Powered by Deep Web Technologies
Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Deep Borehole Disposal Research: Demonstration Site Selection...  

Office of Environmental Management (EM)

Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

2

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Broader source: Energy.gov (indexed) [DOE]

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

3

Canister design for deep borehole disposal of nuclear waste .  

E-Print Network [OSTI]

??The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories… (more)

Hoag, Christopher Ian.

2006-01-01T23:59:59.000Z

4

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Broader source: Energy.gov (indexed) [DOE]

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

5

Canister design for deep borehole disposal of nuclear waste  

E-Print Network [OSTI]

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

6

Deep borehole disposal of high-level radioactive waste.  

SciTech Connect (OSTI)

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

2009-07-01T23:59:59.000Z

7

Reference design and operations for deep borehole disposal of high-level radioactive waste.  

SciTech Connect (OSTI)

A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

2011-10-01T23:59:59.000Z

8

Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal  

E-Print Network [OSTI]

The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

Shaikh, Samina

2007-01-01T23:59:59.000Z

9

Feasibility of very deep borehole disposal of US nuclear defense wastes .  

E-Print Network [OSTI]

??This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement… (more)

Dozier, Frances Elizabeth

2011-01-01T23:59:59.000Z

10

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

11

A drop-in-concept for deep borehole canister emplacement  

E-Print Network [OSTI]

Disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock (i.e., "granite") is an interesting repository alternative of long standing. Work at MIT over the past two decades, and more recently ...

Bates, Ethan Allen

2011-01-01T23:59:59.000Z

12

A New Approach For Direct Disposal Of Spent Fuel Into Deep Vertical Boreholes In A Salt Repository  

SciTech Connect (OSTI)

This paper describes the reference concept for the disposal of heat generating radioactive waste in Germany. It also highlights a new approach to reduce efforts for the transport and handling of waste canisters by introducing a new canister type for spent fuel (BSK 3). The objectives and the scope of a corresponding research and development program performed in the context of the 6. European Framework Program will be presented. The entire emplacement process and the technical components will be described and illustrated. The program for the corresponding 1:1-scale demonstration tests and the location of the test site will be explained. Eventually, an outlook on the planned demonstration test will be given. (authors)

Bollingerfehr, W.; Filbert, W.; Wehrmann, J. [DBE TECHNOLOGY GmbH, Peine (Germany)

2008-07-01T23:59:59.000Z

13

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

14

Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0  

SciTech Connect (OSTI)

Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

15

Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program  

SciTech Connect (OSTI)

This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

16

Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program  

SciTech Connect (OSTI)

This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

17

COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE  

SciTech Connect (OSTI)

Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance assessment, inclusion of dose calculations from collocated low-level waste in the boreholes for the individual protection requirements, further assessments of engineered barriers and conditions associated with the assurance requirements, and expansion of documentation provided for assessing the groundwater protection requirements. The Transuranic Waste Disposal Federal Review Group approved the performance assessment for Greater Confinement Disposal boreholes in 2001 and did not approve the Application of the Assurance Requirements. Remaining issues concerned with engineered barriers and the multiple aspects of the Assurance Requirements will be resolved at the time of closure of the Area 5 Radioactive Waste Management Site. This is the first completion and acceptance of a performance assessment for transuranic materials under the U.S. Department of Energy self-regulation. The Greater Confinement Disposal boreholes are only the second waste disposal configuration to meet the safety regulatory requirements of 40 CFR 191.

Colarusso, Angela; Crowe, Bruce; Cochran, John R.

2003-02-27T23:59:59.000Z

18

Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources  

SciTech Connect (OSTI)

Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

19

Hydrologic testing methodology and results from deep basalt boreholes  

SciTech Connect (OSTI)

The objective of the hydrologic field-testing program is to provide data for characterization of the groundwater systems wihin the Pasco Basin that are significant to understanding waste isolation. The effort is directed toward characterizing the areal and vertical distributions of hydraulic head, hydraulic properties, and hydrochemistry. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. These models are then used for evaluating potential waste migration as a function of space and time. The groundwater system beneath the Hanford Site and surrounding area consists of a thick, accordantly layered sequence of basalt flows and associated sedimentary interbed that primarily occur in the upper part of the Columbia River basalt. Permeable horizons of the sequence are associated with the interbeds and the interflow zones within the basalt. The columnar interiors of a flow act as low-permeability aquitards, separating the more-permeable interflows or interbeds. This paper discusses the hydrologic field-gathering activities, specifically, field-testing methodology and test results from deep basalt boreholes.

Strait, S R; Spane, F A; Jackson, R L; Pidcoe, W W

1982-05-01T23:59:59.000Z

20

A Fresh Look at Greater Confinement Boreholes for Greater-Than-Class C Low-Level Radioactive Waste Disposal  

SciTech Connect (OSTI)

The United States Federal government has responsibility for disposal of low-level radioactive waste (LLW) with concentrations of radionuclides that exceed limits established by the United States Nuclear Regulatory Commission (NRC) for Class C LLW. Since Greater-Than-Class-C (GTCC) LLW is from activities licensed by NRC or NRC Agreement States, a disposal facility by law must be licensed by NRC. The United States (U.S.) Department of Energy (DOE) has the responsibility to site, design, construct, operate, decommission, and provide long-term care for GTCC LLW disposal facilities. On May 11, 2005, DOE issued an advance notice of intent to begin preparation of an Environmental Impact Statement (EIS) for GTCC LLW disposal. Since the initiation of the EIS, analysis has focused on compiling the inventory of commercial GTCC LLW and DOE GTCC-like wastes, reviewing disposal technologies, and other preliminary studies. One of the promising disposal technologies being considered is intermediate depth greater confinement boreholes. Greater confinement boreholes have been used effectively to safely dispose of long-lived radioactive waste at the Nevada Test Site (NTS). The DOE took a fresh look at global experiences with the use of greater confinement borehole disposal, including current considerations being given for future applications in the U.S., and concluded that the U.S. is positioned to benefit from international collaboration on borehole disposal technology, and could ultimately become a pilot project, if the technology is selected. (authors)

Tonkay, D.W.; Joyce, J.L. [U.S. Department of Energy, Office of Disposal Operations, Washington, DC (United States); Cochran, J.R. [Sandia National Laboratories1, Albuquerque, NM (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis of mineral trapping for CO2 disposal in deep aquifers  

E-Print Network [OSTI]

of Mineral Trapping for CO2 Disposal in Deep Aquifers Tianfue~mail: Tianfu Xu@lbl. gov) CO2 disposal into deep aquiferspermit significant sequestration of CO2. We performed batch

Xu, Tianfu

2014-01-01T23:59:59.000Z

22

Deep borehole log evidence for fractal distribution of fractures in crystalline rock  

Science Journals Connector (OSTI)

......as well as large scale-lengths...fractures seen in drilling cores and...register on a borehole scanning...rock in the borehole wall. In...evidence in the drilling logs or retrieved...core that large-scale fractures...samples, and drilling history...control the large-scale trend...sensitive to borehole lithology......

Peter Leary

1991-12-01T23:59:59.000Z

23

The Determination of Virgin Strata Temperatures from Observations in Deep Survey Boreholes  

Science Journals Connector (OSTI)

......Hopton Pool Borehole changed in diameter...temperature of the drilling fluid for differentboreholes...effect of a larger hole in rock...the hole was large in diameter in the Hopton Pool Borehole at least 27...virgin strata and drilling fluid temperatures......

L. R. Cooper; C. Jones

1959-06-01T23:59:59.000Z

24

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect (OSTI)

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

25

Generic Disposal System Modeling, Fiscal Year 2011 Progress Report |  

Broader source: Energy.gov (indexed) [DOE]

Disposal System Modeling, Fiscal Year 2011 Progress Report Disposal System Modeling, Fiscal Year 2011 Progress Report Generic Disposal System Modeling, Fiscal Year 2011 Progress Report The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments. GenericDisposalSystModelFY11.pdf More Documents & Publications Integration of EBS Models with Generic Disposal System Models TSPA Model Development and Sensitivity Analysis of Processes Affecting

26

Selected biological investigations on deep sea disposal of industrial wastes  

E-Print Network [OSTI]

found at an actual disposal site with respect to waste dilution with time. This technique was incorporated into the standard 96-hour bioassay test to afford a means of obtaining preliminary information regarding the bioaccumulation of each waste... with time from the 16 ocean dispose 1 study by Ball (1973) Laboratory dilution setup used to simulate conditions found at an actual disposal site with regard to waste dilution. 18 20 CHAPTER I INTRODUCTION Until recently man haS considered...

Page, Sandra Lea

2012-06-07T23:59:59.000Z

27

An electromagnetic sounding experiment in Germany using the vertical gradient of geomagnetic variations observed in a deep borehole  

Science Journals Connector (OSTI)

......penetration depth is large against the depth of the borehole magnetometer. As...neither influence the borehole measurements, since the drilling did not encounter...surrounding the drilling site. 9 Conclusions The borehole in Konigshofen provided......

Ulrich Schmucker; Klaus Spitzer; Erich Steveling

2009-09-01T23:59:59.000Z

28

Feasibility of lateral emplacement in very deep borehole disposal of high level nuclear waste .  

E-Print Network [OSTI]

??The U.S. Department of Energy recently filed a motion to withdraw the Nuclear Regulatory Commission license application for the High Level Waste Repository at Yucca… (more)

Gibbs, Jonathan Sutton

2010-01-01T23:59:59.000Z

29

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

30

Analysis of Mineral Trapping for CO2 Disposal in Deep Aquifers  

Office of Scientific and Technical Information (OSTI)

Reactive Geochemical Transport Simulation to Study Mineral Trapping Reactive Geochemical Transport Simulation to Study Mineral Trapping for CO 2 Disposal in Deep Saline Arenaceous Aquifers Tianfu Xu, John A. Apps, and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA Abstract. A reactive fluid flow and geochemical transport numerical model for evaluating long-term CO 2 disposal in deep aquifers has been developed. Using this model, we performed a number of sensitivity simulations under CO 2 injection conditions for a commonly encountered Gulf Coast sediment to analyze the impact of CO 2 immobilization through carbonate precipitation. Geochemical models are needed because alteration of the predominant host rock aluminosilicate minerals is very slow and is not

31

Generic Argillite/Shale Disposal Reference Case  

E-Print Network [OSTI]

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

32

Grant Reference Principal Investigator Research Organisation Project Title NE/J013544/1 Professor B Hubbard Aberystwyth University Extended-range optical televiewer imaging of the NEEM deep ice borehole, Greenland  

E-Print Network [OSTI]

Grant Reference Principal Investigator Research Organisation Project Title NE/J013544/1 Professor B Hubbard Aberystwyth University Extended-range optical televiewer imaging of the NEEM deep ice borehole/1 Dr A Bedford Edge Hill University Late Holocene temperature reconstruction from Hawes Water northwest

33

Analysis of mineral trapping for CO{sub 2} disposal in deep aquifers  

SciTech Connect (OSTI)

CO{sub 2} disposal into deep aquifers has been suggested as a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO{sub 2} disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO{sub 2} injection, we have analyzed the impact of CO{sub 2} immobilization through carbonate precipitation. A survey of all major classes of rock-forming minerals, whose alteration would lead to carbonate precipitation, indicated that very few minerals are present in sufficient quantities in aquifer host rocks to permit significant sequestration of CO{sub 2}. We performed batch reaction modeling of the geochemical evolution of three different aquifer mineralogies in the presence of CO{sub 2} at high pressure. Our modeling considered (1) redox processes that could be important in deep subsurface environments, (2) the presence of organic matter, (3) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, and (4) CO{sub 2} solubility dependence on pressure, temperature and salinity of the system. The geochemical evolution under both natural background and CO{sub 2} injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO{sub 2} sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO{sub 2} that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO{sub 2} dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of ferric mineral precursors such as glauconite, which in turn is dependent on the reactivity of associated organic material. The accumulation of carbonates in the rock matrix and induced rock mineral alteration due to the presence of dissolved CO{sub 2} lead to a considerable decrease in porosity. The numerical experiments described here provide useful insight into sequestration mechanisms, and their controlling geochemical conditions and parameters.

Xu, Tianfu; Apps, John A.; Pruess, Karsten

2001-07-20T23:59:59.000Z

34

Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX  

SciTech Connect (OSTI)

The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

35

Inversion of borehole weak motion records observed in Istanbul (Turkey)  

Science Journals Connector (OSTI)

......sets, might be large. This indicates...the inversion of borehole weak and strong...2005 December, a drilling program consisting...the 140-m-deep borehole, based on the encountered...applicable also to borehole sites where other...velocities (with a large change of impedance......

S. Parolai; R. Wang; D. Bindi

2012-02-01T23:59:59.000Z

36

RESEARCH PAPER Compaction bands induced by borehole drilling  

E-Print Network [OSTI]

: boreholes are often drilled deep into weak porous sandstone formations for the purpose of extracting oil Introduction Boreholes drilled into the Earth's crust for facilitating the extraction of water, oil, naturalRESEARCH PAPER Compaction bands induced by borehole drilling R. Katsman Ã? E. Aharonov Ã? B. C

Einat, Aharonov

37

On the thermal impact on the excavation damaged zone around deep radioactive waste disposal  

E-Print Network [OSTI]

Clays and claystones are considered in some countries (including Belgium, France and Switzerland) as a potential host rock for high activity long lived radioactive waste disposal at great depth. One of the aspects to deal with in performance assessment is related to the effects on the host rock of the temperature elevation due to the placement of exothermic wastes. The potential effects of the thermal impact on the excavated damaged zone in the close field are another important issue that was the goal of the TIMODAZ European research project. In this paper, some principles of waste disposal in clayey host rocks at great depth are first presented and a series of experimental investigations carried out on specific equipment specially developed to face the problem are presented. Both drained and undrained tests have been developed to investigate the drained thermal volume changes of clays and claystone and the thermal pressurization occurring around the galleries. This importance of proper initial saturation (un...

Delage, Pierre

2014-01-01T23:59:59.000Z

38

Neural network modelling and classification of lithofacies using well log data: A case study from KTB borehole site  

Science Journals Connector (OSTI)

......study from KTB borehole site Saumen Maiti...Continental Deep Drilling Project (KTB...from the KTB borehole log data and...and require a large amount of data...Continental Deep Drilling Project (KTB...the problems of borehole geophysics...to interpret large amount of borehole......

Saumen Maiti; Ram Krishna Tiwari; Hans-Joachim Kümpel

2007-05-01T23:59:59.000Z

39

Methods for enhancing the efficiency of creating a borehole using high power laser systems  

DOE Patents [OSTI]

Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

2014-06-24T23:59:59.000Z

40

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993  

SciTech Connect (OSTI)

A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

2007-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method and system for advancement of a borehole using a high power laser  

DOE Patents [OSTI]

There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

2014-09-09T23:59:59.000Z

42

Basis for Identification of Disposal Options for R and D for Spent Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Basis for Identification of Disposal Options for R and D for Spent Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste The Used Fuel Disposition campaign (UFD) is selecting a set of geologic media for further study that spans a suite of behavior characteristics that impose a broad range of potential conditions on the design of the repository, the engineered barrier, and the waste. Salt, clay/shale, and granitic rocks represent a reasonable cross-section of behavior. Granitic rocks are also the primary basement rock to consider for deep borehole disposal. UFD is developing generic system analysis capability and general experimental data related to mined geologic disposal in the three

43

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

SciTech Connect (OSTI)

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

44

borehole | OpenEI  

Open Energy Info (EERE)

borehole borehole Dataset Summary Description NOAA borehole data with temperatures at different depths. http://www.ncdc.noaa.gov/paleo/borehole/nam.html Source NOAA Date Released April 08th, 2010 (4 years ago) Date Updated Unknown Keywords borehole geothermal NOAA Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon NOAA_borehole_data_4-8-10.xlsx (xlsx, 478.7 KiB) Quality Metrics Level of Review No Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment http://www.ncdc.noaa.gov/oa/about/open-access-climate-data-policy.pdf Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

45

Borehole data transmission apparatus  

DOE Patents [OSTI]

A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

Kotlyar, O.M.

1993-03-23T23:59:59.000Z

46

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

47

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

48

Enhanced CO2 Storage and Sequestration in Deep Saline Aquifers by Nanoparticles: Commingled Disposal of Depleted Uranium and CO2  

Science Journals Connector (OSTI)

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer u...

Farzam Javadpour; Jean-Philippe Nicot

2011-09-01T23:59:59.000Z

49

Geochemistry of Samples from Borehole C3177(299-E24-21)  

SciTech Connect (OSTI)

This report contains the results of geochemical and physical property analyses of twelve samples from the Immobilized Low-Activity Waste (ILAW) borehole #2. The borehole is in the middle of the 200 East Area, at the northeast corner of the ILAW disposal site.

Horton, Duane G.; Schaef, Herbert T.; Serne, R. Jeffrey; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Parker, Kent E.

2003-05-28T23:59:59.000Z

50

Salt Disposal Investigations to Study Thermally Hot Radioactive Waste In A Deep Geologic Repository in Bedded Rock Salt - 12488  

SciTech Connect (OSTI)

A research program is proposed to investigate the behavior of salt when subjected to thermal loads like those that would be present in a high-level waste repository. This research would build upon results of decades of previous salt repository program efforts in the US and Germany and the successful licensing and operation of a repository in salt for disposal of defense transuranic waste. The proposal includes a combination of laboratory-scale investigations, numerical simulations conducted to develop validated models that could be used for future repository design and safety case development, and a thermal field test in an underground salt formation with a configuration that replicates a small portion of a conceptual repository design. Laboratory tests are proposed to measure salt and brine properties across and beyond the range of possible repository conditions. Coupled numerical models will seek to describe phenomenology (thermal, mechanical, and hydrological) observed in the laboratory tests. Finally, the field test will investigate many phenomena that have been variously cited as potential issues for disposal of thermally hot waste in salt, including buoyancy effects and migration of pre-existing trapped brine up the thermal gradient (including vapor phase migration). These studies are proposed to be coordinated and managed by the Carlsbad Field Office of DOE, which is also responsible for the operation of the Waste Isolation Pilot Plant (WIPP) within the Office of Environmental Management. The field test portion of the proposed research would be conducted in experimental areas of the WIPP underground, far from disposal operations. It is believed that such tests may be accomplished using the existing infrastructure of the WIPP repository at a lower cost than if such research were conducted at a commercial salt mine at another location. The phased field test is proposed to be performed over almost a decade, including instrumentation development, several years of measurements during heating and then subsequent cooling periods, and the eventual forensic mining back of the test bed to determine the multi-year behavior of the simulated waste/rock environment. Funding possibilities are described, and prospects for near term start-up are discussed. Mining of the access drifts required to create the test area in the WIPP underground began in November 2011. Because this mining uses existing WIPP infrastructure and labor, it is estimated to take about two years to complete the access drifts. WIPP disposal operations and facility maintenance activities will take priority over the SDI field test area mining. Funding of the SDI proposal was still being considered by DOE's Offices of Environmental Management and Nuclear Energy at the time this paper was written, so no specific estimates of the progress in 2012 have been included. (authors)

Nelson, Roger A. [DOE, Carlsbad Field Office, Carlsbad NM (United States); Buschman, Nancy [DOE, Office of Environmental Management, Washington DC (United States)

2012-07-01T23:59:59.000Z

51

Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

Reidel, Steve P.

