National Library of Energy BETA

Sample records for deep convective cloud

  1. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect (OSTI)

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  2. Environment and the Lifetime of Tropical Deep Convection in a Cloud-Permitting Regional Model Simulation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; McFarlane, Sally A.; Leung, Lai-Yung R.

    2013-08-01

    By applying a cloud tracking algorithm to tropical convective systems simulated by a regional high resolution model, the study documents environmental conditions before and after convective systems are initiated over ocean and land by following them during their lifetime. The comparative roles of various environmental fields in affecting the lifetime of convection are also quantified. The statistics of lifetime, maximum area, propagation speed and direction of the simulated deep convection agrees well with geostationary satellite observations. Over ocean, convective systems enhance surface fluxes through the associated wind gusts as well as cooling and drying of the boundary layer. A significant relationship is found between the mean surface fluxes during their lifetime and the longevity of the systems which in turn is related to the initial intensity of the moist updraft and to a lesser extent upper level shear. Over land, on the other hand, convective activity suppresses surface fluxes through cloud cover and the lifetime of convection is related to the upper level shear during their lifetime and strength of the heat fluxes several hours before the initiation of convection. For systems of equal lifetime, those over land are significantly more intense than those over ocean especially during early stages of their lifetime.

  3. Effects of aerosols on deep convective cumulus clouds 

    E-Print Network [OSTI]

    Fan, Jiwen

    2009-05-15

    in the droplet size. Ice processes are more sensitive to the changes of aerosol chemical properties than the warm rain processes. The most noticeable effect of increasing aerosol number concentrations is an increase of CDNC and cloud water content but a decrease...

  4. A Method to Merge WSR-88D Data with ARM SGP Millimeter Cloud Radar Data by Studying Deep Convective Systems

    E-Print Network [OSTI]

    Dong, Xiquan

    A Method to Merge WSR-88D Data with ARM SGP Millimeter Cloud Radar Data by Studying Deep Convective A decade of collocated Atmospheric Radiation Measurement Program (ARM) 35-GHz Millimeter Cloud Radar (MMCR) and Weather Surveillance Radar-1988 Doppler (WSR-88D) data over the ARM Southern Great Plains (SGP) site have

  5. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  6. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  7. A CloudSat cloud object partitioning technique and assessment and integration of deep

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    A CloudSat cloud object partitioning technique and assessment and integration of deep convective, USA Abstract A cloud object partitioning algorithm is developed to provide a widely useful database of deep convective clouds. It takes contiguous CloudSat cloudy regions and identifies various length

  8. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect (OSTI)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  9. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcingmore »is weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  10. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more »The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  11. Parameterizing deep convection using the assumed probability density function method

    SciTech Connect (OSTI)

    Storer, R. L. [Univ. of Wisconsin - Milwaukee, Milwaukee, WI (United States); Griffin, B. M. [Univ. of Wisconsin - Milwaukee, Milwaukee, WI (United States); Höft, J. [Univ. of Wisconsin - Milwaukee, Milwaukee, WI (United States); Weber, J. K. [Univ. of Wisconsin - Milwaukee, Milwaukee, WI (United States); Raut, E. [Univ. of Wisconsin - Milwaukee, Milwaukee, WI (United States); Larson, V. E. [Univ. of Wisconsin - Milwaukee, Milwaukee, WI (United States); Wang, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)] (ORCID:000000029179228X); Rasch, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.

  12. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  13. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  14. Some Effects of Model Resolution on Simulated Gravity Waves Generated by Deep, Mesoscale Convection

    E-Print Network [OSTI]

    Knievel, Jason Clark

    Some Effects of Model Resolution on Simulated Gravity Waves Generated by Deep, Mesoscale Convection. Introduction Gravity waves generated by deep convective clouds play an important role in the momentum budget scales: short gravity waves generated by individual con- vective systems and cells on the meso- and meso

  15. An observational study of entrainment rate in deep convection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more »gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  16. Deep convective parameterization: Some issues (and some solutions?)

    E-Print Network [OSTI]

    Plant, Robert

    are basically an exercise in engineering / tuning fairly bad Deep convective parameterization ­ p.1/4 #12;Aim in engineering / tuning fairly bad The reality is that deep convective parameterizations are basicallyDeep convective parameterization: Some issues (and some solutions?) Bob Plant Department

  17. IMPACT OF AEROSOLS ON CONVECTIVE CLOUDS AND PRECIPITATION

    E-Print Network [OSTI]

    Zeng, Ning

    IMPACT OF AEROSOLS ON CONVECTIVE CLOUDS AND PRECIPITATION Wei-Kuo Tao,1 Jen-Ping Chen,2 Zhanqing Li effects on clouds could further extend to precipitation, both through the formation of cloud particles mechan- isms behind these effects, in particular, the ones connected to precipitation, are not yet well

  18. Deep convection in the Irminger Sea forced by the Greenland tip jet

    E-Print Network [OSTI]

    Deep convection in the Irminger Sea forced by the Greenland tip jet Robert S. Pickart*, Michael A ........................................................................................................................................................................................................................... Open-ocean deep convection, one of the processes by which deep waters of the world's oceans are formed, the southwest Irminger Sea has been suggested as an additional location for open-ocean deep convection. The deep

  19. The frequency of tropical precipitating clouds as observed by the TRMM PR and ICESat/GLAS 

    E-Print Network [OSTI]

    Casey, Sean Patrick

    2009-06-02

    Convective clouds in the tropics can be grouped into three categories: shallow clouds with cloud-top heights near 2 km above the surface, mid-level congestus clouds with tops near the 0°C level, and deep convective clouds ...

  20. On the Vertical Structure of Modeled and Observed Deep Convective Storms: Insights for Precipitation Retrieval and Microphysical Parameterization

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    On the Vertical Structure of Modeled and Observed Deep Convective Storms: Insights-GEORGIOU, AND VENUGOPAL VURUPUTUR Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota of hydrometeors (liquid and frozen water droplets in a cloud) produced by high-resolution NWP models with explicit

  1. THE ROLE OF CLOUD MICROPHYSICS PARAMETERIZATION IN THE SIMULATION OF MESOSCALE CONVECTIVE SYSTEMS AND ANVIL

    E-Print Network [OSTI]

    THE ROLE OF CLOUD MICROPHYSICS PARAMETERIZATION IN THE SIMULATION OF MESOSCALE CONVECTIVE SYSTEMS in the Simulation of Mesoscale Convective Systems and Anvil Clouds in the Tropical Western Pacific K. Van Weverberg1 cloud microphysics in the simulation of mesoscale convective systems (MCSs) in the tropical western

  2. Deep convection and brine rejection in the Japan Sea Lynne D. Talley

    E-Print Network [OSTI]

    Talley, Lynne D.

    Deep convection and brine rejection in the Japan Sea Lynne D. Talley Scripps Institution groups. Japan Sea deep convection apparently occurs every winter, but massive renewal of bottom waters. Salyuk, P. Tishchenko, I. Zhabin, and S. Riser, Deep convection and brine rejection in the Japan Sea

  3. Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses

    E-Print Network [OSTI]

    Wang, Bin

    of water vapor maxima near the bottom of TTL are located directly above the deep convection centersGeographical distribution and interseasonal variability of tropical deep convection: UARS MLS December 2003; published 13 February 2004. [1] Tropical deep convection and its dynamical effect

  4. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available. Several different components of convective cloud and precipitation processes tangible to both the convective parameterization and precipitation retrieval algorithm problem are targeted, such as preconvective environment and convective initiation, updraft/downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, spatial and temporal variability of precipitation, influence on the environment and radiation, and a detailed description of the large-scale forcing.

  5. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  6. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-06

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  7. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  8. Deep meridional circulation below the solar convective envelope

    E-Print Network [OSTI]

    K. M. Hiremath

    2008-03-08

    With reasonable assumptions and approximations, we compute the velocity of the meridional flow $U$ in the convective envelope by modified Chandrasekhar's (1956) MHD equations. The analytical solution of such a modified equation is found to be $U(x,\\mu) = \\sum_{n=0}^\\infty \\bigl[u1_n x^n + u2_n x^{-(n+3)}\\bigr] C_n^{3/2}(\\mu)$, where $x$ is non-dimensional radius, $\\mu = cos{\\vartheta}$, ${\\vartheta}$ is the co-latitude, $C_n^{3/2} {(\\mu)}$ are the Gegenbaur polynomials of order 3/2, $u1_n$ and $u2_n$ are the unknown constants. The results show that meridional velocity flow from the surface appears to penetrates deep below base of the convective envelope and at outer part of the radiative zone. With such a deep flow velocity below the convective envelope and a very high density stratification in the outer part of the radiative zone with likely existence of a strong ($\\sim$ $10^{4}$ G) toroidal magnetic field structure, the velocity of transport of meridional flow is considerably reduced. Hence, it is very unlikely that the return flow will reach the surface (with a period of solar cycle) as required by some of the flux transport dynamo models. On the other hand, deep meridional flow is required for burning of Lithium at outer part of the radiative zone supporting the observed Lithium deficiency at the surface.

  9. Aerosol control on depth of warm rain in convective clouds Mahen Konwar,1

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Aerosol control on depth of warm rain in convective clouds Mahen Konwar,1 R. S. Maheskumar,1 J. R effective radius (re) increased with distance above cloud base (D). Warm rain became detectable, i.e., rain water content >0.01 g/Kg, at the tops of growing convective clouds when re exceeded 12 mm. The re

  10. Influences of Precipitation on Water Mass Transformation and Deep Convection MICHAEL A. SPALL

    E-Print Network [OSTI]

    Influences of Precipitation on Water Mass Transformation and Deep Convection MICHAEL A. SPALL for the temperature and salinity anomalies of deep convective water masses, making explicit their dependence on both on water mass transformation and the strength of the meridional over- turning circulation in marginal seas

  11. ARM - Midlatitude Continental Convective Clouds (jensen-sonde)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.

  12. ARM - Midlatitude Continental Convective Clouds (jensen-sonde)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.

  13. What Goes Up Must Come Down: The Lifecycle of Convective Clouds (492nd Brookhaven Lecture)

    SciTech Connect (OSTI)

    Jensen, Michael [BNL Environmental Sciences

    2014-02-19

    Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds’ updrafts and downdrafts—which resemble airflow in a convection oven—and many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earth’s climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earth’s climate system before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.

  14. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system

    E-Print Network [OSTI]

    Cummer, Steven A.

    in a mesoscale convective system Gaopeng Lu,1 Steven A. Cummer,1 Jingbo Li,1 Feng Han,1 Richard J. Blakeslee,2 positive cloud-to-ground (+CG) strokes in a mesoscale convective system. Although no high altitude images of large-charge-moment positive lightning strokes in a mesoscale convective system, Geophys. Res. Lett., 36

  15. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,MicrophysicalgovCampaignsComplex

  16. The convective structures associated with cloud-to-ground lightning in TOGA COARE Mesoscale Convective Systems 

    E-Print Network [OSTI]

    Restivo, Michael Edward

    1995-01-01

    The TOGA COARE experiment was carried out in the western Pacific warm pool region from November 1992 through February 1993. Data from TOGA COARE provide the opportunity for comprehensive studies of tropical oceanic convection. ...

  17. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from observations show that desert dust and heavy air pollution over East Asia have similar ability to glaciate desert dust, air pollution and smoke from forest fires, Geophys. Res. Lett., 38, L21804, doi:10

  18. Reproducibility by Climate Models of Cloud Radiative Forcing Associated with Tropical Convection

    E-Print Network [OSTI]

    Masunaga, Hirohiko

    for monthly mean data from twentieth-century simulations of 18 climate models participating in phase 3 perturbation is thus fundamental for our understanding of climate change, but shows no consistency in eitherReproducibility by Climate Models of Cloud Radiative Forcing Associated with Tropical Convection

  19. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect (OSTI)

    Jensen, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-04-01

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  20. Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection

    E-Print Network [OSTI]

    Wang, Pao K.

    . The present work focuses on storm top observations utilizing the MODIS data. The MODIS instrument (availableContribution of the MODIS instrument to observations of deep convective storms and stratospheric/AVHRR and GOES I-M imager instruments have documented the link between certain storm top features referred

  1. Tropical ozone as an indicator of deep convection Ian Folkins and Christopher Braun

    E-Print Network [OSTI]

    Folkins, Ian

    Tropical ozone as an indicator of deep convection Ian Folkins and Christopher Braun Department] The climatological ozone profile in the tropics is shaped like an ``S,'' with a minimum at the surface, a maximum. These features can be reproduced by a very simple model whose only free parameter is the mean ozone mixing ratio

  2. Correlation between present-day model simulation of Arctic cloud radiative forcing and sea ice consistent with positive winter convective cloud feedback

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    A positive feedback on winter sea-ice loss, based on warming due to radiative forcing caused by the onset of convective clouds in response to sea-ice loss, has recently been proposed. This feedback has thus far been ...

  3. Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies

    SciTech Connect (OSTI)

    Rosenfeld, Daniel; Chemke, Rei; Prather, Kimberly; Suski, Kaitlyn; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf

    2014-01-01

    In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater campaign in February and March 2011 over the Sierra Nevada Mountains and the coastal waters of central California. The main objective was to elucidate the impacts of aerosol properties on clouds and precipitation forming processes. In order to accomplish this, we compared contrasting cases of clouds that ingested aerosols from different sources. The results showed that clouds containing pristine oceanic air had low cloud drop concentrations and started to develop rain 500 m above their base. This occurred both over the ocean and over the Sierra Nevada, mainly in the early morning when the radiatively cooled stable continental boundary layer was decoupled from the cloud base. Supercooled rain dominated the precipitation that formed in growing convective clouds in the pristine air, up to the -21°C isotherm level. A contrasting situation was documented in the afternoon over the foothills of the Sierra Nevada, when the clouds ingested high pollution aerosol concentrations produced in the Central Valley. This led to slow growth of the cloud drop effective radius with height and suppressed and even prevented the initiation of warm rain while contributing to the development of ice hydrometeors in the form of graupel. Our results show that cloud condensation and ice nuclei were the limiting factors that controlled warm rain and ice processes, respectively, while the unpolluted clouds in the same air mass produced precipitation quite efficiently. These findings provide the motivation for deeper investigations into the nature of the aerosols seeding clouds.

  4. Aircraft Observations of Sub-cloud Aerosol and Convective Cloud Physical Properties 

    E-Print Network [OSTI]

    Axisa, Duncan

    2011-02-22

    This research focuses on aircraft observational studies of aerosol-cloud interactions in cumulus clouds. The data were collected in the summer of 2004, the spring of 2007 and the mid-winter and spring of 2008 in Texas, ...

  5. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  6. Advection, Moistening, and Shallow-to-deep Convection Transitions During the Initiation and Propagation of Madden-Julian Oscillation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Landu, Kiranmayi; Long, Charles N.

    2014-09-11

    Using observations from the 2011 AMIE/DYNAMO field campaign over the Indian Ocean and a high-resolution regional model simulation, the processes that lead to the rapid shallow-to-deep convection transitions associated with the initiation and eastward propagation of the Madden-Julian Oscillation (MJO) are examined. By tracking the evolution of the depth of several thousand individual model simulated precipitation features, the role of and the processes that control the observed midtropospheric moisture buildup ahead of the detection of deep convection are quantified at large and convection scales. The frequency of shallow-to-deep convection transitions is found to be sensitive to this midlevel moisture and large-scale uplift. This uplift along with the decline of large-scale drying by equator-ward advection causes the moisture buildup leading to the initiation of the MJO. Convection scale moisture variability and uplift, and large-scale zonal advection play secondary roles.

  7. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    SciTech Connect (OSTI)

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    2012-10-25

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  8. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  9. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Toto, T.; Troyan, D.; Ciesielski, P. E.; Holdridge, D.; Kyrouac, J.; Schatz, J.; Zhang, Y.; Xie, S.

    2015-01-27

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentationmore »used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.« less

  10. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Toto, T.; Troyan, D.; Ciesielski, P. E.; Holdridge, D.; Kyrouac, J.; Schatz, J.

    2014-09-12

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the Central Plains. A major component of the campaign was a 6-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing datasets. Over the course of the 46 day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript describes the details of the instrumentationmore »used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings.« less

  11. Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun; Long, Charles N.; Wu, Di; Thompson, Gregory

    2014-11-12

    Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce the bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.

  12. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  13. Millennial-scale stable oscillations between sea ice and convective deep water formation

    E-Print Network [OSTI]

    Saha, Raj

    2015-01-01

    During the last ice age there were several quasi-periodic abrupt warming events. The climatic effects of the so-called Dansgaard-Oeschger (DO) events were felt globally, although the North Atlantic experienced the largest and most abrupt temperature anomalies. Similar but weaker oscillations also took place during the interglacial period. This paper proposes an auto-oscillatory mechanism between sea ice and convective deep water formation in the north Atlantic as the source of the persistent cycles. A simple dynamical model is constructed by coupling and slightly modifying two existing models of ocean circulation and sea ice. The model exhibits mixed mode oscillations, consisting of decadal scale small amplitude oscillations, and a large amplitude relaxation fluctuation. The decadal oscillations occur due to the insulating effect of sea ice and leads to periodic ventilation of heat from the polar ocean. Gradually an instability builds up in the polar column and results in an abrupt initiation of convection an...

  14. Connections between deep tropical clouds and the Earth's ionosphere M. E. Hagan,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    Connections between deep tropical clouds and the Earth's ionosphere M. E. Hagan,1 A. Maute,1 R. G troposphere. Citation: Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England

  15. Constructing a Merged CloudPrecipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    E-Print Network [OSTI]

    of observations from three radars--the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during, U.S. Department of Energy, Washington, D.C. Corresponding author address: Dr. Zhe Feng, Pacific

  16. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  17. LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection

    E-Print Network [OSTI]

    Hourdin, Chez Frédéric

    , as well as a parameterization of the cold pools generated below cumulonimbus by re- evaporation processes in the sub-cloud layer. An available lifting energy and lifting power are provided both represented and (2) the diurnal cycle of convective rainfall over conti- nents is delayed by several hours

  18. Evolution of vertical drafts and cloud-to-ground lightning within the convective region of a mesoscale convective complex 

    E-Print Network [OSTI]

    Saul, Scott Henry

    1995-01-01

    The evolution of the area-averaged vertical velocity within the objectively defined convective region of the 4 June 1985 PRE-STORM (Preliminary Regional Experiment for Stormscale Operational and Research Meteorology-Central Phase) mesoscale...

  19. Convection?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentratingPortal ControllingConvection feedbacks in a What

  20. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  1. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  2. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  3. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    2012-02-28

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  4. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    E-Print Network [OSTI]

    Bjoraker, G L; de Pater, I; Ádámkovics, M

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure-broadened line profiles of deuterated methane (CH3D) at 4.66 microns to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-micron spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees S has an opaque cloud top between 4...

  5. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  6. Convective cloud and rainfall processes over the Maritime Continent : simulation and analysis of the diurnal cycle

    E-Print Network [OSTI]

    Gianotti, Rebecca L. (Rebecca Louise)

    2013-01-01

    The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global ...

  7. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    E-Print Network [OSTI]

    Altaratz, O

    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols' physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol ...

  8. Simulating organization of convective cloud fields and interactions with the surface

    E-Print Network [OSTI]

    Hoffmann, Alex

    2013-11-12

    ! tropopause,! they! tend! to! spread! out! horizontally,!producing! large! cloud! anvils! of! suspended! ice! crystals.! ! High! altitude! cirrus! clouds!produced! from! the!detrainment! from!cumulonimbi!have! important! climate! implications,!since! they... :55!Jess!Sutton!30cm!x!30cm!Oil!paint!on!Canvas!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Page!left!blank!intentionally! !! Declaration+ This!dissertation! is! the!result!of!my!own!work!and!contains!nothing!which! is! the!outcome!of!work!done!in...

  9. Sensitivity of Boundary-layer and Deep Convective Cloud Simulations to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics - Energy InnovationOscillation ResultsSystemsVertical

  10. Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parmaterizations in Large-Scale Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWykoW03:Connect Uses ofUsing

  11. A deep near-infrared survey toward the Aquila molecular cloud - I. Molecular hydrogen outflows

    E-Print Network [OSTI]

    Zhang, Miaomiao; Wang, Hongchi; Sun, Jia; Wang, Min; Jiang, Zhibo; Anathipindika, Sumedh

    2015-01-01

    We have performed an unbiased deep near-infrared survey toward the Aquila molecular cloud with a sky coverage of ~1 deg2. We identified 45 molecular hydrogen emission-line objects(MHOs), of which only 11 were previously known. Using the Spitzer archival data we also identified 802 young stellar objects (YSOs) in this region. Based on the morphology and the location of MHOs and YSO candidates, we associate 43 MHOs with 40 YSO candidates. The distribution of jet length shows an exponential decrease in the number of outflows with increasing length and the molecular hydrogen outflows seem to be oriented randomly. Moreover, there is no obvious correlation between jet lengths, jet opening angles, or jet H2 1-0 S(1) luminosities and spectral indices of the possible driving sources in this region. We also suggest that molecular hydrogen outflows in the Aquila molecular cloud are rather weak sources of turbulence, unlikely to generate the observed velocity dispersion in the region of survey.

