National Library of Energy BETA

Sample records for deep borehole disposal

  1. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  2. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  3. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  4. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    much of the enhanced geothermal focus on stimulating fracture development (e.g., fracking) at depth is not directly relevant to deep borehole disposal. For deep borehole...

  5. Canister design for deep borehole disposal of nuclear waste

    E-Print Network [OSTI]

    Hoag, Christopher Ian

    2006-01-01

    The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

  6. Minor actinide waste disposal in deep geological boreholes

    E-Print Network [OSTI]

    Sizer, Calvin Gregory

    2006-01-01

    The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

  7. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect (OSTI)

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  8. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  9. Deep Borehole Disposal Research: Demonstration Site Selection...

    Energy Savers [EERE]

    radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep...

  10. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect (OSTI)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (? 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  11. Regional Examples of Geological Settings for Nuclear Waste Disposal in Deep Boreholes

    E-Print Network [OSTI]

    Sapiie, B.

    This report develops and exercises broad-area site selection criteria for deep boreholes suitable for disposal of spent nuclear fuel and/or its separated constituents. Three candidates are examined: a regional site in the ...

  12. Optimization of deep boreholes for disposal of high-level nuclear waste

    E-Print Network [OSTI]

    Bates, Ethan Allen

    2015-01-01

    This work advances the concept of deep borehole disposal (DBD), where spent nuclear fuel (SNF) is isolated at depths of several km in basement rock. Improvements to the engineered components of the DBD concept (e.g., plug, ...

  13. An evaluation of the feasibility of disposal of nuclear waste in very deep boreholes

    E-Print Network [OSTI]

    Anderson, Victoria Katherine, 1980-

    2004-01-01

    Deep boreholes, 3 to 5 km into igneous rock, such as granite, are evaluated for next- generation repository use in the disposal of spent nuclear fuel and other high level waste. The primary focus is on the stability and ...

  14. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

  15. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Arnold, Bill W.; Brady, Patrick; Sutton, Mark; Travis, Karl; MacKinnon, Robert; Gibb, Fergus;...

  16. Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Daniel Boff AboutofPlumbingUtilities,Fuel CellBorehole

  17. Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Brady, Patrick Vane; Arnold, Bill Walter

    2012-09-01

    Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

  18. Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal

    E-Print Network [OSTI]

    Shaikh, Samina

    2007-01-01

    The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

  19. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Research Development and Demonstration Roadmap for Deep Borehole Disposal. Citation Details In-Document Search Title: Research Development and Demonstration Roadmap for Deep...

  20. Water borne transport of high level nuclear waste in very deep borehole disposal of high level nuclear waste

    E-Print Network [OSTI]

    Cabeche, Dion Tunick

    2011-01-01

    The purpose of this report is to examine the feasibility of the very deep borehole experiment and to determine if it is a reasonable method of storing high level nuclear waste for an extended period of time. The objective ...

  1. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Development and Demonstration Roadmap for Deep Borehole Disposal. Arnold, Bill W.; MacKinnon, Robert J.; Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE...

  2. Feasibility of very deep borehole disposal of US nuclear defense wastes

    E-Print Network [OSTI]

    Dozier, Frances Elizabeth

    2011-01-01

    This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement rock. Two canister options were analyzed ...

  3. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  4. A drop-in-concept for deep borehole canister emplacement

    E-Print Network [OSTI]

    Bates, Ethan Allen

    2011-01-01

    Disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock (i.e., "granite") is an interesting repository alternative of long standing. Work at MIT over the past two decades, and more recently ...

  5. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  6. Disposition of excess weapon plutonium in deep boreholes - site selection handbook

    SciTech Connect (OSTI)

    Heiken, G.; Woldegabriel, G.; Morley, R.; Plannerer, H.; Rowley, J.

    1996-09-01

    One of the options for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology needed to begin designing this means of disposition already exists, and there are many attractive sites available within the conterminous United States. There are even more potential sites for this option within Russia. The successful design of a borehole system must address two criteria: (1) how to dispose of 50 metric tons of weapons plutonium while making it inaccessible for unauthorized retrieval, and (2) how to prevent contamination of the accessible biosphere, defined here as the Earth`s surface and usable groundwaters.

  7. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  8. Deep Borehole Disposal (DBD) Performance Assessment

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015.

  9. Summary of NWTRB Deep Borehole Disposal Workshop

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015.

  10. Evaluation of Options for Permanent Geologic Disposal of Spent...

    Energy Savers [EERE]

    disposal concepts are addressed: mined repositories in three geologic media-salt, clayshale rocks, and crystalline (e.g., granitic) rocks-and deep borehole disposal in...

  11. Long-Term Monitoring Using Deep Seafloor Boreholes Penetrating the Seismogenic Zone

    E-Print Network [OSTI]

    Tsunogai, Urumu

    Long-Term Monitoring Using Deep Seafloor Boreholes Penetrating the Seismogenic Zone Masanao, because it has, until now, been impossible to penetrate to such depths below the sea floor. The Integrated Ocean Drilling Program (IODP), scheduled to begin in ,**-, plans to drill boreholes beneath the ocean

  12. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    SciTech Connect (OSTI)

    Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

    2008-01-01

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  13. Deep Borehole Disposal of Spent Fuel. Brady, Patrick V. Abstract...

    Office of Scientific and Technical Information (OSTI)

    Spent Fuel. Brady, Patrick V. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear Security Administration (NNSA)...

  14. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Content: Close Send 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...

  15. Deep Borehole Disposal of Nuclear Waste. Arnold, Bill Walter...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Waste. Arnold, Bill Walter; Brady, Patrick Vane. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear...

  16. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015Verizon andSectionBioenergy Technologies|

  17. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    E-Print Network [OSTI]

    International Atomic Energ Agency. Vienna

    2003-01-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a ...

  18. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    SciTech Connect (OSTI)

    Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

  19. Feasibility of lateral emplacement in very deep borehole disposal of high level nuclear waste

    E-Print Network [OSTI]

    Gibbs, Jonathan Sutton

    2010-01-01

    The U.S. Department of Energy recently filed a motion to withdraw the Nuclear Regulatory Commission license application for the High Level Waste Repository at Yucca Mountain in Nevada. As the U.S. has focused exclusively ...