2006-05-26T23:59:59.000Z

52

Exploratory Boreholes | Open Energy Information  

Open Energy Info (EERE)

Exploratory Boreholes Exploratory Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Boreholes Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a borehole Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Boreholes: An exploratory borehole is drilled for the purpose of identifying the

53

Second ILAW Site Borehole Characterization Plan  

SciTech Connect (OSTI)

The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

SP Reidel

2000-08-10T23:59:59.000Z

54

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

55

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

56

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

57

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993, Sections 4 to 6: Unfiltered S-wave records of lower horizontal receiver, reaction mass, and reference receiver, respectively, Sections 7 to 9: Filtered S-wave signals of lower horizontal receiver, reaction mass and reference receiver, respectively, Section 10: Expanded and filtered S-wave signals of lower horizontal receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower horizontal receiver signals, respectively.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

58

A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

59

Borehole breakdown pressure with drilling fluids—I. Empirical results  

Science Journals Connector (OSTI)

Mining and civil engineering industries sometimes use drilling muds for stabilizing a borehole during drilling wells for methane drainage, geothermal energy and radioactive waste disposal. Standard theories predicting borehole breakdown pressure assume breakdown occurs when a small fracture initiates at a location where the largest tangential stress at the borehole reaches the tensile strength of formation. Fracturing tests conducted in this study, however, showed that when drilling fluid was used as an injection fluid, borehole breakdown did not occur even if a fracture initiated at a borehole wall. Borehole breakdown occurred when the initiated fracture became unstable after significant growth [with 0.76 cm (0.3 in.) to 7.62 cm (3 in.) in length]. The test results showed that all drilling muds had a tendency to seal narrow natural fractures or fractures induced by high borehole pressure. The sealing effect of the mud stabilized fractures and prevented fracture propagation. This effect is one of the primary factors for controlling wellbore stability. In this work [1], more than 40 large rock samples [76.2 × 76.2 × 76.2 cm (30 × 30 × 30 in.)] were fractured to test the drilling fluid effect on fracture initiation and fracture propagation around a borehole. The results show that borehole breakdown pressure is highly dependent on the Young's modulus of the formation, wellbore size and type of the drilling fluids. Note that the conventional linear wellbore stability theory has ignored all these facts. The results of this experiment are intended to apply to the lost circulation problems from an induced fracture or to the interpretation of the in situ stress measurements with gelled fluids where drilling or fracturing fluids contain significant amount of solid components. Similar phenomena occur for the standard hydraulic fracturing fluids; however, the process zone and the high flow friction at the narrow fracture tip become as important as the gel and solid plugging effect shown in this paper. Hence, the results should be modified before being applied to standard fracturing fluids.

N. Morita; A.D. Black; G.-F. Fuh

1996-01-01T23:59:59.000Z

60

Estimation of formation temperature from borehole measurements  

Science Journals Connector (OSTI)

......obtained if the borehole rock system...between the drilling muds used...boreholes, the largest being between...properties of drilling muds (see...v) The borehole radius should...this shows large variations...100-1000 times larger than the...the finite drilling rate is more...that the borehole is created......

M. N. Luheshi

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A summary of chemical and biological testing of proposed disposal of sediment from Richmond Harbor relative to the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area  

SciTech Connect (OSTI)

The US Army Corps of Engineers was authorized to dredge Richmond Harbor to accomodate large, deep-draft vessels. An ecological evaluation of the Harbor sediments was performed describing the physical characteristics, toxic substances, effects on aquatic organisms,and potential for bioaccumulation of chemical contaminants. The objective of this report is to compare the sediment chemistry, acute toxicity, and bioaccumulation results of the Richmond Harbor sediments to each of the reference areas; i.e., the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area. This report will enable the US Army Corps of Engineers to determine whether disposal at a reference area is appropriate for all or part of the dredged material from Richmond Harbor. Chemical analyses were performed on 30 sediment samples; 28 of those samples were then combined to form 7 composites. The seven composites plus sediment from two additional stations received both chemical and biological evaluations.

Mayhew, H.L.; Karle, L.M.; Gruendell, B.D.; Pinza, M.R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1993-12-01T23:59:59.000Z

62

Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland  

Science Journals Connector (OSTI)

......serpentinitic rocks. Large variations in...years, scientific drilling has become a successful...soundings and the borehole loggings integrate...international continental drilling program Outokumpu borehole, Finland: Preliminary...Outokumpu Deep Drilling Project, pp......

Tiiu Elbra; Ronnie Karlqvist; Ilkka Lassila; Edward Hæggström; Lauri J. Pesonen

2011-01-01T23:59:59.000Z

63

Borehole Geologic Data for the 216-Z Crib Facilities, A Status of Data Assembled through the Hanford Borehole Geologic Information System (HBGIS)  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) is assembling existing borehole geologic information to aid in determining the distribution and potential movement of contaminants released to the environment and to aid selection of remedial alternatives. This information is being assembled via the Hanford Borehole Geologic Information System (HBGIS), which is being developed as part of the Characterization of Systems Project, managed by PNNL, and the Remediation Decision Support Task of the Groundwater Remediation Project, managed by Fluor Hanford, Inc. The purpose of this particular study was to assemble the existing borehole geologic data pertaining to sediments underlying the 216-Z Crib Facilities and the Plutonium Finishing Plant Closure Zone. The primary objective for Fiscal Year 2006 was to assemble the data, complete log plots, and interpret the location of major geologic contacts for each major borehole in and around the primary disposal facilities that received carbon tetrachloride. To date, 154 boreholes located within or immediately adjacent to 19 of the 216-Z crib facilities have been incorporated into HBGIS. Borehole geologic information for the remaining three Z-crib facilities is either lacking (e.g. 216-Z-13, -14, and -15), or has been identified as a lesser priority to be incorporated at a later date.

Last, George V.; Mackley, Rob D.; Lanigan, David C.

2006-09-25T23:59:59.000Z

64

Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

Brouns, Thomas M.

2007-07-15T23:59:59.000Z

65

Maine Geological Survey Borehole Temperature Profiles  

SciTech Connect (OSTI)

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

Marvinney, Robert

2013-11-06T23:59:59.000Z

66

Waste Isolation Pilot Plant borehole data  

SciTech Connect (OSTI)

Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

NONE

1995-04-01T23:59:59.000Z

67

Room Q data report: Test borehole data from April 1989 through November 1991  

SciTech Connect (OSTI)

Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones at the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.

Jensen, A.L. [Sandia National Labs., Albuquerque, NM (United States); Howard, C.L. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Peterson, T.P. [Tech. Reps., Inc., Albuquerque, NM (United States)

1993-03-01T23:59:59.000Z

68

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

69

Septage Disposal, Licensure (Montana)  

Broader source: Energy.gov [DOE]

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

70

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

71

Impact of deep plowing on groundwater recharge in a semiarid region  

E-Print Network [OSTI]

High Plains in Texas (USA). Deep plowing was followed by conventional tillage. Boreholes were drilled in deep plowed cropland (three boreholes) and also beneath conventionally tilled cropland (four., 2002]. Land use management, mostly associated with agriculture, can have large-scale impacts

Scanlon, Bridget R.

72

Plasmid Incidence in Bacteria from Deep Subsurface Sediments  

Science Journals Connector (OSTI)

...bacteria by individual borehole. APPL. ENVIRON...The fre- quency of large plasmids in deep...hypothesis is that large plasmids associated...were consider- ably larger than most R-factor...drill muds from this borehole, possibly reflecting...inherent problems with drilling to obtain core samples...

J. K. Fredrickson; R. J. Hicks; S. W. Li; F. J. Brockman

1988-12-01T23:59:59.000Z

73

NOAA Borehole Data | OpenEI  

Open Energy Info (EERE)

NOAA Borehole Data NOAA Borehole Data Dataset Summary Description NOAA borehole data with temperatures at different depths. http://www.ncdc.noaa.gov/paleo/borehole/nam.html Source NOAA Date Released April 08th, 2010 (4 years ago) Date Updated Unknown Keywords borehole geothermal NOAA Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon NOAA_borehole_data_4-8-10.xlsx (xlsx, 478.7 KiB) Quality Metrics Level of Review No Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment http://www.ncdc.noaa.gov/oa/about/open-access-climate-data-policy.pdf Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

74

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

75

Stability analysis of a borehole wall during horizontal directional drilling  

Science Journals Connector (OSTI)

In this paper, numerical simulation strategies are proposed and numerical analyses are performed to investigate the stability of a borehole wall during horizontal directional drilling in loose sand with an emphasis on the role of the filter cake in borehole stability. Two computational scenarios, one in the absence of a filter cake and one with the presence of a filter cake in a borehole wall, are investigated by considering both deep and shallow borehole situations. In the case where no filter cake is formed, the soil–drilling fluid interaction analysis shows that the effective pressure on soil particles will quickly decrease to zero even at a low drilling fluid pressure because of the rapid drainage of the drilling fluids into the loose sands. This conforms to the classical liquefaction criterion, indicating that static (flow) liquefaction-based soil crumbling and sloughing will occur even at a very low drilling fluid pressure if an effective filter cake is not formed. Soil’s permeability effect on pore pressure and the transition to a steady flow are also studied. In the second scenario in which a filter cake is formed, the hydraulic fracture failures around the bores are investigated, which are caused by the expansion of the yielding zones. The yield zone sizes and critical drilling fluid pressures at the moment of hydraulic fracturing failure are calculated from the finite element analyses and the closed-form solution, which is based on classical plasticity theories. The critical fluid pressures from the finite element analyses and the closed-form solutions are very close, but there is a large discrepancy between the yield zone sizes.

X. Wang; R.L. Sterling

2007-01-01T23:59:59.000Z

76

A new approach to the borehole temperature relaxation method  

Science Journals Connector (OSTI)

......disturbance in a borehole may be generated...effects. The drilling process itself...conditions of the drilling process, and...available disturbed borehole temperature...to produce a large initial disturbance To in the borehole, to measure......

H. Wilhelm

1990-11-01T23:59:59.000Z

77

Pressure-dependent seismic reflection amplitude changes in crystalline crust: lessons learned at the Continental Deep Drilling Site (KTB)  

Science Journals Connector (OSTI)

......5009-m-deep geothermal borehole at Basle, Switzerland...Continental Deep Drilling site (KTB) and...the subject of a large number of experiments...ratio does not seem large enough to detect...period. Even the larger reflection coefficients...be verified in the borehole as planned, the......

T. Beilecke; K. Bram; S. Buske

2010-01-01T23:59:59.000Z

78

Role of borehole geophysics in defining the physical characteristics of the  

Open Energy Info (EERE)

Role of borehole geophysics in defining the physical characteristics of the Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Numerous geophysical logs have been made in three deep wells and in several intermediate depth core holes in the Raft River geothermal reservoir, Idaho. Laboratory analyses of cores from the intermediate depth holes were used to provide a qualitative and quantitative basis for a detailed interpretation of logs from the shallow part of the reservoir. A less detailed interpretation of logs from the deeper part of the reservoir

79

Kimberly Well - Borehole Geophysics Database  

SciTech Connect (OSTI)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

John Shervais

2011-07-04T23:59:59.000Z

80

Kimama Well - Borehole Geophysics Database  

SciTech Connect (OSTI)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

John Shervais

2011-07-04T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced motor driven clamped borehole seismic receiver  

DOE Patents [OSTI]

A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

1993-01-01T23:59:59.000Z

82

Advanced motor driven clamped borehole seismic receiver  

DOE Patents [OSTI]

A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

Engler, B.P.; Sleefe, G.E.; Striker, R.P.

1993-02-23T23:59:59.000Z

83

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996  

SciTech Connect (OSTI)

This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

2007-01-28T23:59:59.000Z

84

Fracture compliance estimation using borehole tube waves  

E-Print Network [OSTI]

We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

Bakku, Sudhish Kumar

85

20 - Nuclear Waste Disposal  

Science Journals Connector (OSTI)

Disposal options are outlined, including geological and near-surface disposal. Alternative disposal options are briefly considered. The multi-barrier system is described, including the natural geological barrier and the engineered barrier system. The roles of both EBS and NGB are discussed. Worldwide disposal experience is reviewed and acceptance criteria for disposal are analysed.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

86

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

87

Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site  

SciTech Connect (OSTI)

Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

Chu, M.S.Y.; Bernard, E.A.

1991-12-01T23:59:59.000Z

88

Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989  

SciTech Connect (OSTI)

In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs.

Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

1990-03-01T23:59:59.000Z

89

Borehole data package for well 699-37-47A, PUREX Plant Cribs, CY 1996  

SciTech Connect (OSTI)

A new groundwater monitoring well (699-37-47A) was installed in 1996 as a downgradient well near the PUREX Plant Cribs Treatment, Storage, and Disposal Facility at Hanford. This document provides data from the well drilling and construction operations, as well as data from subsequent characterization of groundwater and sediment samples collected during the drilling process. The data include: well construction documentation, geologist`s borehole logs, results of laboratory analysis of groundwater samples collected during drilling and of physical tests conducted on sediment samples collected during drilling, borehole geophysics, and results of aquifer testing including slug tests and flowmeter analysis. This well (699-37-47A) was constructed in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-24-00H and interim milestone M-24-35 (Ecology et al. 1994), and was funded under Project W-152.

Lindberg, J.W.; Williams, B.A.; Spane, F.A.

1997-02-01T23:59:59.000Z

90

Shell keeps its options open for disposing of Brent Spar  

Science Journals Connector (OSTI)

... Brent Spar, may lead to similar disposal of 50 deep-water oil installations in UK offshore waters that are next in line for decommissioning, Johnston says. "No one knows ... this would have on the marine environment."

Ehsan Masood

1995-08-03T23:59:59.000Z

91

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2002-05-01T23:59:59.000Z

92

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-09-01T23:59:59.000Z

93

Development of a geothermal acoustic borehole televiewer  

SciTech Connect (OSTI)

Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

Heard, F.E.; Bauman, T.J.

1983-08-01T23:59:59.000Z

94

Tritium waste disposal technology in the US  

SciTech Connect (OSTI)

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

95

Model accurately predicts directional borehole trajectory  

SciTech Connect (OSTI)

Theoretical investigations and field data analyses helped develop a new method of predicting the rate of inclination change in a deviated well bore to help reduce the frequency and magnitude of doglegs. Predicting borehole dogleg severity is one of the main problems in directional drilling. Predicting the tendency and magnitude of borehole deviation and comparing them to the planned well path makes it possible to improve bottom hole assembly (BHA) design and to reduce the number of correction runs. The application of adaptation models for predicting the rate of inclination change if measurement-while-drilling systems are used results in improved accuracy of prediction, and therefore a reduction in correction runs.

Mamedbekov, O.K. (Azerbaijan State Petroleum Academy, Baku (Azerbaijan))

1994-08-29T23:59:59.000Z

96

Stochastic Bayesian inversion of borehole self-potential measurements  

Science Journals Connector (OSTI)

......occurs if the drilling fluid infiltrates...flows into the borehole (Hearst Nelson...resistivity of the drilling mud (or borehole fluid) and rho...invasion of the drilling mud in the formation...minimal. Areas of large separation in......

W. F. Woodruff; A. Revil; A. Jardani; D. Nummedal; S. Cumella

2010-11-01T23:59:59.000Z

97

Formation temperatures determined from stochastic inversion of borehole observations  

Science Journals Connector (OSTI)

......relatively large a priori...following the borehole model and...represents the borehole with drilling fluid while...R. R is large enough that...returning drilling fluid, exists...be given large a priori...basins. A borehole thermal conductivity......

S. B. Nielsen; N. Balling; H. S. Christiansen

1990-06-01T23:59:59.000Z

98

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

99

Category:Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques page? Borehole Seismic Techniques page? For detailed information on Borehole Seismic Techniques as exploration techniques, click here. Category:Borehole Seismic Techniques Add.png Add a new Borehole Seismic Techniques Technique Pages in category "Borehole Seismic Techniques" The following 2 pages are in this category, out of 2 total. S Single-Well And Cross-Well Seismic V Vertical Seismic Profiling Retrieved from "http://en.openei.org/w/index.php?title=Category:Borehole_Seismic_Techniques&oldid=601962" Category: Downhole Techniques What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

100

Electrical resistance tomography from measurements inside a steel cased borehole  

DOE Patents [OSTI]

Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

Daily, William D. (Livermore, CA); Schenkel, Clifford (Walnut Creek, CA); Ramirez, Abelardo L. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

slc_disposal.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

102

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

103

Advances in borehole geophysics for hydrology  

SciTech Connect (OSTI)

Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

Nelson, P.H.

1982-01-01T23:59:59.000Z

104

Sandia National Laboratories: China-US Technical Training and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Training and Exchange in the Field of Deep Borehole Disposal of High-Level Radioactive Waste China-US Technical Training and Exchange in the Field of Deep Borehole...

105

Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516  

SciTech Connect (OSTI)

Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)] [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

106

Hostile wells: the borehole seismic challenge | Open Energy Information  

Open Energy Info (EERE)

Hostile wells: the borehole seismic challenge Hostile wells: the borehole seismic challenge Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hostile wells: the borehole seismic challenge Citation William Wills. Hostile wells: the borehole seismic challenge [Internet]. 2013. Oil and Gas Engineer - Subsea & Seismic. [cited 2013/10/01]. Available from: http://www.engineerlive.com/content/22907 Retrieved from "http://en.openei.org/w/index.php?title=Hostile_wells:_the_borehole_seismic_challenge&oldid=690045" Categories: References Geothermal References

107

Borehole-Wall Imaging with Acoustic and Optical Televiewers for  

Open Energy Info (EERE)

Borehole-Wall Imaging with Acoustic and Optical Televiewers for Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Abstract Imaging with acoustic and optical televiewers results in continuous and oriented 360 degree views of the borehole wall from which the character and orientation of lithologic and structural features can be defined for fractured-bedrock aquifer investigations. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing

108

A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays  

SciTech Connect (OSTI)

The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

Paulsson Geophysical Services

2008-03-31T23:59:59.000Z

109

Fundamental solution method for reconstructing past climate change from borehole temperature gradients  

Science Journals Connector (OSTI)

Abstract Deep borehole temperature profiles have successfully been used to reconstruct past ground surface temperature history and the results are dependent on the inversion methods. These methods are tedious and sometimes unstable in iterative computation. In this paper, we propose a new fundamental solution method to reconstruct the past ground surface temperature variation, which depends on the assumption that ground temperature field in a homogeneous region is governed by a one-dimensional heat conductive equation. To regularize the resultant ill-conditioned linear system of equations, we apply successfully both the Tikhonov regularization technique and the generalized cross validation parameter choice rule to obtain a stable approximation solution of the ill-posed inverse problem. Our new method is stable and meshless, and it does not require iteration. We conducted idealized simulations with good results. We also used in-situ borehole data of RU-Yakutia329 from Yakutia, Siberia and CN-XZ-naqu903 from Naqu, Qinghai–Xizang (Tibetan) Plateau to validate our new approach. Results from these borehole studies show a warming of 0.1 and 2.3 °C, respectively, in the past 450 years. When comparing to the results from previous studies, the RU-Yakutia329 study has the same magnitude of warming, while the magnitude of warming at Naqu is slightly smaller.

