03-80SF11459 Department of Energy Division of Geothermal Energy #12;#12;1 , .... TABLE n t e r e s t t o the geothermal energy community. The topic f o r panel analysis f o r the Sixth

Stanford University

346

Stanford Geothermal Program Tnterdisciplinary Research  

E-Print Network [OSTI]

Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

Stanford University

347

GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger  

E-Print Network [OSTI]

SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

Stanford University

348

Postgraduate Certificate in Geothermal Energy  

E-Print Network [OSTI]

Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

Auckland, University of

349

Stanford Geothermal Program Stanford University  

E-Print Network [OSTI]

s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

Stanford University

350

DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL  

E-Print Network [OSTI]

SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

351

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

352

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

Stanford University

353

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance DocumentsOperations |

354

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste

355

Geothermal: Sponsored by OSTI -- Low-Temperature Enhanced Geothermal System  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarks IGPPS Days Programthe

356

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandria BiomassRuralAlligator Geothermal

357

Geothermal technology development program. Annual progress report, October 1981-September 1982  

SciTech Connect (OSTI)

The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1983-08-01T23:59:59.000Z

358

Enhanced oil recovery system  

DOE Patents [OSTI]

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

359

State Geothermal Resource Assessment and Data Collection Efforts  

Broader source: Energy.gov [DOE]

HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

360

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

Howard, J. H.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

362

GEOTHERMAL HEAT PUMPS Jack DiEnna  

E-Print Network [OSTI]

by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

363

2008 Geothermal Technologies Market Report  

SciTech Connect (OSTI)

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

Cross, J.; Freeman, J.

2009-07-01T23:59:59.000Z

364

Deep Web Web Deep Web Web  

E-Print Network [OSTI]

Deep Web 100872 Deep Web Web Deep Web Web Web Deep Web Deep Web TP391 A Uncertain Schema Matching in Deep Web Integration Service JIANG Fang-Jiao MENG Xiao-Feng JIA Lin-Lin (School of Information, Renmin University of China, Beijing, 100872) Abstract: With increasing of Deep Web, providing

365

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

366

Geothermal energy program summary  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

367

Geothermal hydrogen sulfide removal  

SciTech Connect (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

368

Geothermal development of the Madison group aquifer: a case study  

SciTech Connect (OSTI)

A geothermal well has been drilled at the St. Mary's Hospital in Pierre, South Dakota. The well is 2176 feet deep and artesian flows 375 gpm at 106/sup 0/F. The well is producing fluids from the Mississippian Madison Group, a sequence of carbonate rocks deposited over several western states. The project was funded to demonstrate the goethermal potential of this widespread aquifer. This case study describes the development of the project through geology, drilling, stimulation, and testing.

Martinez, J.A.

1981-01-01T23:59:59.000Z

369

Geothermal Progress Monitor report No. 5. Progress report, June 1981  

SciTech Connect (OSTI)

Updated information is presented on activities and progress in the areas of electric power plants, direct heat applications, deep well drilling, leasing of federal lands, legislative and regulatory actions, research and development, and others. Special attention is given in this report to 1980 highlights, particularly in the areas of electric and direct heat uses, drilling, and the Federal lands leasing program. This report also includes a summary of the DOE FY 1982 geothermal budget request to Congress.

Not Available

1981-01-01T23:59:59.000Z

370

Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada  

SciTech Connect (OSTI)

Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

Denton, J.M.; Bell, E.J.; Jodry, R.L.

1980-11-01T23:59:59.000Z

371

Geothermal well stimulation  

SciTech Connect (OSTI)

All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

1980-01-01T23:59:59.000Z

372

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat

373

Geothermal: Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced Search

374

Geothermal: Basic Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced

375

Geothermal: Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvancedHome

376

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

377

Geothermal Technologies Program Blue Ribbon Panel Recommendations  

Broader source: Energy.gov [DOE]

This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

378

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network [OSTI]

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

379

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

Sudo!, G.A

2012-01-01T23:59:59.000Z

380

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

Pope, W.L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Potential of geothermal energy in China  

E-Print Network [OSTI]

This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

Sung, Peter On

2010-01-01T23:59:59.000Z

382

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network [OSTI]

compaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (Applications o f Geothermal Energy and t h e i r Place i n t

Lippmann, M.J.