  12. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  13. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  14. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  15. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  16. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  17. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  18. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  19. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  20. Evolution of the Vertical Thermodynamic Profile during the Transition from Shallow to Deep Convection during CuPIDO 2006*

    E-Print Network [OSTI]

    the action of gravity waves. In the second case, dry air aloft was moistened through the action of the shallow convection thus preventing the erosion of the convective turrets through entrainment of dry air to cumulonimbus as de- scribed by Zehnder et al. (2006). Zehnder et al. attribute the relatively slow development

  1. Could Ash Cloud or Deep-Sea Current Overwhelm the Internet? Rocky K. C. Chang, Edmond W. W. Chan, Weichao Li, Waiting W. T. Fok, and Xiapu Luo

    E-Print Network [OSTI]

    Chang, Rocky Kow-Chuen

    Could Ash Cloud or Deep-Sea Current Overwhelm the Internet? Rocky K. C. Chang, Edmond W. W. Chan Hunghom, Hong Kong, SAR China Abstract In this paper, we are initially set out to evaluate how the ash the ash-cloud news. The paths under our monitoring were overloaded by taking on additional traffic

  2. Clouds 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  3. Deep Near-Infrared Observations and Identifications of Chandra Sources in the Orion Molecular Cloud 2 and 3

    E-Print Network [OSTI]

    M. Tsujimoto; K. Koyama; N. Kobayashi; M. Goto; Y. Tsuboi; A. T. Tokunaga

    2002-11-24

    We conducted deep NIR imaging observations of the Orion molecular cloud 2 and 3 using QUIRC on the 88-inch telescope of the University of Hawaii. Our purposes are 1) to generate a comprehensive NIR source catalog of these star forming clouds, and 2) to identify the NIR counterpart of the Chandra X-ray sources that have no counterpart in the 2MASS catalog. Our J-, H-, and K-band observations are about 2 mag deeper than those of 2MASS, and well match the current Chandra observation. We detected 1448 NIR sources, for which we derived the position, the J-, H-, and K-band magnitude, and the 2MASS counterpart. Using this catalog, we identified the NIR counterpart for about 42% of the 2MASS-unIDed Chandra sources. The nature of these Chandra sources are discussed using their NIR colors and spatial distributions, and a dozen protostar and brown dwarf candidates are identified.

  4. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the radiative influence of mixed-phase clouds. Further, its impact on the development and evaluation of retrieval schemes from ground- and satellite-based remote sensors is...

  5. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    SciTech Connect (OSTI)

    Niyogi, Devdutta S.

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  6. Modeling the Interaction between Cumulus Convection and Linear Gravity Waves Using a Limited-Domain Cloud SystemResolving Model

    E-Print Network [OSTI]

    Kuang, Zhiming

    of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts (Manuscript received 10 January they exhibit many of the basic features of the observed 2-day waves. The simulated convectively coupled waves study each indi- vidual horizontal wavenumber separately. This meth- odology is explained in more detail

  7. Using Digital Cloud Photogrammetry to Characterize the Onset and Transition from Shallow to Deep Convection Over Orography

    E-Print Network [OSTI]

    field studies over the Magdelena Mountains in central New Mexico (e.g. Raymond and Wilkening, 1982 more directly than the valley provides a local maximum in solar insolation and hence surface sensible

  8. Deep Near Infrared Observations of the X-ray Emitting Class 0 Protostar Candidates in the Orion Molecular Cloud-3

    E-Print Network [OSTI]

    M. Tsujimoto; K. Koyama; Y. Tsuboi; G. Chartas; M. Goto; N. Kobayashi; H. Terada; A. T. Tokunaga

    2002-03-09

    We obtained near infrared (NIR) imaging with the Subaru Telescope of the class 0 protostar candidates in the Orion Molecular Cloud-3, two of which were discovered to have X-ray emission by the Chandra X-ray Observatory. We found strong evidence for the class~0 nature of the X-ray sources. First, our deep K-band image shows no emission brighter than 19.6 mag from both of these X-ray sources. Since class I protostars or class II T Tauri stars should be easily detected in the NIR with this sensitivity, the lack of K-band detection suggests that they are likely much more obscured than class I protostars. Second, our H2 v=1-0 S(1) image shows a bubble-like feature from one of the X-ray class 0 protostar candidates, which reinforces the idea that this is a class 0 protostar. We also discuss the nature of nine NIR sources found in our deep image based on their colors, spatial coincidence with millimeter cores, and the properties of their X-ray counterparts.

  9. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore »microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  10. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points intomore »a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  11. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points intomore »a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  12. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.

  13. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwin’s coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water. Based on previous experiments, the convection appears typical of maritime convection with widespread convection that has complex organization, but is not as deep or as intense as continental or coastal convection. Therefore, it is expected that the convection and cloud characteristics will be representative of conditions typical for wide areas of the tropics.

  14. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    SciTech Connect (OSTI)

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  15. A deep view of the Large Magellanic Cloud with 6 years of Fermi-LAT observations

    E-Print Network [OSTI]

    ,

    2015-01-01

    The nearby Large Magellanic Cloud (LMC) provides a rare opportunity for a spatially resolved view of an external star-forming galaxy in gamma-rays. At 0.1-100GeV energies, it was detected as an extended source with CGRO/EGRET and using early observations with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions, by revealing if and how the gamma-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. We revisit the gamma-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100GeV range. A complete spatial and spectral model of the LMC emission is developed. Several approaches are tested: a simple geometrical description, template-fitting, ...

  16. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  17. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  18. A deep Chandra observation of oxygen-rich supernova remnant B0049-73.6 in the Small Magellanic Cloud

    SciTech Connect (OSTI)

    Schenck, Andrew; Park, Sangwook [Box 19059, Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Burrows, David N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Lee, Jae-Joon [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Mori, Koji, E-mail: andrew.schenck@mavs.uta.edu [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan)

    2014-08-10

    We report on the initial results from our deep Chandra observation (450 ks) of O-rich supernova remnant (SNR) B0049-73.6 in the Small Magellanic Cloud. We detect small metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data with a shorter exposure. The central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast, the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15 M{sub ?} progenitor. The central ring-like (in projection) ejecta nebula extends to ?9 pc from the SNR center. This suggests that the contact discontinuity may be located at a further distance from the SNR center than the previous estimate. We estimate the Sedov age of ?17,000 yr and an explosion energy of E{sub 0} ?1.7 × 10{sup 51} erg for B0049-73.6. We place a stringent upper limit on the 2-7 keV band luminosity of L{sub X} ? 8.5 × 10{sup 31} erg s{sup –1} for the embedded compact stellar remnant at the center of B0049-73.6.

  19. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; Jensen, Michael P.; McCoy, Renata; Zhang, Minghua

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore »morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less

  20. Interactions between Cumulus Convection and Its Environment as Revealed by the MC3E Sounding Array

    SciTech Connect (OSTI)

    Xie, Shaocheng [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jensen, Michael P. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zhang, Yunyan [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Giangrande, Scott E. [Brookhaven National Laboratory (BNL), Upton, NY (United States); McCoy, Renata [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Zhang, Minghua [Stony Brook Univ., Stony Brook, NY (United States)

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during the morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. Sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.

  1. RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-06-19

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore »relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less

  2. Chapter Six Deep Orographic Convection

    E-Print Network [OSTI]

    Xue, Ming

    drainage west of Loveland, Colorado, and intense rainfall produced devastating flash floods that cost many focused on the Big Thompson area. The storm complex developed over the Big Thompson river drainage for a lifted parcel with mean thermodynamic characteristics of lowest 100hPa layer. Fig.6.2. Heavy rainfall

  3. Interactions between cumulus convection and its environment as...

    Office of Scientific and Technical Information (OSTI)

    Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and...

  4. Stochastic and mesoscopic models for tropical convection

    E-Print Network [OSTI]

    Majda, Andrew J.

    Courant Institute of Mathematical Sciences and Center for Atmosphere and Ocean Sciences, New York penetrative convection to heights of 5­10 km with associated anvil towers of clouds. Observational data

  5. The kinematic and cloud-to-ground lightning structure of the 9-10, June 1998 Red River Mesoscale Convective System 

    E-Print Network [OSTI]

    Santarpia, Joshua

    2001-01-01

    An investigation of the kinematic and electrical properties of the 9-10 June, 1998 Red River Mesoscale Convective System (MCS), as observed by the NOAA P3 Tail Radar and the National Lightning Detection Network, is presented. This system exhibits...

  6. Ultra-Deep Hubble Space Telescope Imaging of the Small Magellanic Cloud: The Initial Mass Function of Stars with M <~ 1 Msun

    E-Print Network [OSTI]

    Kalirai, Jason S; Dotter, Aaron; Richer, Harvey B; Fahlman, Gregory G; Hansen, Brad M S; Hurley, Jarrod; Reid, I Neill; Rich, R Michael; Shara, Michael M

    2012-01-01

    We present a new measurement of the stellar initial mass function (IMF) based on ultra-deep, high-resolution photometry of >5,000 stars in the outskirts of the Small Magellanic Cloud (SMC) galaxy. The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) observations reveal this rich, co-spatial population behind the foreground globular cluster 47 Tuc, which we targeted for 121 HST orbits. The stellar main sequence of the SMC is measured in the F606W, F814W color-magnitude diagram (CMD) down to ~30th magnitude, and is cleanly separated from the foreground star cluster population using proper motions. We simulate the SMC population by extracting stellar masses (single and unresolved binaries) from specific IMFs, and converting those masses to luminosities in our bandpasses. The corresponding photometry for these simulated stars is drawn directly from a rich cloud of 4 million artificial stars, thereby accounting for the real photometric scatter and completeness of the data. Over a continuous and well ...

  7. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    SciTech Connect (OSTI)

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other models as well (cf. Jacobson, 2002) but the relative impacts on convective and stratiform processes were not separated. Other changes to atmospheric stability and thermodynamical quantities due to aerosol absorption are also known to be important in modifying cloud macro/micro properties. Linkages between convection and boreal biomass burning can also impact the upper troposphere and lower stratosphere, radiation and cloud microphysical properties via transport of tropospheric aerosols to the lower stratosphere during extreme convection (Fromm and Servranckx 2003). Relevant questions regarding the impact of biomass aerosols on convective cloud properties include the effects of vertical transport of aerosols, spatial and temporal distribution of rainfall, vertical shift in latent heat release, phase shift of precipitation, circulation and their impacts on radiation. Over land surfaces, a decrease in surface shortwave radiation ({approx} 3-6 W m{sup -2} per decade) has been observed between 1960 to 1990, whereas, increases of 0.4 K in land temperature during the same period that occurred have resulted in speculations that evaporation and precipitation should also have decreased (Wild et al. 2004). However, precipitation records for the same period over land do not indicate any significant trend (Beck et al. 2005). The changes in precipitation are thought to be related to increased moisture advection from the oceans (Wild et al. 2004), which may well have some contributions from aerosol-radiation-convection coupling that could modify circulation patterns and hence moisture advection in specific regions. Other important aspects of aerosol effects, besides the direct, semi-direct, microphysical and thermodynamical impacts include alteration of surface albedos, especially snow and ice covered surfaces, due to absorbing aerosols. These effects are uncertain (Jacobson, 2004) but may produce as much as 0.3 W m{sup -2} forcing in the Northern hemisphere that could contribute to melting of ice and permafrost and change in the length of the season (e.g. early arrival of Spring

  8. Modeling convection in the Greenland Sea

    E-Print Network [OSTI]

    Bhushan, Vikas

    1998-01-01

    A detailed examination of the development of a deep convection event observed in the Greenland Sea in 1988-89 is carried out through a combination of modeling, scale estimates, and data analysis. We develop a prognostic ...

  9. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  10. ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M {approx}< 1 M {sub Sun}

    SciTech Connect (OSTI)

    Kalirai, Jason S.; Anderson, Jay; Dotter, Aaron; Reid, I. Neill; Richer, Harvey B.; Fahlman, Gregory G.; Hansen, Brad M. S.; Rich, R. Michael; Hurley, Jarrod; Shara, Michael M. E-mail: jayander@stsci.edu E-mail: richer@astro.ubc.ca E-mail: hansen@astro.ucla.edu E-mail: jhurley@swin.edu.au

    2013-02-15

    We present a new measurement of the stellar initial mass function (IMF) based on ultra-deep, high-resolution photometry of >5000 stars in the outskirts of the Small Magellanic Cloud (SMC) galaxy. The Hubble Space Telescope (HST) Advanced Camera for Surveys observations reveal this rich, cospatial population behind the foreground globular cluster 47 Tuc, which we targeted for 121 HST orbits. The stellar main sequence of the SMC is measured in the F606W, F814W color-magnitude diagram down to {approx}30th magnitude, and is cleanly separated from the foreground star cluster population using proper motions. We simulate the SMC population by extracting stellar masses (single and unresolved binaries) from specific IMFs and converting those masses to luminosities in our bandpasses. The corresponding photometry for these simulated stars is drawn directly from a rich cloud of 4 million artificial stars, thereby accounting for the real photometric scatter and completeness of the data. Over a continuous and well-populated mass range of M = 0.37-0.93 M {sub Sun} (e.g., down to a {approx}75% completeness limit at F606W = 28.7), we demonstrate that the IMF is well represented by a single power-law form with slope {alpha} = -1.90 ({sup +0.15} {sub -0.10}) (3{sigma} error) (e.g., dN/dM{proportional_to} M {sup {alpha}}). This is shallower than the Salpeter slope of {alpha} = -2.35, which agrees with the observed stellar luminosity function at higher masses. Our results indicate that the IMF does not turn over to a more shallow power-law form within this mass range. We discuss implications of this result for the theory of star formation, the inferred masses of galaxies, and the (lack of a) variation of the IMF with metallicity.

  11. Reactor Engineering: Experimental Investigation of Alpha Convection

    SciTech Connect (OSTI)

    Usman, Shoaib

    2012-10-12

    Natural convection, Rayleigh-Bernard convection, Transient convection and Conduction convection transition.

  12. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with...

    Office of Scientific and Technical Information (OSTI)

    fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates...

  13. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  14. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  15. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  16. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  17. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  18. Tropical and subtropical cloud transitions in weather and climate prediction models: the GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)

    SciTech Connect (OSTI)

    Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, Jason N.; DelGenio, Anthony D.; DeMott, C.; Franklin, A.; Hannay, Cecile; Jakob, Christian; Jiao, Y.; Karlsson, J.; Kitagawa, H.; Koehler, M.; Kuwano-Yoshida, A.; LeDrian, C.; Lock, Adrian; Miller, M.; Marquet, P.; Martins, J.; Mechoso, C. R.; Meijgaard, E. V.; Meinke, I.; Miranda, P.; Mironov, D.; Neggers, Roel; Pan, H. L.; Randall, David A.; Rasch, Philip J.; Rockel, B.; Rossow, William B.; Ritter, B.; Siebesma, A. P.; Soares, P.; Turk, F. J.; Vaillancourt, P.; Von Engeln, A.; Zhao, M.

    2011-11-01

    A model evaluation approach is proposed where weather and climate prediction models are analyzed along a Pacific Ocean cross-section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade-winds, to the deep convection regions of the ITCZ: the GCSS/WGNE Pacific Cross-section Intercomparison (GPCI). The main goal of GPCI is to evaluate, and help understand and improve the representation of tropical and sub-tropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross-section from the sub-tropics to the tropics for the season JJA of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the ECMWF Re-Analysis (ERA40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical crosssections of cloud properties (in particular), vertical velocity and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA40 in the stratocumulus regions (as compared to ISCCP) is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade-wind Lagrangian trajectory. Histograms of cloud cover along the cross-section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

  19. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect (OSTI)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.

  20. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect (OSTI)

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

  1. Technical Sessions Parameterization of Convective Clouds, Mesoscale Convective Systems,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliersmillion Technical SessionsM.P. Daum

  2. ON THE INTERACTION BETWEEN CONVECTION AND MAGNETIC FIELDS Fausto Cattaneo

    E-Print Network [OSTI]

    Emonet, Thierry

    found in these different regimes are described and analyzed. Subject headings: convection -- Sun: magnetic fields -- Sun: photosphere 1. INTRODUCTION Magnetic activity is exhibited by late-type stars with deep convective envelopes, but the fine structure of the magnetic field can only be detected on the Sun

  3. Accepted Manuscript Simulations of stellar convection with CO5BOLD

    E-Print Network [OSTI]

    Wedemeyer-Böhm, Sven

    ­ the top of the deep-reaching solar convection zone. Convection plays a role for the thermal structure of the solar interior and the dynamo acting there, for the stratification of the photosphere, where most stratification leads to completely dif- ferent conditions in the interior, the photosphere, and the corona

  4. Convective heater

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA)

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  5. Midlatitude Continental Convective Clouds Experiment Science Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection ofOctober10MidSchoolMath

  6. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore »cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  7. The relationship between atmospheric convective radiative effect and net1 energy transport in the tropical warm pool2

    E-Print Network [OSTI]

    Hartmann, Dennis

    of the atmospheric cloud radiative effect in determining the magnitude of hor- izontal export of energy, they increase the re- quirement for the atmosphere to export energy from convective regions. Over the warmest that the increased energy export is supplied by the radiative heating from convection. The net cloud radiative effect

  8. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-01

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  9. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  10. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore »to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less

  11. Low enthalpy convective system in Western Ohio

    SciTech Connect (OSTI)

    Cannon, M.S.; Tabet, C.A.; Eckstein, Y.

    1980-01-01

    A distinct positive anomaly in the temperatures of the shallow (Pleistocene) aquifers along the Cincinnati-Findlay Arch in Western Ohio coincides with a low geothermal gradient. A conceptual model of convective currents associated with a tensional fault and/or fracture system along the crest of the Arch is suggested as an explanation of the anomaly. Hydrochemical information indicates that various quantities of warmer ground water, with the composition characteristics of deep bedrock aquifers, is present as an admixture in the shallow aquifers. This confirms the conceptual model of convection in fractures.

  12. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  13. A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part II: Nonlinear Simulations

    E-Print Network [OSTI]

    Majda, Andrew J.

    , British Columbia, Canada ANDREW J. MAJDA Department of Mathematics, and Center for Atmosphere Ocean clouds, and deep penetrative cumulus clouds (Lin and Johnson 1996; Johnson et al. 1999). Furthermore

  14. Characteristics of convective cells over the coastal regions of southeast Texas 

    E-Print Network [OSTI]

    Robinson, Michael

    1998-01-01

    Vertical profiles of radar reflectivity and cloud-to-ground lightning characteristics associated with convective cells were analyzed for mesoscate systems occurring over the coastal regions of southeast Texas during the ...

  15. Effects on precipitation, clouds, and temperature from long-range transport of idealized aerosol plumes in WRF-Chem simulations

    E-Print Network [OSTI]

    Zhao, Zhan; Pritchard, Michael S; Russell, Lynn M

    2012-01-01

    on intense convective precipitation in the northeastern US,aerosols on regional precipitation over East Asia, J.of aerosols on surface precipitation from clouds: An attempt

  16. Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model

    SciTech Connect (OSTI)

    Zhang, Guang J [Scripps Institution of Oceanography

    2013-07-29

    Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs.

  17. Plains Elevated Convection at Night (PECAN) Experiment Science Plan

    SciTech Connect (OSTI)

    Turner, D; Parsons, D; Geerts, B

    2015-03-01

    The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fraction of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.

  18. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    2014-04-10

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  19. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  20. What Makes Clouds Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fairly well." Based on these results, Hagos and his collaborators will next focus on cold pools and their role in growing small shallow clouds into large, deep ones. The team...

  1. Magnetic flux concentrations from turbulent stratified convection

    E-Print Network [OSTI]

    Käpylä, P J; Kleeorin, N; Käpylä, M J; Rogachevskii, I

    2015-01-01

    (abridged) Context: The mechanisms that cause the formation of sunspots are still unclear. Aims: We study the self-organisation of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains that are $8.5$-$24$ Mm deep and $34$-$96$ Mm wide. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface with domain depths of $12.5$ and $24$ Mm. The size of the concentrations increases as the box size increases and the largest structures ($20$ Mm horizontally) are obtained in the 24 Mm deep models. The field strength in the concentrations is in the range of $3$-$5$ kG. The concentrations grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its ...

  2. Radiative-convective instability

    E-Print Network [OSTI]

    Wing, Allison A.

    Radiative-moist-convective equilibrium (RCE) is a simple paradigm for the statistical equilibrium the earth's climate would exhibit in the absence of lateral energy transport. It has generally been assumed that for a given ...

  3. Preface: Crowds and Clouds

    E-Print Network [OSTI]

    2012-01-01

    crowdsourcing, cloud computing, big data, and Internetdata include “cloud computing,” “algorithms,” “filters,” “cloud of claims about cloud computing and big data settle

  4. Deep Web Web Deep Web Web

    E-Print Network [OSTI]

    Deep Web 100872 Deep Web Web Deep Web Web Web Deep Web Deep Web TP391 A Uncertain Schema Matching in Deep Web Integration Service JIANG Fang-Jiao MENG Xiao-Feng JIA Lin-Lin (School of Information, Renmin University of China, Beijing, 100872) Abstract: With increasing of Deep Web, providing

  5. A Fundamental Study of Convective Mixing of CO2 in Heterogeneous Geologic Media using Surrogate Fluids and Numerical Modeling

    E-Print Network [OSTI]

    , H. A., and Huppert H. E., 2010, Convective dissolution of carbon dioxide in saline aquifers, GeophysA Fundamental Study of Convective Mixing of CO2 in Heterogeneous Geologic Media using Surrogate mechanisms contributing to storage of supercritical CO2 (scCO2) in deep saline geologic formations. When

  6. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  7. Intensification of precipitation extremes with warming in a cloud resolving model

    E-Print Network [OSTI]

    Muller, Caroline

    A cloud-resolving model is used to investigate the effect of warming on high percentiles of precipitation (precipitation extremes) in the idealized setting of radiative-convective equilibrium. While this idealized setting ...

  8. Stratosphere-troposphere exchange ozone flux related to deep convection

    E-Print Network [OSTI]

    Tang, Q.; Prather, M. J; Hsu, J.

    2011-01-01

    tropopause folds near jet streams [Sprenger et al. , 2003,asso- ciated with the jet stream [Newell, 1963] andpoleward migration of jet streams have been associated with

  9. Deep Lysimeter

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2004-06-01

    A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

  10. Exploring the LandOcean Contrast in Convective Vigor Using Islands F. J. ROBINSON

    E-Print Network [OSTI]

    Sherwood, Steven

    was idealized, with islands represented by regions of uniform surface heat flux without orography, using a rangeExploring the Land­Ocean Contrast in Convective Vigor Using Islands F. J. ROBINSON Department) observations over islands of increasing size to those simulated by a cloud- resolving model. The observed

  11. Modeling of passive microwave responses in convective situations using output from mesoscale models

    E-Print Network [OSTI]

    Chaboureau, Jean-Pierre

    Modeling of passive microwave responses in convective situations using output from mesoscale models 2003; revised 27 January 2004; accepted 5 February 2004; published 30 March 2004. [1] Passive microwave, which essentially sense cloud tops. Therefore passive microwave observations are a very promising tool

  12. Measurement of Convective Entrainment Using Lagrangian Particles KYONGMIN YEO AND DAVID M. ROMPS

    E-Print Network [OSTI]

    Romps, David M.