  20. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    Shale Disposal Reference Case August 2014 Borehole activity: Oil and gas drilling targets for hydrocarbon resource

  1. Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report

    SciTech Connect (OSTI)

    Collins, A.G.; Crocker, M.E.

    1987-12-01

    The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

  2. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    SciTech Connect (OSTI)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  3. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  4. Characterization plan for the immobilized low-activity waste borehole

    SciTech Connect (OSTI)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy`s (DOE`s) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment.

  5. The Very Deep Hole Concept: Evaluation of an Alternative for Nuclear Waste Disposal

    E-Print Network [OSTI]

    1979-01-01

    OF AN ALTERNATIVE FOR NUCLEAR WASTE DISPOSAL M.T. O'Brien,OF AN ALTERNATIVE FOR NUCLEAR WASTE DISPOSAL M. T. O'Brien,from commercial nuclear wastes in geologic storage. Oak

  6. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  7. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect (OSTI)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Dever, L.G.; O`Neill, L.J. [DOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.; Tyler, S.W. [Desert Research Institute, Reno, NV (United States). Water Resources Center; Chapman, J. [Desert Research Institute, Las Vegas, NV (United States). Water Resources Center

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  8. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    DOE Patents [OSTI]

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  9. On the thermal impact on the excavation damaged zone around deep radioactive waste disposal

    E-Print Network [OSTI]

    Delage, Pierre

    2014-01-01

    Clays and claystones are considered in some countries (including Belgium, France and Switzerland) as a potential host rock for high activity long lived radioactive waste disposal at great depth. One of the aspects to deal with in performance assessment is related to the effects on the host rock of the temperature elevation due to the placement of exothermic wastes. The potential effects of the thermal impact on the excavated damaged zone in the close field are another important issue that was the goal of the TIMODAZ European research project. In this paper, some principles of waste disposal in clayey host rocks at great depth are first presented and a series of experimental investigations carried out on specific equipment specially developed to face the problem are presented. Both drained and undrained tests have been developed to investigate the drained thermal volume changes of clays and claystone and the thermal pressurization occurring around the galleries. This importance of proper initial saturation (un...

  10. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect (OSTI)

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  11. Method and system for advancement of a borehole using a high power laser

    DOE Patents [OSTI]

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  12. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    SciTech Connect (OSTI)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  13. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    SciTech Connect (OSTI)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  14. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  15. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (1739 Grandview #2, Idaho Falls, ID 83402)

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  16. The Waste Isolation Pilot Plant Deep Geological Repository: A Domestic and Global Blueprint for Safe Disposal of High-Level Radioactive Waste - 12081

    SciTech Connect (OSTI)

    Eriksson, Leif G. [Nuclear Waste Dispositions, Winter Park, Florida 32789 (United States); Dials, George E. [B and W Conversion Services, LLC, Lexington, Kentucky 40513 (United States)

    2012-07-01

    At the end of 2011, the world's first used/spent nuclear fuel and other long-lived high-level radioactive waste (HLW) repository is projected to open in 2020, followed by two more in 2025. The related pre-opening periods will be at least 40 years, as it also would be if USA's candidate HLW-repository is resurrected by 2013. If abandoned, a new HLW-repository site would be needed. On 26 March 1999, USA began disposing long-lived radioactive waste in a deep geological repository in salt at the Waste Isolation Pilot Plant (WIPP) site. The related pre-opening period was less than 30 years. WIPP has since been re-certified twice. It thus stands to reason the WIPP repository is the global proof of principle for safe deep geological disposal of long-lived radioactive waste. It also stands to reason that the lessons learned since 1971 at the WIPP site provide a unique, continually-updated, blueprint for how the pre-opening period for a new HLW repository could be shortened both in the USA and abroad. (authors)

  17. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

  18. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  19. Method and apparatus for suppressing waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.

    2005-10-04

    Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.

  20. Second ILAW Site Borehole Characterization Plan

    SciTech Connect (OSTI)

    SP Reidel

    2000-08-10

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

  1. Salt Disposal Investigations to Study Thermally Hot Radioactive Waste In A Deep Geologic Repository in Bedded Rock Salt - 12488

    SciTech Connect (OSTI)

    Nelson, Roger A. [DOE, Carlsbad Field Office, Carlsbad NM (United States); Buschman, Nancy [DOE, Office of Environmental Management, Washington DC (United States)

    2012-07-01

    A research program is proposed to investigate the behavior of salt when subjected to thermal loads like those that would be present in a high-level waste repository. This research would build upon results of decades of previous salt repository program efforts in the US and Germany and the successful licensing and operation of a repository in salt for disposal of defense transuranic waste. The proposal includes a combination of laboratory-scale investigations, numerical simulations conducted to develop validated models that could be used for future repository design and safety case development, and a thermal field test in an underground salt formation with a configuration that replicates a small portion of a conceptual repository design. Laboratory tests are proposed to measure salt and brine properties across and beyond the range of possible repository conditions. Coupled numerical models will seek to describe phenomenology (thermal, mechanical, and hydrological) observed in the laboratory tests. Finally, the field test will investigate many phenomena that have been variously cited as potential issues for disposal of thermally hot waste in salt, including buoyancy effects and migration of pre-existing trapped brine up the thermal gradient (including vapor phase migration). These studies are proposed to be coordinated and managed by the Carlsbad Field Office of DOE, which is also responsible for the operation of the Waste Isolation Pilot Plant (WIPP) within the Office of Environmental Management. The field test portion of the proposed research would be conducted in experimental areas of the WIPP underground, far from disposal operations. It is believed that such tests may be accomplished using the existing infrastructure of the WIPP repository at a lower cost than if such research were conducted at a commercial salt mine at another location. The phased field test is proposed to be performed over almost a decade, including instrumentation development, several years of measurements during heating and then subsequent cooling periods, and the eventual forensic mining back of the test bed to determine the multi-year behavior of the simulated waste/rock environment. Funding possibilities are described, and prospects for near term start-up are discussed. Mining of the access drifts required to create the test area in the WIPP underground began in November 2011. Because this mining uses existing WIPP infrastructure and labor, it is estimated to take about two years to complete the access drifts. WIPP disposal operations and facility maintenance activities will take priority over the SDI field test area mining. Funding of the SDI proposal was still being considered by DOE's Offices of Environmental Management and Nuclear Energy at the time this paper was written, so no specific estimates of the progress in 2012 have been included. (authors)

  2. Piezotube borehole seismic source

    DOE Patents [OSTI]

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  3. Appendix DATA Attachment A: WIPP Borehole Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A: WIPP Borehole Update United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment A: WIPP Borehole...