Jia Liu; Tingjun Zhang

2014-01-01T23:59:59.000Z

110

Material Disposal Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

111

Exploratory Boreholes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Exploration Technique Exploratory Boreholes Activity Date 1992 - 2002 Usefulness useful DOE-funding Unknown Exploration Basis Mammoth Pacific LP drilled several...

112

Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...  

Open Energy Info (EERE)

Exploration Technique Exploratory Boreholes Activity Date 1984 - 1990 Usefulness useful DOE-funding Unknown Exploration Basis This exploration was originally done as part of a...

113

Modeling and visualizing borehole information on virtual globes using KML  

Science Journals Connector (OSTI)

Abstract Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.

Liang-feng Zhu; Xi-feng Wang; Bing Zhang

2014-01-01T23:59:59.000Z

114

Borehole-Wall Imaging with Acoustic and Optical Televiewers for...  

Open Energy Info (EERE)

data from packer testing and monitoring. Authors John H. Williams and Carole D. Johnson Conference Seventh International Symposium on Borehole Geophysics for Minerals,...

115

Disposal Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site operates lined, RCRA Subtitle C land...

116

Mountain Home Well - Borehole Geophysics Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

117

Mountain Home Well - Borehole Geophysics Database  

SciTech Connect (OSTI)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

John Shervais

2012-11-11T23:59:59.000Z

118

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-03-31T23:59:59.000Z

119

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS.  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-01-01T23:59:59.000Z

120

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-31T23:59:59.000Z

122

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-09-30T23:59:59.000Z

123

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-12-01T23:59:59.000Z

124

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-01T23:59:59.000Z

125

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-06-30T23:59:59.000Z

126

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-09-01T23:59:59.000Z

127

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-07-01T23:59:59.000Z

128

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-12-31T23:59:59.000Z

129

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2006-05-05T23:59:59.000Z

130

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N. P. Paulsson

2005-09-30T23:59:59.000Z

131

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2003-12-01T23:59:59.000Z

132

Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers  

Science Journals Connector (OSTI)

......Chelungpu-fault borehole seismometers...Chelungpu-fault Drilling Project Borehole Seismometers...Despite the large coseismic slip...stress drops of larger events including...Taiwan Chelungpu drilling project (TCDP...seven-level vertical borehole seismic array......

Yen-Yu Lin; Kuo-Fong Ma; Volker Oye

2012-07-01T23:59:59.000Z

133

Disposal of boiler ash  

SciTech Connect (OSTI)

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

134

Recording and interpretation/analysis of tilt signals with five ASKANIA borehole tiltmeters at the KTB  

Science Journals Connector (OSTI)

In June 2003 a large scale injection experiment started at the Continental Deep Drilling site (KTB) in Germany. A tiltmeter array was installed which consisted of five high resolution borehole tiltmeters of the ASKANIA type also equipped with three dimensional seismometers. For the next 11 months 86 000 m 3 were injected into the KTB pilot borehole 4000 m deep. The average injection rate was approximately 200 l ? min . The research objective was to observe and to analyzedeformation caused by the injection into the upper crust at the kilometer range. A new data acquisition system was developed by Geo-Research Center Potsdam (GFZ) to master the expected huge amount of seismic and tilt data. Furthermore it was necessary to develop a new preprocessing software called PREANALYSE for long-period time series. This software includes different useful functions such as step and spike correction interpolation filtering and spectral analysis. This worldwide unique installation offers the excellent opportunity of the separation of signals due to injection and due to environment by correlation of the data of the five stations with the ground water table and meteorological data.

André Gebauer; Thomas Jahr; Gerhard Jentzsch

2007-01-01T23:59:59.000Z

135

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

136

MICROHOLE TECHNOLOGY PROGRESS ON BOREHOLE INSTRUMENTATION DEVELOPMENT  

SciTech Connect (OSTI)

Microhole technology development is based on the premise that with advances in electronics and sensors, large conventional-diameter wells are no longer necessary for obtaining subsurface information. Furthermore, microholes offer an environment for improved substance measurement. The combination of deep microholes having diameters of 1-3/8 in. at their terminal depth and 7/8-in. diameter logging tools will comprise a very low cost alternative to currently available technology for deep subsurface characterization and monitoring.

J. ALBRIGHT

2000-09-01T23:59:59.000Z

137

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

138

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Fracture characteristics in the sedimentary and metamorphic rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis is placed on fracture identification using borehole

139

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

140

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-resolution velocity field imaging around a borehole: Excavation Damaged Zone characterization  

E-Print Network [OSTI]

in the laboratory offers a large number of boreholes. These boreholes form linear excavations with a perfectly round to deploy significant resources with a large number of sensors and boreholes (Balland et al, 2009). Instead induced around a borehole drilled for survey purposes. This would involve the installation of several

Boyer, Edmond

142

Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39  

SciTech Connect (OSTI)

This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three contaminated boreholes around T-106 do not clearly identify the leading edge of the plume. However, the profiles do collectively suggest that bulk of tank-related fluids (center of mass) still resides in Ringold Formation Taylor Flats member fine-grained sediments. Most of the chemical data, especially the nitrate and technetium-99 distributions with depth, support a flow conceptual model that suggests vertical percolation through the Hanford formation H2 unit near T-106 and then a strong horizontal spreading within the CCUu unit followed by more slow vertical percolation, perhaps via diffusion, into the deeper strata. Slow flushing by enhanced recharge and rapid snow melt events (Feb. 1979) appear to lead to more horizontal movement of the tank fluids downgradient towards C4105. The inventories as a function of depth of potential contaminants of concern, nitrate, technetium, uranium, and chromium, are provided. In-situ Kd values were calculated from water and acid extract measurements. For conservative modeling purposes we recommend using Kd values of 0 mL/g for nitrate, Co-60, and technetium-99, a value of 0.1 mL/g for uranium near borehole C4104 and 10 mL/g for U near borehole C4105, and 1 mL/g for chromium to represent the entire vadose zone profile from the bottoms of the tanks to the water table. A technetium-99 groundwater plume exists northeast and east of T WMA. The highest technetium-99 concentration in fiscal year 2003 was 9,200 pCi/L in well 299-W11-39. The most probable source for the technetium-99 is the T waste management area. Groundwater from wells in the west (upgradient) and north of WMA T appear to be highly influenced by wastes disposed to the cribs and trenches on the west side of the WMA. Groundwater from wells at the northeast corner and the east side of the WMA appears to be evolving towards tank waste that has leaked from T-101 or T-106.

Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

2004-09-01T23:59:59.000Z

143

Ministers block disposal of oil rigs at sea  

Science Journals Connector (OSTI)

... ministers last week ended three years of public controversy about the fate of disused oil rigs in the northeast Atlantic ocean. They decided that most will have to be dismantled ... all environmentalist groups. Oil companies, on the other hand, were disappointed. The UK Offshore Operators Association said the decision to outlaw deep-sea disposal of oil and gas ...

Ehsan Masood

1998-07-30T23:59:59.000Z

144

Temperature Measurements in Boreholes: An Overview of Engineering and  

Open Energy Info (EERE)

Temperature Measurements in Boreholes: An Overview of Engineering and Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Abstract Temperature data obtained in boreholes serve as critical input to many fields of engineering, exploration, and research: (1) in well completions, (2) gas and fluid production engineering, (3) in the exploration for hydrocarbons and ore minerals, and (4) for testing hypotheses concerning the evolution of the Earth's crust and tectonic processes. Wireline-conveyed maximum-recording thermometers and continuous-reading thermistors are used to measure absolute temperatures, differential

145

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

146

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Broader source: Energy.gov (indexed) [DOE]

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

147

Borehole logging for uranium by measurement of natural ?-radiation  

Science Journals Connector (OSTI)

?-Ray measurements have been made in boreholes since 1939, for the purpose of detecting the radiation from naturally occuring radioelements in rocks. Logs of the ?-radiation in boreholes have evolved to their present acceptance as a quantitative measurement of uranium concentration for uranium exploration and mining development projects. Many factors influence these ?-ray measurements and consequently new methods of overcoming previous problems have had to be developed. Calibration facilities with model holes have been established in several countries to support quantitative borehole measurements. New high density detector materials have been evaluated and have shown to yield considerable improvements for operation in the restricted environment of the borehole. ?-Ray spectral logging has become available partially as a result of spin-off from parallel developments in surface and airborne ?-ray spectrometric survey equipment. The use of the high resolution solid state detector has proceeded through a series of developments to its present availability as a commercial borehole logging service in spite of the inherent detector cooling problems. Digital measurements are replacing the earlier analog measurements, and minicomputer- or micro processor-based logging systems have enabled new data processing techniques such as inverse filtering, to be implemented in real time at the site of the borehole.

P.G. Killeen

1983-01-01T23:59:59.000Z

148

Data Qualification Report: Borehole Straigraphic Contacts  

SciTech Connect (OSTI)

The data set considered here is the borehole stratigraphic contacts data (DTN: M09811MWDGFM03.000) used as input to the Geologic Framework Model. A Technical Assessment method used to evaluate these data with a two-fold approach: (1) comparison to the geophysical logs on which the contacts were, in part, based; and (2) evaluation of the data by mapping individual units using the entire data set. Qualification of the geophysical logs is being performed in a separate activity. A representative subset of the contacts data was chosen based on importance of the contact and representativeness of that contact in the total data set. An acceptance window was established for each contact based on the needs of the data users. Data determined to be within the acceptance window were determined to be adequate for their intended use in three-dimensional spatial modeling and were recommended to be Qualified. These methods were chosen to provide a two-pronged evaluation that examines both the origin and results of the data. The result of this evaluation is a recommendation to qualify all contacts. No data were found to lie outside the pre-determined acceptance window. Where no geophysical logs are available, data were evaluated in relation to surrounding data and by impact assessment. These data are also recommended to be qualified. The stratigraphic contact data contained in this report (Attachment VII; DTN: M00004QGFMPICK.000) are intended to replace the source data, which will remain unqualified.

R.W. Clayton; C. Lum

2000-04-18T23:59:59.000Z

149

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

150

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

151

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

152

Understanding the Chena Hot Springs, Alaska, geothermal system using temperature and pressure data from exploration boreholes  

Science Journals Connector (OSTI)

Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some exploration boreholes and was found to be useful for understanding subsurface flow characteristics and developing a conceptual model of the system. The results illustrate how temperature profiles illuminate varying pressure versus depth characteristics and can be used alone in cases where staged drilling is not practical. The extensive exploration activities helped define optimal fluid production and injection areas, and showed that the system could provide sufficient hot fluids (?57 °C) to run a 400-kWe binary power plant, which came on line in 2006.

Kamil Erkan; Gwen Holdmann; Walter Benoit; David Blackwell

2008-01-01T23:59:59.000Z

153

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

154

Three-component borehole wall-locking seismic detector  

DOE Patents [OSTI]

A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

Owen, Thomas E. (Helotes, TX)

1994-01-01T23:59:59.000Z

155

Spatial distribution of shear wave anisotropy in the crust of the southern Hyogo region by borehole observations  

Science Journals Connector (OSTI)

......resulting in a large apparent intensity...also suggests that borehole waveforms with a...earthquake from a large number of high-quality...in particular borehole data. At stations...the active fault drilling borehole at Nojima Hirabayashi......

Takashi Mizuno; Kiyoshi Yomogida; Hisao Ito; Yasuto Kuwahara

2001-12-01T23:59:59.000Z

156

Disposable Electrochemical Immunosensor Diagnosis Device Based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Disposable Electrochemical Immunosensor Diagnosis Device Based...

157

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

158

Cross borehole induced polarization to detect subsurface NAPL at the Savannah River Site, South Carolina  

E-Print Network [OSTI]

Spectral induced polarization measurements were acquired in six cross-borehole panels within four boreholes at the Savannah River Site. The investigation was performed to delineate the presence of dense non-aqueous phase ...

Lambert, Michael B. (Michael Brian), 1980-

2003-01-01T23:59:59.000Z

159

Chapter 13 - Plugging In-Mine Boreholes and CBM Wells Drilled from Surface  

Science Journals Connector (OSTI)

Abstract Horizontal degasification boreholes drilled from within the mine or from the surface have proven to be effective in recovering coalbed methane (CBM) for degasification and commercial marketing. However, the inability to completely plug horizontal boreholes still producing gas prior to mine through has caused unsafe situations and significant coal production delays. To date, cement slurry has commonly been used to plug underground horizontal degasification boreholes CBM wells, including sidetracks. Over 546,000 gallons of cross-linked polymer gel has been pumped to seal these 80 boreholes. The quantity of gel pumped is almost two times the calculated volume of the boreholes, including sidetracks. The gel effectively flows into the fracture system of the coal displacing gas and water. Finally, with an affinity to attach itself to everything, except for itself, the gel adhered to the inner wall of the borehole providing an impenetrable skin, minimizing gas, and water migrating back into the borehole as evidenced by mining into the boreholes.

Gary DuBois; Stephen Kravits; Joe Kirley; Doug Conklin; Joanne Reilly

2014-01-01T23:59:59.000Z

160

HYDROMECHANICAL RESPONSE TO A MINE BY TEST EXPERIMENT IN DEEP CLAYSTONE  

E-Print Network [OSTI]

radioactifs, France ABSTRACT In order to demonstrate the feasibility of radioactive waste repository in deep radioactive waste management agency) in eastern France, in a Callovo-Oxfordian claystone. 15 boreholes were the feasibility of a radioactive waste repository in the claystone formation, the French national radioactive

Boyer, Edmond

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Methods and apparatus for removal and control of material in laser drilling of a borehole  

DOE Patents [OSTI]

The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

2014-01-28T23:59:59.000Z

162

On the imaging of radio-frequency electromagnetic data forcross-borehole mineral exploration  

Science Journals Connector (OSTI)

......the subsurface. borehole|electromagnetic...determine future drilling or excavation targets...the Chinese JW-4 borehole electric-field...targets are rare. The large conductivity contrast...the transmitter borehole (Fig. 12). The...separations much larger than a characteristic......

L. Yu; M. Chouteau; D. E. Boerner; J. Wang

1998-11-01T23:59:59.000Z

163

SH Propagator Matrix and Qs Estimates From Borehole- and Surface-Recorded Earthquake Data  

Science Journals Connector (OSTI)

......M.,1986. Borehole seismology and...seismic regime of large industrial centres...Long period borehole seismology had...problems such as larger dimensions of...in 1356 by a large destructive earthquake...telephone time borehole seismometer surface...determined during the drilling and are shown......

Jeannot Trampert; Michel Cara; Michel Frogneux

1993-02-01T23:59:59.000Z

164

Analysis of Heat Flow Data—I Detailed Observations in a Single Borehole  

Science Journals Connector (OSTI)

......determination of a single borehole may be considerablygreater...selected30-msection of borehole may yield a useful heat...Resourcesfor financing the drilling of the borehole; to the National Research...for pointing out the large amount of climatic information......

A. E. Beck; A. S. Judge

1969-10-01T23:59:59.000Z

165

Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site  

SciTech Connect (OSTI)

This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd{sup 3} (4,580 m{sup 3}) of glass gems prior to disposal. This report documents Sandia National Laboratories` preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment.

Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Price, L.L. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); [Beta Inc. (United States)

1997-09-01T23:59:59.000Z

166

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

167

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

168

The incandescent disposal system  

SciTech Connect (OSTI)

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

169

Converter waste disposal study  

SciTech Connect (OSTI)

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

170

Volcanic eruption through a geothermal borehole at Námafjall, Iceland  

Science Journals Connector (OSTI)

... THE eruption on 8 September 1977 in the Nmaf jail geothermal field was a part of a rifting event that took place during that day, ... the main rifting took place south of the caldera, just north of the Nmaf jail geothermal field. We give here a short account of this event and the borehole eruption. ...

Gudrún Larsen; Karl Grönvold; Sigurdur Thorarinsson

1979-04-19T23:59:59.000Z

171

Electrical resistance tomography using steel cased boreholes as electrodes  

DOE Patents [OSTI]

An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

Daily, W.D.; Ramirez, A.L.

1999-06-22T23:59:59.000Z

172

Electrical resistance tomography using steel cased boreholes as electrodes  

DOE Patents [OSTI]

An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

173

Apparatus for vibrating a pipe string in a borehole  

SciTech Connect (OSTI)

This patent describes an apparatus for vibrating a drill string having a central axis in a borehole. The apparatus comprising means for generating at a downhole location longitudinally directional vibrations along the central axis of the drill string in response to flow of fluid through the interior of the drill string and a shock absorbing element mounted in the drill string between the apparatus and a drill bit carried by the drill string effective to substantially isolate the drill bit from the vibration induced in the drill string. Also described is a method of feeding a drill string through a mon-vertical section of borehole comprising: generating a downhole location a longitudinally directional vibration along the central axis of the drill string by oscillating a body in a axial direction relative to the drill string in response to flow of fluid through the interior of the drill string. The vibrations preventing frictional sticking of the drill string against the borehole wall; isolating a drill bit at the end of the drill string from the effects of the vibration during drilling operations; and moving the pipe longitudinally in the borehole.

Worrall, R.N.; Stulemeijer, I.P.J.M.

1990-01-02T23:59:59.000Z

174

Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi  

SciTech Connect (OSTI)

In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

Not Available

1989-04-01T23:59:59.000Z

175

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

176

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

177

HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN  

E-Print Network [OSTI]

u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

Doe, T.

2010-01-01T23:59:59.000Z

178

Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones  

SciTech Connect (OSTI)

Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

Haase, C.S.; King, H.L.

1986-01-01T23:59:59.000Z

179

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

180

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

182

Bore-hole survey at Camp Century, 1989  

Science Journals Connector (OSTI)

A combination of the directional surveys of the Camp Century borehole from 1966, 1967, 1969 and 1989 has revealed a deformation pattern similar to that measured at Dye-3, South Greenland and Byrd Station, Antarctica showing high deformation rate for Wisconsin ice. Compared to the Dye-3 profile, the deformation shows the same pattern even in details. The surface velocity obtained by integrating the bore hole deformation is in agreement with that obtained from satellite measurements.

N.S Gundestrup; D Dahl-Jensen; B.L Hansen; J Kelty

1993-01-01T23:59:59.000Z

183

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect (OSTI)

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

184

License for the Konrad Deep Geological Repository  

SciTech Connect (OSTI)

Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

Biurrun, E.; Hartje, B.