2011-01-01T23:59:59.000Z

383

Geothermal Technologies Office Hosts Collegiate Competition  

Broader source: Energy.gov [DOE]

To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

384

SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD  

E-Print Network [OSTI]

P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

Majer, E. L.

2011-01-01T23:59:59.000Z

385

Selling Geothermal Systems The "Average" Contractor  

E-Print Network [OSTI]

Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

386

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network [OSTI]

Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

387

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network [OSTI]

Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

Lippmann, M.J.

2011-01-01T23:59:59.000Z

388

National Geothermal Data System (NGDS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

389

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

Department of Energy Resources Engineering, Stanford University 367 Panama Street, Stanford, CA 94305, USA e and geometry are key for the optimum energy extraction from geothermal resources. Existing fracture systems, enhanced geothermal systems do not require natural convective hydrothermal resources, but rather

Stanford University

390

Simulation of geothermal subsidence  

SciTech Connect (OSTI)

The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

1980-03-01T23:59:59.000Z

391

Geothermal industry assessment  

SciTech Connect (OSTI)

An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

Not Available

1980-07-01T23:59:59.000Z

392

Reinjection into geothermal reservoirs  

SciTech Connect (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

393

Innovative Exploration Techniques for Geothermal Assessment at...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

394

Uncertainty analysis of geothermal energy economics.  

E-Print Network [OSTI]

?? This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy… (more)

Sener, Adil Caner

2009-01-01T23:59:59.000Z

395

Comprehensive Evaluation of the Geothermal Resource Potential...  

Broader source: Energy.gov (indexed) [DOE]

data for the National Geothermal Database * Validate state-of-the-art reservoir simulation techniques to reduce model uncertainty and project risk 4 | US DOE Geothermal...

396

Sustainable Energy Resources for Consumers (SERC) -Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

397

Funding Mechanisms for Federal Geothermal Permitting (Presentation)  

SciTech Connect (OSTI)

This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

Witherbee, K.

2014-03-01T23:59:59.000Z

398

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD February 1 9 8 5 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

399

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD staff who have helped me finish this project. Financial support was provided by the Geothermal

Stanford University

400

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract

Stanford University

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Misinterpretation of Electrical Resistivity Data in Geothermal...  

Open Energy Info (EERE)

Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

402

Geothermal: Sponsored by OSTI -- Technologies for Extracting...  

Office of Scientific and Technical Information (OSTI)

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

403

International Partnership for Geothermal Technology Launches...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

404

President Obama visits Geothermal Technologies Program Partner...  

Energy Savers [EERE]

President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

405

The Energy Department's Geothermal Technologies Office Releases...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

406

ORISE: DOE EERE National Geothermal Student Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Science Education U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition 2013 National Geothermal Student...

407

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Oregon Johnson Controls, Inc. Recovery Act: Geothermal Technologies Program Klamath Falls, OR...

408

Virginia Geothermal Resources Conservation Act (Virginia)  

Broader source: Energy.gov [DOE]

It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to...

409

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal...

410

Accelerating Investments in the Geothermal Sector, Indonesia...  

Open Energy Info (EERE)

in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

411

Residential Tax Credits Boost Maryland Geothermal Business |...  

Broader source: Energy.gov (indexed) [DOE]

Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business June 18, 2010 - 12:09pm Addthis Paul Lester Communications...

412

Geothermal: Sponsored by OSTI -- ADVANCES IN HYDROGEOCHEMICAL...  

Office of Scientific and Technical Information (OSTI)

ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

413

Stanford Geothermal Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and managers...

414

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

415

Integrated Chemical Geothermometry System for Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

416

Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...  

Office of Scientific and Technical Information (OSTI)

Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

417

Analysis of Geothermal Reservoir Stimulation using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using...