  4. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    SciTech Connect (OSTI)

    Fecht, K R; Lillie, J T

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area.

  5. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  6. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  7. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect (OSTI)

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  8. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  9. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  10. Development of a magnetostrictive borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  11. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  12. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  13. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  14. APPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE STORAGE SITE

    E-Print Network [OSTI]

    Nelson, P.H.

    2014-01-01

    letal Ore Deposits, 11 in Geophysics and Geochemistry in the11 Applications of Borehole Geophysics to Water-ResourcesAPPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE

  15. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Borehole geophysics...

  16. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals","Arnold, Bill W.; Brady, Patrick; Sutton, Mark; Travis, Karl; MacKinnon,...

  17. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research Geological Data Evaluation Alternative Waste Forms and Borehole Seals Arnold Bill W Brady Patrick Sutton Mark Travis Karl MacKinnon Robert Gibb...

  18. Kimama Well - Borehole Geophysics Database

    SciTech Connect (OSTI)

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  19. Kimberly Well - Borehole Geophysics Database

    SciTech Connect (OSTI)

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  20. Perspectives of Future R and D on HLW Disposal in Germany

    SciTech Connect (OSTI)

    Steininger, W.J. [Forschungszentrum Karlsruhe GmbH, Project Management Agency Forschungszentrum Karlsruhe (PTKA-WTE), Eggenstein-Leopoldshafen (Germany)

    2008-07-01

    The 5. Energy Research Program of the Federal Government 'Innovation and New Technology' is the general framework for R and D activities in radioactive waste disposal. The Ministry of Economics and Technology (BMWi), the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the Ministry of Education and Research (BMBF) apply the Research Program concerning their respective responsibilities and competences. With regard to the Government's obligation to provide repositories for HLW (spent fuel and vitrified HAW) radioactive waste basic and applied R and D is needed in order to make adequate knowledge available to implementers, decision makers and stakeholders in general. Non-site specific R and D projects are funded by BMWi on the basis of its Research Concept. In the first stage (1998 -2001) most R and D issues were focused on R and D activities related to HLW disposal in rock salt. By that time the R and D program had to be revised and some prioritization was demanded due to changes in politics. In the current version (2001 -2006) emphasize was put on non-saline rocks. The current Research Concept of BMWi is presently subjected to a sort of revision, evaluation, and discussion, inter alia, by experts from several German research institutions. This activity is of special importance against the background of streamlining and focusing the research activities to future demands, priorities and perspectives with regard to the salt concept and the option of disposing of HLW in argillaceous media. Because the status of knowledge on disposal in rock salt is well advanced, it is necessary to take stock of the current state-of-the-art. In this framework some key projects are being currently carried out. The results may contribute to future decisions to be made in Germany with respect to HLW disposal. The first project deals with the development of an advanced safety concept for a HLW waste repository in rock salt. The second project (also carried out in the frame of the 6. Framework Program of the European Commission) aims at completing and optimizing the direct disposal concept for spent fuel by a full-scale demonstration of the technology of emplacement in vertical boreholes. The third project is devoted to the development of a reference concept to dispose of HLW in deep geological repository in clay in Germany. In the following a brief overview is given on the achievements, the projects, and ideas about the consequences for HLW disposal in Germany. (author)

  1. Disposal rabbit

    DOE Patents [OSTI]

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  2. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  3. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  4. Granite disposal of U.S. high-level radioactive waste.

    SciTech Connect (OSTI)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

  5. Fracture compliance estimation using borehole tube waves

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

  6. A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record

    E-Print Network [OSTI]

    Huang, Shaopeng

    A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature,000 year reconstructions that integrate three types of geothermal information: a global database reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record, Geophys

  7. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    SciTech Connect (OSTI)

    David von Seggern

    2005-08-17

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount ({approx} 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two boreholes. Signal correlation with inter-borehole distance agrees with basic scattering theory, and the recorded signals across the wavefront correlate more strongly than those along the propagation path. Transfer functions computed from layered models for each borehole reflect some of the actual signal attributes fairly well, but many more signals need to be recorded and used to provide a good basis of comparison.

  8. The U-tube: A new paradigm in borehole fluid sampling

    SciTech Connect (OSTI)

    Freifeld, B. M.

    2009-10-01

    Fluid samples from deep boreholes can provide insights into subsurface physical, chemical, and biological conditions. Recovery of intact, minimally altered aliquots of subsurface fluids is required for analysis of aqueous chemistry, isotopic composition, and dissolved gases, and for microbial community characterization. Unfortunately, for many reasons, collecting geofluids poses a number of challenges, from formation contamination by drilling to maintaining integrity during recovery from depths. Not only are there substantial engineering issues in retrieval of a representative sample, but there is often the practical reality that fluid sampling is just one of many activities planned for deep boreholes. The U-tube geochemical sampling system presents a new paradigm for deep borehole fluid sampling. Because the system is small, its ability to integrate with other measurement systems and technologies opens up numerous possibilities for multifunctional integrated wellbore completions. To date, the U-tube has been successfully deployed at four different field sites, each with a different deployment modality, at depths from 260 m to 2 km. While the U-tube has proven to be highly versatile, these installations have resulted in data that provide additional insights for improving future U-tube deployments.

  9. Disposal phase experimental program plan

    SciTech Connect (OSTI)

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  10. Development of a geothermal acoustic borehole televiewer

    SciTech Connect (OSTI)

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  11. Experimental studies of the acoustic wave field near a borehole

    E-Print Network [OSTI]

    Zhu, Zhenya

    2013-01-01

    A monopole or a dipole source in a fluid borehole generates acoustic waves, part of which propagate along the borehole and the other part enter the formation propagating as P- or S-waves. The refracted waves propagating ...

  12. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  13. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory...

  14. Deepest Ocean Borehole to Plumb Earthquakes, Tsunamis

    E-Print Network [OSTI]

    Benoit-Bird, Kelly J.

    Deepest Ocean Borehole to Plumb Earthquakes, Tsunamis A grand challenge for Earth Sciences in devastating effects on heavily populated coastal areas from both ground shaking and tsunami. Robert Harris great earthquakes and tsunamis occur. Through Harris, COAS is involved in making fundamental temperature

  15. Advances in borehole geophysics for hydrology

    SciTech Connect (OSTI)

    Nelson, P.H.