2003-02-24T23:59:59.000Z

185

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

186

Transmittal Memo for Disposal Authorization Statement | Department...  

Office of Environmental Management (EM)

Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

187

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

Broader source: Energy.gov (indexed) [DOE]

4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and...

188

PROPERTY DISPOSAL RECORDS | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PROPERTY...

189

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site |  

Open Energy Info (EERE)

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Author U.S. Geological Survey Published U.S. Geological Survey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site [Internet]. 2013. U.S. Geological Survey. [cited 2013/10/16]. Available from: http://water.usgs.gov/ogw/bgas/toxics/ml_bips.html Retrieved from "http://en.openei.org/w/index.php?title=Borehole_Imaging_of_In_Situ_Stress_Tests_at_Mirror_Lake_Research_Site&oldid=688729"

190

A real-time borehole correction of electromagnetic wave resistivity logging while drilling  

Science Journals Connector (OSTI)

Abstract The response of electromagnetic wave logging while drilling is influenced greatly by borehole and drilling fluid resistivity when the size of borehole is relatively large and drilling fluid resistivity is low. Borehole radius and drilling fluid resistivity were introduced to obtain more accurate transformed resistivity on the basis of the commonly used resistivity transformation model. The influence of borehole was considered in the newly established three dimensional transformation model, and a new borehole correction method was proposed. The resistivity transformation database can be established by calculation according to a certain instrument, and the true resistivity is obtained by three dimensional interpolation search technology of real-time correction in practical use. The results of numerical simulation and modeling verification show that the transformed resistivity by real-time correction coincides with the resistivity corrected by charts. The method can eliminate the borehole influence, reduce calculation dimension, and improve the inversion efficiency of highly deviated and horizontal wells logging data.

Zhen YANG; Jinzhou YANG; Laiju HAN

2013-01-01T23:59:59.000Z

191

Optimization of Waste Disposal - 13338  

SciTech Connect (OSTI)

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

192

Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995  

SciTech Connect (OSTI)

This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

Hill, L.R.; Aguilar, R.; Mercer, J.W. [Sandia National Labs., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

1997-01-01T23:59:59.000Z

193

Borehole Seismic Monitoring at Otway Using the Naylor-1 Instrument String  

E-Print Network [OSTI]

LBNL-2337E Borehole Seismic Monitoring at Otway Using thefor performing three distinct seismic measurements, hightime (HRTT), walkaway vertical seismic profiling (WVSP), and

Daley, T.M.

2010-01-01T23:59:59.000Z

194

Reconstruction of microseismogram from various waves in a borehole  

E-Print Network [OSTI]

. D. Neve s (Member) T. W. encer (M ber) T. R. Fischer (Member) W. B. Jones, Jr. (Head of Department) August 1983 ABSTRACT Reconstruct1on of Microseismograms from Various Waves in a Borehole (August 1983) Soetjipno Soetandio, B. S. , Texas... function in time-domain Source function in frequency-domain 20 21 Laplace contour in the complex w-plane and the singularities in the k - plane z 23 Compressional and shear wave travel paths . 26 Location of Bessel functions arguments 28 Acoustic...

Soetandio, Soetjipno

1983-01-01T23:59:59.000Z

195

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents [OSTI]

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

196

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

197

Reversible rigid coupling apparatus and method for borehole seismic transducers  

DOE Patents [OSTI]

An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

Owen, Thomas E. (Helotes, TX); Parra, Jorge O. (Helotes, TX)

1992-01-01T23:59:59.000Z

198

Wave propagation along a cylindrical borehole in an anisotropic poroelastic solid  

Science Journals Connector (OSTI)

......borehole is filled with liquid. anisotropic|borehole|dispersion...porous solid. Generally, anisotropic parameters characterize the...felt to be necessary. Since shale and finely layered sedimentary...which is not possible in an anisotropic medium. The waves are quasi-waves......

Anil K. Vashishth; Poonam Khurana

2005-05-01T23:59:59.000Z

199

Analysis of noncircular fluid-filled boreholes in elastic formations using a perturbation model  

E-Print Network [OSTI]

underbalance drilling in the pres- ence of large tectonic stresses, can cause complex perturbationsAnalysis of noncircular fluid-filled boreholes in elastic formations using a perturbation model a perturbation model to obtain flexural mode dispersions of noncircular fluid-filled boreholes in homogeneous

Simsek, Ergun

200

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Device and method for imaging of non-linear and linear properties of formations surrounding a borehole  

DOE Patents [OSTI]

In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

2013-10-08T23:59:59.000Z

202

Disposable telemetry cable deployment system  

DOE Patents [OSTI]

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

203

The deep, hot biosphere  

Science Journals Connector (OSTI)

...of the water-based drilling fluid. Later a pump...in several other oil drilling operations, and micro...Later, when oil-based drilling fluid had been in use...phenomenon that occurred on a large scale and that was a...4000 m in the Gravberg borehole, Siljan Ring, Central...

T Gold

1992-01-01T23:59:59.000Z

204

Mapping DNAPL transport contamination in sedimentary and fractured rock aquifers with high resolution borehole seismic imaging Project No. SF11SS13 FY01 Annual Report  

E-Print Network [OSTI]

rig-installed boreholes have been successful at other sedimentary sites, additional boreholes at the Northeast site should be installed with rotary

Geller, J.T.; Majer, E.L.; Peterson, J.E.; Williams, K.H.; Flexser, S.

2001-01-01T23:59:59.000Z

205

Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal  

SciTech Connect (OSTI)

The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs.

Klett, R.D.

1997-06-01T23:59:59.000Z

206

Electrochemical Apparatus with Disposable and Modifiable Parts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

207

Multipathing and spectral modulation of the downgoing wavefield in a complex crust: An example from the KTB (Germany) borehole  

Science Journals Connector (OSTI)

......depths in spite of large amounts of data...frequently have access to borehole seismic data, which...costs involved in borehole drilling in crystalline crust...fluids exist at even larger depths. Another...1999 in the KTB borehole to a depth of 8......

Jose Pujol; Thomas Bohlen; Thies Beilecke; Wolfgang Rabbel

2007-05-01T23:59:59.000Z

208

Fracture detection using crosshole surveys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, Oklahoma  

Science Journals Connector (OSTI)

......profiles at the Conoco Borehole Test Facility, Oklahoma...RVSPs) at the Conoco Borehole Test Facility, Oklahoma...than 50 m, suggest large fracture densities...granite, Scientific Drilling, 1, 21-26. Crampin...system at the Conoco Borehole Test Facility, Kay......

Enru Liu; Stuart Crampin; John H. Queen

1991-12-01T23:59:59.000Z

209

Measurement of 238U, 232Th and 40K in boreholes at Gosa and Lugbe, Abuja, north central Nigeria  

Science Journals Connector (OSTI)

......concentrations at Site A borehole for 238U have a mean...concentrations at Site B borehole for 238U have a mean...earth crust which to a large extent constitute the...sources come from the borehole/aquifer-bearing...treatment and during drilling processes; it cuts......

Omeje Maxwell; Husin Wagiran; Noorddin Ibrahim; Siak Kuan Lee; Soheil Sabri

2013-12-01T23:59:59.000Z

210

Deep Drilling in Crystalline Bedrock, Volumes 1 and 2 A. Bodé and K. G. Eriksson (eds), Springer-Verlag, 1988, Volume 1: The Deep Gas Drilling in the Siljan Impact Structure, Sweden, and Astroblemes, xiv + 364 pp, ISBN 3-540-18995-5, $83.50 (DM 138); Volume 2: Review of Deep Drilling Projects, Technology, Sciences and Prospects for the Future, xii + 538 pp, ISBN 3-540-18996-3, $102 (DM 168)  

Science Journals Connector (OSTI)

......by the collision of a large meteorite or asteroid...As with many other large circular features in...is the idea that such large impacts should shatter...carried out preliminary drilling and other geophysical...1985and spudded the deep borehole in the northeastern sector......

H. Olsen Kenneth

1989-12-01T23:59:59.000Z

211

Optimizing High Level Waste Disposal  

SciTech Connect (OSTI)

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

212

Disposal Practices at the Nevada Test Site 2008 | Department...  

Broader source: Energy.gov (indexed) [DOE]

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

213

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal...

214

Spent Fuel Disposal Trust Fund (Maine)  

Broader source: Energy.gov [DOE]

Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

215

Long-Term Performance of Uranium Tailings Disposal Cells - 13340  

SciTech Connect (OSTI)

Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

2013-07-01T23:59:59.000Z

216

State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404  

SciTech Connect (OSTI)

The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

Defferding, L.J.

1980-06-01T23:59:59.000Z

217

Potential for terrestrial disposal of carbon dioxide in the U.S.  

SciTech Connect (OSTI)

Many scientists are concerned about the possibility of global climate change of the continuing buildup of greenhouse gases in the atmosphere. Capture and permanent disposal of carbon dioxide (CO{sub 2}) would help alleviate this potential problem. Abandoned oil and natural gas reservoirs and deep aquifers were investigated as potential disposal sites for CO{sub 2}. Currently abandoned oil and gas reservoirs could hold approximately 2.9 Gt of CO{sub 2}. Since the annual CO{sub 2} emissions from utility power plants is 2 Gt, these reservoirs would be filled in less than 1.5 years. The volume corresponding to ultimate reserves of oil and gas would hold roughly 100 Gt of CO{sub 2}. Therefore, the ultimate capacity for CO{sub 2} storage is approximately 50 years. Over half of the CO{sub 2} is emitted east of the Mississippi River, and most of the potential disposal sites are west of the Mississippi. Because of the high cost of transporting CO{sub 2} by pipeline over long distances, only a small fraction of the reservoir capacity would be useful. The capacity of deep aquifers for CO{sub 2} disposal is highly uncertain. A rough estimate for the US, derived from global estimates, is 5--500 Gt of CO{sub 2}. Problems associated with each method of disposal are discussed.

Winter, E.M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Bergman, P.D. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1994-12-31T23:59:59.000Z

218

Environmental waste disposal contracts awarded  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

219

Performance assessment overview for subseabed disposal of high level radioactive waste  

SciTech Connect (OSTI)

The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed.

Klett, R.D.

1997-06-01T23:59:59.000Z

220

Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana  

SciTech Connect (OSTI)

In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC) of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.

Not Available

1989-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Deep Web video  

ScienceCinema (OSTI)

To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

None Available

2012-03-28T23:59:59.000Z

222

Deep Web video  

SciTech Connect (OSTI)

To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

None Available

2009-06-01T23:59:59.000Z

223

New developments in high resolution borehole seismology and their applications to reservoir development and management  

SciTech Connect (OSTI)

Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

1997-08-01T23:59:59.000Z

224

Borehole data package for the 100-K area ground water wells, CY 1994  

SciTech Connect (OSTI)

Borehole, hydrogeologic and geophysical logs, drilling, as-built diagrams, sampling, and well construction information and data for RCRA compliant groundwater monitoring wells installed in CY 1994 at the 100-K Basins.

Williams, B.A.

1994-12-27T23:59:59.000Z

225

Borehole Seismic Monitoring of Injected CO2 at the Frio Site  

E-Print Network [OSTI]

D. , 2001, Orbital vibrator seismic source for simultaneous5: Tomographic image of seismic velocity change due to CO 2Borehole Seismic Monitoring of Injected CO 2 at the Frio

Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, John E.; Korneev, Valeri A.

2006-01-01T23:59:59.000Z

226

Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site  

SciTech Connect (OSTI)

The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

227

Test instructions for the horizontal borehole demonstration at the Near-Surface Test Facility  

SciTech Connect (OSTI)

This test outlines the planned activities designed to demonstrate the horizontal borehole drilling and testing operations at the Near Surface Test Facility prior to the performance of these methods within the Exploratory Shaft underground facility. This document will also lead to establishing the operating and safety procedures which will be implemented in the Exploratory Shaft long exploratory borehole drilling and testing program. 7 refs., 3 figs., 1 tab.

McLellan, G.W. (Rockwell International Corp., Richland, WA (USA). Energy Systems Group)

1984-03-01T23:59:59.000Z

228

Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area  

SciTech Connect (OSTI)

The goal of the Tank Farm Vadose Zone Project is to define risks from past and future single-shell tank farm activities. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a borehole installed northeast of tank BX-102 (borehole 299-E33-45). This report also presents data on the sediment lithologies, the vertical extent of contamination, their migration potential, and the source of the contamination in the vadose zone and perched water east of the BX Tank Farm. The near horizontally bedded, northeasterly dipping sediment likely caused horizontal flow of the migrating contaminants. At borehole 299-E33-45, there are several fine-grained lens within the H2 unit that cause horizontally spreading of percolating fluids. The 21-ft thick Plio-pleistocene fine grained silt/clay unit is also an important horizontal flow conduit as evidenced by the perched water between 227-232 ft bgs. Based on comparing the depth of penetration of contaminants and comparing the percentages that are water leachable, uranium migrates slower than technetium-99 and nitrate. The technetium-99 desorption data are consistently near zero, meaning that the technetium-99 is not interacting with the sediment. In summary, the moisture content, pH, electrical conductivity, sodium, tritium, and uranium profiles do not suggest that plume has penetrated below 170 ft bgs. In general, the majority of the ratios of constituents found in the porewater in the Hanford formation sediments are closer to being from the 1951 metals waste solution that escaped tank BX-102 during a cascading accident. There may be a source of water, containing nitrate but not technetium, that is feeding the perched water zone. The deep vadose, perched and groundwater data do not present a clear picture on what might be occurring in the Pliopleistocene units.

Serne, R. Jeffrey; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.

2002-12-15T23:59:59.000Z

229

DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER  

SciTech Connect (OSTI)

The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting the DOE waste canisters and their contents from damage/degradation by the external environment. The disposal containers also interface with the SNF by limiting access of moderator and oxidizing agents to the waste. The disposal containers interface with the Ex-Container System's emplacement drift disposal container supports. The disposal containers interface with the Canister Transfer System, Waste Emplacement System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and remediation of the disposal container.

F. Habashi

1998-06-26T23:59:59.000Z

230

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

491 - 500 of 28,905 results. 491 - 500 of 28,905 results. Download CX-008338: Categorical Exclusion Determination Security Upgrades Major Construction Project CX(s) Applied: B1.11, B1.15, B1.16, B1.23, B2.2 Date: 04/20/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program http://energy.gov/nepa/downloads/cx-008338-categorical-exclusion-determination Download Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep borehole disposal is one alternative for the disposal of spent nuclear fuel and other radioactive waste forms; identifying a site or areas with favorable geological, hydrogeological, and geochemical conditions is one of the first steps to a demonstration project. http://energy.gov/ne/downloads/deep-borehole-disposal-research-demonstration-site-selection-guidelines-borehole-seals

231

24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES  

SciTech Connect (OSTI)

Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

Erik C. Westman

2003-10-24T23:59:59.000Z

232

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect (OSTI)

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

233

Disposal systems evaluations and tool development : Engineered Barrier System (EBS) evaluation.  

SciTech Connect (OSTI)

Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems Evaluation Framework (DSEF). This report will focus on the multi-barrier concept of EBS and variants of this type which in essence is the most adopted concept by various repository programs. Empasis is given mainly to the evaluation of EBS materials and processes through the analysis of published studies in the scientific literature of past and existing repository research programs. Tool evaluations are also emphasized, particularly on THCM processes and chemical equilibria. Although being an increasingly important aspect of NW disposition, short-term or interim storage of NW will be briefly discussed but not to the extent of the EBS issues relevant to disposal systems in deep geologic environments. Interim storage will be discussed in the report Evaluation of Storage Concepts FY10 Final Report (Weiner et al. 2010).

Rutqvist, Jonny (LBNL); Liu, Hui-Hai (LBNL); Steefel, Carl I. (LBNL); Serrano de Caro, M. A. (LLNL); Caporuscio, Florie Andre (LANL); Birkholzer, Jens T. (LBNL); Blink, James A. (LLNL); Sutton, Mark A. (LLNL); Xu, Hongwu (LANL); Buscheck, Thomas A. (LLNL); Levy, Schon S. (LANL); Tsang, Chin-Fu (LBNL); Sonnenthal, Eric (LBNL); Halsey, William G. (LLNL); Jove-Colon, Carlos F.; Wolery, Thomas J. (LLNL)

2011-01-01T23:59:59.000Z

234

Device and method for imaging of non-linear and linear properties of formations surrounding a borehole  

DOE Patents [OSTI]

In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

2013-11-05T23:59:59.000Z

235

Enhancements to Generic Disposal System Modeling Capabilities...  

Broader source: Energy.gov (indexed) [DOE]

disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and...

236

Environmental Restoration Disposal Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant Environmental Restoration Disposal Facility Email Email Page | Print Print...

237

Operational Issues at the Environmental Restoration Disposal...  

Broader source: Energy.gov (indexed) [DOE]

Disposal Facility at Idaho National Laboratory Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Briefing: Summary and Recommendations of EM Landfill Workshop...

238

Three Dimensional Non-linear Anisotropic Thermo-Chemo-Poro-Elastoplastic Modelling of Borehole Stability in Chemically Active Rocks.  

E-Print Network [OSTI]

??Borehole stability problems are mostly encountered when drilling through chemically active formations such as shales. Shales are highly laminated rocks with transversely isotropic behaviour, and… (more)

Roshan, Hamid

2011-01-01T23:59:59.000Z

239

Modelling Of Downhole Seismic Sources I: Literature Review, Review Of Fundamentals, Impulsive Point Source In A Borehole  

E-Print Network [OSTI]

This paper represents the first of a two paper sequence comprising a multi-faceted introduction to the numerical and analytical modelling of seismic sources in a borehole.

Meredith, J. A.

1990-01-01T23:59:59.000Z

240

Used Fuel Disposition Campaign Disposal  

Broader source: Energy.gov (indexed) [DOE]

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

14 - Lubricant use and disposal  

Science Journals Connector (OSTI)

Abstract: Criteria are defined for optimum machine-specific selection of conventional, high-performance and specialty lubricants. Lubrication consolidation is indicated as a means of rationalisation of inventories. Intended use of lubricants may be compromised by oxidation, water and air contamination, additive depletion and accumulation of contaminants, including wear debris, and biological degradation. Strategic oil analysis is described from simple in-shop sensory inspections to primary on-site standard testing and more comprehensive secondary testing methods as an operational maintenance tool for machine and lubricant condition monitoring to estimate remaining lubricant life time and prevent premature machine failure. The disposal of spent lubricants, including waste oil legislation and management, and re-refining technologies, are discussed.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

242

Remotely sensing the thickness of the Bushveld Complex UG2 platinum reef using borehole radar  

Science Journals Connector (OSTI)

The planar, 80 cm thick, lossy dielectric reefs of the Bushveld are embedded in rocks that are almost transparent at ground penetrating radar frequencies of 10–125 MHz. Pothole sensing practices are based largely on using borehole radars to observe departures of the reefs from planarity. Surveys are run in ~200 m near-horizontal boreholes that are drilled into the footwalls of the reef. Careful laboratory measurements of the Jonscher dielectric parameters of the stratigraphic column through the UG2 reef are translated by electro-dynamic modelling into a prediction that platinum reef thinning can be sensed remotely by footwall borehole radars. This proposition sheds light on the results of a recent borehole radar survey that was shot in ~180 m long AXT (48 mm diameter) boreholes. Areas of sub-economical UG2 thickness (typically less than ~50 cm) were mapped by studying the relative amplitudes of echoes from the reef and a pyroxenite–anorthosite interface in its hanging wall, with the radar deployed beneath the UG2 in its footwall.