418

Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis  

E-Print Network [OSTI]

The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at prospect zones, which identified by the previous method, to have a more exact and in depth local scale structural interpretation. Both methods are directed to pin point appropriate locations for geothermal pilot hole drilling and testing. We used four scenes of Landsat Enhanced Thematic Mapper or ETM+ data to estimate the surface manifestation of a geothermal system. Temporal analysis of Land Surface Temperature or LST was applied and coupled with field temperature measurement at seven locations. By combining the TTM with ...

Sumintadireja, Prihadi; Irawan, Dasapta E; Irawan, Diky; Fadillah, Ahmad

2015-01-01T23:59:59.000Z

419

Geothermal reservoir assessment: Northern Basin and Range Province, Stillwater prospect, Churchill County, Nevada. Final report, April 1979-July 1981  

SciTech Connect (OSTI)

Union Oil Company of California drilled two exploratory geothermal wells in the Stillwater geothermal prospect area in northwestern Nevada to obtain new subsurface data for inclusion in the geothermal reservoir assessment program. Existing data from prior investigations, which included the drilling of four earlier deep temperature gradient wells in the Stillwater area, was also provided. The two wells were drilled to total depths of 6946 ft and 10,014 ft with no significant drilling problems. A maximum reservoir temperature of 353 F was measured at 9950 ft. The most productive well flow tested at a rate of 152,000 lbs/hr with a wellhead temperature of 252 F and pressure of 20 psig. Based upon current economics, the Stillwater geothermal prospect is considered to be subcommercial for the generation of electrical power. This synopsis of the exploratory drilling activities and results contains summary drilling, geologic, and reservoir information from two exploratory geothermal wells.

Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

1981-08-01T23:59:59.000Z

420

Geothermal Literature Review At Roosevelt Hot Springs Geothermal...  

Open Energy Info (EERE)

Technique Geothermal Literature Review Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Evidence for Large-Scale Laramide Tectonic Inversion and a Mid-Tertiary Caldera Ring Fracture Zone at the Lightning Dock Geothermal System, New Mexico Additional References...

422

Geothermal: Sponsored by OSTI -- Geothermal Energy: Current abstracts  

Office of Scientific and Technical Information (OSTI)

Energy: Current abstracts Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

423

Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report  

SciTech Connect (OSTI)

The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

Not Available

1983-08-01T23:59:59.000Z

424

Exploration and drilling for geothermal heat in the Capital District, New York. Final report  

SciTech Connect (OSTI)

The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

Not Available

1983-08-01T23:59:59.000Z

425

Geothermal regimes of the Clearlake region, northern California  

SciTech Connect (OSTI)

The first commercial production of power from geothermal energy, at The Geysers steamfield in northern California in June 1960, was a triumph for the geothermal exploration industry. Before and since, there has been a search for further sources of commercial geothermal power in The Geysers--Clear Lake geothermal area surrounding The Geysers. As with all exploration programs, these were driven by models. The models in this case were of geothermal regimes, that is, the geometric distribution of temperature and permeability at depth, and estimates of the physical conditions in subsurface fluids. Studies in microseismicity and heat flow, did yield geophysical information relevant to active geothermal systems. Studies in stable-element geochemistry found hiatuses or divides at the Stoney Creek Fault and at the Collayomi Fault. In the region between the two faults, early speculation as to the presence of steamfields was disproved from the geochemical data, and the potential existence of hot-water systems was predicted. Studies in isotope geochemistry found the region was characterized by an isotope mixing trend. The combined geochemical data have negative implications for the existence of extensive hydrothermal systems and imply that fluids of deep origin are confined to small, localized systems adjacent to faults that act as conduits. There are also shallow hot-water aquifers. Outside fault-localized systems and hot-water aquifers, the area is an expanse of impermeable rock. The extraction of energy from the impermeable rock will require the development and application of new methods of reservoir creation and heat extraction such as hot dry rock technology.

Amador, M. [ed.; Burns, K.L.; Potter, R.M.

1998-06-01T23:59:59.000Z

426

Chemical logging of geothermal wells  

DOE Patents [OSTI]

The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

427

Direct application of geothermal energy  

SciTech Connect (OSTI)

An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

Reistad, G.M.