    1982-01-01

    Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

  16. Canister, Sealing Method And Composition For Sealing A Borehole

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM); Wagh, Arun S. (Orland Park, IL)

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  17. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  18. Role of borehole geophysics in defining the physical characteristics...

    Open Energy Info (EERE)

    Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  19. Temperature Measurements in Boreholes: An Overview of Engineering...

    Open Energy Info (EERE)

    Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  20. Borehole sounding device with sealed depth and water level sensors

    DOE Patents [OSTI]

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  1. Borehole-Wall Imaging with Acoustic and Optical Televiewers for...

    Open Energy Info (EERE)

    International Symposium on Borehole Geophysics for Minerals, Geotechnical, and Groundwater Applications; Houston, Texas; 20001001 Published NA, 2000 DOI Not Provided Check...

  2. Short Note Microseismic monitoring of borehole fluid injections: Data ...

    E-Print Network [OSTI]

    2003-02-28

    mal or hydrocarbon reservoir operations has grown consider- ably over the last several years. The observation of microseis- micity occurring during borehole ...

  3. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  4. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  5. Appendix DATA Attachment A: WIPP Borehole Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal Facility Agreement and Consent04A: WIPP Borehole

  6. RESEARCH PAPER Compaction bands induced by borehole drilling

    E-Print Network [OSTI]

    Einat, Aharonov

    gas, geothermal steam, or for enabling geophysical observations, can reach depths of several results have supported theoretical findings that in vertical boreholes breakouts are aligned prevails [8, 12]. To date, numerous vertical boreholes (in particular R. Katsman (&) Á E. Aharonov Faculty

  7. Head assembly for multiposition borehole extensometer

    DOE Patents [OSTI]

    Frank, Donald N. (Livermore, CA)

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  8. Development of a hydraulic borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  9. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 facility. The site includes four absorption beds that received treated radioactive liquid waste, 64 buried shafts used for the disposal of cement-treated radioactive mixtures,...

  10. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Disposal options emergency mortality composting procedure · Use of composting during outbreaks #12;Disposal: Science and disinfection of farms and surveillance around affected flocks. " USDA APHIS VS EMD, 2007 #12;Disposal: Science

  11. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Poultry Farm Daily Disposal Methods 0;Disposal: Science and Theory First Composter in Delaware · Delmarva was of the first daily composting · 120 in USA over next 10 years #12;Disposal: Science and Theory Composting Procedure · Mixture ­ 1 ½ to 2

  12. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  13. Method Apparatus And System For Detecting Seismic Waves In A Borehole

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID); Sumstine, Roger L. (St. George, UT)

    2006-03-14

    A method, apparatus and system for detecting seismic waves. A sensing apparatus is deployed within a bore hole and may include a source magnet for inducing a magnetic field within a casing of the borehole. An electrical coil is disposed within the magnetic field to sense a change in the magnetic field due to a displacement of the casing. The electrical coil is configured to remain substantially stationary relative to the well bore and its casing along a specified axis such that displacement of the casing induces a change within the magnetic field which may then be sensed by the electrical coil. Additional electrical coils may be similarly utilized to detect changes in the same or other associated magnetic fields along other specified axes. The additional sensor coils may be oriented substantially orthogonally relative to one another so as to detect seismic waves along multiple orthogonal axes in three dimensional space.

  14. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three contaminated boreholes around T-106 do not clearly identify the leading edge of the plume. However, the profiles do collectively suggest that bulk of tank-related fluids (center of mass) still resides in Ringold Formation Taylor Flats member fine-grained sediments. Most of the chemical data, especially the nitrate and technetium-99 distributions with depth, support a flow conceptual model that suggests vertical percolation through the Hanford formation H2 unit near T-106 and then a strong horizontal spreading within the CCUu unit followed by more slow vertical percolation, perhaps via diffusion, into the deeper strata. Slow flushing by enhanced recharge and rapid snow melt events (Feb. 1979) appear to lead to more horizontal movement of the tank fluids downgradient towards C4105. The inventories as a function of depth of potential contaminants of concern, nitrate, technetium, uranium, and chromium, are provided. In-situ Kd values were calculated from water and acid extract measurements. For conservative modeling purposes we recommend using Kd values of 0 mL/g for nitrate, Co-60, and technetium-99, a value of 0.1 mL/g for uranium near borehole C4104 and 10 mL/g for U near borehole C4105, and 1 mL/g for chromium to represent the entire vadose zone profile from the bottoms of the tanks to the water table. A technetium-99 groundwater plume exists northeast and east of T WMA. The highest technetium-99 concentration in fiscal year 2003 was 9,200 pCi/L in well 299-W11-39. The most probable source for the technetium-99 is the T waste management area. Groundwater from wells in the west (upgradient) and north of WMA T appear to be highly influenced by wastes disposed to the cribs and trenches on the west side of the WMA. Groundwater from wells at the northeast corner and the east side of the WMA appears to be evolving towards tank waste that has leaked from T-101 or T-106.

  15. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  16. Fracture characterization from seismic measurements in a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2015-01-01

    Fracture characterization is important for optimal recovery of hydrocarbons. In this thesis, we develop techniques to characterize natural and hydraulic fractures using seismic measurements in a borehole. We first develop ...

  17. Canister, sealing method and composition for sealing a borehole

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM); Wagh, Arun S. (Orland Park, IL)

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  18. Methods for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  19. Underground Thermal Energy Storage (UTES) Via Borehole and Aquifer...

    Energy Savers [EERE]

    Conductivity Test (LTCT) or Distributed Thermal Response Test (DTRT) * Marines Corps Logistics Base, Albany GA (MCLB) * 110 m u-bend borehole heat exchanger * A 72 hours LTCT was...

  20. 1994 Characterization report for the state approved land disposal site

    SciTech Connect (OSTI)

    Swanson, L.C.

    1994-09-19

    This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford.