    Measurement of Convective Entrainment Using Lagrangian Particles KYONGMIN YEO AND DAVID M. ROMPS entrainment rate and of the residence times of entrained parcels within the cloud. The entrainment rate with the Eulerian calculation. The Lagrangian method can also quantify some aspects of entrainment that cannot

  13. Modeling of passive microwave responses in convective situations using output from mesoscale models

    E-Print Network [OSTI]

    Pardo-Carrión, Juan R.

    Modeling of passive microwave responses in convective situations using output from mesoscale models using output from nonhydrostatic mesoscale atmospheric model, Meso-NH, simulations. The radiative for a systematic evaluation of the mesoscale cloud models. An overall good agreement is obtained for both

  14. Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years

    E-Print Network [OSTI]

    Gilli, Adrian

    Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during) suggest a high spatiotemporal variability of deep-water oxygenation and biogeochemical processes maximum, cool surface waters and high evaporation resulted in maximum convection and oxic deep-waters

  15. Deep-Sea Research I 51 (2004) 13471366 The Bering Strait's grip on the northern hemisphere climate

    E-Print Network [OSTI]

    De Boer, Agatha M.

    2004-01-01

    engine. Here, warm surface water is transformed to deep water by releasing great quantities of heat that, during interglacial periods (when the BS is open) perturbations in North Atlantic Deep Water, 2002). The accompanying salinity anomaly renders the surface water too fresh for deep convection

  16. Development of Ensemble Neural Network Convection Parameterizations for Climate Models

    SciTech Connect (OSTI)

    Fox-Rabinovitz, M. S.; Krasnopolsky, V. M.

    2012-05-02

    The novel neural network (NN) approach has been formulated and used for development of a NN ensemble stochastic convection parametrization for climate models. This fast parametrization is built based on data from Cloud Resolving Model (CRM) simulations initialized with and forced by TOGA-COARE data. The SAM (System for Atmospheric Modeling), developed by D. Randall, M. Khairoutdinov, and their collaborators, has been used for CRM simulations. The observational data are also used for validation of model simulations. The SAM-simulated data have been averaged and projected onto the GCM space of atmospheric states to implicitly define a stochastic convection parametrization. This parametrization is emulated using an ensemble of NNs. An ensemble of NNs with different NN parameters has been trained and tested. The inherent uncertainty of the stochastic convection parametrization derived in such a way is estimated. Due to these inherent uncertainties, NN ensemble is used to constitute a stochastic NN convection parametrization. The developed NN convection parametrization have been validated in a diagnostic CAM (CAM-NN) run vs. the control CAM run. Actually, CAM inputs have been used, at every time step of the control/original CAM integration, for parallel calculations of the NN convection parametrization (CAM-NN) to produce its outputs as a diagnostic byproduct. Total precipitation (P) and cloudiness (CLD) time series, diurnal cycles, and P and CLD distributions for the large Tropical Pacific Ocean for the parallel CAM-NN and CAM runs show similarity and consistency with the NCEP reanalysis. The P and CLD distributions for the tropical area for the parallel runs have been analyzed first for the TOGA-COARE boreal winter season (November 1992 through February 1993) and then for the winter seasons of the follow-up parallel decadal simulations. The obtained results are encouraging and practically meaningful. They show the validity of the NN approach. This constitutes an important practical conclusion of the study: the obtained results on NN ensembles as a stochastic physics parametrization show a realistic possibility of development of NN convection parametrization for climate (and NWP) models based on learning cloud physics from CRM/SAM simulated data.

  17. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  18. Refinement, Validation and Application of Cloud-Radiation Parameterization in a GCM

    SciTech Connect (OSTI)

    Dr. Graeme L. Stephens

    2009-04-30

    The research performed under this award was conducted along 3 related fronts: (1) Refinement and assessment of parameterizations of sub-grid scale radiative transport in GCMs. (2) Diagnostic studies that use ARM observations of clouds and convection in an effort to understand the effects of moist convection on its environment, including how convection influences clouds and radiation. This aspect focuses on developing and testing methodologies designed to use ARM data more effectively for use in atmospheric models, both at the cloud resolving model scale and the global climate model scale. (3) Use (1) and (2) in combination with both models and observations of varying complexity to study key radiation feedback Our work toward these objectives thus involved three corresponding efforts. First, novel diagnostic techniques were developed and applied to ARM observations to understand and characterize the effects of moist convection on the dynamical and thermodynamical environment in which it occurs. Second, an in house GCM radiative transfer algorithm (BUGSrad) was employed along with an optimal estimation cloud retrieval algorithm to evaluate the ability to reproduce cloudy-sky radiative flux observations. Assessments using a range of GCMs with various moist convective parameterizations to evaluate the fidelity with which the parameterizations reproduce key observable features of the environment were also started in the final year of this award. The third study area involved the study of cloud radiation feedbacks and we examined these in both cloud resolving and global climate models.

  19. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  20. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus

  1. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus(MC3E): Multi-Frequency Profilers

  2. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach HomepolarizationMeasurementsWarmingMethane BackgroundMethane

  3. Limiting Factors for Convective Cloud Top Height in the Tropics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and| National

  4. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    SciTech Connect (OSTI)

    Wu, Xiaoqing

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  5. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam; Fridlind, Ann; Zipser, Edward J.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-10-04

    The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. In stratiform regions, there is a large spread in model results with none resembling observed distributions. Above the melting level, observed radar reflectivity decreases more gradually with height than simulated radar reflectivity. A few simulations produce unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several simulations produce distributions close to observed. Assumed ice particle size distributions appear to play a larger role than ice water contents in producing incorrect simulated radar reflectivity distributions aloft despite substantial differences in mean graupel and snow water contents across models.

  6. The persistence of oceans on Earth-like planets: insights from the deep-water cycle

    E-Print Network [OSTI]

    Schaefer, Laura

    2015-01-01

    In this paper we present a series of models for the deep water cycle on super-Earths experiencing plate tectonics. The deep water cycle can be modeled through parameterized convection models coupled with a volatile recycling model. The convection of the silicate mantle is linked to the volatile cycle through the water-dependent viscosity. Important differences in surface water content are found for different parameterizations of convection. Surface oceans are smaller and more persistent for single layer convection, rather than convection by boundary layer instability. Smaller planets have initially larger oceans but also return that water to the mantle more rapidly than larger planets. Super-Earths may therefore be less habitable in their early years than smaller planets, but their habitability (assuming stable surface conditions), will persist much longer.

  7. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  8. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.; Yamaguchi, K.

    1983-01-01

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  9. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  10. Tracking tropical cloud systems for the diagnosis of simulations by the weather research and forecasting (WRF) model

    SciTech Connect (OSTI)

    Vogelmann, A.M.; Lin, W.; Cialella, A.; Luke, E. P.; Jensen, M. P.; Zhang, M. H.; Boer, E.

    2010-06-27

    To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit convection, to simulate the life cycle of tropical cloud systems in the tropical warm pool. The cloud life cycle is determined using a satellite cloud tracking algorithm (Boer and Ramanathan, J. Geophys. Res., 1997), and the statistics are compared to those of simulations using the Weather Research and Forecasting (WRF) Model. Using New York Blue, a Blue Gene/L supercomputer that is co-operated by Brookhaven and Stony Brook, simulations are run at a resolution comparable to the observations. Initial results suggest that the organization of the mesoscale convective systems is particularly sensitive to the cloud microphysics parameterization used.

  11. Spatially Modulated Structures in Convective Systems

    E-Print Network [OSTI]

    Kao, Hsien-Ching

    2013-01-01

    Mode in Pattern Formation Convection in a horizontal ?uid layer rotating about the vertical or subject

  12. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  13. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

  14. A CALIBRATION OF MIXING LENGTH THEORY BASED ON RHD SIMULATIONS OF SOLARTYPE CONVECTION

    E-Print Network [OSTI]

    ­ formation about the dynamics, thermal structure, and convective efficiency of the superadiabatic region, our models in general do not extend deep enough to include those layers where the mean stratification of the convec­ tion zone becomes adiabatic. While the mean entropy stratification of the hydrodynamical models

  15. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  16. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    Router Cloud Computing Cloud Computing Cloud Computing Tower-mount Antenna Tower-mount Antenna Wireless-Features-1GHz-Tegra-2-HigherRes-Screen/ #12;Router Router Router Router Mini Computer Mini Computer Mini Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud

  17. HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION

    SciTech Connect (OSTI)

    Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk E-mail: fherwig@uvic.ca

    2015-01-01

    We present the first three-dimensional, fully compressible gas-dynamics simulations in 4? geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 ± 1.48 × 10{sup –13} M {sub ?} s{sup –1}.

  18. FREE CONVECTIVE LAMINAR FLOW WITHIN THE TROMBE WALL CHANNEL

    E-Print Network [OSTI]

    Akbari, H.

    2011-01-01

    Foreign FREE CONVECTIVE LAMINAR FLOW WITHIN THE TROMBE WALLEnergy. -i- FREE CONVECTIVE LAMINAR FLOW WITHIN THE TROMBEABSTRACT Free convective laminar heat transfer between the

  19. The Roles of Cloud Drop Effective Radius and LWP in Determining Rain Properties in Marine Stratocumulus

    SciTech Connect (OSTI)

    Rosenfeld, Daniel; Wang, Hailong; Rasch, Philip J.

    2012-07-04

    Numerical simulations described in previous studies showed that adding cloud condensation nuclei to marine stratocumulus can prevent their breakup from closed into open cells. Additional analyses of the same simulations show that the suppression of rain is well described in terms of cloud drop effective radius (re). Rain is initiated when re near cloud top is around 12-14 um. Cloud water starts to get depleted when column-maximum rain intensity (Rmax) exceeds 0.1 mm h-1. This happens when cloud-top re reaches 14 um. Rmax is mostly less than 0.1 mm h-1 at re<14 um, regardless of the cloud water path, but increases rapidly when re exceeds 14 um. This is in agreement with recent aircraft observations and theoretical observations in convective clouds so that the mechanism is not limited to describing marine stratocumulus. These results support the hypothesis that the onset of significant precipitation is determined by the number of nucleated cloud drops and the height (H) above cloud base within the cloud that is required for cloud drops to reach re of 14 um. In turn, this can explain the conditions for initiation of significant drizzle and opening of closed cells providing the basis for a simple parameterization for GCMs that unifies the representation of both precipitating and non-precipitating clouds as well as the transition between them. Furthermore, satellite global observations of cloud depth (from base to top), and cloud top re can be used to derive and validate this parameterization.

  20. Large-Scale Modes of a Non-Rotating Atmosphere with Water Vapor and Cloud-Radiation Feedbacks

    E-Print Network [OSTI]

    Raymond, David J.

    deficit and the convective available potential energy. When wind induced surface heat exchange (WISHE model types consider deep convection and surface latent and sensible heat fluxes, but typically ignore smaller than a certain limit respond to a reduced static stability due to latent heat release

  1. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  2. Deep dermatophytosis caused by

    E-Print Network [OSTI]

    Warycha, Melanie A; Leger, Marie; Tzu, Julia; Kamino, Hideko; Stein, Jennifer

    2011-01-01

    PubMed ] 5. Gong JQ, et al. Deep dermatophytosis caused bymolecular diagnosis of deep localized cutaneous infectionPubMed ] 7. Chastain MA, et al. Deep dermatophytosis: report

  3. Deep Research Submarine

    E-Print Network [OSTI]

    Woertz, Jeff

    2002-02-01

    The Deep Sea Research Submarine (Figure 1) is a modified VIRGINIA Class Submarine that incorporates a permanently installed Deep Sea Operations Compartment (Figure 2). Table 1 summarizes the characteristics of the Deep ...

  4. CloudTransport: Using Cloud Storage for

    E-Print Network [OSTI]

    Houmansadr, Amir

    users' network traffic by tunneling it through a cloud storage ser- vice such as Amazon S3. The goal the bridge or identify other connections. CloudTransport can be used as a standalone service, a gateway

  5. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore »different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  6. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect (OSTI)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  7. The convective desalination of sea ice

    E-Print Network [OSTI]

    Rees Jones, David

    2014-07-01

    in the interstices of an ice matrix. My focus is on one of the processes by which the salt content of sea ice decreases, namely convective desalination, which is also often called gravity drainage by geophysicists. Modelling convective desalination requires...

  8. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  9. MESOSCALE CONVECTIVE SYSTEMS Robert A. Houze Jr.

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    MESOSCALE CONVECTIVE SYSTEMS Robert A. Houze Jr. Department of Atmospheric Sciences University; published 31 December 2004. [1] Mesoscale convective systems (MCSs) have regions of both convective and stratiform precipitation, and they develop mesoscale circulations as they mature. The upward motion takes

  10. NATURAL CONVECTION IN ROOM GEOMETRIES

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

    1980-06-01

    Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

  11. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    SciTech Connect (OSTI)

    Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)

    2014-08-15

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.

  12. Jobtong Deep Web Web""Surface WebDeep Web

    E-Print Network [OSTI]

    Jobtong Deep Web Web Web Web""Surface WebDeep Web Surface WebDeep Web Web[1] 20007BrightPlanet.comDeep Web[2] Web43,000-96,000Web7,500TB(Surface Web500) UIUC5Deep Web[3]2004Deep Web 307,000366,000-535,000"" Deep Web""Google Yahoo32%Deep Web WAMDMWebDeep WebJobtong Deep Web (Jobtong) Jobtong(, http

  13. Learning Deep Generative Ruslan Salakhutdinov

    E-Print Network [OSTI]

    Toronto, University of

    Learning Deep Generative Models Ruslan Salakhutdinov Departments of Computer Science reserved Keywords deep learning, deep belief networks, deep Boltzmann machines, graphical models Abstract suggest that building such systems requires models with deep architectures that involve many layers

  14. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    1.2 Cloud computing to Vehicular CloudM. Gerla. Vehicular Cloud Computing, VCA 2012 Proceedings,single vehicle cannot. Cloud computing to Vehicular Cloud

  15. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service, performance SECaaS - Cloud hosted security measures Certifications - measurements for cloud security. #12;Cloud Questions If you have $0 security budget, could cloud be a security improvement? Who owns the data

  16. Experiment to Characterize Tropical Cloud Systems

    SciTech Connect (OSTI)

    May, Peter T.; Mather, Jim H.; Jakob, Christian

    2005-08-02

    A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

  17. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  18. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.ACM workshop on Cloud computing security workshop, CCSW ’11,aspects of cloud computing, including security, performance

  19. CYCLIC THERMAL SIGNATURE IN A GLOBAL MHD SIMULATION OF SOLAR CONVECTION

    SciTech Connect (OSTI)

    Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.

    2013-11-10

    Global magnetohydrodynamical simulations of the solar convection zone have recently achieved cyclic large-scale axisymmetric magnetic fields undergoing polarity reversals on a decadal time scale. In this Letter, we show that these simulations also display a thermal convective luminosity that varies in-phase with the magnetic cycle, and trace this modulation to deep-seated magnetically mediated changes in convective flow patterns. Within the context of the ongoing debate on the physical origin of the observed 11 yr variations in total solar irradiance, such a signature supports the thesis according to which all, or part, of the variations on decadal time scales and longer could be attributed to a global modulation of the Sun's internal thermal structure by magnetic activity.

  20. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  1. Oscillatory convective modes in red giants: a possible explanation of the long secondary periods

    E-Print Network [OSTI]

    Saio, Hideyuki; Takayama, Masaki; Ita, Yoshifusa

    2015-01-01

    We discuss properties of oscillatory convective modes in low-mass red giants, and compare them with observed properties of the long secondary periods (LSPs) of semi-regular red giant variables. Oscillatory convective modes are very nonadiabatic g$^{-}$ modes and they are present in luminous stars, such as red giants with $\\log L/{\\rm L}_\\odot \\ga 3$. Finite amplitudes for these modes are confined to the outermost nonadiabatic layers, where the radiative energy flux is more important than the convective energy flux. The periods of oscillatory convection modes increase with luminosity, and the growth times are comparable to the oscillation periods. The LSPs of red giants in the Large Magellanic Cloud (LMC) are observed to lie on a distinct period-luminosity sequence called sequence D. This sequence D period-luminosity relation is roughly consistent with the predictions for dipole oscillatory convective modes in AGB models if we adopt a mixing length of 1.2 pressure scale height ($\\alpha = 1.2$). However, the ef...

  2. Meridional flow in the solar convection zone. I. Measurements from gong data

    SciTech Connect (OSTI)

    Kholikov, S. [National Solar Observatories, Tucson, AZ 85719 (United States); Serebryanskiy, A. [Ulugh Beg Astronomical Institute, Uzbek Academy of Science, Tashkent 100052 (Uzbekistan); Jackiewicz, J., E-mail: kholikov@noao.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-time differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.

  3. PC Windows Adobe Creative Cloud PC Windows Adobe Creative Cloud

    E-Print Network [OSTI]

    PC Windows Adobe Creative Cloud 1 PC Windows Adobe Creative Cloud 2015-05-25 1 Web Windows Adobe Creative Cloud PC | Creative Cloud https://helpx.adobe.com/jp/creative-cloud Adobe Creative Cloud 5.1 Web TTInstaller(Windows )() http://www.officesoft.gsic.titech.ac

  4. ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING

    E-Print Network [OSTI]

    ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING Wuyin Lin1 , Yangang Liu Distinct cloud regimes can exist locally and globally. Such cloud regimes usually have close association, the classification of cloud regimes may be based on cloud properties and/or meteorological conditions. This study

  5. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  6. Three-dimensional structures and dynamics in the deep mantle: Effects of post-perovskite phase change and deep mantle layering

    E-Print Network [OSTI]

    Tackley, Paul J.

    Three-dimensional structures and dynamics in the deep mantle: Effects of post-perovskite phase simulations of thermo- chemical mantle convection with multiple phase transitions (olivine-spinel-perovskite-post perovskite) are used to investigate the morphology of compositional and post- perovskite (PPV) boundary

  7. Hyperscale Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Hyperscale Cloud Technical White Paper Published: May 2015 Applies to: SQL Server 2016 CTP2, SQL in the cloud with greater scale and flexibility. Microsoft SQL Server is built for cloud integration--your organization can easily deploy SQL Server in a private cloud, hybrid cloud, or public cloud, and can use

  8. Deep Lambertian Networks Introduction

    E-Print Network [OSTI]

    Toronto, University of

    Deep Lambertian Networks Introduction Learns distributions over 3D object shapes from sets of 2D-shot recognition possible Uses multiplicative interactions to approximate the Lambertian reflectance model Deep 30 50 Experiments Deep Lambertian Networks Inference Samples from albedo DBN Face Relighting Simple

  9. Deep Web video

    ScienceCinema (OSTI)

    None Available

    2012-03-28

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  10. Deep Web video

    SciTech Connect (OSTI)

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  11. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Chen, Tsuhan

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  12. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  13. Mesoscale convective complex vs. non-mesoscale convective complex thunderstorms: a comparison of selected meteorological variables 

    E-Print Network [OSTI]

    Hoofard, Michael Eugene

    1986-01-01

    MESOSCALE CONVECTIVE CCMPLLX VS. NON-MESOSCALE CONVECTIVE COMPLEX THUNDERSTORMS: A COMPARISON OF SELECTED METEOROLOGICAL VARIABLES A Thesis MICHAkL EUGENE JJOOFARD Submitted to the Graduate College of Texas AJkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1986 Major Subj ect: Meteorology MESOSCALE CONVECTIVE COMPLEX VS. NON-MESOSCALE CONVECTIVE COMPLEX THUNDERSTORMS: A COMPARISON OF SELECTED METEOROLOGICAL VARIABLES A Thesis...

  14. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative 2011) ABSTRACT This study proposes a novel technique for computing cloud feedbacks using histograms integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud

  15. Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung*

    E-Print Network [OSTI]

    Chung, Yeh-Ching

    Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung* , Po-Chi Shih}@cs.nthu.edu.tw Abstract--This paper introduces a prototype of Taiwan UniCloud, a community-driven hybrid cloud platform for academics in Taiwan. The goal is to leverage resources in multiple clouds among different organizations

  16. Long-term impacts of aerosols on vertical development of cloud and precipitation

    SciTech Connect (OSTI)

    Li Z.; Liu Y.; Niu, F.; Fan, J.; Rosenfeld, D.; Ding, Y.

    2011-11-13

    Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation.

  17. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  18. Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet Effective Radius

    E-Print Network [OSTI]

    Delene, David J.

    ` Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet is the relationship between below cloud base cloud condensation nuclei (CCN) and satellite retrievals of cloud droplet cloud effective radius; however, satellites can not measure cloud condensation nuclei (CCN

  19. Community Cloud Computing

    E-Print Network [OSTI]

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  20. Q. J. R. Meteorol. Soc. (2004), 130, pp. 31193137 doi: 10.1256/qj.03.103 The simulation of the diurnal cycle of convective precipitation over land

    E-Print Network [OSTI]

    Chaboureau, Jean-Pierre

    2004-01-01

    Cloud Systems project, the problem of the simulation of the diurnal cycle of convective precipitation general- circulation model. The focus is on tropical South America and Africa where the diurnal cycle on surface temperature. It is primarily controlled by a change of vertical stability that arises as solar

  1. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    SciTech Connect (OSTI)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara; Fortney, Jonathan; Knutson, Heather; Desert, Jean-Michel; Heng, Kevin; Madhusudhan, Nikku; Gillon, Michael; Barclay, Thomas; Cowan, Nicolas B.

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  2. Experimental study of internal wave generation by convection in water

    E-Print Network [OSTI]

    2015-01-01

    study of internal wave generation by convection in waterstudies of internal wave generation by convective turbulenceintermittent generation of internal waves. We also computed

  3. Fingering convection and cloudless models for cool brown dwarf atmospheres

    E-Print Network [OSTI]

    Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...