C M Simmat; P Le R Herselman; M Rütschlin; I M Mason; J H Cloete

2006-01-01T23:59:59.000Z

243

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

244

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network [OSTI]

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

245

Title II Disposal Sites Annual Report  

Broader source: Energy.gov [DOE]

This report presents the results of long-term surveillance and maintenance activities conducted by the DOE Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements.

246

Land Management and Disposal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property and Administrative Services Act of 1949, As Amended P.L. 105-85 Federal Property and Administrative Services Act of 1949, As Amended 10 CFR 770 Transfer of Real Property at Defense Nuclear Facilities for Economic Development

247

Device and method for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents [OSTI]

In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

2013-10-01T23:59:59.000Z

248

Deep Vadose Zone Field Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HANFORD ADVISORY BOARD, RAP March 6, 2013 Presented by: John Morse DEEP VADOSE ZONE ACTIVITIES Page 2 Deep Vadose Zone Areas Page 3 Deep Vadose Zone Field Activities FY 2014...

249

Interpretation and mathematical modeling of temporal changes of temperature observed in borehole Yaxcopoil-1 within the Chicxulub impact structure, Mexico  

Science Journals Connector (OSTI)

Summary Geothermal research of the Chicxulub impact structure on the Yucatan Peninsula, Mexico, included repeated temperature logs following 0.3–0.8, 15, 24, 34 and 50 months after shut-in of drilling operations at the 1.5 km deep Yaxcopoil-1 borehole. A gradual distortion of the linear temperature profile by a cold wave propagating downward from 145 m to 317 m was detected within the observational period of 49 months (March 2002–April 2006). The amplitude of the cold wave was increasing with depth and time in the range of 0.8–1.6 °C. As an explanation of this unusual phenomenon, the hypothesis of downward migration of a large volume of drilling mud, reported lost during drilling within the overlying and cooler highly porous and permeable karstic rocks, has been proposed. The thermal effects of the migrating fluid have been evaluated by solving numerically the heat conduction–convection equation in appropriate geothermal models. The best coincidence between the observed data and the simulations was yielded by the model of the drilling mud migrating as a large body. Parameters of this model are constrained by the measured temperature logs relatively tightly: (i) the vertical extent of the downward migrating fluid body is about 5–10 m, possibly increasing within the observational period of 49 months by a factor of 2; (ii) the horizontal extent of the body must be at least 15–20 m, i.e. by order(s) of magnitude larger than the diameter of the borehole; (iii) the average speed of the migration is about 5 metres per month and (iv) the fluid must migrate through a highly porous rock (80% porosity or more). This high porosity, which is necessary for the model to fit the observed data, and the observed relatively stable velocity of the migration indicate the existence of a well-developed system of interconnected cavities down to more than 300 m about 150 m more than the deepest cave system known in Yucatan yet.

Jan Šafanda; Helmut Wilhelm; Philipp Heidinger; Vladimír ?ermák

2009-01-01T23:59:59.000Z

250

TheU-Tube: A Novel System for Acquiring Borehole Fluid Samplesfrom a Deep Geologic CO2 Sequestration Experiment  

SciTech Connect (OSTI)

A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase (supercritical CO2-brine) fluid from 1.5 km depth. The datasets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydro-geochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-Tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-Tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.

Freifeld, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.

2005-03-17T23:59:59.000Z

251

Parametric study of the total system life cycle cost of an alternate nuclear waste management strategy using deep boreholes  

E-Print Network [OSTI]

The Department of Energy recently submitted a license application for the Yucca Mountain repository to the Nuclear Regulatory Commission, yet even the most optimistic timetable projects that the repository will not now ...

Moulton, Taylor Allen

2008-01-01T23:59:59.000Z

252

A Coulomb stress model for induced seismicity distribution due to fluid injection and withdrawal in deep boreholes  

Science Journals Connector (OSTI)

......plane of maximum cumulative Coulomb stress...that used in the field injection experiments...equivalent manner, to oil/gas withdrawal...the injection and production wells (over 650...differences in the stress field changes for injection...the regional stress field, as the injection......

Antonio Troiano; Maria Giulia Di Giuseppe; Claudia Troise; Anna Tramelli; Giuseppe De Natale

2013-01-01T23:59:59.000Z

253

A Coulomb stress model for induced seismicity distribution due to fluid injection and withdrawal in deep boreholes  

Science Journals Connector (OSTI)

......seismology| INTRODUCTION Geothermal resources represent...fossil fuels. Enhanced geothermal system (EGS) technologies...powerful way to produce geothermal electric energy in almost every area...depending on the drilling costs needed to reach a suitable......

Antonio Troiano; Maria Giulia Di Giuseppe; Claudia Troise; Anna Tramelli; Giuseppe De Natale

2013-01-01T23:59:59.000Z

254

Low-Level Waste Disposal Facility Federal Review Group Manual...  

Office of Environmental Management (EM)

Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility...

255

Salt caverns for oil field waste disposal.  

SciTech Connect (OSTI)

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

256

System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole  

DOE Patents [OSTI]

In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

2012-10-16T23:59:59.000Z

257

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

258

Borehole deviation surveys are necessary for hydraulic fracture monitoring Leo Eisner, Schlumberger Cambridge Research, Petr Bulant, Charles University in Prague, Jol H. Le Calvez*,  

E-Print Network [OSTI]

Borehole deviation surveys are necessary for hydraulic fracture monitoring Leo Eisner, Schlumberger Not performing accurate borehole deviation surveys for hydraulic fracture monitoring (HFM) and neglecting fracture parameters. Introduction Recently a large number of hydraulic fracture treatments have been

Cerveny, Vlastislav

259

International Collaboration Activities in Different Geologic Disposal Environments  

Broader source: Energy.gov [DOE]

This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign.  To date, UFD’s International Disposal R...

260

Used Fuel Disposition Campaign Disposal Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A novel nanoparticle-based disposable electrochemical immunosensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. A novel nanoparticle-based disposable electrochemical...

262

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Broader source: Energy.gov (indexed) [DOE]

Monticello, Utah, Disposal Cell Cover Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the...

263

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

264

Deep Vadose Zone  

Broader source: Energy.gov [DOE]

The Mission of the Deep Vadose Zone Applied Field Research Initiative is to protect water resources across the DOE complex over the long-term by developing effective solutions to solve DOE’s most...

265

Seismic wave attenuation from borehole and surface records in the top 2.5km beneath the city of Basel, Switzerland  

Science Journals Connector (OSTI)

......Figure 2 Overview of the borehole profile in the injection...from surface (top of drilling basement). 3 Seismic...separate institutions. Borehole sensors of Geothermal...also seen for other borehole stations. The number...stacking and the generally large number of spectra......

Falko Bethmann; Nicholas Deichmann; P. Martin Mai

2012-08-01T23:59:59.000Z

266

The Salt Defense Disposal Investigations (SDDI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

267

Acquisition, Use, and Disposal of Real Estate  

Broader source: Energy.gov (indexed) [DOE]

Chapter 17.3 (March 2011) Chapter 17.3 (March 2011) 1 Acquisition, Use, and Disposal of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental information and DOE and NNSA points of contact for issues dealing with real estate acquisition, use, and disposal for cost reimbursement and fixed price contracts when in performance of the contract, the contractor will acquire or proposes to acquire use of real property. Background DEAR Subpart 917.74 - Acquisition, Use, and Disposal of Real Estate provides the policy and

268

Policy Issues in Nuclear Waste Disposal  

Science Journals Connector (OSTI)

The Congressional Research Service, in an issue brief on nuclear waste disposal, compactly described a common assessment when it noted that “nuclear waste has sometimes been called the Achilles’ heel of the nu...

2005-01-01T23:59:59.000Z

269

A disposable, self-administered electrolyte test  

E-Print Network [OSTI]

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

270

US nuclear waste: Widespread problem of disposal  

Science Journals Connector (OSTI)

... individual states in the United States to develop facilities for disposal of low-level radioactive waste produced by ... produced by nuclear reactors, industry and biomdical research and treatment. The federal Low-Level ...

Christopher Earl

1984-07-19T23:59:59.000Z

271

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

272

CSMRI Bagged Soil Disposal Summary Report  

E-Print Network [OSTI]

.......................................................................................................................... 1 4. Landfill Acceptance and Equipment Appendix G Daily GPS Coordinants of Disposal Location at BFI Foothills Landfill Appendix H Ambient Landfill (Stoller 2005a). After review of the dose assessment report, the CDPHE approved shipment

273

Disposable Bioreactors: Maturation into Pharmaceutical Glycoprotein Manufacturing  

Science Journals Connector (OSTI)

To summarise: the range of disposable bioreactors available on the market offers flexible, cost efficient and time-saving solutions from early process development to large-scale production. Table 1 gives an overv...

René Brecht

2010-01-01T23:59:59.000Z

274

Pesticide fate in an aboveground disposal system  

E-Print Network [OSTI]

PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Submitted to the Graduate College of Texas A 8 M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 'l988... Major Subject: Soil Science PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Approved as to style and content by: K. W. Brown (Chair of Committee) John M. Sweeten (Member) Jack D. Price (Member) E. C. A...

Vanderglas, Brian Richard

2012-06-07T23:59:59.000Z

275

Title I Disposal Sites Annual Report  

Broader source: Energy.gov [DOE]

This report presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements.

276

Application of short-radius horizontal boreholes in the naturally fractured Yates field  

SciTech Connect (OSTI)

This paper discusses the performance and simulation of short-radius horizontal boreholes being used in the Marathon-operated Yates field Unit in west Texas to minimize drawdown and therefore to reduce gas and water coning in a thin oil column. Yates is a very prolific field with extensive fracturing and high-quality reservoir rock. Superimposed on a high-density orthogonal fracture network are widely spaced regional joints with a strong directional tendency. Major questions are how these directional joints affect the horizontal-well performance and whether wells should be drilled parallel or perpendicular to the joints. Dual-permeability reservoir simulation studies were performed to study optimum orientation of the borehole with respect to the natural fracture network. Additionally, optimum well-completion elevation was studied. Forty-six vertical wells have been recompleted as short-radius horizontal boreholes since 1986. The large productivity increase of the horizontal boreholes compared with the previous vertical completions indicates that the wells are intersecting the regional joints.

Gilman, J.R.; Rothkopf, B.W. (Marathon Petroleum Technology Center, Littleton, CO (United States)); Bowzer, J.L. (Marathon Oil Co., Midland, TX (United States))

1995-02-01T23:59:59.000Z

277

THE VALUE OF BOREHOLE -TO-SURFACE INFORMATION IN NEAR-SURFACE CROSSWELL SEISMIC TOMOGRAPHY  

E-Print Network [OSTI]

seismic reflection cannot (e.g. Liberty et al., 1999; Musil et al., 2002). The images producedTHE VALUE OF BOREHOLE -TO-SURFACE INFORMATION IN NEAR-SURFACE CROSSWELL SEISMIC TOMOGRAPHY Geoff J properties is important in many fields. One method that can image the seismic velocity structure

Barrash, Warren

278

Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures  

E-Print Network [OSTI]

Surface temperature trends in Russia over the past five centuries reconstructed from borehole in Russia and nearby areas to reconstruct the ground surface temperature history (GSTH) over the past five Siberia. We derive GSTHs for each region individually, and a composite ``all-Russia'' GSTH from the full

Smerdon, Jason E.

279

Radiological assessment of the consequences of the disposal of high-level radioactive waste in subseabed sediments  

SciTech Connect (OSTI)

The radiological assessment of the seabed option consists in estimating the detriment to man and to the environment that could result from the disposal of high-level waste (HLW) within the seabed sediments in deep oceans. The assessment is made for the high-level waste (vitrified glass) produced by the reprocessing of 10/sup 5/ tons of heavy metal from spent fuel, which represents the amount of waste generated by 3333 reactor-yr of 900-MW(electric) reactors, i.e., 3000 GW(electric) x yr. The disposal option considered is to use 14,667 steel penetrators, each of them containing five canisters of HLW glass (0.15 m/sup 3/ each). These penetrators would reach a depth of 50 m in the sediments and would be placed at an average distance of 180 m from each other, requiring a disposal area on the order of 22 x 22 km. Two such potential disposal areas in the Atlantic Ocean were studied, Great Meteor East (GME) and South Nares Abyssal Plains (SNAP). A special ship design is proposed to minimize transportation accidents. Approximately 100 shipments would be necessary to dispose of the proposed amount of waste. The results of this radiological assessment seem to show that the disposal of HLW in subseabed sediments is radiologically a very acceptable option.

de Marsily, G.; Behrendt, V.; Ensminger, D.A.; Flebus, C.; Hutchinson, B.L.; Kane, P.; Karpf, A.; Klett, R.D.; Mobbs, S.; Poulin, M.; Stanners, D.A.; Wuschke, D.

1987-01-01T23:59:59.000Z

280

Using borehole images for target-zone evaluation in horizontal wells  

SciTech Connect (OSTI)

Horizontal wells are rarely horizontal. Instead, operators commonly try to drill such wells into particular rock layers, or target zones, which may or may not be truly horizontal. Thicknesses of target zones commonly range from a few feet to a few tens of feet (1-10 m). Target-zone evaluation concerns whether a horizontal well was successfully located and drilled in a given rock layer. Borehole-imaging logs provide a powerful tool for stratigraphic interpretation and target-zone evaluation in the Austin Chalk, Niobrara Formation, San Andres Formation, and other units. This study uses borehole images generated by Schlumberger's Formation MicroScanner (FMS), a microconductivity logging device. Open fractures and clay-rich interbeds appear as dark, high-conductivity tracers on the FMS log. These traces can be fit with sinusoidal curves and oriented on a computer workstation. The shape of the sinusoidal curve that fits a particular bedding plane tells the interpreter whether the borehole was moving upward or downward through the strata. STRATLOG (trademark of Sierra Geophysics, Inc., a Halliburton Company) software has been used to display borehole profiles by combining FMS data on fracture intensities and bedding-plane intersections with gamma-ray logs, mud logs, and borehole-deviation surveys. To aid in planning future wells, multiple penetrations of the same horizon can be detected and used to calculate highly accurate bedding-plane dips. Fault interpretation, including the detection of rollover beds, it also possible. Finally, stratigraphic interpretation can be combined with observed fractures to determine which rock layers are most highly fractured, and, therefore, should be target zones.9 refs., 5 figs.

Hurley, N.F.; Carlson, J.L. (Marathon Oil Company, Littleton, CO (United States)); Thorn, D.R. (Schlumberger Well Services, Aurora (Colombia)); Eichelberger, L.W. (Marathon Oil Company, Tyler, TX (United States))

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Basic data report: borehole WIPP-12 deepening. Waste Isolation Pilot Plant (WIPP) Project, southeastern New Mexico  

SciTech Connect (OSTI)

Borehole WIPP-12 was originally drilled in 1978 as an exploratory borehole to characterize the geology of the Waste Isolation Pilot Plant (WIPP) site in Eddy County, New Mexico. WIPP-12 was reentered and deepened in late 1981. WIPP-12 is located in Section 17, T22S, R31E, just outside the limit of Zone II, approximately one mile north of the exploratory shaft site. The deepening of WIPP-12 was undertaken for several reasons: to investigate the presence of an anticlinal or domal structure and thickening of halite indicated by surface seismic reflection surveys conducted in the area; to determine the nature and extent of deformation in the Castile Formation, in a location adjacent to the zone of anomalous seismic reflections found north of the well location (''Disturbed Zone''); and to characterize any fluid-bearing zones encountered in the Castile Formation while drilling. Field operations related to deepening of the borehole began November 16, 1981 and were completed January 1, 1982. The borehole was deepened through the Castile Formation to a total depth of 3927.5 ft by coring. Pressurized brine was encountered on November 22, 1981 at a depth of about 3016 ft. The brine reservoir is apparently related to a system of near-vertical fractures of unknown extent observed in Anhydrite III. The Halite I member is about 200 ft thicker than observed in undisturbed areas in the vicinity of WIPP (for example, Borehole DOE-1). Small-scale lithologic features such as folding of anhydrite stringers in halite and halite lineation appear to confirm the presence of a structural disturbance at this location. This Basic Data Report includes geologic information gathered during WIPP-12 deepening.

Black, S.R.

1982-12-01T23:59:59.000Z

282

Hanford Borehole Geologic Information System (HBGIS) Updated User’s Guide for Web-based Data Access and Export  

SciTech Connect (OSTI)

The Hanford Borehole Geologic Information System (HBGIS) is a prototype web-based graphical user interface (GUI) for viewing and downloading borehole geologic data. The HBGIS is being developed as part of the Remediation Decision Support function of the Soil and Groundwater Remediation Project, managed by Fluor Hanford, Inc., Richland, Washington. Recent efforts have focused on improving the functionality of the HBGIS website in order to allow more efficient access and exportation of available data in HBGIS. Users will benefit from enhancements such as a dynamic browsing, user-driven forms, and multi-select options for selecting borehole geologic data for export. The need for translating borehole geologic data into electronic form within the HBGIS continues to increase, and efforts to populate the database continue at an increasing rate. These new web-based tools should help the end user quickly visualize what data are available in HBGIS, select from among these data, and download the borehole geologic data into a consistent and reproducible tabular form. This revised user’s guide supersedes the previous user’s guide (PNNL-15362) for viewing and downloading data from HBGIS. It contains an updated data dictionary for tables and fields containing borehole geologic data as well as instructions for viewing and downloading borehole geologic data.

Mackley, Rob D.; Last, George V.; Allwardt, Craig H.

2008-09-24T23:59:59.000Z

283

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

284

Current Status of The Romanian National Deep Geological Repository Program  

SciTech Connect (OSTI)

Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvement in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)

Radu, M.; Nicolae, R.; Nicolae, D. [Center of Technology and Engineering for Nuclear Objectives (CITON), ILFOV County (Romania)

2008-07-01T23:59:59.000Z

285

Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996  

SciTech Connect (OSTI)

One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

Herzog, H.J.; Adams, E.E. [eds.