  1. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se ha usado como Virginia (2007) ­ British Columbia (2009) Uso del compostaje #12;Disposal: Science and Theory · Primera apilamiento Delmarva (2004) #12;Disposal: Science and Theory · El compostaje se usó para proteger una densa

  2. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Summary · Foam is currently a viable ­ Foam application directly to cage #12;Disposal: Science and Theory Legal Status of Foam · Procedure depopulation, culling, and euthanasia #12;Disposal: Science and Theory Acknowledgements · USDA AICAP2 · USDA

  3. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Mass Emergency Composting · Basic ­ Create carcass and litter windrow #12;Disposal: Science and Theory Mass Emergency Composting · Basic cover ­ Clean and disinfect house ­ Sample for virus again #12;Disposal: Science and Theory Mass

  4. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

  5. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 2004 ­ Participación de Bud Malone y la espuma 2009 ­ Ninguna ventaja para el gas Breve historia de la espuma #12;Disposal: Science sistema de boquilla ¿Qué es la espuma? #12;Disposal: Science and Theory · La espuma puede incluir: ­ Una

  6. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Generator Setup · Drop off foam generator cart at one end of house #12;Disposal: Science and Theory Foam Generator Setup · Trailer parked generator attached to hose #12;Disposal: Science and Theory Foam Generation Begins · Team of two to operate

  7. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foaming Options · Compressed Air Foam Systems (CAFS) · Foam Blower · Foam Generator · Nozzle Systems #12;Disposal: Science and Theory Compressed ­ Industry owned response team #12;Disposal: Science and Theory Commercial CAFS for Poultry · Poultry

  8. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Opciones para la eliminación · ¿Qué compostaje durante brotes de enfermedades Lista de contenido #12;Disposal: Science and Theory "Ante un brote brotes de IIAP #12;Disposal: Science and Theory · En 2004, se despoblaron 100 millones de aves en todo el

  9. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Gassing is a preferred #12;Disposal: Science and Theory Carbon Dioxide Gassing · Carbon dioxide (CO2) one of the standard sensitivity time #12;Disposal: Science and Theory · Argon-CO2 gas depopulation evaluated under laboratory

  10. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Opciones para la producción de espuma espuma · Sistemas de boquilla #12;Disposal: Science and Theory Requisitos estimados: · Tiempo: 2 a 3 compactas ­ Equipo de respuesta propio de la industria Espuma de aire comprimido #12;Disposal: Science

  11. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory 0 20 40 60 80 100 Compostaje #12;Disposal: Science and Theory · Delmarva fue de las primeras granjas en realizar el compostaje de en EE.UU. en los próximos 10 años. Pionera en compostaje en Delaware #12;Disposal: Science and Theory

  12. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Use of Composting · Composting has ­ British Columbia 2009 #12;Disposal: Science and Theory · Initial farm linked to NY LBM · Two additional and pile procedure Delmarva 2004 #12;Disposal: Science and Theory Delmarva 2004 · Composting used

  13. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Compostaje de aves de corralRouchey et al., 2005) Investigación previa #12;Disposal: Science and Theory · Se ha evaluado y documentado el, bovino Investigación previa #12;Disposal: Science and Theory · Experimento nro. 1 Impacto de la espuma en

  14. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Procedimiento básico ­ Desarrollar una pila de carcasas y lecho. Compostaje masivo de emergencia #12;Disposal: Science and Theory de emergencia #12;Disposal: Science and Theory · Desarrollar planes antes de que ocurra una

  15. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

  16. Microsoft Word - List of topics_2015-10-08

    Office of Environmental Management (EM)

    methodologies and results (Joanna Burger & Susan Santos, planned for November 2015) * Deep Borehole Disposal: IAEA Safety Test Case for Vaalputs, South Africa (Matt Kozak,...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    XML (limit 5000) Have feedback or suggestions for a way to improve these results? Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and...

  18. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste Arnold Bill Walter Brady Patrick Vane Abstract not provided Sandia National Laboratories SNL NM Albuquerque NM United States USDOE National...

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Research, Development, and Demonstration Roadmap for Deep Borehole Disposal...

  20. Regional Geology: GIS Database for Alternative Host Rocks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    three alternative geologic host rocks for mined repositories (granitic crystalline, salt, and clay shale) and crystalline basement rock for deep borehole disposal. This...

  1. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel Brady Patrick V Abstract not provided Sandia National Laboratories SNL NM Albuquerque NM United States USDOE National Nuclear Security...

  2. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Research Development and Demonstration Roadmap for Deep Borehole Disposal Arnold Bill W MacKinnon Robert J Brady Patrick V Abstract Not Provided Sandia National Laboratories USDOE...

  3. Microsoft Word - List of topics_2015-10-19

    Office of Environmental Management (EM)

    Susan Santos, TBD) * Deep Borehole Disposal: IAEA Safety Test Case for Vaalputs, South Africa (Matt Kozak, planned for December 2015) * Speciation and transport of technetium in...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Robert J. Abstract not provided. February 2014 Research Development and Demonstration Roadmap for Deep Borehole Disposal. Arnold, Bill W. ; MacKinnon, Robert J. ; Brady, Patrick...

  5. Microsoft Word - List of topics_2015-06-24

    Office of Environmental Management (EM)

    November 2015) Deep Borehole Disposal: IAEA Safety Test Case for Vaalputs, South Africa (Matt Kozak, planning for December 2015) Speciation and transport of technetium in...

  6. Combination gas producing and waste-water disposal well

    DOE Patents [OSTI]

    Malinchak, Raymond M. (McKeesport, PA)

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  7. Three-component borehole wall-locking seismic detector

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX)

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  8. Deep Web Web Deep Web Web

    E-Print Network [OSTI]

    Deep Web 100872 Deep Web Web Deep Web Web Web Deep Web Deep Web TP391 A Uncertain Schema Matching in Deep Web Integration Service JIANG Fang-Jiao MENG Xiao-Feng JIA Lin-Lin (School of Information, Renmin University of China, Beijing, 100872) Abstract: With increasing of Deep Web, providing

  9. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect (OSTI)

    Caffey, T.W.H. [Sandia National Labs., Albuquerque, NM (United States). Geophysical Technology Dept.

    1997-08-01

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  10. Cross borehole induced polarization to detect subsurface NAPL at the Savannah River Site, South Carolina

    E-Print Network [OSTI]

    Lambert, Michael B. (Michael Brian), 1980-

    2003-01-01

    Spectral induced polarization measurements were acquired in six cross-borehole panels within four boreholes at the Savannah River Site. The investigation was performed to delineate the presence of dense non-aqueous phase ...