  4. Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    M Jensen; K Johnson; JH Mather

    2009-07-14

    Clouds represent a critical component of the Earth’s atmospheric energy balance as a result of their interactions with solar and terrestrial radiation and a redistribution of heat through convective processes and latent heating. Despite their importance, clouds and the processes that control their development, evolution and lifecycle remain poorly understood. Consequently, the simulation of clouds and their associated feedbacks is a primary source of inter-model differences in equilibrium climate sensitivity. An important step in improving the representation of cloud process simulations is an improved high-resolution observational data set of the cloud systems including their time evolution. The first order quantity needed to understand the important role of clouds is the height of cloud occurrence and how it changes as a function of time. To this end, the Atmospheric Radiation Measurement (ARM) Climate Research Facilities (ACRF) suite of instrumentation has been developed to make the observations required to improve the representation of cloud systems in atmospheric models.

  5. Federated Cloud Security Architecture for Secure and Agile Clouds

    E-Print Network [OSTI]

    Xu, Shouhuai

    Federated Cloud Security Architecture for Secure and Agile Clouds Weiliang Luo, Li Xu, Zhenxin Zhan. This chapter introduces the novel federated cloud security architecture that includes proactive cloud defense technologies for secure and agile cloud development. The federated security architecture consists of a set

  6. The proposed connection between clouds and cosmic rays: Cloud

    E-Print Network [OSTI]

    The proposed connection between clouds and cosmic rays: Cloud behaviour during the past 50 of cloud factors using both satellite and ground­based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud­cosmic ray flux

  7. Tracking tropical cloud systems - Observations for the diagnosis of simulations by the Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Vogelmann, A.M.; Lin, W.; Cialella, A.; Luke, E.; Jensen, M.; Zhang, M.

    2010-03-15

    To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit convection, to simulate the life cycle of tropical cloud systems in the vicinity of the ARM Tropical Western Pacific sites. The cloud life cycle is determined using a satellite cloud tracking algorithm (Boer and Ramanathan, 1997), and the statistics are compared to those of simulations using the Weather Research and Forecasting (WRF) Model. Using New York Blue, a Blue Gene/L supercomputer that is co-operated by Brookhaven and Stony Brook, simulations are run at a resolution comparable to the observations. Initial results suggest a computational paradox where, even though the size of the simulated systems are about half of that observed, their longevities are still similar. The explanation for this seeming incongruity will be explored.

  8. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  9. Fig 2 -Cloud energy collect infrastructure Energy Efficient (Green) Cloud !

    E-Print Network [OSTI]

    Lefèvre, Laurent

    Fig 2 - Cloud energy collect infrastructure Energy Efficient (Green) Cloud ! The Compatible software components Energy Monitoring of physical and virtual resources Energy usage exposing for users and clouds managers Energy monitoring streams for upper layers software Design Energy aware software

  10. Study of Multi-Scale Cloud Processes Over the Tropical Western Pacific Using Cloud-Resolving Models Constrained by Satellite Data

    SciTech Connect (OSTI)

    Dudhia, Jimy

    2013-03-12

    Clouds in the tropical western Pacific are an integral part of the large scale environment. An improved understanding of the multi-scale structure of clouds and their interactions with the environment is critical to the ARM (Atmospheric Radiation Measurement) program for developing and evaluating cloud parameterizations, understanding the consequences of model biases, and providing a context for interpreting the observational data collected over the ARM Tropical Western Pacific (TWP) sites. Three-dimensional cloud resolving models (CRMs) are powerful tools for developing and evaluating cloud parameterizations. However, a significant challenge in using CRMs in the TWP is that the region lacks conventional data, so large uncertainty exists in defining the large-scale environment for clouds. This project links several aspects of the ARM program, from measurements to providing improved analyses, and from cloud-resolving modeling to climate-scale modeling and parameterization development, with the overall objective to improve the representations of clouds in climate models and to simulate and quantify resolved cloud effects on the large-scale environment. Our objectives will be achieved through a series of tasks focusing on the use of the Weather Research and Forecasting (WRF) model and ARM data. Our approach includes: -- Perform assimilation of COSMIC GPS radio occultation and other satellites products using the WRF Ensemble Kalman Filter assimilation system to represent the tropical large-scale environment at 36 km grid resolution. This high-resolution analysis can be used by the community to derive forcing products for single-column models or cloud-resolving models. -- Perform cloud-resolving simulations using WRF and its nesting capabilities, driven by the improved regional analysis and evaluate the simulations against ARM datasets such as from TWP-ICE to optimize the microphysics parameters for this region. A cirrus study (Mace and co-authors) already exists for TWP-ICE using satellite and ground-based observations. -- Perform numerical experiments using WRF to investigate how convection over tropical islands in the Maritime Continent interacts with large-scale circulation and affects convection in nearby regions. -- Evaluate and apply WRF as a testbed for GCM cloud parameterizations, utilizing the ability of WRF to run on multiple scales (from cloud resolving to global) to isolate resolution and physics issues from dynamical and model framework issues. Key products will be disseminated to the ARM and larger community through distribution of data archives, including model outputs from the data assimilation products and cloud resolving simulations, and publications.

  11. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  12. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-11-01

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  13. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-01-01

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  14. Transient Mixed Convection Validation for NGNP

    SciTech Connect (OSTI)

    Smith, Barton; Schultz, Richard

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  15. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.and M. Walfish. “Depot: Cloud storage with minimal trust. ”the 3rd ACM workshop on Cloud computing security workshop,

  16. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  17. Convective Cooling and Passive Stack Improvements in Motors (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-06-01

    This presentation discusses current research at NREL in convective cooling and passive stack improvements in motors.

  18. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing Services Cloud...

  19. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    as well as data processing and data storage. We show that energy consumption in transport and switching | Cloud computing; core networks; data centers; energy consumption I. INTRODUCTION The increasing to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  20. RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL-MODELING-THEORETICAL INVESTIGATION

    E-Print Network [OSTI]

    RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL of Energy Office of Science ABSTRACT Cloud fraction and cloud albedo have long occupied the central stage as key cloud quantities in studying cloud-climate interaction; however their quantitative relationship

  1. Vortex Tubes of Turbulent Solar Convection

    E-Print Network [OSTI]

    Kitiashvili, I N; Mansour, N N; Lele, S K; Wray, A A

    2011-01-01

    Investigation of turbulent properties of solar convection is extremely important for understanding of the multi-scale dynamics observed on the solar surface. In particular, recent high-resolution observations revealed ubiquitous vortical structures, and numerical simulations demonstrated links between the vortex tube dynamics and magnetic field organization, and also importance of vortex tube interactions in the mechanism of acoustic wave excitation on the Sun. In this paper we investigate mechanisms of formation of vortex tubes in highly-turbulent convective flows near the solar surface by using realistic radiative hydrodynamic LES simulations. Analysis of data, obtained by the simulations, indicates two basic processes of the vortex tube formation: 1) development of small-scale convective instability inside convective granules, and 2) a Kelvin-Helmholtz type instability of shearing flows in intergranular lanes. Our analysis shows that vortex stretching during these processes is a primary source of generatio...

  2. A modified convective/stratiform partitioning algorithm 

    E-Print Network [OSTI]

    Listemaa, Steven Alan

    1998-01-01

    by using different radar reflectivity-rail-ate relationships. Several authors have developed their own convective-stratiform partitioning, but each had its limitations. An algorithm has been developed which partitions precipitating systems...

  3. Circulation and convection in the Irminger Sea

    E-Print Network [OSTI]

    Våge, Kjetil

    2010-01-01

    Aspects of the circulation and convection in the Irminger Sea are investigated using a variety of in-situ, satellite, and atmospheric reanalysis products. Westerly Greenland tip jet events are intense, small-scale wind ...

  4. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  5. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect (OSTI)

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

  6. Convective cores in galactic cooling flows

    E-Print Network [OSTI]

    A. Kritsuk; T. Plewa; E. Mueller

    2001-05-02

    We use hydrodynamic simulations with adaptive grid refinement to study the dependence of hot gas flows in X-ray luminous giant elliptical galaxies on the efficiency of heat supply to the gas. We consider a number of potential heating mechanisms including Type Ia supernovae and sporadic nuclear activity of a central supermassive black hole. As a starting point for this research we use an equilibrium hydrostatic recycling model (Kritsuk 1996). We show that a compact cooling inflow develops, if the heating is slightly insufficient to counterbalance radiative cooling of the hot gas in the central few kiloparsecs. An excessive heating in the centre, instead, drives a convectively unstable outflow. We model the onset of the instability and a quasi-steady convective regime in the core of the galaxy in two-dimensions assuming axial symmetry. Provided the power of net energy supply in the core is not too high, the convection remains subsonic. The convective pattern is dominated by buoyancy driven large-scale mushroom-like structures. Unlike in the case of a cooling inflow, the X-ray surface brightness of an (on average) isentropic convective core does not display a sharp maximum at the centre. A hybrid model, which combines a subsonic peripheral cooling inflow with an inner convective core, appears to be stable. We also discuss observational implications of these results.

  7. Impact of a Revised Convective Triggering Mechanism on CAM2 Model Simulations: Results from Short-Range Weather Forecasts

    SciTech Connect (OSTI)

    Xie, S; Boyle, J S; Cederwall, R T; Potter, G L; Zhang, M; Lin, W

    2004-02-19

    This study implements a revised convective triggering condition in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM2) model to reduce its excessive warm season daytime precipitation over land. The new triggering mechanism introduces a simple dynamic constraint on the initiation of convection that emulates the collective effects of lower level moistening and upward motion of the large-scale circulation. It requires a positive contribution from the large-scale advection of temperature and moisture to the existing positive Convective Available Potential Energy (CAPE) for model convection to start. In contrast, the original convection triggering function in CAM2 assumes that convection is triggered whenever there is positive CAPE, which results in too frequent warm season convection over land arising from strong diurnal variation of solar radiation. We examine the impact of the new trigger on CAM2 simulations by running the climate model in Numerical Weather Prediction (NWP) mode so that more available observations and high-frequency NWP analysis data can be used to evaluate model performance. We show that the modified triggering mechanism has led to considerable improvements in the simulation of precipitation, temperature, moisture, clouds, radiations, surface temperature, and surface sensible and latent heat fluxes when compared to the data collected from the Atmospheric Radiation Measurement (ARM) program at its South Great Plains (SGP) site. Similar improvements are also seen over other parts of the globe. In particular, the surface precipitation simulation has been significantly improved over both the continental United States and around the globe; the overestimation of high clouds in the equatorial tropics has been substantially reduced; and the temperature, moisture, and zonal wind are more realistically simulated. Results from this study also show that some systematic errors in the CAM2 climate simulations can be detected in the early stage of model integration. Examples are the extremely overestimated high clouds in the tropics in the vicinity of ITCZ and the spurious precipitation maximum in the east of the Rockies. This has important implications in studies of these model errors since running the climate model in NWP mode allows us to perform a more in-depth analysis during a short time period where more observations are available and different model errors from various processes have not compensated for the systematic errors.

  8. The role of subsurface flows in solar surface convection: modeling the spectrum of supergranular and larger scale flows

    SciTech Connect (OSTI)

    Lord, J. W.; Rast, M. P.; Cameron, R. H.; Rempel, M.; Roudier, T.

    2014-09-20

    We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component approximation to the mass continuity equation. The model takes four times the density scale height as the integral (driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper layers. Those smaller are assumed to follow a Kolmogorov turbulent cascade, with the total power in the vertical convective motions matching that required to transport the solar luminosity in a mixing length formulation. These model components are validated using large-scale radiative hydrodynamic simulations. We reach two primary conclusions. (1) The model predicts significantly more power at low wavenumbers than is observed in the solar photospheric horizontal velocity spectrum. (2) Ionization plays a minor role in shaping the observed solar velocity spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber power is also seen in the fully nonlinear three-dimensional radiative hydrodynamic simulations employing a realistic equation of state. This adds to other recent evidence suggesting that the amplitudes of large-scale convective motions in the Sun are significantly lower than expected. Employing the same feature tracking algorithm used with observational data on the simulation output, we show that the observed low wavenumber power can be reproduced in hydrodynamic models if the amplitudes of large-scale modes in the deep layers are artificially reduced. Since the large-scale modes have reduced amplitudes, modes on the scale of supergranulation and smaller remain important to convective heat flux even in the deep layers, suggesting that small-scale convective correlations are maintained through the bulk of the solar convection zone.

  9. Deep East Texas HTC 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    To better understand how the evolution of Cenozoic deep-water circulation related to changes in global climate and ocean basin configuration, we generated Nd isotope records from Ocean Drilling Program sites in the southeastern Atlantic to track...

  10. M. Bahrami ENSC 388 (F09) Forced Convection Heat Transfer 1 Forced Convection Heat Transfer

    E-Print Network [OSTI]

    Bahrami, Majid

    surface, and the type of the fluid flow (laminar or turbulent). Fig. 1: Forced convection fluid. Whereas in forced convection, the fluid is forced to flow over a surface or in a tube Boundary Layer Consider the flow of a fluid over a flat plate, the velocity and the temperature

  11. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  12. ARM - Publications: Science Team Meeting Documents: Tropical Cloud Overlap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds,convection defined by the MSG multi-channel data and

  13. On the reversibility of transitions between closed and open cellular convection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feingold, G.; Koren, I.; Yamaguchi, T.; Kazil, J.

    2015-02-26

    The two-way transition between closed and open cellular convection is addressed in an idealized cloud resolving modeling framework. A series of cloud resolving simulations shows that the transition between closed and open cellular states is asymmetrical, and characterized by a rapid ("runaway") transition from the closed- to the open-cell state, but slower recovery to the closed-cell state. Given that precipitation initiates the closed-open cell transition, and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even formore »very rapid drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling), and the stabilization of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the Sisyphusian task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. Recovery to the closed cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds, or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that a faster return to the closed-cell state requires that the drop concentration recovery be accompanied by significant dynamical forcing, e.g., via an increase in surface latent and sensible heat fluxes. This is supported by simulations with a simple predator-prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud-free.« less

  14. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect (OSTI)

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  15. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  16. Geometrical aspects of the interaction between expanding clouds and environment

    E-Print Network [OSTI]

    Spineanu, F

    2015-01-01

    This work is intended to be a contribution to the study of the morphology of the rising convective columns, for a better representation of the processes of entrainment and detrainment. We examine technical methods for the description of the interface of expanding clouds and reveal the role of \\emph{fingering} instability which increases the effective length of the periphery of the cloud. Assuming Laplacian growth we give a detailed derivation of the time-dependent conformal transformation that solves the equation of the \\emph{fingering} instability. For the phase of slower expansion, the evolution of complex poles with a dynamics largely controlled by the Hilbert operator (acting on the function that represents the interface position) leads to \\emph{cusp} singularities but smooths out the smaller scale perturbations. We review the arguments that the rising column cannot preserve its integrity (seen as compacity in any horizontal section), because of the penetrative downdrafts or the incomplete repulsion of th...

  17. Deep radio observations of 3C 324 and 3C 368: evidence for jetcloud interactions

    E-Print Network [OSTI]

    Best, Philip

    Deep radio observations of 3C 324 and 3C 368: evidence for jet­cloud interactions P. N. Best,1 C. L form 1997 August 27 A B S T R AC T High-resolution, deep radio images are presented for two distant radio galaxies, 3C 324 (z ¼ 1:206) and 3C 368 (z ¼ 1:132), which are both prime examples of the radio

  18. ResearchI, Vol.Deep-Sea 44,No. 8, pp. 1427-1450, 1997 0 1997Ekvier Science Ltd

    E-Print Network [OSTI]

    McGillicuddy Jr., Dennis J.

    Pergamon ResearchI, Vol.Deep-Sea 44,No. 8, pp. 1427-1450, 1997 0 1997Ekvier Science Ltd PII:s0967 In the oligotrophic waters of the open ocean, the availability of nitrogenous nutrients limits phytoplankton and convectively driven vertical mixing punctures the nutricline, surface waters are generally nutrient depleted

  19. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  20. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  1. On the reversibility of transitions between closed and open cellular convection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feingold, G.; Koren, I.; Yamaguchi, T.; Kazil, J.

    2015-07-08

    The two-way transition between closed and open cellular convection is addressed in an idealized cloud-resolving modeling framework. A series of cloud-resolving simulations shows that the transition between closed and open cellular states is asymmetrical and characterized by a rapid ("runaway") transition from the closed- to the open-cell state but slower recovery to the closed-cell state. Given that precipitation initiates the closed–open cell transition and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even for very rapidmore »drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling) and the vertical stratification of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. It is hampered by a stable layer below cloud base that has to be overcome before water vapor can be transported more efficiently into the cloud layer. Recovery to the closed-cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that recovery to the closed-cell state is faster when the drizzle is smaller in amount and of shorter duration, i.e., when the precipitation causes less boundary layer stratification. Cloud-resolving model results on recovery rates are supported by simulations with a simple predator–prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud free.« less

  2. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  3. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    their research efforts in cloud security. Experiences andinvolving cloud resources and security guidance is thedynamic nature of cloud systems, the security controls must

  4. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    outsourcing to the cloud and data security. Depending onconcerned about data security in the cloud. Data stored inrun in the cloud, while protecting data security guarantees.

  5. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  6. Deep Maps”: A Brief for Digital Palimpsest Mapping Projects (DPMPs, or “Deep Maps”)

    E-Print Network [OSTI]

    Fishkin, Shelley Fisher

    2011-01-01

    DEEP  MAPS”:  A  Brief  for   Digital  Projects   (DPMPs,  or  “Deep  Maps”)   SHELLEY  FISHER  acronym   DPMPs   as   “Deep   Maps. ”   They   would  

  7. Laser induced ponderomotive convection in water

    E-Print Network [OSTI]

    Shneider, M N

    2015-01-01

    A new mechanism for inducing convection during IR laser interaction with water or any absorbing polar liquid is described theoretically. The numerical simulations performed using the developed model show that the ponderomotive force produces water flow in the direction of the laser beam propagation. In the later stage of interaction, when water temperature rises, the Archimedes force becomes first comparable and then dominant producing convection directed against the vector of gravitational acceleration (upward). The theoretical estimates and the numerical simulations predict fluid dynamics that is similar to the observed in the previous experiments.

  8. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  9. Thermal convection in a liquid metal battery

    E-Print Network [OSTI]

    Shen, Yuxin

    2015-01-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few cm in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  10. Generation and Trapping of Gravity Waves from Convection with Comparison to Parameterization

    E-Print Network [OSTI]

    Alexander, M. Joan

    Generation and Trapping of Gravity Waves from Convection with Comparison to Parameterization M (GCMs) add realism by describing wave generation by tropospheric convection. Because the convection in GCMs is itself a parameterized process, these convectively generated wave parameterizations necessarily

  11. Numerical models of Rayleigh-Taylor instabilities superimposed upon convection

    E-Print Network [OSTI]

    Schmeling, Harro

    one R.T.-overturn to multiple convective with salt tectonics (R.T.), plutonism (R.T.), plate overturns. Secondly, how is the temperature field tectonics and mantle flows (convection) (see e.g. affected

  12. Layer inflow into precipitating convection over the western tropical Pacific

    E-Print Network [OSTI]

    Mechem, David B.; Houze, Robert A. Jr.; Chen, Shuyi S.

    2002-07-01

    A conceptual model of tropical convection frequently used in convective parametrization schemes is that of a parcel process in which boundary-layer air, characterized by high equivalent potential temperature, ascends to ...

  13. CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud

    E-Print Network [OSTI]

    Ryder, Barbara G.

    CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud large-scale cloud applications. Index Terms--cloud security, outsourced computation, side- channel, newly discovered vulnerabilities in cloud virtualization envi- ronment have threatened the security

  14. On the Forecasting of Orogenic Mesoscale Convective Complexes

    E-Print Network [OSTI]

    Tucker, Donna F.; Zentmire, Kristine S.

    1999-12-01

    ., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387. , 1983: Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev., 111, 1475–1493. , D. M. Rodgers, and K. W. Howard..., 1982: Mesoscale convective complexes over the United States during 1981—Annual sum- mary. Mon. Wea. Rev., 110, 1501–1514. , K. W. Howard, D. L. Bartels, and D. M. Rodgers, 1986: Me- soscale convective complexes in the middle latitudes. Mesoscale...

  15. Convection in Stars Proceedings IAU Symposium No. 239, 2007

    E-Print Network [OSTI]

    Arnett, W. David

    and the geometric parameters in mixing length theory, and the solar Ne abundance problem. Explicit comparisons convection (with nuclear burning). The simulations are run long enough so that a robust statistical state will be made with convective driving of waves, convective zone growth by entrainment, the velocity scale

  16. Convective injection into stratospheric intrusions Cameron R. Homeyer,1

    E-Print Network [OSTI]

    Pan, Laura

    Convective injection into stratospheric intrusions Cameron R. Homeyer,1 Kenneth P. Bowman,1 Laura L, are not entirely understood. This study presents direct observations of moist convection penetrating into stratospheric intrusions. The characteristics of convective injection are shown by using in situ aircraft

  17. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  18. Stellar convective cores as dark matter probes

    E-Print Network [OSTI]

    Jordi Casanellas; Isa M. Brandão; Yveline Lebreton

    2015-05-06

    The recent detection of a convective core in a main-sequence solar-type star is used here to test particular models of dark matter (DM) particles, those with masses and scattering cross sections in the range of interest for the DM interpretation of the positive results in several DM direct detection experiments. If DM particles do not effectively self-annihilate after accumulating inside low-mass stars (e.g. in the asymmetric DM scenario) their conduction provides an efficient mechanism of energy transport in the stellar core. For main-sequence stars with masses between 1.1 and 1.3 Msun, this mechanism may lead to the suppression of the inner convective region expected to be present in standard stellar evolution theory. The asteroseismic analysis of the acoustic oscillations of a star can prove the presence/absence of such a convective core, as it was demonstrated for the first time with the Kepler field main-sequence solar-like pulsator, KIC 2009505. Studying this star we found that the asymmetric DM interpretation of the results in the CoGeNT experiment is incompatible with the confirmed presence of a small convective core in KIC 2009505.