1980-01-01T23:59:59.000Z

428

Geothermal Research and Development Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

429

Electronic Submersible Pump (ESP) Technology and Limitations with Respect to Geothermal Systems (Fact Sheet)  

SciTech Connect (OSTI)

The current state of geothermal technology has limitations that hinder the expansion of utility scale power. One limitation that has been discussed by the current industry is the limitation of Electric Submersible Pump (ESP) technology. With the exception of a few geothermal fields artificial lift technology is dominated by line shaft pump (LSP) technology. LSP's utilize a pump near or below reservoir depth, which is attached to a power shaft that is attached to a motor above ground. The primary difference between an LSP and an ESP is that an ESP motor is attached directly to the pump which eliminates the power shaft. This configuration requires that the motor is submersed in the geothermal resource. ESP technology is widely used in oil production. However, the operating conditions in an oil field vary significantly from a geothermal system. One of the most notable differences when discussing artificial lift is that geothermal systems operate at significantly higher flow rates and with the potential addition of Enhanced Geothermal Systems (EGS) even greater depths. The depths and flow rates associated with geothermal systems require extreme horsepower ratings. Geothermal systems also operate in a variety of conditions including but not limited to; high temperature, high salinity, high concentrations of total dissolved solids (TDS), and non-condensable gases.

Not Available

2014-09-01T23:59:59.000Z

430

NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS  

SciTech Connect (OSTI)

To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

2013-01-01T23:59:59.000Z

431

West Texas geothermal resource assessment. Part I. Geothermal exploration in Trans-Pecos, Texas. Final report  

SciTech Connect (OSTI)

All of the new drilling for geothermal gradient and heat flow studies have been concentrated in an area near Hueco Tanks State Park. Interest in the area was raised by the silica geothermometry map of Hoffer (1979) and its proximity to El Paso, which is less than 25 miles away and expanding rapidly toward the area of geothermal interest. Several industries in El Paso appear to be potential users of non-electrical grade hot waters. A total of 14 holes have been drilled for geothermal gradient and heat-flow measurements. Of these, 12 were 50 meters deep and all but two had gradients in excess of 100/sup 0/C/km, one having a gradient as high as 306/sup 0/C/km. Of the remaining two, one penetrated bedrock at about 50 meters and was drilled to a total depth of 125 meters. The gradient in the limestone bedrock is 170/sup 0/C/km and the heat flow is about 11 x 10/sup -6/cal/cm/sup 2/ sec. This is the highest heat flow thus far reported for a locality in the Rio Grande Rift. The last hole is 300 meters deep and has a gradient of 142/sup 0/C/km and a heat flow of 9 x 10/sup -6/cal/cm/sup 2/ sec. The Hueco Tanks site is very promising for at least space heating applications of hot water. Based on the 300 meter hole the potential for electricity grade temperatures still exist, but the tight limestone bedrock may require hot dry rock extraction technology.

Roy, R.F.; Taylor, B.

1980-01-01T23:59:59.000Z

432

National Geothermal Academy Underway at University of Nevada...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Academy is an eight-week intensive summer course in all aspects of geothermal energy development and utilization. Modules include Geothermal Geology and...

433

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

and Otte, C. (eds. ), Geothermal Energy: Stanford Universityfor the Development of Geothermal Energy Resources , JetPotential Use of Geothermal Energy f o r Power Generation

Til, C. J. Van

2012-01-01T23:59:59.000Z

434

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the...

435

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

Churchman, C.W.

2011-01-01T23:59:59.000Z

436

Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Exploration...

437

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

438

Energy Department Announces National Geothermal Data System to...  

Office of Environmental Management (EM)

Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development Energy Department Announces National Geothermal Data System to Accelerate...

439

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

Churchman, C.W.

2011-01-01T23:59:59.000Z

440

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .of Energy, Division of Geothermal Energy effort is theMission of Division of Geothermal Energy The mission of the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chemical Energy Carriers (CEC) for the Utilization of Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy DOE Geothermal Peer Review 2010 -...