  11. An approach for predicting stress-induced anisotropy around a borehole

    E-Print Network [OSTI]

    Fang, Xinding

    Formation elastic properties near a borehole may be altered from their original state due to the stress concentration around the borehole. This could result in a biased estimation of formation properties but could provide ...

  12. Pressure perturbations from geologic carbon sequestration: Area-of-review boundaries and borehole leakage driving forces

    E-Print Network [OSTI]

    Nicot, J.-P.

    2010-01-01

    geothermal gradient is 30°C/km; vertical lines represent possible water density profiles in a borehole:

  13. Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints

    E-Print Network [OSTI]

    Chen, J.

    2011-01-01

    vertical global gradient of seismic velocity, which can be derived from the average of all the borehole velocity profiles,

  14. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  15. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  16. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  17. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  18. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · Se ubica el carretón con el enfriamiento Ventiladores de túnel de viento #12;Disposal: Science and Theory · Se estaciona el remolque en uno: Science and Theory · Se usa un equipo de dos personas para hacer funcionar el sistema: ­ Operario del

  19. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Why Depopulate? · Depopulation Methods · Basics of Foam · Types of Foam Equipment · Science Behind Foam · Implementing Foam Depopulation · Use of Foam in the Field · Conclusions #12;Disposal: Science and Theory "When HPAI outbreaks

  20. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se define como la: Science and Theory · Compostaje óptimo ­ Relación carbono/nitrógeno (C:N): 20:1 a 35:1 ­ Contenido de Compostaje #12;Disposal: Science and Theory · Se ha utilizado satisfactoriamente una variedad de materiales

  1. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Previous Research · Composting, et.al. 2005; Bendfeldt et al., 2006; DeRouchey et al., 2005) #12;Disposal: Science and Theory: Science and Theory Scientific Validation of Composting · Experiment 1 Impact of foam on composting

  2. artesian borehole, Singhida (central Tanzania) Hydrology, weather and groundwater

    E-Print Network [OSTI]

    Stevenson, Paul

    artesian borehole, Singhida (central Tanzania) Hydrology, weather and groundwater NERC EQUIP;protected spring in Kampala (Uganda) · groundwater supplies 50% of world's drinking water Kundzewicz and Döll (2009) #12;maize plantation irrigated by a groundwater-fed pivot, Katwe (Zambia) · and 42

  3. Suction effects in deep Boom clay block samples Pierre DELAGE 1

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Suction effects in deep Boom clay block samples Pierre DELAGE 1 , Trung-Tinh LE 1 , Anh-Minh TANG located at Mol (Belgium) called Boom clay, in the context of research into deep nuclear waste disposal. Suction effects in deep Boom clay block samples were investigated through the characterisation

  4. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  5. The feasibility of deep well injection for brine disposal 

    E-Print Network [OSTI]

    Spongberg, Martin Edward

    1994-01-01

    collection, groundwater modeling, and fluid compatibility are discussed in detail. Injection system design, economics, and regulatory considerations are more related to economic than technical feasibility, and are discussed only as they relate to technical...

  6. Generic Deep Geologic Disposal Safety Case | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashersGenSysContractors | Department

  7. Deep Lysimeter

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2004-06-01

    A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

  8. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    SciTech Connect (OSTI)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd{sup 3} (4,580 m{sup 3}) of glass gems prior to disposal. This report documents Sandia National Laboratories` preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment.

  9. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01

    TEST MINE, SWEDEN Thomas Doe, K j e l l I n g e v a l d , LTEST MIME, SWEDEN T h o a a . Doe' Kjell Ingevald, Lars S t

  10. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01

    9 - J u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORINGPfft IKS I nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORINGs u r e s t r a i n s . Hydraulic f r a c t u r i n g , t h

  11. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01

    u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

  12. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01

    u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSstress. n HYDRAULIC FRACTURING EQUIPMENT AND PROCEDURES The

  13. Abstract H13M-01 Site Characteriza:on for a Deep Borehole Field Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAbout SAGEAbout theAboutNAbstract

  14. Energy Department selects Battelle team for a deep borehole field test in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeat & Cool »Characters(Part 1)DocumentsInclusionNorth Dakota

  15. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  16. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  17. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  18. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial Disposal Areas Material

  19. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Broader source: Energy.gov (indexed) [DOE]

    as part of the River Corridor Closure Project - DOE's largest environmental cleanup closure project. The landfill is the largest disposal facility in the DOE cleanup complex....

  20. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM)more »Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM work scope, the fibre-optic cable was able to also be used for the emergent technology of distributed acoustic sensing. The MBM monitoring string was installed in March, 2012. To date, the Citronelle MBM instruments continue to operate reliably. Results and lessons learned from the Citronelle MBM deployment are addressed along with examples of data being collected.« less

  1. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    SciTech Connect (OSTI)

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM work scope, the fibre-optic cable was able to also be used for the emergent technology of distributed acoustic sensing. The MBM monitoring string was installed in March, 2012. To date, the Citronelle MBM instruments continue to operate reliably. Results and lessons learned from the Citronelle MBM deployment are addressed along with examples of data being collected.

  2. Geological aspects of the nuclear waste disposal problem

    SciTech Connect (OSTI)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  3. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect (OSTI)

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  4. Subseabed Disposal Program. Annual report, January-December 1978

    SciTech Connect (OSTI)

    Talbert, D.M.

    1980-02-01

    This is the fifth annual report describing the progress and evaluating the status of the Subseabed Disposal Program (SDP), which was begun in June 1973. The program was initiated by Sandia Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans.

  5. Development of Wireless Data Transmission System for the Monitoring in Geological Disposal of Radioactive Waste - 12063

    SciTech Connect (OSTI)

    Suzuki, Kei; Eto, Jiro; Tanabe, Hiromi [Radioactive Waste Management Funding and Research Center - RWMC, Tokyo (Japan); Esaki, Taichi; Takamura, Hisashi; Suyama, Yasuhiro [Kajima Corporation, Tokyo (Japan)

    2012-07-01

    The authors have been developing a wireless data transmission system to monitor the performance of a geological disposal system for radioactive waste. The system's concepts, advantages, and a recent development focused on reducing transmitter size to suit narrow spaces such as bentonite buffers and boreholes. A wireless transmitter with a built-in temperature sensor and a connector for external sensors has been developed, measuring 130 mm in length and 50 mm in diameter. The capability of the transmitter was confirmed by transmission tests on the ground and in a bentonite block. (authors)

  6. Method and apparatus for coupling seismic sensors to a borehole wall

    DOE Patents [OSTI]

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  7. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G. Chemical Compatibility p.9 Radioactive Waste Disposal p.10 Bio Hazard Waste chemical and radioactive waste, and Biohazardous waste. This document contains university procedures

  8. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  9. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  10. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  11. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  12. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  13. Transuranic waste disposal in the United State

    SciTech Connect (OSTI)

    Thompson, J.D.