  19. Laminar boundary layers in convective heat transport

    E-Print Network [OSTI]

    Christian Seis

    2012-12-12

    We study Rayleigh-Benard convection in the high-Rayleigh-number and high-Prandtl-number regime, i.e., we consider a fluid in a container that is exposed to strong heating of the bottom and cooling of the top plate in the absence of inertia effects. While the dynamics in the bulk are characterized by a chaotic convective heat flow, the boundary layers at the horizontal container plates are essentially conducting and thus the fluid is motionless. Consequently, the average temperature exhibits a linear profile in the boundary layers. In this article, we rigorously investigate the average temperature and oscillations in the boundary layer via local bounds on the temperature field. Moreover, we deduce that the temperature profile is indeed essentially linear close to the horizontal container plates. Our results are uniform in the system parameters (e.g. the Rayleigh number) up to logarithmic correction terms. An important tool in our analysis is a new Hardy-type estimate for the convecting velocity field, which can be used to control the fluid motion in the layer. The bounds on the temperature field are derived with the help of local maximal regularity estimates for convection-diffusion equations.

  20. CLOUD-BASED SOFTWARE PLATFORM FOR DATA-DRIVEN SMART GRID MANAGEMENT Yogesh Simmhan, Saima Aman, Alok Kumbhare, Rongyang Liu, Sam Stevens, Qunzhi Zhou and

    E-Print Network [OSTI]

    Hwang, Kai

    CLOUD-BASED SOFTWARE PLATFORM FOR DATA-DRIVEN SMART GRID MANAGEMENT Yogesh Simmhan, Saima Aman and data networks into national power grids. This Smart Grid offers deep monitoring and controls, but needs. This article focuses on Cloud technologies used in a scalable software platform for the Smart Grid Cyber

  1. Hot-Jupiter Inflation due to Deep Energy Deposition

    E-Print Network [OSTI]

    Ginzburg, Sivan

    2015-01-01

    Some extrasolar giant planets in close orbits---"hot Jupiters"---exhibit larger radii than that of a passively cooling planet. The extreme irradiation $L_{\\rm eq}$ these hot Jupiters receive from their close in stars creates a thick isothermal layer in their envelopes, which slows down their convective cooling, allowing them to retain their inflated size for longer. This is yet insufficient to explain the observed sizes of the most inflated planets. Some models invoke an additional power source, deposited deep in the planet's envelope. Here we present an analytical model for the cooling of such irradiated, and internally heated gas giants. We show that a power source $L_{\\rm dep}$, deposited at an optical depth $\\tau_{\\rm dep}$, creates an exterior convective region, between optical depths $L_{\\rm eq}/L_{\\rm dep}$ and $\\tau_{\\rm dep}$, beyond which a thicker isothermal layer exists, which in extreme cases may extend to the center of the planet. This convective layer, which occurs only for $L_{\\rm dep}\\tau_{\\r...

  2. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tolle, Merja; Gutjahr, Oliver; Feser, Frauke; et al

    2015-05-27

    Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more »The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less

  3. Vertical profiles of radar reflectivity of convective cells in tropical and mid-latitude mesoscale convective systems 

    E-Print Network [OSTI]

    Lutz, Kurt Reed

    1992-01-01

    VERTICAL PROFILES OF RADAR REFLECTIVITY OF CONVECTIVE CELLS IN TROPICAL AND MID-LATITUDE MESOSCALE CONVECTIVE SYSTEMS A Thesis by KURT REED LUTZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Meteorology VERTICAL PROFILES OF RADAR REFLECTIVITY OF CONVECTIVE CELLS IN TROPICAL AND MID-LATITUDE MESOSCALE CONVECTIVE SYSTEMS A Thesis by KURT REED LUTZ Approved...

  4. CloudMan: A Platform for Portable Cloud Manufacturing Services

    E-Print Network [OSTI]

    Dustdar, Schahram

    CloudMan: A Platform for Portable Cloud Manufacturing Services Soheil Qanbari, Samira Mahdi Zadeh Education (BIHE), Iran soroush.vedaeei@bihe.org Abstract--Cloud manufacturing refers to "as a Service" pro- duction model that exploits an on-demand access to a distributed pool of diversified manufacturing

  5. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  6. Software-Defined Mobile Cloud

    E-Print Network [OSTI]

    Ku, Ian

    2014-01-01

    M. Gerla. “Towards Software- Defined VANETs: ArchitectureI. Ku, Y. Lu, and M. Gerla. “Software-Defined Mobile Cloud:C. Peylo, “CloudMAC: towards software defined WLANs,” ACM

  7. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  8. Deep Deference, Autonomy, and The Deferential Wife

    E-Print Network [OSTI]

    Silverstein, Elizabeth Rachel

    2013-01-01

    OF CALIFORNIA RIVERSIDE Deep Deference, Autonomy, and thev ABSTRACT OF THE DISSERTATION Deep Deference, Autonomy, andby DW and AF, which I call deep deference. Next, I identify

  9. CLOUD CHEMISTRY STEPHEN E. SCHWARTZ

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    is considered bere to comprise both cloud composition and reactions that take place in clouds. Clouds are a very special subset of tbe atmosphere because they present substantial amounts of condensed-phase water (liquid, the examples developed bere focus on these chemical systems. However, much of the resulting undetstanding

  10. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  11. Penetrative internally heated convection in two and three dimensions

    E-Print Network [OSTI]

    Goluskin, David

    2015-01-01

    Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ($H$) without convection, grows like $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh-B\\'enard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\\times10^{10}$.

  12. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    SciTech Connect (OSTI)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter; Austin, Phillip A.; Bacmeister, J.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; Del Genio, Anthony D.; De Roode, Stephan R.; Endo , Satoshi; Franklin, Charmaine N.; Golaz, Jean-Christophe; Hannay, Cecile; Heus, Thijs; Isotta, Francesco A.; Jean-Louis, Dufresne; Kang, In-Sik; Kawai, Hideaki; Koehler, M.; Larson, Vincent E.; Liu, Yangang; Lock, Adrian; Lohmann, U.; Khairoutdinov, Marat; Molod, Andrea M.; Neggers, Roel; Rasch, Philip J.; Sandu, Irina; Senkbeil, Ryan; Siebesma, A. P.; Siegenthaler-Le Drian, Colombe; Stevens, Bjorn; Suarez, Max; Xu, Kuan-Man; Von Salzen, Knut; Webb, Mark; Wolf, Audrey; Zhao, M.

    2013-12-26

    Large Eddy Models (LES) and Single Column Models (SCM) are used in a surrogate climate change 101 to investigate the physical mechanism of low cloud feedbacks in climate models. Enhanced surface-102 driven boundary layer turbulence and shallow convection in a warmer climate are found to be 103 dominant mechanisms in SCMs.

  13. RISK ASSESSMENT CLOUD COMPUTING

    E-Print Network [OSTI]

    Columbia University

    SECURITY RESEARCH PRIVACY RISK ASSESSMENT AMC DATA FISMA CLOUD COMPUTING MOBILE DEVICES OPERATIONS PRACTICES TRENDS AUDITS policies #12;2 Privacy & Information Security Annual Update Thursday, June 20, 2013 of Breach statistics Plan to comply with requirements · Training and Education Information Security · Risk

  14. The Phenix ultimate natural convection test

    SciTech Connect (OSTI)

    Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.

    2012-07-01

    The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all participants of this CRP in order to perform calculations (core, primary circuit, primary pumps, IHX, shutdown system, operating parameters, test scenario and real test conditions). Finally, main test results and analyses are presented including the evolution of the core and of the heat exchangers inlet and outlet temperatures, and some local temperature measurements. The natural convection has been easily set up in the pool type reactor Phenix with different boundary conditions at the secondary side, with or without heat sink. The data obtained during this unique test represent some very useful and precious results for the development of SFR in a wide range of thematic such as numerical methods dedicated to thermal-hydraulics safety analyses (system codes, CFD codes and coupling system and CFD codes) and instrumentation. (authors)

  15. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01

    Zhang (2004), Comparing clouds and their seasonal variationstropical greenhouse effect and cloud radiative forcing. J.thermodynamic components of cloud changes. Clim. Dyn. , 22,

  16. Convection of a stratified colloidal suspension

    SciTech Connect (OSTI)

    Cherepanov, I. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru [Perm National Research University (Russian Federation)

    2013-11-15

    The convection of a colloidal suspension, which is a binary mixture of a carrier medium with an admixture of nanoparticles having a large positive thermal diffusion parameter, has been studied for the case of the heating of a horizontal cell from below and periodic conditions at the vertical boundaries corresponding to the experimental situation of ring channels. Bifurcation diagrams have been constructed for vibrational and monotonic regimes of the convection of the colloidal mixture. The time dependences of the maximum stream function and the stream function at a fixed point of the cell, as well as the spatial distributions of the concentration field of the colloid admixture, have been obtained. It has been shown that a stable regime of traveling waves exists in a certain region of the parameters of the problem (Boltzmann and Rayleigh numbers characterizing the gravitational stratification and intensity of the thermal effect, respectively)

  17. The QBO's influence on lightning production and deep convection in the tropics 

    E-Print Network [OSTI]

    Hernandez, Celina Anne

    2009-05-15

    . THE QBO?S INFLUENCE ON LIGHTING PRODUCTION IN THE TROPICS ................................................................................................................ 10 3.1 Africa... lightning flash densities observed over land (Fig.8). Therefore, this analysis focuses on four land regions: Africa, India, Maritime continent/Australia, and South America. 3.1 Africa West minus east flash density anomalies for DJF (Fig. 9a) show...

  18. High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    grid has 1536 x 1536 x 256 grid cells with horizontal grid spacing of 100 meters, thus covering an area experiment in which the cold pools are effectively eliminated by artificially switching off the evaporation

  19. Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the

    E-Print Network [OSTI]

    Dong, Xiquan

    column absorption of solar radiation (Acol) is a fundamental part of the Earth's energy cycle.e., the Acol values at both regions converge to the same value ($0.27 of the total incoming solar radiation to constrain atmospheric column absorption of solar radiation in the optically thick limit, J. Geophys. Res

  20. Laminar boundary layers in convective heat transport

    E-Print Network [OSTI]

    Seis, Christian

    2012-01-01

    We study Rayleigh-Benard convection in the high-Rayleigh-number and high-Prandtl-number regime, i.e., we consider a fluid in a container that is exposed to strong heating of the bottom and cooling of the top plate in the absence of inertia effects. While the dynamics in the bulk are characterized by a chaotic convective heat flow, the boundary layers at the horizontal container plates are essentially conducting and thus the fluid is motionless. Consequently, the average temperature exhibits a linear profile in the boundary layers. In this article, we rigorously investigate the average temperature and oscillations in the boundary layer via local bounds on the temperature field. Moreover, we deduce that the temperature profile is indeed essentially linear close to the horizontal container plates. Our results are uniform in the system parameters (e.g. the Rayleigh number) up to logarithmic correction terms. An important tool in our analysis is a new Hardy-type estimate for the convecting velocity field, which ca...

  1. Convective heat transport in geothermal systems

    SciTech Connect (OSTI)

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  2. Convective Dynamo Simulation with a Grand Minimum

    E-Print Network [OSTI]

    Augustson, Kyle; Miesch, Mark; Toomre, Juri

    2015-01-01

    The global-scale dynamo action achieved in a simulation of a Sun-like star rotating at thrice the solar rate is assessed. The 3-D MHD Anelastic Spherical Harmonic (ASH) code, augmented with a viscosity minimization scheme, is employed to capture convection and dynamo processes in this G-type star. The simulation is carried out in a spherical shell that encompasses 3.8 density scale heights of the solar convection zone. It is found that dynamo action with a high degree of time variation occurs, with many periodic polarity reversals occurring roughly every 6.2 years. The magnetic energy also rises and falls with a regular period. The magnetic energy cycles arise from a Lorentz-force feedback on the differential rotation, whereas the processes leading to polarity reversals are more complex, appearing to arise from the interaction of convection with the mean toroidal fields. Moreover, an equatorial migration of toroidal field is found, which is linked to the changing differential rotation, and potentially to a no...

  3. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications

    E-Print Network [OSTI]

    Buyya, Rajkumar

    CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe1 , Rodrigo N. Calheiros2 , and Rajkumar Buyya1 1 The Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering The University

  4. Cloud in a Bottle Demonstrate how pressure relates to cloud formation by making a cloud in a soda bottle.

    E-Print Network [OSTI]

    Johnson, Cari

    Cloud in a Bottle Demonstrate how pressure relates to cloud formation by making a cloud in a soda doesn't escape. 5. Squeeze the soda bottle and release, repeating several times. Eventually, a cloud construction paper (or anything dark) on half of the bottle may make the cloud easier to see. What Happened

  5. Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements

    E-Print Network [OSTI]

    Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband December 2011. [1] A Thin-Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed) through an optically thin cloud (optical depth

  6. Effects of convection on the mean solar structure

    E-Print Network [OSTI]

    Christensen-Dalsgaard, J

    1996-01-01

    The overall framework for the study of solar convection and oscillations is the spherically symmetric component of solar structure. I discuss those properties of the solar interior which depend on convection and other possible hydrodynamical motion and the increasingly detailed information about the structure which is provided by helioseismic data. The most basic dependence of solar models on convection is the calibration to fix the solar radius. The dominant causes for differences in oscillation frequencies between the Sun and solar models seem to be located near the top of the convection zone. However, there is also evidence for possible weak mixing below the convection zone and perhaps in the solar core. The former, at least, might be induced by penetration of convective motion into the stable layers below.

  7. Nuclear medium effects in $?(\\bar?)$-nucleus deep inelastic scattering

    E-Print Network [OSTI]

    H. Haider; I. Ruiz Simo; M. Sajjad Athar; M. J. Vicente Vacas

    2011-08-16

    We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.

  8. Soil Moisture Impacts on Convective Precipitation in Oklahoma 

    E-Print Network [OSTI]

    Ford, Trenton

    2015-07-24

    of the States” instilled in me a lifelong curiosity in Geography. v NOMENCLATURE CAPE Convective Available Potential Energy CIN Convective Inhibition CTP Convective Triggering Potential DDR Directional Difference Ratio DM Dry Moderate DP Dry Polar.... The black line represents the 1-to-1 fit, while the dashed line represents the least squares fit. .………………………..119 Figure 5.3. Boxplots of DDR from each directional difference over dry soil events. The black, dashed line represents the 0 value, by which...

  9. Observations and Modeling of Shallow Convective Clouds: Implications for the Indirect Aerosol Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXuRod Hunt (208) 386-5254 Washington575MAYEventsIn 12 FOR2and

  10. DOE/SC-ARM-14-012 The Mid-latitude Continental Convective Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOE ProjectREMOTE-HANDLED TRU764 The Arctic632452 The

  11. Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlines the majorL.Posters Posters5

  12. Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIsProcessRegulationRadiative Transfer Model and

  13. How Well Are Shallow Convective Clouds Simulated in the CAM5 Model?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighlandWorkshop-Summer 2014toHowDepartment ofHowAre

  14. World Wide WebWWWDeep Web Web Deep Web

    E-Print Network [OSTI]

    Deep Web Web World Wide WebWWWDeep Web Web Deep Web Deep Web Deep Web Deep Web Deep Web 1 World Wide Web [1] Web 200,000TB Web Web Web Internet Web Web Web "" Surface Web Deep Web Surface Web 21.3% Surface Web Deep Web [2] Deep Web Web Crawler Deep Web 1 Web

  15. Objectives of Work Packages WP1: Thermal convection

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    MAGMA Objectives of Work Packages WP1: Thermal convection Coordinator: O. Cadek · To enhance air-pollution assessment in the urban environment · To study the solar radiation impact

  16. NATURAL CONVECTION IN PASSIVE SOLAR BUILDINGS: EXPERIMENTS, ANALYSIS AND RESULTS

    E-Print Network [OSTI]

    Gadgil, Ashok; Bauman, Fred; Kammerud, Ronald

    2008-01-01

    CONVECTION IN PASSIVE SOLAR BUILDINGS: ANALYSIS AND RESULTSCONVECTION IN PASSIVE SOLAR BUILDINGS: EXPERIMENTS, ANALYSISin a direct gain passive solar building; this is described

  17. Convectively generated zonal jets by thunderstorms on Jupiter

    E-Print Network [OSTI]

    Zhang, Xi Arthur; Showman, Adam

    2011-01-01

    formation of equatorial jets in freely decaying shallowof moist convection with zonal jets on Jupiter and Saturn,Generation of equatorial jets by large-scale latent heating

  18. A deep earthquake goes supershear

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2014-09-01

    Seismic analysis of an aftershock off Russia’s Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  19. Model-Driven Integration for a Service Placement Optimizer in a Sustainable Cloud of Clouds

    E-Print Network [OSTI]

    Suzuki, Jun

    --"Cloud of clouds" (or federated cloud) is an emerg- ing style of software deployment and execution to interoperate, federated clouds, model-driven system integration and sustainable clouds I. INTRODUCTION Cloud computing, cost effective (e.g., energy effi- cient) service/data placement and avoidance of "lock

  20. CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS , W. Paul Menzel

    E-Print Network [OSTI]

    Li, Jun

    6.4 CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS AND AIRS Jun Li * , W. Paul Menzel Observing System's (EOS) Aqua satellite enable global monitoring of the distribution of clouds. The MODIS is able to provide at high spatial resolution (1 ~ 5km) a cloud mask, surface and cloud types, cloud phase

  1. PC Mac OS Adobe Creative Cloud PC Mac OS Adobe Creative Cloud

    E-Print Network [OSTI]

    PC Mac OS Adobe Creative Cloud 1 PC Mac OS Adobe Creative Cloud 2015-05-25 1 Web Mac OS Adobe Creative Cloud PC | Creative Cloud https://helpx.adobe.com/jp/creative-cloud Adobe Creative Cloud 5.1 Web TTInstaller (Mac OS X )() http://www.officesoft.gsic.titech.ac.jp/pdf

  2. Natural convection airflow measurement and theory

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.; Yamaguchi, Kenjiro

    1984-01-01

    Natural convection is a major mechanism for heat distribution in many passive solar buildings, especially those with sunspaces. To better understand this mechanism, observations of air velocities and temperatures have been made in 13 different houses that encompass a wide variety of one- and two-story geometries. This paper extends previous reports. Results from one house are described in detail, and some generalizations are drawn from the large additional mass of data taken. A simple mathematical model is presented that describes the general nature of airflow and energy flow through an aperture.

  3. Atmospheric Radiation Measurement Convective and Orographically Induced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47 Industrial1Convective and

  4. ARM - Evaluation Product - Convective Vertical Velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENA RelatedProductsCalibrated KAZRProductsConvective

  5. A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres

    E-Print Network [OSTI]

    Ch. Helling; A. Ackerman; F. Allard; M. Dehn; P. Hauschildt; D. Homeier; K. Lodders; M. Marley; F. Rietmeijer; T. Tsuji; P. Woitke

    2008-09-24

    The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust' clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete model atmosphere results for given (effective temperature Teff, surface gravity log g). All models agree on the global cloud structure but differ in opacity-relevant details like grain size, amount of dust, dust and gas-phase composition. Comparisons of synthetic photometric fluxes translate into an modelling uncertainty in apparent magnitudes for our L-dwarf (T-dwarf) test case of 0.25 < \\Delta m < 0.875 (0.1 < \\Delta m M 1.375) taking into account the 2MASS, the UKIRT WFCAM, the Spitzer IRAC, and VLT VISIR filters with UKIRT WFCAM being the most challenging for the models. (abr.)

  6. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    1.1 Cloud Computing Applications 1.2Zaharia. A view of cloud computing. Communications of theM. Voelker, Co-Chair Cloud computing has emerged as a model

  7. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    4.3.1 Cloud Computing Attractive Features . 4.3.2A berkeley view of cloud computing. Technical Report UCB/matching computations on cloud computing platforms and hpc

  8. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01

    12. Fragments in Six 13. Cloud Computing 14. Phase 15.Note 48. Devoured vi Cloud Computing and other Variables I.CALIFORNIA RIVERSIDE Cloud Computing and Other Variables A

  9. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01

    the security implications of user-controlled cloud images?key security practices and policies on private clouds, suchand security poli- cies will remain, and sites moving to cloud

  10. Trusted Cloud: Microsoft Azure Security, Privacy,

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Trusted Cloud: Microsoft Azure Security, Privacy, and Compliance April 2015 #12;Trusted Cloud................................................................. 18 #12;Trusted Cloud: Microsoft Azure Security, Privacy, and Compliance | April, 2015 Introduction: Microsoft Azure Security, Privacy, and Compliance | April, 2015 #12;3 Contents Introduction

  11. Cicada: Predictive Guarantees for Cloud Network Bandwidth

    E-Print Network [OSTI]

    LaCurts, Katrina

    2014-03-24

    In cloud-computing systems, network-bandwidth guarantees have been shown to improve predictability of application performance and cost. Most previous work on cloud-bandwidth guarantees has assumed that cloud tenants know ...

  12. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  13. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01

    2010. From Clusters To Clouds: xCAT 2 Is Out Of The Bag.Cost of Doing Science on the Cloud: The Montage Example. Incost of doing science on the cloud: the montage example. In

  14. Deep Inelastic Neutrino Interactions

    E-Print Network [OSTI]

    S. Kretzer; M. H. Reno

    2003-06-30

    Understanding neutrino interactions is an important task in searches for neutrino oscillations; e.g. the nu_{mu} -> nu_{tau} oscillation hypothesis will be tested through nu_{tau} production of tau in long-baseline experiments as well as underground neutrino telescopes. An anomaly in the deep inelastic interaction of neutrinos has recently been observed by the NuTeV collaboration -- resulting in a measured weak mixing angle sin^2 Theta_{W} that differs by ~ 3 sigma from the standard model expectation. In this contribution to the proceedings of NUINT02, we summarize results on the NLO neutrino structure functions and cross sections in which charm quark mass and target mass effects in the collinear approximation are included.