1996-12-01T23:59:59.000Z

286

LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL  

SciTech Connect (OSTI)

This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

Stephen M. Masutani

1999-12-31T23:59:59.000Z

287

Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments  

SciTech Connect (OSTI)

In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 µg/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.3–2.5 µg/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of “total” uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

2012-11-26T23:59:59.000Z

288

Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost  

E-Print Network [OSTI]

. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m

Onstott, Tullis

289

Microsoft Word - SRSSaltWasteDisposal.doc  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Doc. No. Filename Title Main Document References 1. 2005 RWR DAA §3116 NDAA.pdf "Ronald W. Regan National Defense Authorization Act for FY 2005," Section 3116, 2004. 2. CBU-PIT-2004-00024 CBU-PIT-2004-00024.pdf Ledbetter, L. S., CBU-PIT-2004-00024, 12/01/04 - December Monthly WCS Curie and Volume Inventory Report," Revision 0, December 9, 2004. 3. CBU-PIT-2005-00031 CBU-PIT-2005-00031.pdf Rios-Armstrong, M. A., CBU-PIT-2005-00031, "Decontaminated Salt Solution Volume to be transferred to the Saltstone Disposal Facility from Salt Treatment and Disposition Activities," Revision 0, February 13, 2005.

290

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect (OSTI)

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

291

A Deep Geothermal Exploration Well At Eastgate, Weardale, Uk- A Novel  

Open Energy Info (EERE)

Geothermal Exploration Well At Eastgate, Weardale, Uk- A Novel Geothermal Exploration Well At Eastgate, Weardale, Uk- A Novel Exploration Concept For Low-Enthalpy Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Deep Geothermal Exploration Well At Eastgate, Weardale, Uk- A Novel Exploration Concept For Low-Enthalpy Resources Details Activities (0) Areas (0) Regions (0) Abstract: The first deep geothermal exploration borehole (995 m) to be drilled in the UK for over 20 years was completed at Eastgate (Weardale, Co. Durham) in December 2004. It penetrated 4 m of sandy till (Quaternary), 267.5 m of Lower Carboniferous strata (including the Whin Sill), and 723.5 m of the Weardale Granite (Devonian), with vein mineralization occurring to 913 m. Unlike previous geothermal investigations of UK radiothermal

292

Evaluating Local Elastic Anisotropy of Rocks and Sediments by Means of Optoacoustics While Drilling Oil and Gas Boreholes  

Science Journals Connector (OSTI)

The optoacoustic method of evaluation of local elastic anisotropy while drilling oil or gas boreholes usually assumes laboratory tests...1]. These are so-called “go-through” tests. The pick-up of the pulse is pro...

A. V. Gladilin; S. V. Egerev; O. B. Ovchinnikov

2013-12-01T23:59:59.000Z

293

Electrochemical apparatus comprising modified disposable rectangular cuvette  

DOE Patents [OSTI]

Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

2013-09-10T23:59:59.000Z

294

3-D Inversion Of Borehole-To-Surface Electrical Data Using A  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » 3-D Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Details Activities (0) Areas (0) Regions (0) Abstract: The "fluid-flow tomography", an advanced technique for geoelectrical survey based on the conventional mise-a-la-masse measurement, has been developed by Exploration Geophysics Laboratory at the Kyushu University. This technique is proposed to monitor fluid-flow behavior

295

Use of an acoustic borehole televiewer to investigate casing corrosion in geothermal wells  

SciTech Connect (OSTI)

Corrosion of well and surface equipment due to the presence of hot, corrosive brines is one of the major problems facing geothermal operators. For wellbore casing, this problem is complicated by the fact that in-place inspection is difficult at best. In an attempt to improve this situation, a prototype acoustic borehole televiewer designed to operate in geothermal wells was used to study the corrosion damage to casing in three commercial wells. The results of this experiment were promising. The televiewer returns helped to define areas of major corrosion damage and to indicate the extent of the damage. This paper briefly discusses the corrosion problem, describes the acoustic borehole televiewer, and then summarizes the results of the field test of the televiewer's capability for investigating corrosion.

Carson, C.C.; Bauman, T.

1986-03-01T23:59:59.000Z

296

Hydrocarbon Potential of Deep Water  

Science Journals Connector (OSTI)

...research-article Hydrocarbon Potential of Deep Water H. R. Warman In...the geology and hydrocarbon potential of the Earth's deeper water areas, an attempt...United Kingdom 1981 Hydrocarbon potential of deep water Warman H. R. Author...

1978-01-01T23:59:59.000Z

297

The disposal of orphan wastes using the greater confinement disposal concept  

SciTech Connect (OSTI)

In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (USA); Dickman, P.T. [Department of Energy, Las Vegas, NV (USA). Nevada Operations Office

1991-02-01T23:59:59.000Z

298

Deep Energy Retrofits & State Applications  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications

299

Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967)  

Broader source: Energy.gov (indexed) [DOE]

Borehole logging methods for exploration Borehole logging methods for exploration and evaluation o f uranium deposits . Philip H. O d d , Robert F. Bmullad and Carl P. Lathan rej~rinkttl fnlm Mining and Groundwater Geophysiall967 Borehole logging methods for exploration and evaluation of uranium deposits Philip H. Dodd, Robert F. Droullard and Carl P. Lathan US. Atomic Energy Commhwn GmrPd Jtinct&n, Colorado Abstract, M o l e 1 - i s thc geophysical methad mast exten&@ w r t i n the Udtrrd States for exploratio~ md edwtim of wanhi &pod&. dammow lop, C o r n r n d j suppkrnentd with a singbz-pobt msfstailee log, m t l y supply about 80 percent of the bask data for om regerve c W t i o R a d mu& of the w ~ k r 6 . p ~ &ngk inf~nnatio~ Tmck-mounted 'rotmy eqnipmcnt i s EMhmody emphy&& holes usually hwre a nominai b

300

Status of UFD Campaign International Activities in Disposal Research |  

Broader source: Energy.gov (indexed) [DOE]

Status of UFD Campaign International Activities in Disposal Status of UFD Campaign International Activities in Disposal Research Status of UFD Campaign International Activities in Disposal Research Several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics (clay/shale, granite), most of which were very different from those studied in the United States. The DOE recognizes that close international collaboration is a beneficial and cost effective strategy for advancing disposal science. This report describes the active collaboration opportunities available to U.S. researchers, and presents specific cooperative research activities that have been recently initiated within DOE's disposal research program.

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

72.1 0614 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 0614 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 0614 North Face Cell 1...

302

Low-level-waste-disposal methodologies  

SciTech Connect (OSTI)

This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE.

Wheeler, M.L.; Dragonette, K.

1981-01-01T23:59:59.000Z

303

COUEB N T ED Safe Disposal of  

E-Print Network [OSTI]

COUEB N T ED Safe Disposal of Household Chemicals: Protect Yourself and Your Community see inside Minutes The 2010 census asks 10 questions that most households can answer in 10 minutes! You will be asked the name, age, gender, race, ethnic group (if Hispanic), and relationship of all persons living at your

Liskiewicz, Maciej

304

Radiological assessment of the consequences of the disposal of high level radioactive waste in sub-seabed sediments  

SciTech Connect (OSTI)

The radiological assessment of the Seabed option consists of estimating the detriment to man and to the environment that could result from the disposal of high-level nuclear waste within the seabed sediments in the deep oceans. The assessment is made for the high-level waste (vitrified glass) produced by the reprocessing of 10/sup 5/ tons of heavy metal from spent fuel, which represents the amount of waste generated by 3333 reactor-years of 900 MW(e) reactors, i.e., 3000 GW(E).a. The disposal option considered is to use 14,667 steel penetrators, each of them containing five canisters of HLW glass (0,15 m/sup 3/ each). These penetrators would reach a depth of 50 m in the sediments and would be placed at an average distance of 180 m from each other, requiring a disposal area on the order of 22 x 22 km. Two such potential disposal areas in the Atlantic ocean were studied, Great Meteor East (GME) and South Nares Abyssal Plains (SNAP). A special ship design is proposed to minimize transportation accidents. Approximately 100 shipments would be necessary to dispose of the proposed amount of waste. 1 ref.

de Marsily, G.; Behrendt, V.; Ensminger, D.A.; Flebus, C.; Hutchinson, B.L.; Kane, P.; Karpf, A.; Klett, R.D.; Mobbs, S.; Poulin, M.

1987-01-01T23:59:59.000Z

305

Diffractive deep inelastic scattering  

SciTech Connect (OSTI)

A new approach to the analysis of diffractive deep inelastic data is presented. We show that the collinear factorisation theorem, which holds for diffractive DIS, has important modifications in the sub-asymptotic HERA regime, which can be quantified by using perturbative QCD. In fact the diffractive parton densities are shown to satisfy an inhomogeneous evolution equation. Moreover it is necessary to include both the gluonic and sea-quark t-channel components of the perturbative Pomeron.

Martin, A.D.; Ryskin, M.G. [IPPP, Physics Department, University of Durham, DH1 3LE (United Kingdom); Watt, G. [DESY, 22607 Hamburg (Germany)

2005-10-06T23:59:59.000Z

306

The Very Deep Hole Concept: Evaluation of an Alternative for Nuclear Waste Disposal  

E-Print Network [OSTI]

some experience at drilling geothermal wells where formationholes for oil, gas, and geothermal wells, or for mineral

1979-01-01T23:59:59.000Z

307

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

materials from the Slick RockOld North Continent site and the Slick RockUnion Carbide site were disposed of in this dedicated disposal cell. The Department of Energys...

308

INNOVATIVE DISPOSAL PRACTICES AT THE NEVADA TEST SITE TO MEET...  

National Nuclear Security Administration (NNSA)

Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs E.F. Di Sanza, J.T. Carilli U.S. Department of Energy National...

309

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

310

Maintenance Guide for DOE Low-Level Waste Disposal Facility ...  

Office of Environmental Management (EM)

Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses...

311

Nuclear Waste Disposal: Can the Geologist Guarantee Isolation?  

Science Journals Connector (OSTI)

...to check whether waste disposal really does need an almost...been reported recently at Maxey Flats (Kentucky) (26...radioactive waste burial site, inside a fractured rock...effect of the geological disposal is to con-centrate 3530...

G. de Marsily; E. Ledoux; A. Barbreau; J. Margat

1977-08-05T23:59:59.000Z

312

Acceptance of Classified Excess Components for Disposal at Area 5  

SciTech Connect (OSTI)

This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

2012-04-09T23:59:59.000Z

313

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1  

Broader source: Energy.gov [DOE]

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system.

314

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

SciTech Connect (OSTI)

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

315

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect (OSTI)

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

316

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network [OSTI]

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

317

Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain  

SciTech Connect (OSTI)

Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m{sup 2}, including the rock salt dump. The space required for the underground facilities amounts to 1.2 km{sup 2}, approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented.

Huertas, F.; Ulibarri, A. [ENRESA, Madrid (Spain)

1993-12-31T23:59:59.000Z

318

Chapter 8 - Coal Combustion Residue Disposal Options  

Science Journals Connector (OSTI)

Abstract Coal combustion residues (CCRs) are presently regulated as solid waste (Subtitle D) under the Resource Conservation Recovery Act. Such classification promotes beneficial use by end-users i.e. mitigating excessive liability. According to the US Environmental Protection agency (USEPA), about 131 million tons of coal combustion residuals—including 71 million tons of fly ash, 20 million tons of bottom ash and boiler slag, and 40 million tons of flue gas desulfurization (FGD) material—were generated in the US in 2007. Of this, approximately 36% was disposed of in landfills, 21% was disposed of in surface impoundments, 38% was beneficially reused, and 5% was used as minefill. Stringent regulation, as Subtitle C (hazardous waste), would impose a perceived liability upon end-users; greatly reducing beneficial use opportunities. Mandatory use of synthetic liners—would not have prevented dike wall failure and fails to consider inherent engineering characteristics of CCRs.

Richard W. Goodwin

2014-01-01T23:59:59.000Z

319

Technical and philosophical aspects of ocean disposal  

E-Print Network [OSTI]

Di sposai . Geological aspects Physical aspects Chemical aspects Biological aspects CHAPTER II. TECHNICAL ASPECTS OF OCEAN DISPOSAL Types of Waste Materials. Dredged materiais. Industrial wastes, DomestIc sewage wa tes Solid wastes Radloact..., can reduce the passage of light through the water column and cause damaging effects to the marine ecosystem. Each of five major oceans has pronounced gyral, or circular current motion (Fiaure 1. 1). The North Atlantic current system is comprised...

Zapatka, Marchi Charisse

1976-01-01T23:59:59.000Z

320

Geochemical aspects of radioactive waste disposal  

SciTech Connect (OSTI)

The book addresses various topics related to the geochemistry of waste disposal: natural radioactivity, kinds of radioactive waste, details of possible disposal sites, low-level waste, uranium mill tailing, natural analogs, waste forms, and engineered barriers. Emphasis throughout is on the importance of natural analogs, the behavior of elements resembling those to be put in a waste repository as they occur in natural situations where the temperature, pressure, and movement of ground water are similar to those expected near a repository. The author is convinced that conclusions drawn from the study of analog elements are directly applicable to predictions about radionuclide behavior, and that the observed near-immobility of most of these elements in comparable geologic environments is good evidence that radioactive waste can be disposed of underground with negligible effects on the biosphere. Much of his own research has been in this area, and the best parts of the book are the descriptions of his work on trace elements in the salt minerals at the Waste Isolation Pilot Plant in southeastern New Mexico, on the movement of radionuclides and their daughter elements from the famous Precambrian reactor at Oklahoma in Gabon, and on the distribution of analog elements in rocks near the contacts of igneous intrusions.

Brookins, D.G.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Neutralizing Carbonis Acid in Deep Carbonate Strata Below the North Atlantic Ocean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26507 304-285-4132 heino.beckert@netl.doe.gov Daniel schrag Principal Investigator Harvard University 20 Oxford Street Cambridge, MA 02138 617-495-7676 schrag@eps.harvard.edu NeutraliziNg CarboNiC aCid iN deep CarboNate Strata below the North atlaNtiC oCeaN Background The eastern seaboard of the United States is the most densely populated region in the country and generates a large fraction of all U.S. anthropogenic carbon dioxide (CO 2 ) emissions. Disposal options for this large volume of CO 2 are limited, and land transport and disposal are difficult due to high population density. From geographical considerations, offshore disposal might seem a reasonable approach. However, a number of technical uncertainties and environmental concerns make

322

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Broader source: Energy.gov (indexed) [DOE]

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

323

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Applauds Opening of Historic Disposal Facility Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

324

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Broader source: Energy.gov (indexed) [DOE]

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

325

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

326

Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled Transuranic Waste Disposal Operations  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) disposal operation currently employs two different disposal methods: one for Contact Handled (CH) waste and another for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations on the floor of each disposal room. In contrast, RH waste is packaged into a single type of canister and emplaced in pre-drilled holes in the walls of disposal rooms. Emplacement of the RH waste in the walls must proceed in advance of CH waste emplacement. This poses a significant logistical constraint on waste handling operations by requiring significant coordination between waste characterization and preparations for shipping among the various generators. To improve operational efficiency, the Department of Energy (DOE) is proposing a new waste emplacement process for certain RH waste streams that can be safely managed in shielded containers. RH waste with relatively low gamma-emitting activity would be packaged in lead-lined containers, shipped to WIPP in existing certified transportation packages for CH waste, and emplaced in WIPP among the stacks of CH waste containers on the floor of a disposal room. RH waste with high gamma-emitting activity would continue to be emplaced in the boreholes along the walls. The new RH container appears essentially the same as a nominal 208-liter drum, but is built with about 2.5 cm of lead, sandwiched between thick steel sheet. The top and bottom are made of very thick plate steel, for strengthening the package to meet transportation requirements, and provide similar gamma attenuation. This robust configuration provides an overpack for waste that otherwise would be remotely handled. Up to a 3:1 reduction in number of shipments is projected if RH waste were transported in the proposed shielded containers. This paper describes the container design and testing, as well as the regulatory approach used to meet the requirements that apply to WIPP and its associated transportation system. This paper describes the RH transuranic waste inventory that may be candidates for packaging and emplacement in shielded containers. DOE does not propose to use shielded containers to increase the amount of RH waste allowed at WIPP. DOE's approach to gain approval for the transportation of shielded containers and to secure regulatory approval for use of shielded containers from WIPP regulators is discussed. Finally, the paper describes how DOE proposes to count the waste packaged into shielded containers against the RH waste inventory and how this will comply with the volume and radioactivity limitations imposed in the many and sometimes overlapping regulations that apply to WIPP. (authors)

Nelson, R.A. [U. S. Department of Energy, Carlsbad, New Mexico (United States); White, D.S. [Washington Group International, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

327

Used Fuel Disposition R&D Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Used Fuel Disposition Research & Development » Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents December 4, 2013 Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel in existing dual-purpose canisters (DPCs) and other types of storage casks. October 25, 2013 Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep borehole disposal is one alternative for the disposal of spent nuclear fuel and other radioactive waste forms; identifying a site or areas with favorable geological, hydrogeological, and geochemical conditions is one of

328

Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Issues Statement Concerning Debates Over DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements. The WIPP mission includes the safe disposal of two types of defense-related TRU waste, contact-handled (CH) and remote-handled (RH). Both consist of tools, rags, protective clothing, sludges, soil and other materials contaminated with radioactive

329

Method of deep drilling  

DOE Patents [OSTI]

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

330

In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas. Special study  

SciTech Connect (OSTI)

This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided.

Not Available

1994-02-01T23:59:59.000Z

331

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

Vail, III, William B. (Bothell, WA)

1989-01-01T23:59:59.000Z

332

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

Vail, III, William B. (Bothell, WA)

1991-01-01T23:59:59.000Z

333

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

Vail, W.B. III.

1991-08-27T23:59:59.000Z

334

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

Vail, W.B. III.

1989-11-21T23:59:59.000Z

335

Device and method for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents [OSTI]

In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

2013-10-01T23:59:59.000Z

336

Method and system for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents [OSTI]

A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

Johnson Paul A. (Santa Fe, NM); Ten Cate, James A. (Los Alamos, NM); Guyer, Robert (Reno, NV); Le Bas, Pierre-Yves (Los Alamos, NM); Vu, Cung (Houston, TX); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

2012-02-14T23:59:59.000Z

337

Geologic Disposal of Nuclear Wastes: Salt's Lead Is Challenged  

Science Journals Connector (OSTI)

...the test. In 1975 wa-ter began to be pumped from a borehole 91 meters from the cavity...about 1.4 million cubic meters had been pumped. About 2.6 million cubic 11 MAY 1979 meters have now been pumped, but only tritium and krypton-85...