    1986-01-01

    The US is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic (TRU) elements in the waste. Since 1970, the US has been placing newly generated TRU waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). The WIPP opening for a demonstration emplacement period is set for October 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by the US Department of Energy (DOE). The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium-contaminated materials ranging from glove boxes, high-efficiency particulate air filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities. Extensive procedures will be used to examine and prepare waste before it is placed in the WIPP for disposal. After the WIPP opens, certified waste will be transported to it and emplaced in the repository.

  14. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for orienting the sensor once it is emplaced in the borehole. If the sensors (geophones) do not have the same orientation, the data will be essentially worthless. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  15. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  16. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-08-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  17. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-06-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  18. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-01-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  19. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect (OSTI)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  20. Transportation, Aging and Disposal Canister System Performance...

    Broader source: Energy.gov (indexed) [DOE]

    document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. Transportation, Aging and Disposal Canister...

  1. Reversible rigid coupling apparatus and method for borehole seismic transducers

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX); Parra, Jorge O. (Helotes, TX)

    1992-01-01

    An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

  2. Down the borehole but outside the box: innovative approaches to wireline log data interpretation

    E-Print Network [OSTI]

    Bodin, Thomas

    Down the borehole but outside the box: innovative approaches to wireline log data interpretation or more different properties, with depth down a borehole. They are routinely correlated with, and, such as oil and gas, wireline log interpretation is highly developed. In other industries, such as geothermal

  3. Climate from borehole data: Energy fluxes and temperatures since Hugo Beltrami

    E-Print Network [OSTI]

    Beltrami, Hugo

    Climate from borehole data: Energy fluxes and temperatures since 1500 Hugo Beltrami Environmental Geophysics: Inverse theory. Citation: Beltrami, H., Climate from borehole data: Energy fluxes- nium from a large set of multiproxy data. In addition, geothermal data have been analyzed in order

  4. Instruments and Methods New technique for access-borehole drilling in shelf glaciers using

    E-Print Network [OSTI]

    Holland, David

    the glacier into the sea water beneath. The new drilling technique does not require drilling fluid; (2) fluid borehole drilling, i.e. borehole completely or partially filled with non-freezing liquid; and (3) semi-fluid drilling, which is a combination of dry and fluid drilling techniques. Fluid drilling

  5. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOE Patents [OSTI]

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-10-08

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

  6. Deep dermatophytosis caused by

    E-Print Network [OSTI]

    Warycha, Melanie A; Leger, Marie; Tzu, Julia; Kamino, Hideko; Stein, Jennifer

    2011-01-01

    PubMed ] 5. Gong JQ, et al. Deep dermatophytosis caused bymolecular diagnosis of deep localized cutaneous infectionPubMed ] 7. Chastain MA, et al. Deep dermatophytosis: report

  7. Deep Research Submarine

    E-Print Network [OSTI]

    Woertz, Jeff

    2002-02-01

    The Deep Sea Research Submarine (Figure 1) is a modified VIRGINIA Class Submarine that incorporates a permanently installed Deep Sea Operations Compartment (Figure 2). Table 1 summarizes the characteristics of the Deep ...

  8. Optimization of Waste Disposal - 13338

    SciTech Connect (OSTI)

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P.; Conant, J.

    2013-07-01

    From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

  9. Disposal: Science and Theory UNIVERSIDAD

    E-Print Network [OSTI]

    Benson, Eric R.

    zona de escarbado. · Se realiza un sellado o se cubren las aves con polietileno y se introduce CO2. Reproductoras de pollos de engorde selladas con polietileno Galpón parcial #12;Disposal: Science and Theory

  10. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOE Patents [OSTI]

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  11. Jobtong Deep Web Web""Surface WebDeep Web

    E-Print Network [OSTI]

    Jobtong Deep Web Web Web Web""Surface WebDeep Web Surface WebDeep Web Web[1] 20007BrightPlanet.comDeep Web[2] Web43,000-96,000Web7,500TB(Surface Web500) UIUC5Deep Web[3]2004Deep Web 307,000366,000-535,000"" Deep Web""Google Yahoo32%Deep Web WAMDMWebDeep WebJobtong Deep Web (Jobtong) Jobtong(, http

  12. Learning Deep Generative Ruslan Salakhutdinov

    E-Print Network [OSTI]

    Toronto, University of

    Learning Deep Generative Models Ruslan Salakhutdinov Departments of Computer Science reserved Keywords deep learning, deep belief networks, deep Boltzmann machines, graphical models Abstract suggest that building such systems requires models with deep architectures that involve many layers

  13. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  14. Disposable telemetry cable deployment system

    DOE Patents [OSTI]

    Holcomb, David Joseph (Sandia Park, NM)

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  15. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Signals #12;Disposal: Science and Theory Foam versus Gas · CO2 gassing is an accepted procedure · Argon-CO2 encouraged for humaneness · In individual broilers, foam is as fast as CO2 · Argon-CO2 materially slower 0 50 100 150 200 250 300 350 SilenceofEEGActivity(s) Average Times to EEG Silence Ar-CO2 CO2 Foam

  16. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    on parameters. #12;Disposal: Science and Theory Foam vs. Foam with CO2 · Water based foam is conditionally not approved the use of water based foam · EU: indicated foam with CO2 gas preferred ­ Want the animal ­ Development of procedure ­ USDA APHIS and AVMA conditional approval 2007 - 2008 ­ No difference between CO2

  17. Breakthroughs in Seismic and Borehole Characterization of Basalt Sequestration Targets

    SciTech Connect (OSTI)

    Sullivan, E. C.; Hardage, Bob A.; McGrail, B. Peter; Davis, Klarissa N.