  15. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  16. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen Plasma Asher An O2 RFand1120019Bringing Clouds into

  17. Digital Ecosystems in the Clouds: Towards Community Cloud Computing

    E-Print Network [OSTI]

    Briscoe, Gerard

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns of privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon, and Microsoft. Community Cloud Computing makes use of the principles of Digital Ecosystems to provide a paradigm for Clouds in the community, offering an alternative architecture for the use cases of Cloud Computing. Its more technically challenging, dealing with issues of distributed computing, such as latency, differential resource management, and additional security requirements. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, its one we must pursue.

  18. Air convection noise of pencil-beam interferometer for long trace profiler

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Takacs, Peter Z.

    2006-01-01

    Air Convection Noise of Pencil-beam Interferometer for Longwe investigate the effect of air convection on laser-beamshown that the NPD spectra due to air convection have a very

  19. Observational Analysis of the Predictability of Mesoscale Convective Systems ISRAEL L. JIRAK AND WILLIAM R. COTTON

    E-Print Network [OSTI]

    Observational Analysis of the Predictability of Mesoscale Convective Systems ISRAEL L. JIRAK (Manuscript received 30 December 2005, in final form 4 October 2006) ABSTRACT Mesoscale convective systems of usefulness in operational forecasting. 1. Introduction Mesoscale convective systems (MCSs) frequently de

  20. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01

    with access to computer clusters. Cloud technology coupledto computer clusters. The availability of cloud technology

  1. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    of computer security are evolving for cloud computingcomputer forensic space a way to integrate their tools with the cloudthe cloud business model. In addition to answering computer

  2. WEATHER MODIFICATION BY AIRCRAFT CLOUD SEEDING

    E-Print Network [OSTI]

    Vali, Gabor

    WEATHER MODIFICATION BY AIRCRAFT CLOUD SEEDING BERYULEV G.P. Head, Department of Cloud Physics and Weather Modification Central Aerological Observatory Rosgidromet, Russian Federation #12

  3. Cloud Seeding By: Julie Walter

    E-Print Network [OSTI]

    Toohey, Darin W.

    , smoke, that then are cooled because of the high altitudes. As the water or condensation nuclei cool more titled "Cat's Cradle" a young scientist has in his possession an ice crystal that has the power to freeze of those clouds. Winds can form suddenly and blow clouds away from the targeted area. Some experiments show

  4. CONVECTIVE STABILITY OF GALAXY-CLUSTER PLASMAS Benjamin D. Chandran

    E-Print Network [OSTI]

    Chandran, Ben

    criterion by causing heat to diffuse primarily along magnetic field lines. We extend earlier analyses a cluster's age. In the cooling flow model, plasma heating is neglected, and the rate at which plasma cools nuclei and cosmic rays drive convection in galaxy-cluster plasmas and that convection heats cluster cores

  5. MPO 663 -Convective and Mesoscale Meteorology Brian Mapes, Spring 2008

    E-Print Network [OSTI]

    Miami, University of

    MPO 663 - Convective and Mesoscale Meteorology Brian Mapes, Spring 2008 I intend for students and mesoscale phenomena. 2. Working understanding of several of these tools, cultivated via homework, including. A sense of how convective and mesoscale phenomena fit into larger scales, gained via short current

  6. Toward the Long-range Prediction of Severe Convective Windstorms

    E-Print Network [OSTI]

    Kuligowski, Bob

    Toward the Long-range Prediction of Severe Convective Windstorms Ken Pryor Department review pertaining to severe convective windstorm (SCW) structure and evolution. · Identify potential for the development of a long-range SCW prediction technique. #12;Background · Severe windstorms resulting from large

  7. Characterizing the convective velocity fields in massive stars

    SciTech Connect (OSTI)

    Chatzopoulos, Emmanouil; Graziani, Carlo; Couch, Sean M., E-mail: manolis@astro.as.utexas.edu [Department of Astronomy and Astrophysics, Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States)

    2014-11-01

    We apply the mathematical formalism of vector spherical harmonics decomposition to convective stellar velocity fields from multidimensional hydrodynamics simulations and show that the resulting power spectra furnish a robust and stable statistical description of stellar convective turbulence. Analysis of the power spectra helps identify key physical parameters of the convective process such as the dominant scale of the turbulent motions that influence the structure of massive evolved pre-supernova stars. We introduce the numerical method that can be used to calculate vector spherical harmonics power spectra from two-dimensional (2D) and three-dimensional (3D) convective shell simulation data. Using this method we study the properties of oxygen shell burning and convection for a 15 M {sub ?} star simulated by the hydrodynamics code FLASH in 2D and 3D. We discuss the importance of realistic initial conditions to achieving successful core-collapse supernova explosions in multidimensional simulations. We show that the calculated power spectra can be used to generate realizations of the velocity fields of presupernova convective shells. We find that the slope of the solenoidal mode power spectrum remains mostly constant throughout the evolution of convection in the oxygen shell in both 2D and 3D simulations. We also find that the characteristic radial scales of the convective elements are smaller in 3D than in 2D, while the angular scales are larger in 3D.

  8. Influences of soil moisture and vegetation on convective precipitation forecasts

    E-Print Network [OSTI]

    Robock, Alan

    Influences of soil moisture and vegetation on convective precipitation forecasts over the United and vegetation on 30 h convective precipitation forecasts using the Weather Research and Forecasting model over, the complete removal of vegetation produced substantially less precipitation, while conversion to forest led

  9. Precipitation distributions for explicit versus parameterized convection in a

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Precipitation distributions for explicit versus parameterized convection in a large-domain high.J. and Lister, G.M.S. (2012) Precipitation distributions for explicit versus parameterized convection in a large. Meteorol. Soc. 138: 1692­1708, October 2012 A Precipitation distributions for explicit versus parametrized

  10. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    E-Print Network [OSTI]

    Wang, Dong; Lunine, Jonathan; Mousis, Olivier

    2014-01-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25$\\%$, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the wate...

  11. Evidence for Cloud Disruption in the L/T Dwarf Transition

    E-Print Network [OSTI]

    Adam J. Burgasser; Mark S. Marley; Andrew S. Ackerman; Didier Saumon; Katharina Lodders; Conard C. Dahn; Hugh C. Harris; J. Davy Kirkpatrick

    2002-05-03

    Clouds of metal-bearing condensates play a critical role in shaping the emergent spectral energy distributions of the coolest classes of low-mass stars and brown dwarfs, L and T dwarfs. Because condensate clouds in planetary atmospheres show distinct horizontal structure, we have explored a model for partly cloudy atmospheres in brown dwarfs. Our model successfully reproduces the colors and magnitudes of both L and T dwarfs for the first time, including the unexpected brightning of the early- and mid-type T dwarfs at J-band, provided that clouds are rapidly removed from the photosphere at T_eff ~ 1200 K. The clearing of cloud layers also explains the surprising persistence and strengthening of gaseous FeH bands in early- and mid-type T dwarfs. The breakup of cloud layers is likely driven by convection in the troposphere, analogous to phenomena observed on Jupiter. Our results demonstrate that planetary-like atmospheric dynamics must be considered when examining the evolution of free-floating brown dwarfs.

  12. Magnetic fields in non-convective regions of stars

    E-Print Network [OSTI]

    Braithwaite, J

    2015-01-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them, the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and...

  13. ARM - Publications: Science Team Meeting Documents: The life stage of deep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds,convection defined by the MSG multi-channel data and rainfall

  14. Deep water gives up another secret

    E-Print Network [OSTI]

    Manning, CE

    2013-01-01

    COMMENTARY Deep water gives up another secret Craig E.important properties at deep-earth conditions: its dielec-magmas carry water from the deep interior. Water in?u- ences

  15. Convective Heat Transport in Compressible Fluids

    E-Print Network [OSTI]

    Akira Furukawa; Akira Onuki

    2002-02-01

    We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressible fluids. As the critical point is approached, overall temperature changes induced by plume arrivals at the boundary walls are amplified, giving rise to overshoot behavior in transient states and significant noises of the temperature in steady states. The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for moderate Rayleigh numbers.

  16. Convectively driven vortex flows in the Sun

    E-Print Network [OSTI]

    J. A. Bonet; I. Marquez; J. Sanchez Almeida; I. Cabello; V. Domingo

    2008-09-23

    We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

  17. Draft NISTIR 80061 NIST Cloud Computing2

    E-Print Network [OSTI]

    Draft NISTIR 80061 NIST Cloud Computing2 Forensic Science Challenges NIST Cloud Computing Forensic Computing11 Forensic Science Challenges 12 NIST Cloud Computing Forensic Science Working Group13 Information challenges77 faced by experts when responding to incidents that have occurred in a cloud-computing ecosystem

  18. Secure Cloud Computing With Brokered Trusted

    E-Print Network [OSTI]

    Secure Cloud Computing With Brokered Trusted Sensor Networks Profs. Steven Myers,Apu Kapadia, Xiao-mount Antenna Tower-mount Antenna Wireless Bridge Security Threats 1. Cloud or Grid 2. Communication Channels 3 Computing Cloud Computing Cloud Computing Tower-mount Antenna Tower-mount Antenna Wireless Bridge Security

  19. An Architecture for Trusted Clouds Mike Burmester

    E-Print Network [OSTI]

    Burmester, Mike

    reasoning will play a major role. In this paper we analyze the cloud paradigm from a security point of view, but it is also technically easier to secure. Finally, the Cloud has a dark side, at least from a security point regulatory and security policies; and hybrid clouds. Services. There are three basic cloud on demand

  20. Why the network matters in cloud computing

    E-Print Network [OSTI]

    Greenberg, Albert

    this promise, and security concerns still loom AT&T NetBond AT&T network enabled cloud computing provides highly-secure access, with the cloud functioning just like another MPLS VPN site. It also allowsWhy the network matters in cloud computing The promise of cloud hinges on flexibility, agility

  1. NIST Cloud Computing Forum and Workshop VIII

    E-Print Network [OSTI]

    NIST Cloud Computing Forum and Workshop VIII Kevin Mills, NIST July 9, 2015 #12;NIST Cloud Project Research Goals Kevin Mills, NIST #12;NIST Cloud Computing Forum and Workshop VIII July 2 015 failure scenarios in a cloud system · Ongoing work on run-time methods · Where to find more information 3

  2. EWI PDS A.Iosup Research Cloud Computing Cloud Computing Research, PDS Group, TU Delft

    E-Print Network [OSTI]

    Iosup, Alexandru

    EWI PDS A.Iosup Research Cloud Computing Cloud Computing Research, PDS Group, TU Delft Cloud Computing Research http://www.pds.ewi.tudelft.nl/~iosup/research_cloud.html Rationale why and how is this work relevant? Cloud computing is an emerging commercial infrastructure paradigm that promises

  3. Storm Clouds Rising: Security Challenges for IaaS Cloud Computing

    E-Print Network [OSTI]

    Bishop, Matt

    Storm Clouds Rising: Security Challenges for IaaS Cloud Computing Brian Hay Kara Nance Matt Bishop on security concerns for computational cloud computing from the perspectives of cloud service users, cloud.hay@alaska.edu klnance@alaska.edu bishop@cs.ucdavis.edu Abstract Securing our digital assets has become increasingly

  4. Vision: Cloud-Powered Sight for All Showing the Cloud What You See

    E-Print Network [OSTI]

    Zhong, Lin

    General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloudVision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud

  5. EVALUATION OF INTERNATIONAL SATELLITE CLOUD CLIMATOLOGY PROJECT (ISCCP) D2 CLOUD AMOUNT CHANGES AND THEIR CONNECTIONS

    E-Print Network [OSTI]

    Schubert, Wayne H.

    EVALUATION OF INTERNATIONAL SATELLITE CLOUD CLIMATOLOGY PROJECT (ISCCP) D2 CLOUD AMOUNT CHANGES #12;ii #12;iii ABSTRACT EVALUATION OF INTERNATIONAL SATELLITE CLOUD CLIMATOLOGY PROJECT (ISCCP) D2 Climatology Project (ISCCP) D2 dataset exhibits a 2.6% per decade decrease in the global all-cloud cloud

  6. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey December 2013 A method for separating the three components of the marine stratocumulus (MSC) aerosol cloud interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey

  7. Cloud Futures Workshop 2010 Cloud Computing Support for Massively Social Gaming Alexandru Iosup

    E-Print Network [OSTI]

    Iosup, Alexandru

    1 Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming Alexandru Iosup Pierre (Vrije U.). Cloud Computing Support for Massively Social Gaming (Rain for the Thirsty) #12;Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming 2 Intermezzo: Tips on how

  8. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  9. Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment

    E-Print Network [OSTI]

    Shupe, Matthew

    Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment Matthew D a 35-GHz cloud radar and the DOE Atmospheric Radiation Measurement Program operated a suite Clouds Experiment took place during April­July 1998, with the primary goal of investigating cloud

  10. Wireless Magnetothermal Deep Brain Stimulation

    E-Print Network [OSTI]

    Chen, Ritchie

    Wireless deep brain stimulation of well-defined neuronal populations could facilitate the study of intact brain circuits and the treatment of neurological disorders. Here we demonstrate minimally-invasive and remote neural ...

  11. ARM - Publications: Science Team Meeting Documents: W-Band ARM Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds,convection defined by the MSG

  12. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is ³delayed² and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  13. Deep z-band observations of the coolest Y dwarf

    SciTech Connect (OSTI)

    Kopytova, Taisiya G.; Crossfield, Ian J. M.; Deacon, Niall R.; Brandner, Wolfgang; Buenzli, Esther; Bayo, Amelia; Schlieder, Joshua E.; Manjavacas, Elena; Kopon, Derek; Biller, Beth A.

    2014-12-10

    WISE J085510.83-071442.5 (hereafter, WISE 0855-07) is the coolest Y dwarf known to date and is located at a distance of 2.31 ± 0.08 pc, giving it the fourth largest parallax of any known star or brown dwarf system. We report deep z-band observations of WISE 0855-07 using FORS2 on UT1/Very Large Telescope. We do not detect any counterpart to WISE 0855-07 in our z-band images and estimate a brightness upper limit of AB mag > 24.8 (F {sub ?} < 0.45 ?Jy) at 910 ± 65 nm with 3? confidence. We combine our z-band upper limit with previous near- and mid-infrared photometry to place constraints on the atmospheric properties of WISE 0855-07 via comparison to models which implement water clouds in the atmospheres of T {sub eff} < 300 K substellar objects. We find that none of the available models that implement water clouds can completely reproduce the observed spectral energy distribution of WISE 0855-07. Every model significantly disagrees with the (3.6 ?m/4.5 ?m) flux ratio and at least one other bandpass. Since methane is predicted to be the dominant absorber at 3-4 ?m, these mismatches might point to an incorrect or incomplete treatment of methane in current models. We conclude that (a) WISE0855-07 has T {sub eff} ? 200-250 K, (b) <80% of its surface is covered by clouds, and (c) deeper observations, and improved models of substellar evolution, atmospheres, clouds, and opacities will be necessary to better characterize this object.

  14. Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure Keywords: Supercritical pressure Aviation kerosene Convective heat transfer Numerical study a b s t r a c convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China

  15. Effect of Convective Entrainment/Detrainment on the Simulation of the Tropical Precipitation Diurnal Cycle*

    E-Print Network [OSTI]

    Wang, Yuqing

    Effect of Convective Entrainment/Detrainment on the Simulation of the Tropical Precipitation the effect of assumed fractional convective entrainment/detrainment rates in the Tiedtke mass flux convective measurements. In a control experiment with the default fractional convective entrainment/detrainment rates

  16. PERSPECTIVES Deep Earthquakes: A Fault Too Big?

    E-Print Network [OSTI]

    Stein, Seth

    PERSPECTIVES Deep Earthquakes: A Fault Too Big? Seth Stein Because deep Earth processes are inacces. Recent results for the mys- terious deep earthquakes that occur to depths greater than 600 km is that large deep earthquakes (1-3) seem to have occurred on faults larger than ex- pected from the competing

  17. The DEEP2 Galaxy Redshift Survey: Overview

    E-Print Network [OSTI]

    The DEEP2 Galaxy Redshift Survey: Overview David C. Koo & DEEP2 Team UCO/Lick Observatory. Univ. of California, Santa Cruz AAS Seattle Jan 2003 DEIMOSKECK #12;l What is DEEP2 ? l What are its Scientific Goals? l What is its Current Status? #12;The DEEP2 Collaboration Team Members: M. Davis (PI, UCB), S. Faber

  18. SEQUENTIAL DEEP BELIEF NETWORKS Galen Andrew

    E-Print Network [OSTI]

    Noble, William Stafford

    SEQUENTIAL DEEP BELIEF NETWORKS Galen Andrew University of Washington Department of Computer bilmes@ee.washington.edu ABSTRACT Previous work applying Deep Belief Networks (DBNs) to problems sequential information in the hidden layers. Index Terms-- deep learning, deep belief network, phone recog

  19. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    E-Print Network [OSTI]

    Prather, MJ

    2015-01-01

    Collins, W. : Effect of clouds on photolysis and oxidants insimulation of in- and below-cloud photolysis in troposphericS. , and Liu, X. : Effects of cloud overlap in photochemical

  20. WebDeep Web Surface Web

    E-Print Network [OSTI]

    Web WebWeb WebWeb WebHTML Web WebDeep Web Surface Web " " Deep Web21 Dot-ComWebWeb2.0 WebWeb ""Web WebWeb Deep Web WebWeb SNS Web WebWeb 20017BrightPlanet.comDeep Web Web43,000-96,000Web7,500TB(Surface Web500) UIUCDeep Web2004Deep Web 307,000366,000-535,000 WebDeep Web "" Deep Web 1 Web Web #12

  1. A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS

    E-Print Network [OSTI]

    A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS D complementary techniques, i.e., cloud microwave tomography and scanning radar, to retrieve 3D cloud properties the sixth moment of cloud droplets, while cloud tomography, by remotely probing cloud microwave emission

  2. Redefining the Cloud based on Beneficial Service Characteristics A New Cloud Taxonomy Leads to Economically Reasonable Semi-cloudification

    E-Print Network [OSTI]

    Redefining the Cloud based on Beneficial Service Characteristics A New Cloud Taxonomy Leads, Germany kemmler@lrz.de Keywords: Cloud, Semi-cloud, Service, Cloud Service, Semi-cloud Service, Service Management. Abstract: Cloud services promise benefits for customers and providers such as scalability

  3. Survey and evaluation of techniques to augment convective heat transfer

    E-Print Network [OSTI]

    Bergles A. E.

    1965-01-01

    This report presents a survey and evaluation of the numerous techniques which have been shown to augment convective heat transfer. These techniques are: surface promoters, including roughness and treatment; displaced ...

  4. Extreme Summer Convection in South America ULRIKE ROMATSCHKE

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    -level suppressed flow of the southeast Pacific from the unstable low-level flow dominating weather over. Knowledge of the details of convection throughout the tropics and subtropics has been revolutionized

  5. Experimental study of internal wave generation by convection in water

    E-Print Network [OSTI]

    2015-01-01

    wave generation by convection in water Michael Le Bars 1,2 ,investigate the dynamics of water cooled from below at 0 ° Cof the unusual property that water’s density maximum is at

  6. Experimental study of internal wave generation by convection in water

    E-Print Network [OSTI]

    Bars, Michael Le; Perrard, Stéphane; Ribeiro, Adolfo; Rodet, Laetitia; Aurnou, Jonathan M; Gal, Patrice Le

    2015-01-01

    We experimentally investigate the dynamics of water cooled from below at 0^oC and heated from above. Taking advantage of the unusual property that water's density maximum is at about 4^oC, this set-up allows us to simulate in the laboratory a turbulent convective layer adjacent to a stably stratified layer, which is representative of atmospheric and stellar conditions. High precision temperature and velocity measurements are described, with a special focus on the convectively excited internal waves propagating in the stratified zone. Most of the convective energy is at low frequency, and corresponding waves are localized to the vicinity of the interface. However, we show that some energy radiates far from the interface, carried by shorter horizontal wavelength, higher frequency waves. Our data suggest that the internal wave field is passively excited by the convective fluctuations, and the wave propagation is correctly described by the dissipative linear wave theory.

  7. NATURAL CONVECTION IN PASSIVE SOLAR BUILDINGS: EXPERIMENTS, ANALYSIS AND RESULTS

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, F.; Kammerud, R.

    1981-04-01

    Computer programs have been developed to numerically simulate natural convection in two- and three-dimensional room geometries. The programs have been validated using published data from the literature, results from a full-scale experiment performed at the Massachusetts Institute of Technology, and results from a small-scale experiment performed at LBL. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single zone in a direct-gain passive solar building. It is found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface. This study implies that the building heating loads calculated by standard building energy analysis methods may have substantial errors as a result of their use of common assumptions regarding the convection processes which occur in an enclosure.

  8. A numerical simulation of slantwise convection: its structure and evolution 

    E-Print Network [OSTI]

    Overpeck, Scott Allen

    2001-01-01

    Weather forecasters have had difficulty forecasting mesoscale precipitation bands occurring in the regions of frontal zones. Within the last twenty years, slantwise convection (SC) through the release of conditional symmetric instability (CSI) has...

  9. TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS...

    Office of Scientific and Technical Information (OSTI)

    implicit large eddy simulations of the turbulent convection in the envelope of a 5 Msub Sun red giant star and in the oxygen-burning shell of a 23 Msub Sun supernova...

  10. Fast Explicit Operator Splitting Method for Convection-Diffusion Equations

    E-Print Network [OSTI]

    Kurganov, Alexander

    to the one- and two-dimensional systems of convection-diffusion equations which model the polymer flooding) processes in fluid mechanics, astrophysics, me- teorology, multiphase flow in oil reservoirs, polymer flow

  11. Interaction between surface and atmosphere in a convective boundary layer /

    E-Print Network [OSTI]

    Garai, Anirban

    2013-01-01

    of cold fluid constitute most of the heat transport andevent cold air descends to the ground, heat transport fromcold air during sweep events. The convective boundary layer has a great influence on moisture transport,

  12. Identification of Robust Routes using Convective Weather Forcasts

    E-Print Network [OSTI]

    Michalek, Diana

    Convective weather is responsible for large delays and widespread disruptions in the U.S. National Airspace System (NAS), especially during summer months when travel demand is high. This has been the motivation for Air ...