RICHARD A. KERR

1979-05-11T23:59:59.000Z

338

System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole  

DOE Patents [OSTI]

In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

2013-01-01T23:59:59.000Z

339

Deep Maps”: A Brief for Digital Palimpsest Mapping Projects (DPMPs, or “Deep Maps”)  

E-Print Network [OSTI]

DEEP  MAPS”:  A  Brief  for   Digital  Palimpsest  DPMPs,  or  “Deep  Maps”)   SHELLEY  FISHER  FISHKIN  paintings,   drawings,   maps,   photos,   books,  

Fishkin, Shelley Fisher

2011-01-01T23:59:59.000Z

340

Borehole closure and test zone volume determination program for brine-permeability test results within the Waste Isolation Pilot Plant underground facility  

SciTech Connect (OSTI)

Until recently, hydrologic characterization in closed sections of boreholes at the Waste Isolation Pilot Plant (WIPP) has relied on measurements of pressure and temperature to establish the permeability of the host geological formations. There were no provisions for monitoring tool compliance and salt creep resulting from borehole closure. The new permeability test tool used to characterize the WIPP underground facility has been equipped with a series of sensors to measure the movement of the tool with respect to the borehole and borehole wall movement. A FORTRAN program can interpret the output data from each test and calculate the change in borehole radius, test zone length, and test zone volume. These values provide a correlation of fluid compressibility and tool compliance with the permeability results derived from the test data. 4 figs., 3 tabs.

Jensen, A.L.

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493  

SciTech Connect (OSTI)

A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)

Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

2012-07-01T23:59:59.000Z

342

Summary - Disposal Practices at the Nevada Test Site  

Broader source: Energy.gov (indexed) [DOE]

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

343

DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05  

Office of Legacy Management (LM)

Maryland Disposal Site - MD 05 Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to MARYLAND DISPOSAL SITE MD.05-1 - Report (DOE/OR/20722-131 Revision 0); Site Plan for the Maryland Disposal Site; April 1989 Historical documents may contain links which are no longer valid or to

344

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

345

LANL completes excavation of 1940s waste disposal site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL completes excavation LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communicatons Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos National Laboratory has completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B). The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for Manhattan Project and Cold War-era research and

346

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

347

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

348

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

349

Disposal Practices at the Nevada Test Site 2008  

Broader source: Energy.gov (indexed) [DOE]

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

350

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

351

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

352

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

353

Reactor Pressure Vessel Head Packaging & Disposal  

SciTech Connect (OSTI)

Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

2003-02-26T23:59:59.000Z

354

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

355

Iraq nuclear facility dismantlement and disposal project  

SciTech Connect (OSTI)

The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

2007-07-01T23:59:59.000Z

356

Will new disposal regulations undo decades of progress?  

SciTech Connect (OSTI)

In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

Ward, J. [John Ward Inc. (United States)

2009-07-01T23:59:59.000Z

357

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect (OSTI)

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

358

Commercial low-level radioactive waste disposal in the US  

SciTech Connect (OSTI)

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01T23:59:59.000Z

359

System design for disposal of tritium at TFTR  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) has cleanup systems which convert tritium gas to the oxide form and absorb it on molecular sieve beds. These beds are regenerated by transferring their moisture content to disposable sieve beds. Preparing this sieve for disposal can be awkward and hazardous. Monitoring the tritium and moisture content of the disposable sieve is not straightforward. Modifications to the regeneration system at the TFTR are being made to address these concerns and others relating to maintainability.

Tuohy, J.M.; Cherdack, R.; Lacy, N.H.

1988-09-01T23:59:59.000Z

360

Dredged and Fill Material Disposal (North Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting This chapter provides regulations for the disposal of dredged and fill

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...  

Open Energy Info (EERE)

Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

362

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

363

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

364

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Broader source: Energy.gov [DOE]

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

365

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

366

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

367

Erosion Control and Revegetation at DOE's Lowman Disposal Site...  

Office of Environmental Management (EM)

Site, Lowman, Idaho More Documents & Publications Title I Disposal Sites Annual Report Long-Term Surveillance and Maintenance Program 2003 Report Revegetation of the Rocky Flats...

368

Disposal Practices at the Savannah River Site | Department of...  

Office of Environmental Management (EM)

Site More Documents & Publications Compilation of ETR Summaries Disposal Practices at the Nevada Test Site 2008 Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...

369

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

370

Workshop on borehole measurements and interpretation in scientific drilling - identification of problems and proposals for their solution: proceedings  

SciTech Connect (OSTI)

Critical instrumentation needs for borehole-oriented, geoscience research were identified in a program consisting of formal presentations, psoter sessions and a workshop. The proceedings include results of the workshops, abstracts of the papers and poster sessions, and the attendance list. Details of any of the presentations should be obtained from the individual authors. Separate entries were prepared for individual presentations.

Cooper, D.L.; Traeger, R.K. (eds.)

1984-03-01T23:59:59.000Z

371

Detection and quantification of 3D hydraulic fractures with multi-component low-frequency borehole resistivity measurements  

E-Print Network [OSTI]

-bearing shale but no commercial in-situ borehole methods are available except microseismic monitoring to enhance hydrocarbon production from organic shales and tight-gas sands. While hydro-fracture technology and arbitrarily-oriented fractures in electrically complex backgrounds, such as in anisotropic layered media

Torres-Verdín, Carlos

372

Measurement of 238U, 232Th and 40K in boreholes at Gosa and Lugbe, Abuja, north central Nigeria  

Science Journals Connector (OSTI)

......boreholes to augment public water supplies which...beneath the 300 areas, Hanford Site, Washington...partners Coordinating Meeting, Daily Triumph Newspaper...Geol. Surv. of Nig. Public. 11-43. 17 Caby R...Soc. Lond. Speci. Public. (2008) 294:121-136......

Omeje Maxwell; Husin Wagiran; Noorddin Ibrahim; Siak Kuan Lee; Soheil Sabri

2013-12-01T23:59:59.000Z

373

Numerical simulation of borehole acoustic logging in the frequency and time domains with hp-adaptive finite elements  

E-Print Network [OSTI]

Numerical simulation of borehole acoustic logging in the frequency and time domains with hp elasticity Coupled problems hp-adaptive finite elements a b s t r a c t Accurate numerical simulation physical modeling combined with accurate and efficient numerical dis- cretization and solution techniques

Torres-Verdín, Carlos

374

INTERNATIONALJOURNAL FOR NUMERICALAND ANALYTICAL METHODS IN GEOMECHANICS. VOL 17, 659-667 (1993) TENSILE STRESSES AROUND BOREHOLES DUE  

E-Print Network [OSTI]

to the efficient recovery of coalbed methane, and the avoidance of borehole stability problems in conventional gas naturally in coal. Specifically,Logan et al." give a description of a coalbed methane completion technology called 'openhole cavity completion'. In this techno- logy, a coalbed methane well is shut-in so

Chan, Derek Y C

375

Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using a Novel Approximation Technique  

E-Print Network [OSTI]

Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using of subsurface geophysical problems have been reported, including 3D EM scattering in the presence of complex introduces a novel efficient 3D EM approx- imation based on a new integral equation formulation. The main

Torres-Verdín, Carlos

376

Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifiers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ISSUES RELATED TO SEISMIC ACTIVITY INDUCED BY THE INJECTION ISSUES RELATED TO SEISMIC ACTIVITY INDUCED BY THE INJECTION OF CO 2 IN DEEP SALINE AQUIFERS Joel Sminchak (sminchak@battelle.org; 614-424-7392) Neeraj Gupta (gupta@battelle.org; 614-424-3820) Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Charles Byrer (a) and Perry Bergman (b) National Energy Technology Laboratory (a) P.O. Box 880, Morgantown, WV, 26507-0880 (b) P.O. Box 10940, Pittsburgh, PA, 15236-0940 Abstract Case studies, theory, regulation, and special considerations regarding the disposal of carbon dioxide (CO 2 ) into deep saline aquifers were investigated to assess the potential for induced seismic activity. Formations capable of accepting large volumes of CO 2 make deep well injection of CO 2 an attractive option. While seismic implications must be considered for injection

377

Borehole Stability Analysis in a Thermo-Poro-Elastic Dual Porosity Medium  

E-Print Network [OSTI]

and focus mainly on reservoirs represented by saturated rocks with a single porosity [2, 3, 4, 5, 6, 7, 8, 9 reservoirs, management of nuclear waste disposal in a clay buffer, and geothermal hot dry rock energy (2012) 65-76" #12;of saturated porous rocks with a single porosity, highlighting the importance

Boyer, Edmond

378

Isotropic Events Observed with a Borehole Array in the Chelungpu Fault Zone, Taiwan  

Science Journals Connector (OSTI)

...velocities, density, porosity, and permeability measured at a deep...for hydrocarbon reservoirs . Comput. Geosci...Stress-dependence of the permeability and porosity of sandstone and...Hole-A . Int. J. Rock Mech. Mining Sci...

Kuo-Fong Ma; Yen-Yu Lin; Shiann-Jong Lee; Jim Mori; Emily E. Brodsky

2012-07-27T23:59:59.000Z

379

Pressure perturbations from geologic carbon sequestration: Area-of-review boundaries and borehole leakage driving forces  

SciTech Connect (OSTI)

We investigate the possibility that brine could be displaced upward into potable water through wells. Because of the large volumes of CO2 to be injected, the influence of the zone of elevated pressure on potential conduits such as well boreholes could extend many kilometers from the injection site-farther than the CO2 plume itself. The traditional approach to address potential brine leakage related to fluid injection is to set an area of fixed radius around the injection well/zone and to examine wells and other potentially open pathways located in the ''Area-of-Review'' (AoR). This suggests that the AoR eeds to be defined in terms of the potential for a given pressure perturbation to drive upward fluid flow in any given system rather than on some arbitrary pressure rise. We present an analysis that focuses on the changes in density/salinity of the fluids in the potentially leaking wellbore.

Nicot, J.-P.; Oldenburg, C.M.; Bryant, S.L.; Hovorka, S.D.

2009-07-01T23:59:59.000Z

380

System for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents [OSTI]

In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

2012-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Device and method for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents [OSTI]

In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

2010-11-23T23:59:59.000Z

382

System for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents [OSTI]

In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt T. (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

2012-07-31T23:59:59.000Z

383

Sludge utilization and disposal in Virginia  

SciTech Connect (OSTI)

This state-of-the-art study was initiated to determine the problem issues, present knowledge about the issues, and additional research needs in the area of land disposal of municipal sewage sludge. Three questionnaires were developed to survey technically oriented professional, county extension agents, and Virginia NPDES permit holders to obtain these groups' views on problems and deficiencies needing further investigation. Another phase of the study was to conduct an extensive review of the literature on the subject of land application of sewage sludge. Listings of pertinent literature relating to land application with specific interest toward potentially toxic metals, pathogens, nitrogen, and phosphorus were obtained and reviewed. Additional research is needed in the following areas: a method that accurately estimates metal availability within the soil; a method to determine the potential for a disease outbreak from controlled application of treated municipal sewage sludge; a more precise method of N-balancing; the impact of P loading on water quality.

Martens, D.C.; McCart, G.D.; Reneau, R.B. Jr; Simpson, T.W.; Ban-Kiat, T.

1982-10-01T23:59:59.000Z

384

Results of hydraulic tests at Gibson Dome No. 1, Elk Ridge No. 1, and E. J. Kubat boreholes, Paradox Basin, Utah  

SciTech Connect (OSTI)

Hydraulic testing was conducted in three boreholes in southeastern Utah to provide a portion of the data needed to characterize the hydrogeology of the Elk Ridge and Gibson Dome areas of the western Paradox Basin, Utah. The tests at the E. J. Kubat borehole yielded representative values of transmissivity, hydraulic conductivity, storativity, and potentiometric levels of the Leadville Limestone. Testing at Elk Ridge No. 1 provided values of similar parameters for the combined thickness of the upper Honaker Trail, Elephant Canyon, and Cedar Mesa formations. Composite transmissivities of similar zones from these borehole tests compared closely with the results of testing at borehole GD-1. A comparison of results from lab tests on core with results of extensive borehole testing at GD-1 indicates that short-term drill stem tests in a single well can provide representative estimates of bulk transmissivities and hydraulic conductivities in this field area for test zones that have a hydraulic conductivity of greater than about 1 x 10/sup -7/ cm/sec. However, lab tests produce more representative values of effective porosity and matrix permeability of individual strata. Results of lab tests and long-term borehole tests confirm that the lower Honaker Trail and upper Paradox formations have extremely low conductivities in the vicinity of the GD-1 borehole. The results of these tests were complete as of January 1981. 22 references, 29 figures, 5 tables.

Thackston, J.W.; Preslo, L.M.; Hoexter, D.E.; Donnelly, N.

1984-03-01T23:59:59.000Z

385

Knowledge management for radioactive waste disposal: moving from theory to practice  

Science Journals Connector (OSTI)

The exponential growth in the knowledge base for radioactive waste management is a cause for concern in many national programmes. In Japan, this problem is exacerbated by a volunteering approach to siting of a deep geological repository, which requires particular flexibility in the tailoring of site characterisation plans, repository concepts and associated Performance Assessments (PAs). Recognition of this situation led, in 2005, to initiation by Japan Atomic Energy Agency (JAEA) of an ambitious project to develop an advanced Knowledge Management System (KMS) aimed to facilitate its role as the supplier of background R&D support to both regulators and implementers of geological disposal. The paper will review progress to date in this work, with emphasis on tailoring of existing Knowledge Engineering tools and methods to radioactive waste management requirements, and outline future developments and challenges.

Hitoshi Makino; Kazumasa Hioki; Hiroyuki Umeki; Hiroyasu Takase; Ian G. McKinley

2011-01-01T23:59:59.000Z

386

RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS  

SciTech Connect (OSTI)

Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization (FGD) by-product disposed in the Midwest, and a mixture of Class C fly ash and wet process FGD by-product codisposed in North Dakota, appeared relatively unchanged mineralogically over the up to 5 and 17 years of emplacement, respectively. Each of these two materials contained mineralogies consistent with short-term hydration products of their respective starting (dry) materials. The hydration product ettringite persisted throughout the duration of emplacement at each site, and the diagenetic ash alteration product thaumasite did not form at either site. Explanations for the absence of thaumasite in these two sites include a lack of significant carbonate, sulfate, and alkalinity sources in the case of the North Dakota site, and a lack of sulfate, alkalinity, and sufficient moisture in the Midwest site. Potential for future thaumasite formation in these materials may exist if placed in contact with cold, wet materials containing the missing components listed above. In the presence of the sulfite scrubber mineral hannebachite, the ettringites formed had crystallographic unit cell dimensions smaller than those of pure sulfate ettringite, suggesting either incorporation of sulfite ions into the ettringite structure, or incorporation of silicon and carbonate ions, forming a solid solution towards thaumasite.

Gregory J. McCarthy; Dean G. Grier

2001-01-01T23:59:59.000Z

387

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

388

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

389

A model approach to radioactive waste disposal at Sellafield  

E-Print Network [OSTI]

A model approach to radioactive waste disposal at Sellafield R. 5. Haszeldine* and C. Mc of the great environmentalproblems of our age is the safe disposal of radioactive waste for geological time periods. Britain is currently investigating a potential site for underground burial of waste, near

Haszeldine, Stuart

390

User Guide for Disposal of Unwanted Items and Electronic Waste  

E-Print Network [OSTI]

is the Recycle department at 502-6808 o For more information on the UCSF Sustainability program visit: http://sustainability.ucsf.edu/stay_informed/recycling_resources consulting support Ensuring proper reuse, recycle, or disposal Maintaining regulatory and policy compliance metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o

Mullins, Dyche

391

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

392

2009 Performance Assessment for the Saltstone Disposal Facility |  

Broader source: Energy.gov (indexed) [DOE]

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

393

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

394

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

395

Summary - Disposal Practices at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did This Review Disposal operations have been ongoing at the Savannah River Site (SRS) for over 50 years. Active disposal in E-Area, is near the center of the site. Although a wide range of wastes are being managed at the SRS, only low level radioactive wastes (LLRW) are disposed of on site. Wastes are disposed of in unlined slit and engineered trenches, and in low activity waste and intermediate level vaults. Some wastes are isolated in place with grout and all wastes will be covered with a cap that includes a hydraulic barrier to limit precipitation infiltration. The objective of this review was to

396

Low-Level Waste Disposal Facility Federal Review Group Manual  

Broader source: Energy.gov (indexed) [DOE]

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

397

NNSA Reaches LEU Disposal Milestone | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reaches LEU Disposal Milestone | National Nuclear Security Reaches LEU Disposal Milestone | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone November 08, 2004 Aiken, SC NNSA Reaches LEU Disposal Milestone The National Nuclear Security Administration's reached an important

398

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE | Department  

Broader source: Energy.gov (indexed) [DOE]

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE December 1, 2010 - 12:00pm Addthis OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation. EMWMF has continued a long-standing pattern of safe, complaint operations with 3,000 days without a lost workday case since operations commenced on May 28, 2002. The EMWMF has placed 1.5 million tons of waste and fill in the facility. The EMWMF receives waste from many Oak Ridge cleanup projects, including American Recovery and Reinvestment Act-funded projects, multiple

399

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

400

Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area  

SciTech Connect (OSTI)

Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl– might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl– in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl– concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl– concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl– was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl– remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl– in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area.

Larry C. Hull; Carolyn W. Bishop

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Site characterization of the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the investigations conducted to characterize the geologic barrier of the Yucca Mountain disposal system. Site characterization progressed through (1) non-intrusive evaluation and borehole completions to determine stratigraphy for site identification; (2) exploration from the surface through well testing to evaluate the repository feasibility; (3) underground exploration to study coupled processes to evaluate repository suitability; and (4) reporting of experimental conclusions to support the repository compliance phase. Some of the scientific and technical challenges encountered included the evolution from a small preconstruction characterization program with much knowledge to be acquired during construction of the repository to a large characterization program with knowledge acquired prior to submission of the license application for construction authorization in June 2008 (i.e., the evolution from a preconstruction characterization program costing <$0.04×109 as estimated by the Nuclear Regulatory Commission in 1982 to a thorough characterization, design, and analysis program costing $11×109—latter in 2010 constant dollars). Scientific understanding of unsaturated flow in fractures and seepage into an open drift in a thermally perturbed environment was initially lacking, so much site characterization expense was required to develop this knowledge.

Rob P. Rechard; Hui-Hai Liu; Yvonne W. Tsang; Stefan Finsterle

2014-01-01T23:59:59.000Z

402

Selection of a method for disposing of leachate grout  

SciTech Connect (OSTI)

A major component of the selected remedy for the remediation of the Maxey Flats Disposal Site (MFDS) is the removal, solidification, and on-site disposal of an estimated 3000000 gal of trench leachate. The Record of Decision (ROD) and its predecessor, the Maxey Flats Feasibility Study Report, proposed as a representative process option that the trench leachate be solidified in the form of large (8 x 8 x 4 ft) concrete blocks and disposed of in trenches. The U.S. Environmental Protection Agency (EPA) had recent experience with this method when solidifying and disposing of {approximately}300000 gal of leachate that was stored in above-ground tanks at the MFDS. The EPA experience proved the capability of a U.S. Nuclear Regulatory Commission (NRC)-approved grout mix to satisfy the requirements of 10CFR61.55-56 for the Class-A liquid waste at the site, i.e., the leachate. However, a technical evaluation of the overall solidification/disposal process implemented by the EPA identified some steps that should be improved if this method is to be implemented safely and efficiently for the solidification and disposal of trench leachate as part of the remedial action. In the light of the EPA experience, the present study modified the option proposed in the ROD to make it more workable. This study also evaluated other methods, including three methods for above grade disposal.