442

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

443

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

Howard, J. H.

2012-01-01T23:59:59.000Z

444

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

445

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .of the Division of Geothermal Energy and these directoratesof Energy, Division of Geothermal Energy effort is the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

446

Fluid Imaging of Enhanced Geothermal Systems  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov Velocity & Resistivity Imaging Possibility & Potential Fluid Filled Fracture Network? VpVs Ratio Map 500 m below sea level Conductivity Map 500 m below sea level...

447

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

the most effective way of doing so is in district heating.A district heating grid requires a high population densityof cheaper power and district heating, they are unlikely to

Majer, Ernest L.

2006-01-01T23:59:59.000Z

448

Enhanced Geothermal Systems | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.DoubleInitiativesEnforcement

449

Enhanced Geothermal System (EGS) Fact Sheet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy Engaging

450

Enhanced Geothermal System (EGS) Fact Sheet  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment ofFeaturing presentersThisGoalEGS

451

Enhanced Geothermal Systems Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment ofFeaturing

452

Development of Enhanced Geothermal Systems Technologies Workshops |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle Batteryof Energy Developing a NewDepartment of

453

US geothermal database and Oregon cascade thermal studies: (Final report)  

SciTech Connect (OSTI)

This report describes two tasks of different nature. The first of these tasks was the preparation of a data base for heat flow and associated ancillary information for the United States. This data base is being used as the basis for preparation of the United States portion of a geothermal map of North America. The ''Geothermal Map of North America'' will be published as part of the Decade of North American Geology (DNAG) series of the Geological Society of America. The second of these tasks was to make a geothermal evaluation of holes drilled in the Cascade Range as part of a Department of Energy (DOE)/Industry co-sponsored deep drilling project. This second task involved field work, making temperature logs in the holes, and laboratory work, measuring thermal conductivity measurements on an extensive set of samples from these holes. The culmination of this task was an interpretation of heat flow values in terms of the regional thermal conditions; implications for geothermal systems in the Cascade Range; evaluation of the effect of groundwater flow on the depths that need to be drilled for successful measurements in the Cascade Range; and investigation of the nature of the surface groundwater effects on the temperature-depth curves. 40 refs., 7 figs., 7 tabs.

Blackwell, D.D.; Steele, J.L.; Carter, L.

1988-05-01T23:59:59.000Z

454

Geothermal Progress Monitor 12  

SciTech Connect (OSTI)

Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

None

1990-12-01T23:59:59.000Z

455

Thermal Fracturing of Geothermal Wells and the Effects of Borehole Orientation  

E-Print Network [OSTI]

An enhanced geothermal system (EGS) expands the potential of geothermal energy by enabling the exploitation of regions that lack conventional hydrothermal resources. The EGS subsurface system is created by engineering enhanced flow paths between injection and production wells. Hydraulic stimulation of existing fracture networks has been successfully achieved for unconventional geothermal resources. More recently proposed concepts increase the use of drilled wellbores in hard rock to connect the injection and production wells. The present work investigates the long-term thermal effects of deviated geothermal wellbores and studies how the cooling of the borehole wall results in thermally induced tensile fractures. The results show that induced fractures are created by a combination of in situ and thermal stresses, and that the extent to which thermally induced tensile wall fractures are created largely depends on how the wellbores are oriented with respect to the pre-existing stresses of the reservoir. If the s...

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

456

Geothermal Regulatory Roadmap  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phonegeothermal/900546 Geothermal

457

Geothermal: Promotional Video  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps

458

Livingston Campus Geothermal Project The Project  

E-Print Network [OSTI]

Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

Delgado, Mauricio

459

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

Stanford University

460

2013 National Geothermal Student Competition Background  

E-Print Network [OSTI]

1 2013 National Geothermal Student Competition Background: The 2013 National Geothermal Student, is designed to advance the understanding of geothermal energy as a valued resource by promoting innovation to engage students in a collaborative exercise to develop a business plan for developing a geothermal

Carrington, Emily

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal resource evaluation of the Yuma area  