  13. Identification of Robust Terminal-Area Routes in Convective Weather

    E-Print Network [OSTI]

    Balakrishnan, Hamsa

    Convective weather is responsible for large delays and widespread disruptions in the U.S. National Airspace System, especially during summer. Traffic flow management algorithms require reliable forecasts of route blockage ...

  14. Experimental Investigation of Natural Convection in Trombe Wall Systems 

    E-Print Network [OSTI]

    Chen, B.; Zhao, J.; Chen, C.; Zhuang, Z.

    2006-01-01

    In this paper, experiments with a passive solar building with Trombe wall in the north cold climate are carried out and discussed, and the natural convection heat transfer process has been investigated. The relativity of the factors affecting indoor...

  15. Resource Allocation and Scheduling in Heterogeneous Cloud Environments

    E-Print Network [OSTI]

    Lee, Gunho

    2012-01-01

    1] Open Cirrus cloud computing testbed. http://10] Early experiments in cloud computing. http://on Hot topics in cloud computing, pages 12–12, 2009. [29

  16. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01

    benefit analysis of cloud computing versus desktop grids.as: Ropella and Hunt: Cloud computing and validation ofCloud computing and validation of expandable in silico

  17. RFID Asset Management Solution with Cloud Computation Service

    E-Print Network [OSTI]

    Chattopadhyay, Arunabh

    2012-01-01

    A berkeley view of cloud computing”, EECS Department,and S. Sarma, “Cloud computing, rest and mashups to simplifyand/or frameworks. Cloud computing can be defined as

  18. Simulations of Midlatitude Frontal Clouds by Single-Column and...

    Office of Scientific and Technical Information (OSTI)

    and 4 cloud resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the Spring 2000 Cloud Intensive Observational Period at the ARM Southern...

  19. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Title: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud Results are presented...

  20. Use of a fictitious Marangoni number for natural convection simulation

    E-Print Network [OSTI]

    Arias, Francisco J.; Parks, Geoffrey T.

    2015-05-14

    - portance in many engineering and scientific applications such as energy transfer, boilers, nuclear reactor systems, energy storage devices, etc. In the design of such systems numerical simulation using computational fluid dynamics (CFD) and experimental... spacing of vertical, natural convection cooled, parallel plates. ASME J. Heat Transfer, 106 (1) (1984), pp. 116–123 [19] C.T. Tran, T.N. Dinh, Simulation of core melt pool formation in a reactor pressure vessel lower head using an effective convective...

  1. Natural convection airflow and heat transport in buildings: experimental results

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.

    1985-01-01

    Observations of natural convection airflow in passive solar buildings are described. Particular results are given for two buildings supplementing other data already published. A number of generalizations based on the monitoring of the 15 buildings are presented. It is concluded that energy can be reasonably well distributed throughout a building by natural convection provided suitable openings are present and that the direction of heat transport is either horizontally across or upward.

  2. The Silent Deep: The Discovery, Ecology and Conservation of the Deep Sea.

    E-Print Network [OSTI]

    Koehl, Mimi

    The Silent Deep: The Discovery, Ecology and Conservation of the Deep Sea. By Tony Koslow. Chicago and Tyler's excellent textbook, Deep-Sea Biology: A Natural History of Organisms at the Deep- Sea Floor and line drawings of deep-sea organisms and exploration give it broad appeal. The text is deceptive

  3. Evolution of Spheroidal Galaxies at z Deep Extragalactic Evolutionary Probe (DEEP)

    E-Print Network [OSTI]

    Evolution of Spheroidal Galaxies at z Deep Extragalactic Evolutionary Probe (DEEP) Myungshin Im 1 and DEEP team 2 UCO/Lick Observatory, UCSC, Santa Cruz, CA 95064 Abstract. DEEP is a multi about DEEP, see an article by D.C. Koo in this conference proceedings). So far, our data consist

  4. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P.; The ATLAS collaboration; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  5. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  6. Convective heat transfer in buildings: recent research results. Rev

    SciTech Connect (OSTI)

    Bauman, F.; Gadgil, A.; Kammerud, R.; Altmayer, E.; Nansteel, M.W.

    1982-10-01

    Recent experimental and numerical studies of convective heat transfer in buildings are described, and important results are presented. The experimental work has been performed on small-scale, water-filled enclosures; the numerical analysis results have been produced by a computer program based on a finite-difference scheme. The convective processes investigated in this research are: (1) natural convective heat transfer between room surfaces and the adjacent air, (2) natural convective heat transfer between adjacent rooms through a doorway or other openings, and (3) forced convection between the building and its external environment (such as wind-driven ventilation through windows, doors, or other openings). Results obtained at Lawrence Berkeley Laboratory (LBL) for surface convection coefficients are compared with existing ASHRAE correlations, and differences can have a significant impact on the accuracy of building energy analysis computer simulations. Interzone coupling correlations obtained from experimental work are in reasonable agreement with recently published experimental results and with earlier published work. Numerical simulations of wind-driven natural ventilation are presented. They exhibit good qualitative agreement with published wind-tunnel data.

  7. Thermal interaction between free convection and forced convection along a vertical conducting wall

    E-Print Network [OSTI]

    Shu, Jian-Jun

    2015-01-01

    A theoretical study is presented in this paper to investigate the conjugate heat transfer across a vertical finite wall separating two forced and free convection flows at different temperatures. The heat conduction in the wall is in the transversal direction and countercurrent boundary layers are formed on the both sides of the wall. The governing equations of this problem and their corresponding boundary conditions are all cast into a dimensionless form by using a non-similarity transformation. These resultant equations with multiple singular points are solved numerically using a very efficient singular perturbation method. The effects of the resistance parameters and Prandtl numbers on heat transfer characteristics are investigated.

  8. EVIDENCE FOR CONVECTION IN SUNSPOT PENUMBRAE

    SciTech Connect (OSTI)

    Bharti, L.; Solanki, S. K.; Hirzberger, J.

    2010-10-20

    We present an analysis of twisting motions in penumbral filaments in sunspots located at heliocentric angles from 30{sup 0} to 48{sup 0} using three time series of blue continuum images obtained by the Broadband Filter Imager (BFI) on board Hinode. The relations of the twisting motions to the filament brightness and the position within the filament and within the penumbra, respectively, are investigated. Only certain portions of the filaments show twisting motions. In a statistical sense, the part of the twisting portion of a filament located closest to the umbra is brightest and possesses the fastest twisting motion, with a mean twisting velocity of 2.1 km s{sup -1}. The middle and outer sections of the twisting portion of the filament (lying increasingly further from the umbra), which are less bright, have mean velocities of 1.7 km s{sup -1} and 1.35 km s{sup -1}, respectively. The observed reduction of brightness and twisting velocity toward the outer section of the filaments may be due to reducing upflow along the filament's long axis. No significant variation of twisting velocity as a function of viewing angles was found. The obtained correlation of brightness and velocity suggests that overturning convection causes the twisting motions observed in penumbral filament and may be the source of the energy needed to maintain the brightness of the filaments.

  9. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    SciTech Connect (OSTI)

    Huang, Hsin-Yuan; Hall, Alex

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain. According to our experiments, the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer scheme and the WSM6 microphysics scheme is the combination of schemes that performs best. For that combination, mean cloud cover, liquid water path, and cloud depth are fairly wellsimulated, while mean cloud top height remains too low in comparison to observations. Both microphysics and boundary layer schemes contribute to the spread in liquid water path and cloud depth, although the microphysics contribution is slightly more prominent. Boundary layer schemes are the primary contributors to cloud top height, degree of adiabaticity, and cloud cover. Cloud top height is closely related to surface fluxes and boundary layer structure. Thus, our study infers that an appropriate tuning of cloud top height would likely improve the low-cloud representation in the model. Finally, we show that entrainment governs the degree of adiabaticity, while boundary layer decoupling is a control on cloud cover. In the intercomparison study using WRF single-column model experiments, most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. We also implement a new Total-Energy/Mass- Flux boundary layer scheme into the WRF model and evaluate its ability to simulate both stratocumulus and shallow cumulus clouds. Result comparisons against large-eddy simulation show that this advanced parameterization based on the new Eddy-Diffusivity/Mass-Flux approach provides a better performance than other boundary layer parameterizations.

  10. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

    2007-06-30

    The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

  11. An Inter-Cloud Architecture for Future Internet Infrastructures

    E-Print Network [OSTI]

    Petrakis, Euripides G.M.

    An Inter-Cloud Architecture for Future Internet Infrastructures STELIOS SOTIRIADIS, Technical, Technical University of Crete, Greece Iaan latest years, the concept of interconnecting clouds to allow of cloud resources from Internet users. An efficient common management between different clouds

  12. Discovery of star formation in the extreme outer galaxy possibly induced by a high-velocity cloud impact

    SciTech Connect (OSTI)

    Izumi, Natsuko; Kobayashi, Naoto; Hamano, Satoshi; Yasui, Chikako; Tokunaga, Alan T.; Saito, Masao

    2014-11-01

    We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near-infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks of 'Digel Cloud 1' at the kinematic distance of D = 16 kpc (Galactocentric radius R {sub G} = 22 kpc). We identified 18 and 45 cluster members in the two peaks, and the estimated stellar densities are ?5 and ?3 pc{sup –2}, respectively. The observed K-band luminosity function suggests that the age of the clusters is less than 1 Myr and also that the distance to the clusters is consistent with the kinematic distance. On the sky, Cloud 1 is located very close to the H I peak of high-velocity cloud Complex H, and there are some H I intermediate velocity structures between the Complex H and the Galactic disk, which could indicate an interaction between them. We suggest the possibility that Complex H impacting on the Galactic disk has triggered star formation in Cloud 1 as well as the formation of the Cloud 1 molecular cloud.

  13. Disruptive technology business models in cloud computing

    E-Print Network [OSTI]

    Krikos, Alexis Christopher

    2010-01-01

    Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

  14. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P; The ATLAS collaboration; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  15. VOLUMETRIC SNAPPING: WATERTIGHT TRIANGULATION OF POINT CLOUDS

    E-Print Network [OSTI]

    Floater, Michael S.

    VOLUMETRIC SNAPPING: WATERTIGHT TRIANGULATION OF POINT CLOUDS Tim Volodine KULeuven, Department: meshing, surface reconstruction, volumetric grid, contouring, point clouds. Abstract: We propose, a volumetric method that does not rely on a signed distance function was proposed recently by Hornung

  16. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  17. Changes in high cloud conditions 

    E-Print Network [OSTI]

    Himebrook, Richard Frank

    1974-01-01

    of contrails, while in a more humid environment contrails wi. ll form. ilovis et al. (1970) showed that, over the 0. 68-2. 4p wavelength interval, "naturally" formed ice clouds and a fresh contrail show different signatures (which could be observed... prime cause for a change in the amount of high clouds, the Location of stations with respect to the jet routes was also reviewed. Atlanta, Ceorgia, was selected because it is a ma ~or air Lr r- minal and its upper-air liow advects jet...

  18. AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing

    E-Print Network [OSTI]

    Hamlen, Kevin W.

    AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing Safwan Mahmud Khan their computation results are ultimately delivered. To provide this data ownership privacy, the cloud's distributed-anonymity; authentication; cloud computing; in- formation security; privacy; Tor I. INTRODUCTION Revolutionary advances

  19. CloudHKA: A Cryptographic Approach for Hierarchical Access Control in Cloud Computing

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    CloudHKA: A Cryptographic Approach for Hierarchical Access Control in Cloud Computing Yi-Ruei Chen1, cloud computing, proxy re-encryption 1 Introduction Outsourcing data to cloud server (CS) becomes , Cheng-Kang Chu2 , Wen-Guey Tzeng3 , and Jianying Zhou4 1,3 Department of Computer Science, National

  20. CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy

    E-Print Network [OSTI]

    Daume III, Hal

    . Keywords: cloud computing, information policy, rechnology policy, grid computing, security, privacyCLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy: Computing in a Policy Cloud? Forthcoming in the Journal of Information Technology and Politics, 5(3). Paul T. Jaeger

  1. IsYour Network Cloud Ready? Network EnableYour Cloud With MPLSVPNs

    E-Print Network [OSTI]

    Greenberg, Albert

    -enabled cloud that is highly-secure and reliable. It is critical for enterprises to evaluate a network, but the high level of shared infrastructure creates concerns about security risks.As a result, the public cloudIsYour Network Cloud Ready? Network EnableYour Cloud With MPLSVPNs A FROST & SULLIVAN EXECUTIVE

  2. Home is Safer than the Cloud! Privacy Concerns for Consumer Cloud Storage

    E-Print Network [OSTI]

    for sensitive data over cloud storage. However, users desire better security and are ready to pay for services storage systems. General Terms Human Factors, Security, Privacy. Keywords Cloud Storage, Social FactorsHome is Safer than the Cloud! Privacy Concerns for Consumer Cloud Storage Iulia Ion , Niharika

  3. CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks

    E-Print Network [OSTI]

    Gu, Guofei

    CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks (or: How to Provide Security Monitoring as a Service in Clouds?) Seungwon Shin SUCCESS Lab Texas A&M University Email, basically, we can employ existing network security devices, but applying them to a cloud network requires

  4. StressCloud: A Tool for Analysing Performance and Energy Consumption of Cloud Applications

    E-Print Network [OSTI]

    Yang, Yun

    StressCloud: A Tool for Analysing Performance and Energy Consumption of Cloud Applications Feifei. It requires the evaluation of system performance and energy consumption under a wide variety of realistic and energy consumption analysis tool for cloud applications in real-world cloud environments. Stress

  5. THREE-DIMENSIONAL CLOUD STRUCTURE OBSERVED DURING DOE ARM'S 2009 CLOUD TOMOGRAPHY FIELD EXPERIMENT

    E-Print Network [OSTI]

    THREE-DIMENSIONAL CLOUD STRUCTURE OBSERVED DURING DOE ARM'S 2009 CLOUD TOMOGRAPHY FIELD EXPERIMENT on Cloud Physics, Portland, OR June 28-July 2, 2010 Environmental Sciences Department/Atmospheric Sciences Atmospheric Radiation Measurement (ARM)'s cloud tomography Intensive Observation Period (IOP

  6. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  7. Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus

    E-Print Network [OSTI]

    Miami, University of

    Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

  8. Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman

    E-Print Network [OSTI]

    Jaeger, Trent

    Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman Security Architecture University Park, PA, USA yus138,hvijay,tjaeger@cse.psu.edu Abstract--Cloud computing has commoditized compute paradigm, its adoption has been stymied by cloud platform's lack of trans- parency, which leaves customers

  9. Cloud Tracking in Cloud-Resolving Models R. S. Plant1

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models R. S. Plant1 1 Department of Meteorology, University. INTRODUCTION In recent years Cloud Resolving Models (CRMs) have become an increasingly important tool for CRM data, which allows one to investigate statistical prop- erties of the lifecycles of the "clouds

  10. The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise

    E-Print Network [OSTI]

    Sommerville, Ian

    1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

  11. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap

    E-Print Network [OSTI]

    Baum, Bryan A.

    Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap C.M. Naud a, , B July 2006; accepted 3 September 2006 Abstract Coincident MISR and MODIS cloud-top heights retrieved March 2000 and October 2003. The difference between MODIS and MISR cloud-top heights is assessed

  12. Ralf Klessen: PPV, Oct. 24, 2005 Molecular CloudMolecular Cloud

    E-Print Network [OSTI]

    Klessen,Ralf

    Ralf Klessen: PPV, Oct. 24, 2005 Molecular CloudMolecular Cloud Turbulence and Star formation three ,,steps" of star formation: 1.1. formation of molecular clouds in the disk of ourformation of molecular clouds in the disk of our galaxygalaxy 2.2. formation of protostellar coresformation

  13. Moving magnetic cloud -1Moving magnetic cloud -1 "Double change of frame" calculation...

    E-Print Network [OSTI]

    Hörandel, Jörg R.

    #12;19 Moving magnetic cloud - 1Moving magnetic cloud - 1 "Double change of frame" calculation... #12;eb. 2005 -- Cosmic-rays & Particle Acceleration -- E. Parizot (IPN Orsay) 21 Moving magnetic cloud - 2Moving magnetic cloud - 2 #12;Karlsruhe, 23-25 Feb. 2005 -- Cosmic-rays & Particle Acceleration

  14. To Cloud or Not to Cloud: Measuring the Performance of Mobile Gaming

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    To Cloud or Not to Cloud: Measuring the Performance of Mobile Gaming Chun-Ying Huang Department Tsing-Hua University Hsinchu, Taiwan chsu@cs.nthu.edu.tw ABSTRACT Mobile cloud gaming allows gamers an open source cloud gaming platform to conduct extensive experiments on real mobile clients. Our

  15. Determination of cloud liquid water distribution using 3D cloud tomography

    E-Print Network [OSTI]

    Determination of cloud liquid water distribution using 3D cloud tomography Dong Huang,1 Yangang Liu; published 2 July 2008. [1] The cloud microwave tomography method for remotely retrieving 3D distributions of cloud Liquid Water Content (LWC) was originally proposed by Warner et al. in the 1980s but has lain

  16. CloudTracker: Using Execution Provenance to Optimize the Cost of Cloud Use

    E-Print Network [OSTI]

    Bigelow, Stephen

    CloudTracker: Using Execution Provenance to Optimize the Cost of Cloud Use Geoffrey Douglas, Brian simulations using commercial clouds. We present a framework, called CLOUDTRACKER, that transparently records information from a simula- tion that is executed in a commercial cloud so that it may be "replayed" exactly

  17. The Open Cloud Testbed: A Wide Area Testbed for Cloud Computing Utilizing

    E-Print Network [OSTI]

    Grossman, Robert

    The Open Cloud Testbed: A Wide Area Testbed for Cloud Computing Utilizing High Performance Network of cloud platforms and services have been developed for data intensive computing, including Hadoop, Sector, CloudStore (formerly KFS), HBase, and Thrift. In order to benchmark the performance of these systems

  18. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01

    bodies. Saturated. We watch clouds simmer over the stillnessnoise like a fountain spring simmers between your thighs. A

  19. Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

  20. Turbulent Convection in Stellar Interiors. II. The Velocity Field

    E-Print Network [OSTI]

    David Arnett; Casey Meakin; P. A. Young

    2008-11-25

    We analyze stellar convection with the aid of 3D hydrodynamic simulations, introducing the turbulent cascade into our theoretical analysis. We devise closures of the Reynolds-decomposed mean field equations by simple physical modeling of the simulations (we relate temperature and density fluctuations via coefficients); the procedure (CABS, Convection Algorithms Based on Simulations) is terrestrially testable and is amenable to systematic improvement. We develop a turbulent kinetic energy equation which contains both nonlocal and time dependent terms, and is appropriate if the convective transit time is shorter than the evolutionary time scale. The interpretation of mixing-length theory (MLT) as generally used in astrophysics is incorrect; MLT forces the mixing length to be an imposed constant. Direct tests show that the damping associated with the flow is that suggested by Kolmogorov. The eddy size is approximately the depth of the convection zone, and this dissipation length corresponds to the "mixing length". New terms involving local heating by turbulent dissipation should appear in the stellar evolution equations. The enthalpy flux ("convective luminosity") is directly connected to the buoyant acceleration, and hence the velocity scale. MLT tends to systematically underestimate this velocity scale. Quantitative comparison with a variety of 3D simulations reveals a previously recognized consistency. Examples of application to stellar evolution will be presented in subsequent papers in this series.

  1. Auditing the Structural Reliability of the Clouds

    E-Print Network [OSTI]

    Haller, Gary L.

    . Icebergs in the Clouds: the Other Risks of Cloud Computing. In HotCloud, 2012. #12;Correlated Failures of occurrences. #12;Talk Outline Challenges Our approach Evaluation #12;Talk Outline Challenges Our approach Evaluation #12;Challenges 1. How to acquire dependency information automatically? 2. How to organize

  2. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  3. Cloud Security: Issues and Concerns Pierangela Samarati*

    E-Print Network [OSTI]

    Samarati, Pierangela

    1 Cloud Security: Issues and Concerns Authors Pierangela Samarati* Università degli Studi di Milano, Italy sabrina.decapitani@unimi.it Keywords cloud security confidentiality integrity availability secure data storage and processing Summary The cloud has emerged as a successful computing paradigm

  4. Security Architecture for Federated Mobile Cloud Computing

    E-Print Network [OSTI]

    Xu, Shouhuai

    Security Architecture for Federated Mobile Cloud Computing Shouhuai Xu and E. Paul Ratazzi, federated mobile cloud computing imposes a diverse set of new chal- lenges, especially from a security clouds for security purposes? How should we deal with the tar- geted attackers that attempt to launch

  5. VULCAN: Vulnerability Assessment Framework for Cloud Computing

    E-Print Network [OSTI]

    Kavi, Krishna

    services on Cloud is complex because the security depends on the vulnerability of infrastructure, platform services on Cloud is complex because the security depends on the vulnerability of infrastruc- ture?". Or "I want to host this software application in this cloud environment, what security vulnerabilities I

  6. Cloud Enterprise Storage and Data Migration

    E-Print Network [OSTI]

    Christensen, Henrik Bærbak

    Cloud Enterprise Storage and Data Migration 20097733 Bobby Nielsen, 20003686 Frederik Kierbye}@cs.au.dk 20130324 Abstract This document presents a research in Enterprise Cloud Storage and Data Migration. The hypothesis is that, it is easy to migrate data between cloud platforms, including changing api

  7. MEBSURIXG CLOUD MOVEMENTS A Science Service Feature

    E-Print Network [OSTI]

    -.- - MEBSURIXG CLOUD MOVEMENTS I A Science Service Feature Released upon receist but intended on Meteorology Vatching the clouds drift by, a traditional pastime of idle people, i s part Of the professional his head. He makes his cloud observations w i t h the aid of an instrument known as a nei

  8. A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux

    SciTech Connect (OSTI)

    Fan, Yuhong; Fang, Fang

    2014-07-01

    We report the results of a magnetohydrodynamic (MHD) simulation of a convective dynamo in a model solar convective envelope driven by the solar radiative diffusive heat flux. The convective dynamo produces a large-scale mean magnetic field that exhibits irregular cyclic behavior with oscillation time scales ranging from about 5 to 15 yr and undergoes irregular polarity reversals. The mean axisymmetric toroidal magnetic field is of opposite signs in the two hemispheres and is concentrated at the bottom of the convection zone. The presence of the magnetic fields is found to play an important role in the self-consistent maintenance of a solar-like differential rotation in the convective dynamo model. Without the magnetic fields, the convective flows drive a differential rotation with a faster rotating polar region. In the midst of magneto-convection, we found the emergence of strong super-equipartition flux bundles at the surface, exhibiting properties that are similar to emerging solar active regions.