Cockrell, R.G.

1994-12-31T23:59:59.000Z

403

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect (OSTI)

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

404

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

405

Fluorescent ballast and lamp disposal issues  

SciTech Connect (OSTI)

All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the US alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these problems target commercial/industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the US, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a one by one, retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects, federal, state, and local regulators are reevaluating the impacts and are being asked to promulgate policies to specifically address this situation.

Leishman, D.L. [Alta Resource Management Services, Inc., Springfield, MA (United States)

1996-12-01T23:59:59.000Z

406

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

407

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Rivera, M.A. (Lamb Associates, Inc., Rockville, MD (United States))

1993-01-01T23:59:59.000Z

408

Estimation of Dry-Rock Elastic Moduli Based on the Simulation of Mud-Filtrate Invasion Effects on Borehole Acoustic Logs  

E-Print Network [OSTI]

Effects on Borehole Acoustic Logs Tobiloluwa Odumosu, SPE, Carlos Torres-Verdín, SPE, Jesús M Salazar, SPE. Jun Ma, Ben Voss, and Gong Li Wang, SPE, The University of Texas at Austin Copyright 2007, Society

Torres-Verdín, Carlos

409

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

410

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine...

411

Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

1995-01-01T23:59:59.000Z

412

Analysis of fruitland water production treatment and disposal, San Juan Basin. Topical report, October 1991-March 1993  

SciTech Connect (OSTI)

The San Juan Basin produces more coalbed methane than the rest of the world combined. Brackish water is produced with the gas. Water production climbed from 40,000 barrels per day in 1989 to 115,000 bpd by late 1992. Underground injection is used to dispose of virtually all the produced water. Water production is projected to increase to 180,000 bpd in 1995. 650 million to 1.1 billion barrels are projected to be produced over the next 20 years. Restricted injection capacity and aquifer storage capacity may necessitate additional disposal wells and, ultimately, other methods to dispose of the water. Alternative treatment technologies, especially electrodialysis and/or reverse osmosis, may be applicable at costs of $0.17 to $0.22 per barrel, a considerable savings over the $0.80 to $1.00/bbl cost of deep injection. With suitable treatment, the majority of the produced water could be made suitable for agricultural or municipal uses. Reservoir analysis and simulations indicate stimulations can be optimized, and that heating water prior to injection might increase injectivity in some wells.

Cox, D.O.; Decker, A.D.; Stevens, S.H.

1993-06-01T23:59:59.000Z

413

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect (OSTI)

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

414

Analysis of alternatives for immobilized low activity waste disposal  

SciTech Connect (OSTI)

This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

Burbank, D.A.

1997-10-28T23:59:59.000Z

415

Demilitarization and disposal technologies for conventional munitions and energetic materials  

SciTech Connect (OSTI)

Technologies for the demilitarization and disposal of conventional munitions and energetic materials are presented. A hazard separation system has been developed to remove hazardous subcomponents before processing. Electronic component materials separation processes have been developed that provide for demilitarization as well as the efficient recycling of materials. Energetic materials demilitarization and disposal using plasma arc and molten metal technologies are currently being investigated. These regulatory compliant technologies will allow the recycling of materials and will also provide a waste form suitable for final disposal.

Lemieux, A.A.; Wheelis, W.T.; Blankenship, D.M.

1994-09-01T23:59:59.000Z

416

Research and Application of Auger-air Drilling and Sieve Tube Borehole Protection in Soft Outburst-prone Coal Seams  

Science Journals Connector (OSTI)

Abstract Hole accidents during drilling and borehole collapse during extracting are bottlenecks restricting gas drainage efficiency in soft outburst-prone coal seams in China. The auger-air combined drilling technique and sieve tube mounting method are an alternative solution to these technology bottlenecks. The auger-air drilling technique combines the advantages of “dry style” auger drilling and air drilling. Specially designed blade in drill rod can stir up large particles of coal so that large particles can be brought to ground smoothly using compressed air and is efficient to prevent borehole accidents. After drilling is completed, the sieve tube is tripped in through the inner hole of drilling pipes, and then lifting up drilling pipes, the tube sieve will provide a complete tunnel for gas extraction. Field application proves that with proper drilling parameter selection and appropriate tube install control, it is more promising to double drilling depth and raise gas drainage efficiency.

Ji Qianhui

2014-01-01T23:59:59.000Z

417

Integrated hydrothermal model for proposed deep crustal borehole on Texas Gulf Coast - origins of geopressured brines and lead-zinc, uranium, hydrocarbon, and cap-rock deposits  

SciTech Connect (OSTI)

Sediment accumulation over Jurassic salt in the Gulf coast has resulted in an interrelated sequential development of salt domes and diagenetic, hydrothermal, and hydrocarbon generation zones. Primary anhydrites within the salt with high /sup 87/Sr//sup 86/Sr ratios suggest early generation of underlying fluids rich in radiogenic strontium that were incorporated in the salt during its diapiric rise to the surface. Subsequently, late-stage, hydrocarbon-rich, saline hydrothermal fluids migrated up the margins of the salt domes, and caused precipitation of several generation of calcite cements, followed by uranium and Mississippi Valley-type lead-zinc-barite deposits near or at salt dome rims. Present fluids in the lower Frio (deeper than 4270 m or 14,000 ft) at the Pleasant Bayou geopressured-geothermal test well (Brazoria County, Texas) are highly saline and enriched in iron, manganese, lead, zinc, and carbon dioxide, and are saturated in methane. These lower Frio waters must have migrated into the area recently because they are not in isotopic equilibrium with diagenetic albite cements formed at temperatures greater than 120/sup 0/C (248/sup 0/F) less than 7.5 million years ago. Isotopic and geochemical data suggest that the fluids trapped by geopressure in the lower Frio at the Pleasant Bayou well are the parent fluids of those causing salt dome cap-rock mineralization.

Light, M.P.R.; Posey, H.H.

1986-05-01T23:59:59.000Z

418

Stimulation Technologies for Deep Well Completions  

SciTech Connect (OSTI)

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

419

Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico)  

Science Journals Connector (OSTI)

......Physics, Rheology, Heat Flow...applied to invert the matrix...scientific deep drilling with dense...for dry and fluid-saturated...for dry and fluid-saturated...cylindrical or flat surfaces of...associated with drilling (and in particular...rock sample fluid-saturation...Yaxcopoil-1 drilling site, Chicxulub......

Yu. Popov; R. Romushkevich; D. Korobkov; S. Mayr; I. Bayuk; H. Burkhardt; H. Wilhelm

2011-02-01T23:59:59.000Z

420

Preliminary Estimates of Specific Discharge and TransportVelocities near Borehole NC-EWDP-24PB  

SciTech Connect (OSTI)

This report summarizes fluid electrical conductivity (FEC)and thermal logging data collected in Borehole NC-EWDP-24PB, locatedapproximately 15 km south of the proposed repository at Yucca Mountain.Preliminary analyses of a small fraction of the FEC and temperature dataindicate that relatively large, localized fluid fluxes are likely toexist at this location. The implication that considerable flow is inducedby small gradients, and that flow is highly localized, is significant forthe estimation of groundwater transport velocities and radionuclidetravel times. The sensitivity of the data to potential perturbationsduring testing (i.e., internal wellbore flow in the case of FEC data, andbuoyancy effects in the case of thermal logging data) make it difficultto conclusively derive fluid fluxes and transport velocities without adetailed analysis of all data and processes involved. Such acomprehensive analysis has not yet been performed. However, thepreliminary results suggest that the ambient component of the estimatedflow rates is significant and on the order of liters per minute, yieldinggroundwater transport velocities in the range of kilometers per year. Oneparticular zone in the Bullfrog tuff exhibits estimated velocities on theorder of 10 km/yr. Given that the preliminary estimates of ambient flowrates and transport velocities are relatively high, and considering thepotential impact of high rates and velocities on saturated-zone flow andtransport behavior, we recommend that a comprehensive analysis of all theavailable data be performed. Moreover, additional data sets at otherlocations should be collected to examine whether the current data set isrepresentative of the regional flow system near YuccaMountain.

Freifeld, Barry; Doughty, Christine; Finsterle, Stefan

2006-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Borehole gravity meter survey in drill hole USW G-4, Yucca Mountain Area, Nye County, Nevada  

SciTech Connect (OSTI)

Drill hole USW G-4 was logged with the US Geological Survey borehole gravity meter (BHGM) BH-6 as part of a detailed study of the lithostratigraphic units penetrated by this hole. Because the BHGM measures a larger volume of rock than the conventional gamma-gamma density tool, it provides an independent and more accurate measurement of the in situ average bulk density of thick lithologic units. USW G-4 is an especially important hole because of its proximity to the proposed exploratory shaft at Yucca Mountain. The BHGM data were reduced to interval densities using a free-air gradient (F) of 0.3083 mGal./m (0.09397 mGal/ft) measured at the drill site. The interval densities were further improved by employing an instrument correction factor of 1.00226. This factor was determined from measurements obtained by taking gravity meter BH-6 over the Charleston Peak calibration loop. The interval density data reported herein, should be helpful for planning the construction of the proposed shaft.

Healey, D.L.; Clutsom, F.G.; Glover, D.A.

1986-12-31T23:59:59.000Z

422

Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-Kilometer-Deep Fault  

Science Journals Connector (OSTI)

...downwards to 3.360 kmbls, the borehole intersected three faults. The borehole was uncased from 10 m below the outlet...flowed over the 12 months following drilling, producing 106 liters (2,400 borehole volumes) of 54C, anaerobic water...

Duane P. Moser; Thomas M. Gihring; Fred J. Brockman; James K. Fredrickson; David L. Balkwill; Michael E. Dollhopf; Barbara Sherwood Lollar; Lisa M. Pratt; Erik Boice; Gordon Southam; Greg Wanger; Brett J. Baker; Susan M. Pfiffner; Li-Hung Lin; T. C. Onstott

2005-12-01T23:59:59.000Z

423

Integrated process for coalbed brine disposal  

SciTech Connect (OSTI)

A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

Brandt, H. [AQUATECH Services, Inc., Fair Oaks, CA (United States)]|[California Univ., Davis, CA (United States). Dept. of Mechanical Engineering; Bourcier, W.L.; Jackson, K.J. [Lawrence Livermore National Lab., CA (United States)

1994-03-01T23:59:59.000Z

424

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Broader source: Energy.gov (indexed) [DOE]

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

425

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Broader source: Energy.gov (indexed) [DOE]

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

426

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

427

Disposing of nuclear waste in a salt bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

428

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Broader source: Energy.gov (indexed) [DOE]

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

429

Disposal Systems Evaluations and Tool Development - Engineered Barrier  

Broader source: Energy.gov (indexed) [DOE]

Disposal Systems Evaluations and Tool Development - Engineered Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes. This report also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of

430

Integration of EBS Models with Generic Disposal System Models | Department  

Broader source: Energy.gov (indexed) [DOE]

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

431

Integration of EBS Models with Generic Disposal System Models | Department  

Broader source: Energy.gov (indexed) [DOE]

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

432

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Broader source: Energy.gov (indexed) [DOE]

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

433

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Broader source: Energy.gov [DOE]

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

434

Proof of Proper Solid Waste Disposal (West Virginia)  

Broader source: Energy.gov [DOE]

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

435

Burning Chemical Waste Disposal Site: Investigation, Assessment and Rehabilitation  

Science Journals Connector (OSTI)

A series of underground fires on a site previously used for disposal of chemical wastes from the nylon industry was causing a nuisance and restricting the commercial development of the site and adjacent areas....

D. L. Barry; J. M. Campbell; E. H. Jones

1990-01-01T23:59:59.000Z

436

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network [OSTI]

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

437

Figure ES2. Annual Indices of Real Disposable Income, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

438

Nuclear Waste Disposal: Yucca Blowup Theory Bombs, Says Study  

Science Journals Connector (OSTI)

...leaked into the storage area, the depleted uranium would quickly saturate it, making...disposing of the 400,000 tons of depleted uranium left over from the arms race...andotherbranches ofthe Public Health Service must demonstrate that...

Gary Taubes

1996-03-22T23:59:59.000Z

439

Design and Installation of a Disposal Cell Cover Field Test ...  

Broader source: Energy.gov (indexed) [DOE]

through March 3, 2011, Phoenix, Arizona. C.H. Benson, W.J. Waugh, W.H. Albright, G.M. Smith, R.P. Bush Design and Installation of a Disposal Cell Cover Field Test More Documents...

440

Draft Environmental Impact Statement for the Disposal of Greater...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Friday, February 18, 2011 Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste WASHINGTON The...

Note: This page contains sample records for the topic "deep borehole disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Disposable Bioreactors for Inoculum Production and Protein Expression  

Science Journals Connector (OSTI)

Table 1 summarizes the disposable bioreactors available on the market today for animal cells and culture volumes from 2.5 mL up to 500 L. If traditional ...

Regine Eibl; Dieter Eibl

2007-01-01T23:59:59.000Z

442

Salt disposal of heat-generating nuclear waste.  

SciTech Connect (OSTI)

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

443

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect (OSTI)

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

444

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect (OSTI)

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

445

A New Greenland Deep Ice Core  

Science Journals Connector (OSTI)

...isotopic profile with that from camp Century and with a deep-sea foraminifera...deep-sea cores. The redated Camp Century record suggests a dramatic termination...CENTURIES OF CLIMATIC RECORD FROM CAMP CENTURY ON GREENLAND ICE SHEET, SCIENCE...

W. Dansgaard; H. B. Clausen; N. Gundestrup; C. U. Hammer; S. F. Johnsen; P. M. Kristinsdottir; N. Reeh

1982-12-24T23:59:59.000Z

446

Deep-web search engine ranking algorithms  

E-Print Network [OSTI]

The deep web refers to content that is hidden behind HTML forms. The deep web contains a large collection of data that are unreachable by link-based search engines. A study conducted at University of California, Berkeley ...

Wong, Brian Wai Fung

2010-01-01T23:59:59.000Z

447

University of Delaware Laboratory Chemical Waste Disposal Guide ALL CHEMICAL WASTE MUST BE DISPOSED OF THROUGH THE  

E-Print Network [OSTI]

experiments and procedures Non-Returnable gas cylinders Batteries Spent solvents, Stains, Strippers, Thinners, Fertilizers Formaldehyde and Formalin Solutions Mercury containing items (other heavy metals) Liquid OR SMALL CONTAINERS IMPORTANT: DO NOT DISPOSE OF REACTIVE, AIR SENSITIVE, OR OXIDIZER SAMPLES

Firestone, Jeremy

448

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance  

Broader source: Energy.gov [DOE]

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance

449

Analysis of environmental regulations governing the disposal of geothermal wastes in California  

SciTech Connect (OSTI)

Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

Royce, B.A.

1985-09-01T23:59:59.000Z

450

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

451

Deep Web Entity Monitoring Mohammadreza Khelghati  

E-Print Network [OSTI]

Deep Web Entity Monitoring Mohammadreza Khelghati Database Group University of Twente, Netherlands. This data is defined as hidden web or deep web which is not accessible through search engines. It is estimated that deep web contains data in a scale several times bigger than the data accessible through

Hiemstra, Djoerd

452

Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs  

SciTech Connect (OSTI)

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

1997-10-01T23:59:59.000Z

453

A chemostratigraphic investigation of the prehistoric Vavalaci lava sequence on Mount Etna: Simulating borehole drilling  

Science Journals Connector (OSTI)

Scientific drilling of volcanic successions has been suggested as a way of establishing stratigraphic sequences of unexposed lava flows on large complex volcanoes, with the aim of in-depth study of magmatic processes and source geochemistry of otherwise inaccessible lava sequences. To simulate the core drilling of such sequences, lava flows from the prehistoric Vavalaci Centre exposed in the south wall of the Valle del Bove, Mount Etna, Sicily, were sampled in four stratigraphic sections. The fresh, generally strongly porphyritic Na-alkaline trachybasalts and trachyandesites show diverging sub-parallel trends of high- and low-alkali concentrations in total alkali versus silica (TAS) diagrams, whilst variations of other major and trace elements reveal two further distinct chemical groups enriched in K, REE and Ti which follow separate fractionation paths. A set of control samples was used to establish geochemical variations within a single lava flow. Primitive mantle normalised incompatible element patterns demonstrate that the lavas have highly enriched OIB signatures with a clear division in LREE, Ba, Th, Nb and Zr concentrations between the four different chemical groups. Comparison of data for the Vavalaci lavas with the compositions of other prehistoric, historic and recent eruptions of Mt. Etna indicates a temporal trend towards more basic magma compositions. The chemostratigraphy of the lavas was statistically analysed to give correlations between flows from different sections. Whilst a good number of geologically meaningful correlations were revealed, we can demonstrate that only one set of lavas was actually sampled in all four sections, whilst a number of unique lavas remain uncorrelated. Thus no individual section, or simulated borehole core, provided samples of the complete lava flow sequence without significant gaps in the stratigraphy. The trends in lava compositions are also defined in the stratigraphy, showing their evolution from low- to high-alkali lavas through the series, which may be related to temporal decrease in degree of partial melting of the mantle rather than through simple fractionation processes or mixing of magmas.

Ann Spence; Hilary Downes

2011-01-01T23:59:59.000Z

454

Active Cores in Deep Fields  

E-Print Network [OSTI]

Deep field observations are an essential tool to probe the cosmological evolution of galaxies. In this context, X-ray deep fields provide information about some of the most energetic cosmological objects: active galactic nuclei (AGN). Astronomers are interested in detecting sufficient numbers of AGN to probe the accretion history at high redshift. This talk gives an overview of the knowledge resulting from a highly complete soft X-ray selected sample collected with ROSAT, XMM-Newton and Chandra deep fields. The principal outcome based on X-ray luminosity functions and space density evolution studies is that low-luminosity AGN evolve in a dramatically different way from high-luminosity AGN: The most luminous quasars perform at significantly earlier cosmic times and are most numerous in a unit volume at cosmological redshift z~2. In contrast, low-luminosity AGN evolve later and their space density peaks at z~0.7. This finding is also interpreted as an anti-hierarchical growth of supermassive black holes in the Universe. Comparing this with star formation rate history studies one concludes that supermassive black holes enter the cosmic stage before the bulk of the first stars. Therefore, first solutions of the so-called hen-egg problem are suggested. Finally, status developments and expectations of ongoing and future extended observations such as the XMM-COSMOS project are highlighted.

G. Hasinger; A. Mueller

2005-10-14T23:59:59.000Z

455

Uncanistered Spent Nuclear fuel Disposal Container System Description Document  

SciTech Connect (OSTI)

The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The