SciTech Connect (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

462

Earthquake and Geothermal Energy  

E-Print Network [OSTI]

The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

Kapoor, Surya Prakash

2013-01-01T23:59:59.000Z

463

Geothermal energy control system and method  

DOE Patents [OSTI]

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

Matthews, Hugh B. (Acton, MA)

1976-01-01T23:59:59.000Z

464

Forrest County Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

465

Energy 101: Geothermal Heat Pumps  

SciTech Connect (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

466

Silica extraction from geothermal water  

DOE Patents [OSTI]

A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

Bourcier, William L; Bruton, Carol J

2014-09-23T23:59:59.000Z

467

New River Geothermal Research Program  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

468

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

469

State Regulatory Oversight of Geothermal  

E-Print Network [OSTI]

State Regulatory Oversight of Geothermal Heat Pump Installations: 2012 Kevin McCray Executive of this project was to update previous research accomplished by the Geothermal Heat Pump Consortium (GHPC of ground-source heat pump (GSHP) systems. The work was to provide insight into existing and anticipated

470

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

SciTech Connect (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

471

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.l i c a t i o n s of Geothermal Energy Substudy ParticipantsA N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 I

Bresee, J. C.

2011-01-01T23:59:59.000Z

472

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

D. E. Appendix Small Geothermal Power Plants . . . . . . .Assessment, (4) Small Geothermal Power Plants and (5) Hoti - b u t i o n of geothermal power (1400 W e ) . (XBL 785-

Bresee, J. C.

2011-01-01T23:59:59.000Z

473

Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook  

Broader source: Energy.gov [DOE]

Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate growth of geothermal energy and prepare the local workforce to serve geothermal industry needs.

474

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.A N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 Il i c a t i o n s of Geothermal Energy Substudy Participants

Bresee, J. C.

2011-01-01T23:59:59.000Z

475

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

Howard, J.H.

2011-01-01T23:59:59.000Z

476

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

Howard, J.H.

2011-01-01T23:59:59.000Z

477

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.d approach to solar and geothermal energy, r e s o u r c e sl f u e l boilers, and geothermal energy. The model was d e

Bresee, J. C.

2011-01-01T23:59:59.000Z

478

Geopressured geothermal bibliography (Geopressure Thesaurus)  

SciTech Connect (OSTI)

This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

Hill, T.R.; Sepehrnoori, K.

1981-08-01T23:59:59.000Z

479

Characterization of geothermal solid wastes  

SciTech Connect (OSTI)

The compositions of 5 major types of geothermal wastes have been determined, and samples have been subjected to EPA recommended extraction tests to determine if they contain toxic metals that would classify the wastes as hazardous. Of the samples tested, the extracts of geothermal brines clearly contain levels of As, Ba and Pb exceeding the maximum allowed concentrations that characterize wastes as toxic. Only one other waste type, geothermal scale, exhibited EP toxicity. Pb was found in the extract of geothermal scale at a level of 7 mg/l, only 2 mg/l over the maximum limit. All of the other types of geothermal waste samples showed levels of toxic metals in the extracts well below the regulated limits.

Morris, W.F.; Stephens, F.B.

1981-07-01T23:59:59.000Z

480

Geothermal resource data base: Arizona  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep enhanced geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

SciTech Connect (OSTI)

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

482

Water Sampling At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

483

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

484

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

485

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity...

486

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

487

Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)...

488

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

Geothermics. () . Related Geothermal Exploration Activities Activities (3) Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey...

489

Working Fluids and Their Effect on Geothermal Turbines  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

490

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

491

Conceptual Model At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Gardner, 2010) Exploration Activity...

492

Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area (Gardner, 2010) Exploration...

493

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

494

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

ment methods for geothermal well system param- eters,on calcite-fouled geothermal wells (Michaels, 1979). An

Howard, J. H.

2012-01-01T23:59:59.000Z

495

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

496

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

geology of three geothermal wells, Klamath Falls, Oregon,evaluation of five geothermal wells: in Proceedings Second

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

497

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

498

Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Exploration Activity Details Location...

499

Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Exploration Activity Details Location...

500

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z