  9. Deep-web search engine ranking algorithms

    E-Print Network [OSTI]

    Wong, Brian Wai Fung

    2010-01-01

    The deep web refers to content that is hidden behind HTML forms. The deep web contains a large collection of data that are unreachable by link-based search engines. A study conducted at University of California, Berkeley ...

  10. The Phoenix Deep Survey: A Deep Microjansky Radio Survey

    E-Print Network [OSTI]

    J. Afonso; B. Mobasher; A. Hopkins; L. Cram

    1999-09-05

    The study of the nature of faint radio sources is of great importance since a significant fraction of these objects is thought to be composed of actively star-forming galaxies. Due to the increased sensitivity of radio telescopes, we are now not only able to catalogue large numbers of these sources in the sub-millijansky regime, but also to start the study of the nature of increasingly fainter microjansky sources. This paper presents a new very deep 1.4 GHz radio survey made as a part of the Phoenix Deep Survey, a project aimed to study the nature of the faintest radio sources. With a limiting sensitivity of 45 microJy, this new survey has allowed us to assemble a large number of sources with 1.4 GHz flux densities below 100 microJy. The resulting source counts and the analysis of the optical properties of the faintest radio sources are presented.

  11. Unlocking the Secrets of Clouds

    Broader source: Energy.gov [DOE]

    Clouds may look soft, fluffy and harmless to the untrained eye, but to an expert climate model scientist they represent great challenges. Fortunately the Atmospheric Radiation Measurement (ARM) Climate and Research Facility is kicking off a five-month study which should significantly clear the air.

  12. POTENTIAL OF CLOUD-BASED

    E-Print Network [OSTI]

    Lee, Jason R.

    .!! Cover!photos!courtesy!of!the!National!Energy!Research!Scientific!Computing!Center!and!Google.! #12;! ! ! The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study ! Lawrence Berkeley National Laboratory June, 2013 Research Team Eric!Masanet! Arman!Shehabi! Jiaqi!Liang! Lavanya!Ramakrishnan! Xiao

  13. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  14. Analysis of 11 june 2003 mesoscale convective vortex genesis using weather surveillance radar ??88 doppler (wsr-88d) 

    E-Print Network [OSTI]

    Reynolds, Amber Elizabeth

    2009-05-15

    Mesoscale convective vortices (MCVs), which typically form within the stratiform rain of some mesoscale convective systems (MCSs), may persist for days, often regenerating convection daily. Long-lived MCVs can produce as much precipitation as a...

  15. Magneto-Vortex Dynamo Model in Solar convection zone

    E-Print Network [OSTI]

    Sergey V. Ershkov

    2011-01-06

    Here is presented a new magneto-vortex dynamo model for modeling & predicting of a processes in Solar plasma convection zone. Solar convection zone is located above the level r > 0,6-0,7 R, where R is a Solar radius. A key feature of such a model is that equation of Solar plasma motion as well as equation of magnetic fields evolution - are reduced to Helmholtz's vortex equation, which is up-graded in according with alpha-effect (Coriolis force forms an additional vorticity field or magnetic field due to Sun's differential rotation). Such an additional vorticity or magnetic field are proved to be concentrated at the proper belt in Solar convection zone under the influence of Coriolis force (at the middle latitudes of the Sun in respect to equator). Besides, such an an additional vorticity & magnetic fields are to be the basic sources of well-known phenomena "Maunder's butterfly" diagram.

  16. Isoform discovery by targeted cloning,`deep-

    E-Print Network [OSTI]

    Roth, Frederick

    Isoform discovery by targeted cloning,`deep- well' pooling and parallel sequencing Kourosh Salehi transcriptase (RT)- PCR recombinational cloning,`deep-well' pooling and a next- generation sequencing platform and demonstrate the ORFeome primer pairs ORFeome minipool arrays Single colony isolates `Deep wells' of pooled

  17. THE DEEP PROJECT DAVID C. KOO

    E-Print Network [OSTI]

    THE DEEP PROJECT DAVID C. KOO UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA Abstract. DEEP is a multi­institutional program designed to undertake a ma­ jor new spectroscopic goal of securing large numbers of redshifts (10,000 + ) to very faint limits of I ¸ 23, DEEP intends

  18. Deep Web Entity Monitoring Mohammadreza Khelghati

    E-Print Network [OSTI]

    Hiemstra, Djoerd

    Deep Web Entity Monitoring Mohammadreza Khelghati Database Group University of Twente, Netherlands. This data is defined as hidden web or deep web which is not accessible through search engines. It is estimated that deep web contains data in a scale several times bigger than the data accessible through

  19. Deep Mixtures of Factor Analysers Introduction

    E-Print Network [OSTI]

    Toronto, University of

    Deep Mixtures of Factor Analysers Introduction Experiments - High dimensional data (avg. log An efficient way to learn deep density models is to greedily learn one layer at a time using one layer latent Graphical Model of Deep MFA Illustration with 2D data Each ellipse is a Gaussian Component Aggregated

  20. Deep-Space Optical Communications: Future

    E-Print Network [OSTI]

    Djordjevic, Ivan B.

    INVITED P A P E R Deep-Space Optical Communications: Future Perspectives and Applications Current technologies available for deep-space optical data transmission and networking are discussed in this paper IEEE, Abhijit Biswas, and Ivan B. Djordjevic, Senior Member IEEE ABSTRACT | The concept of deep

  1. Deep Vadose Zone Applied Field Research Initiative

    E-Print Network [OSTI]

    Deep Vadose Zone­ Applied Field Research Initiative Fiscal Year 2012 Annual Report #12;Prepared Tasks 25 References 25 Appendix: FY2012 Products for the Deep Vadose Zone­ Applied Field Research Initiative Contents #12;Message from the Deep Vadose Zone- Applied Field Research Initiative Project Manager

  2. Boston Harbor -Deep Draft Navigation Improvement Massachusetts

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of Massachusetts Bay and is the New England region's largest port. The main deep water harbor is comprised for the Chelsea River which has an authorized depth of 38 feet MLLW. Deep water access to the harbor is providedBoston Harbor - Deep Draft Navigation Improvement Massachusetts 21 August 2008 and 18 September

  3. Sampling the National Deep Web Denis Shestakov

    E-Print Network [OSTI]

    Hammerton, James

    Sampling the National Deep Web Denis Shestakov Department of Media Technology, Aalto University pages filled with information from myriads of online databases. This part of the Web, known as the deep a problem of deep Web characterization: how to estimate the total number of online databases on the Web? We

  4. New Horizons for Deep Subsurface Microbiology

    E-Print Network [OSTI]

    Onstott, Tullis

    life cannot exist. · Experiments being designed for the Deep Un- derground Science and EngineeringNew Horizons for Deep Subsurface Microbiology Subsurface microorganisms may grow slowly 200-m-deep wells along with procedures to monitor for drilling-related contaminants, uncovered

  5. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect (OSTI)

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (?) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a ? of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing ? to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  6. Precipitation Variability over the Forest-to-Nonforest Transition in Southwestern Amazonia

    E-Print Network [OSTI]

    Knox, Ryan Gary

    Prior research has shown that deforestation in the southwestern Amazon enhances the formation of nonprecipitating shallow cumulus clouds, while deep cumulus convection was favored over forested land. The research presented ...

  7. Surface energy fluxes at Central Florida during the convection and precipitation electrification experiment. Final Report

    SciTech Connect (OSTI)

    Nie, D.; Demetriades-shah, T.D.; Kanemasu, E.T.

    1993-04-01

    One of the objectives of CaPE is to better understand the convective process in central and south Florida during the warm season. The energy and moisture exchanges between the surface and the atmosphere are closely related to this process. Some recent studies have shown that the surface energy balance plays an important role in the climatic fields (Shukla and Mintz; Sud and Smith; Sato et. al). Surface energy fluxes and related surface processes such as evapotranspiration and sensible heat transfer directly effect the temperature, humidity, cloud formation and precipitation. For example, mesoscale circulation around a discontinuity in vegetation type were shown to be stronger with wet soil than with dry soil using an evapotranspiration model (Pinty et. al). In order to better describe the processes in the atmosphere at various scales and improve the ability of modeling and predicting weather related events, it is crucial to understand the mechanism of surface energy transfer in relation to atmospheric events. Surface energy flux measurements are required to fully understand the interactions between the atmosphere and the surface.

  8. Deep-Sea Research I 49 (2002) 681705 Modification and pathways of Southern Ocean Deep Waters

    E-Print Network [OSTI]

    Naveira Garabato, Alberto

    2002-01-01

    Deep-Sea Research I 49 (2002) 681­705 Modification and pathways of Southern Ocean Deep Waters of the deep water masses flowing through the region, and to quantify changes in their properties as they cross and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global

  9. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect (OSTI)

    Van Weverberg K.; Vogelmann A.; van Lipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  10. A meshless method for modeling convective heat transfer

    SciTech Connect (OSTI)

    Carrington, David B

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  11. Staggered grids discretization in three-dimensional Darcy convection

    E-Print Network [OSTI]

    B. Karasozen; A. D. Nemtsev; V. G. Tsybulin

    2008-02-17

    We consider three-dimensional convection of an incompressible fluid saturated in a parallelepiped with a porous medium. A mimetic finite-difference scheme for the Darcy convection problem in the primitive variables is developed. It consists of staggered nonuniform grids with five types of nodes, differencing and averaging operators on a two-nodes stencil. The nonlinear terms are approximated using special schemes. Two problems with different boundary conditions are considered to study scenarios of instability of the state of rest. Branching off of a continuous family of steady states was detected for the problem with zero heat fluxes on two opposite lateral planes.

  12. Semi-convection: What is the underlying physical context?

    E-Print Network [OSTI]

    Noels, Arlette

    2015-01-01

    Stellar conditions leading to a possible semi-convective mixing are discussed in three relevant cases: (1) low mass MS stars in which the CNO cycle takes progressively the lead over the PP chain due to the increase in temperature as core hydrogen burning proceeds, (2) massive MS stars which experience a large contri- bution of the radiation pressure to the total pressure and (3) core helium burning stars for which the production of carbon in the core increases the opacity. A short discussion of semi-convection in terms of instability of non radial modes follows.

  13. The influence of convective activity on the vorticity budget 

    E-Print Network [OSTI]

    Townsend, Tamara L

    1987-01-01

    . Continued. ~E' i~ QE I ~ tt Jtm a tt NE v~ l / tmt ta' NE ~~f IIIY G NE~~ NE a/+ NE NE NE NE 1st NE Fig. 13. Radar summary for 1435 GNT 10 Apri. l 1979. NE I l. c I E j~7 ~ NE NE MP- Qo+ Fig. 14. Radar summary for 2235 GMT 10 April 1979... experiment. 15 3 Average values of terms in the vorticity equation for a convective (Area 1) and a nonconvective (Area 2) area during AVE VII. Units of 10 s 145 4 Average values of terms in the vorticity equation for a convective (Area 1) and a...

  14. How Long Can Tiny HI Clouds Survive?

    E-Print Network [OSTI]

    Masahiro Nagashima; Shu-ichiro Inutsuka; Hiroshi Koyama

    2006-03-10

    We estimate the evaporation timescale for spherical HI clouds consisting of the cold neutral medium surrounded by the warm neutral medium. We focus on clouds smaller than 1pc, which corresponds to tiny HI clouds recently discovered by Braun & Kanekar and Stanimirovi{\\'c} & Heiles. By performing one-dimensional spherically symmetric numerical simulations of the two-phase interstellar medium (ISM), we derive the timescales as a function of the cloud size and of pressure of the ambient warm medium. We find that the evaporation timescale of the clouds of 0.01 pc is about 1Myr with standard ISM pressure, $p/k_{B}\\sim 10^{3.5}$ K cm$^{-3}$, and for clouds larger than about 0.1 pc it depends strongly on the pressure. In high pressure cases, there exists a critical radius for clouds growing as a function of pressure, but the minimum critical size is $\\sim$ 0.03 pc for a standard environment. If tiny HI clouds exist ubiquitously, our analysis suggests two implications: tiny HI clouds are formed continuously with the timescale of 1Myr, or the ambient pressure around the clouds is much higher than the standard ISM pressure. We also find that the results agree well with those obtained by assuming quasi-steady state evolution. The cloud-size dependence of the timescale is well explained by an analytic approximate formula derived by Nagashima, Koyama & Inutsuka. We also compare it with the evaporation rate given by McKee & Cowie.

  15. Forced-convection surface-boiling heat transfer and burnout in tubes of small diameters

    E-Print Network [OSTI]

    Bergles A. E.

    1962-01-01

    A basic heat-transfer apparatus was designed and constructed for the study of forced-convection boiling in small channels. The various regions of forced-convection surface boiling were studied experimentally and analytically. ...

  16. Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium

    E-Print Network [OSTI]

    O'Gorman, Paul Ambrose

    Convective available potential energy (CAPE) is shown to increase rapidly with warming in simulations of radiative-convective equilibrium over a wide range of surface temperatures. The increase in CAPE implies a systematic ...

  17. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE...

    Office of Scientific and Technical Information (OSTI)

    THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE Citation Details In-Document Search Title: THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE...

  18. Lake-size dependency of wind shear and convection as controls on gas exchange

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Lake-size dependency of wind shear and convection as controls on gas exchange Jordan S. Read,1 the relative contributions of wind shear (u*) and convection (w*) to turbulence in the surface mixed layer wind shear (u*/w*

  19. Hydrodynamic Simulations with PPMstar. Methods and Convergence Study of Entrainment at the Top Boundary of Shell Convection in Stellar Interiors

    E-Print Network [OSTI]

    Woodward, Paul R; Lin, Pei-Hung

    2013-01-01

    He-shell flash convection in AGB stars of very low metallicity, in post-AGB or pre-white dwarf stars or in accreting white dwarfs may under certain conditions grow and extend into the H-rich layers above. In this case proton-rich material will be advected into the deep C12-rich He-burning layers leading to a regime of H-C12 combustion which may lead to an observable (e.g. Sakurai's object) stellar response in real-time. This is the nucleosynthesis site of the i process. The properties of this violent phase of stellar evolution depend on the interplay of fuel advection, mixing and nuclear energy production associated with dynamic feedback into the fluid flow. We present 3-dimensional, fully compressible gas-dynamics simulations in 4pi geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. We are focusing on the properties of entrainment of material, and establish the quantitative dependence of the entrainment rate on grid resolution. We find that, with our numerical tech...

  20. Practical and Intrinsic Predictability of Severe and Convective Weather at the Mesoscales

    E-Print Network [OSTI]

    Practical and Intrinsic Predictability of Severe and Convective Weather at the Mesoscales at the mesoscales using convection-permitting ensemble simulations of a squall line and bow echo event during the Bow Echo and Mesoscale Convective Vortex (MCV) Experiment (BAMEX) on 9­10 June 2003. Although most

  1. Charge rearrangement by sprites over a north Texas mesoscale convective system

    E-Print Network [OSTI]

    Cummer, Steven A.

    Charge rearrangement by sprites over a north Texas mesoscale convective system William W. Hager,1 is analyzed for a mesoscale convective system (MCS) situated in north Texas and east New Mexico on 15 July. Lapierre (2012), Charge rearrangement by sprites over a north Texas mesoscale convective system, J. Geophys

  2. AcceptedArticleThe effect of moist convection on thermally induced mesoscale circulations

    E-Print Network [OSTI]

    Gentine, Pierre

    AcceptedArticleThe effect of moist convection on thermally induced mesoscale circulations Malte of thermally induced mesoscale circulations rests primarily on observations and model studies of dry convection-eddy simulations are used to investigate the effect of moist convection on an idealized mesoscale circulation

  3. The Role of Cumulus Convection in Hurricanes and its Representation in Hurricane Models

    E-Print Network [OSTI]

    Smith, Roger K.

    1 The Role of Cumulus Convection in Hurricanes and its Representation in Hurricane Models By Roger understanding of the role of cumulus convection in hurricanes as well as the various convective parameterization are able to simulate hurricane intensi cation with some degree of realism. In a weak vortex, the secondary

  4. Patterns of Precipitation and Mesolow Evolution in Midlatitude Mesoscale Convective Vortices

    E-Print Network [OSTI]

    Johnson, Richard H.

    Patterns of Precipitation and Mesolow Evolution in Midlatitude Mesoscale Convective Vortices ERIC P manifestations of mesoscale convective vortices (MCVs) that traversed Oklahoma during the periods May­August 2002 Profiler Network data. Forty-five MCVs that developed from mesoscale convective systems (MCSs) have been

  5. Transient luminous events above two mesoscale convective systems: Charge moment change analysis

    E-Print Network [OSTI]

    Cummer, Steven A.

    Transient luminous events above two mesoscale convective systems: Charge moment change analysis. A. Rutledge, and D. R. MacGorman (2011), Transient luminous events above two mesoscale convective in the stratiform region of a mesoscale convective system (MCS) [Houze et al., 1990] by energetic positive CG (+CG

  6. The effect of increased convective entrainment on Asian monsoon biases in

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    The effect of increased convective entrainment on Asian monsoon biases in the MetUM General) The effect of increased convective entrainment on Asian monsoon biases in the MetUM General Circulation Model The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model

  7. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    E-Print Network [OSTI]

    Klein, Stephen A.

    2009-01-01

    humidity above stratiform clouds on indirect aerosol climateOverview of Arctic cloud and radiation characteristics. J.of Arctic low-level clouds observed during the FIRE Arctic

  8. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  9. Logarithmic corrections to scaling in turbulent thermal convection

    E-Print Network [OSTI]

    B. Dubrulle

    2001-01-04

    We use an analytic toy model of turbulent convection to show that most of the scaling regimes are spoiled by logarithmic corrections, in a way consistent with the most accurate experimental measurements available nowadays. This sets a need for the search of new measurable quantities which are less prone to dimensional theories.

  10. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  11. Overshooting Convection from High-resolution NEXRAD Observations 

    E-Print Network [OSTI]

    Solomon, David

    2014-01-09

    are compared to the lapse-rate tropopause height calculated using the ERA-Interim reanalysis to determine if a storm is overshooting. We compute a 1-year analysis of overshooting convection at three-hour intervals for 2004 for the continental U.S. east...

  12. Investigation of the heat pipe arrays for convective electronic cooling 

    E-Print Network [OSTI]

    Howard, Alicia Ann Harris

    1993-01-01

    A combined experimental and analytical investigation was conducted to evaluate a heat pipe convective cooling device consisting of sixteen small copper/water heat pipes mounted vertically in a 4x4 array 25.4 mm square. The analytical portion...

  13. Modeling thermal convection in supradetachment basins: example from western Norway

    E-Print Network [OSTI]

    Andersen, Torgeir Bjørge

    Modeling thermal convection in supradetachment basins: example from western Norway A. SOUCHE*, M. DABROWSKI AND T. B. ANDERSEN Physics of Geological Processes (PGP), University of Oslo, Oslo, Norway basins of western Norway are examples of supradetachment basins that formed in the hanging wall

  14. Evaporatively Driven Convection in a Draining Soap Film

    E-Print Network [OSTI]

    Bush, John W.M.

    Evaporatively Driven Convection in a Draining Soap Film Submitted by Jan M. Skotheim and John W. M. Bush, MIT A soap film was created by dipping a rectangular wire frame of height 3.5 cm and width 15 cm was mounted in a vertical po- sition, and the film drained under the influence of gravity in an unsaturated

  15. Simulation of Convection and Macrosegregation in a Large Steel Ingot

    E-Print Network [OSTI]

    Beckermann, Christoph

    convection and macrosegregation in casting of a large steel ingot are numerically simulated. The simulation of a shrinkage cavity at the top, is taken into account. The numerical results show the evolution macrosegregation observed in the lower part of the ingot. It is also shown that the inclusion of the shrinkage

  16. Nonequilibrium pattern formation and spatiotemporal chaos in fluid convection

    SciTech Connect (OSTI)

    Michael Cross

    2006-09-13

    The final report for grant number DE-FG03-98ER14891 summarizes the application of the unique simulation capabilities developed under DOE support to investigations of important issues in pattern formation and spatiotemporal chaos in Rayleigh-Benard convection, particularly emphasizing quantitative contact with the active experimental programs.

  17. Preparation, Biodistribution and Neurotoxicity of Liposomal Cisplatin following Convection Enhanced

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Preparation, Biodistribution and Neurotoxicity of Liposomal Cisplatin following Convection Enhanced delivery (CED) to F98 glioma bearing rats. Neurotoxicologic studies were carried out in non-tumor bearing. Unexpectedly, LipoplatinTM was highly neurotoxic when given i.c. by CED and resulted in death immediately

  18. UNCORRECTED Grid geometry effects on convection in ocean climate models

    E-Print Network [OSTI]

    Kuhlbrodt, Till

    is the 12 improvement of convection parameterization schemes, but the question of grid geometry also plays.elsevier.com/locate/omodol OCEMOD 100 No. of Pages 18, DTD = 4.3.1 28 August 2003 Type ARTICLE IN PRESS #12;UNCORRECTED PROOF 26 1 density gradient actually vanishes, one observes a strong vertical turbulent mixing to 32 depths of 2 km

  19. A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH

    E-Print Network [OSTI]

    Quest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 by ProQuest Information and Learning Company. #12;II A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS. Seeing him grow gave me a new level of energy and hope. Without a doubt, my family members have been

  20. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.