    2011-04-01

    Mafic continental flood basalts form a globally important, but under-characterized CO2 sequestration target. The Columbia River Basalt Group (CRBG) in the northwestern U.S. is up to 5 km thick and covers over 168,000 km2. In India, flood basalts are 3 km thick and cover greater than 500,000 km2. Laboratory experiments demonstrate that the CRBG and other basalts react with formation water and super critical (sc) CO2 to precipitate carbonates, thus adding a potential mineral trapping mechanism to the standard trapping mechanisms of most other types of CO2 sequestration reservoirs. Brecciated tops of individual basalt flows in the CRBG form regional aquifers that locally have greater than 30% porosity and three Darcies of permeability. Porous flow tops are potential sites for sequestration of gigatons of scCO2 in areas where the basalts contain unpotable water and are at depths greater than 800 m. In this paper we report on the U.S. DOE Big Sky Regional Carbon Sequestration Partnership surface seismic and borehole geophysical characterization that supports a field test of capacity, integrity, and geochemical reactivity of CRBG reservoirs in eastern Washington, U.S.A. Traditional surface seismic methods have had little success in imaging basalt features in on-shore areas where the basalt is thinly covered by sediment. Processing of the experimental 6.5 km, 5 line 3C seismic swath included constructing an elastic wavefield model, identifying and separating seismic wave modes, and processing the swath as a single 2D line. Important findings include: (1) a wide variety of shear wave energy modes swamp the P-wave seismic records; (2) except at very short geophone offsets, ground roll overprints P-wave signal; and (3) because of extreme velocity contrasts, P-wave events are refracted at incidence angles greater than 7-15 degrees. Subsequent removal of S-wave and other noise during processing resulted in tremendous improvement in image quality. The application of wireline logging to onshore basalts is underexploited. Full waveform sonic logs and resistivity-based image logs acquired in the 1250 m basalt pilot borehole provide powerful tools for evaluating geomechanics and lithofacies. The azimuth of the fast shear wave is parallel to SH and records the changes through time in basalt flow and tectonic stress tensors. Combined with image log data, azimuthal S-wave data provide a borehole technique for assessing basalt emplacement and cooling history that is related to the development of reservoirs and seals, as well as the orientation of tectonic stresses and fracture systems that could affect CO2 transport or containment. Reservoir and seal properties are controlled by basalt lithofacies, and rescaled P- and S- wave slowness curves, integrated with image logs, provide a tool for improved recognition of subsurface lithofacies.

  18. New developments in high resolution borehole seismology and their applications to reservoir development and management

    SciTech Connect (OSTI)

    Paulsson, B.N.P.

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  19. Towards an effective automated interpretation method for modern hydrocarbon borehole geophysical images 

    E-Print Network [OSTI]

    Thomas, Angeleena

    2012-06-25

    Borehole imaging is one of the fastest and most precise methods for collecting subsurface data that provides high resolution information on layering, texture and dips, permitting a core-like description of the subsurface. ...

  20. 3-D Inversion Of Borehole-To-Surface Electrical Data Using A...

    Open Energy Info (EERE)

    3-D Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D...

  1. Novel finite-element approach applied to borehole quadrupole dispersion analysis in stress-sensitive formations

    E-Print Network [OSTI]

    Jorgensen, Ole

    Near a borehole, stress concentration effects may cause a complex spatial variation of elastic anisotropy. Stress-induced sonic anisotropy results when moduli and velocities are stress dependent and the state of stress is ...

  2. Methods and apparatus for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  3. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  4. Disposal: Science and Theory UNIVERSIDAD

    E-Print Network [OSTI]

    Benson, Eric R.

    aviar #12;Disposal: Science and Theory · En EE.UU., se usó espuma a base de agua en 4 respuestas · 2.500 pollos de engorde / tratamiento · Generador de espuma ­ Agua: 3.463 litros ­ Espuma: 34 litros ­ Cesación: 11:06 (minutos:segundos) · Boquilla ­ Agua: 3.678 litros ­ Espuma: 37 litros ­ Cesación: 8

  5. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  6. Disposal Practices at the Nevada Test Site 2008 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

  7. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  8. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    SciTech Connect (OSTI)

    Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

    2013-07-01

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

  9. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    S. and K.S. Johnson, (1984). Shale and other argillaceousand R. T. Cygan, (2010). Shale Disposal of U.S. High-LevelDC. Generic Argillite/Shale Disposal Reference Case August

  10. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    0 1 2 3 4 5 6 7 8 60 120 180 240 300 360 420 480 540 600 Observaciones Tiempo (seg.) Ar-CO2 CO2 Foam electroencefalográficas Envenenamiento con gas Ar-CO2 Envenenamiento con CO2 Espuma con aire ambiente Espuma con CO2 #12;Disposal: Science and Theory · El envenenamiento con CO2 es un procedimiento aceptado. · Se alienta el uso

  11. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    SciTech Connect (OSTI)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  12. Deep Lambertian Networks Introduction

    E-Print Network [OSTI]

    Toronto, University of

    Deep Lambertian Networks Introduction Learns distributions over 3D object shapes from sets of 2D-shot recognition possible Uses multiplicative interactions to approximate the Lambertian reflectance model Deep 30 50 Experiments Deep Lambertian Networks Inference Samples from albedo DBN Face Relighting Simple

  13. Deep Web video

    ScienceCinema (OSTI)

    None Available

    2012-03-28

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  14. Deep Web video

    SciTech Connect (OSTI)

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  15. The NUMO Strategy for HLW and TRU Waste Disposal

    SciTech Connect (OSTI)

    Kitayama, K.; Oda, Y. [Nuclear Waste Management Organization of Japan (NUMO), Tokyo (Japan)

    2008-07-01

    Shortly after the Nuclear Waste Management Organization of Japan (NUMO) was established, we initiated an open call to all municipalities, requesting volunteers to host a repository for vitrified HLW. The first volunteer applied for a preliminary literature survey phase last January but, unfortunately, it withdrew the application in April. This failure provided an invaluable lesson for both the relevant authorities and NUMO; subsequently the Atomic Energy Commission of Japan and associated organizations are examining a support plan to back up NUMO's open solicitation. On another front, a recent amendment of 'The Specified Radioactive Waste Final Disposal Act' also allocates specific 'TRU' waste for deep geological disposal, requiring a demonstration of safety to a similar level as that for HLW. To implement the radioactive waste disposal project, NUMO has developed a methodology appropriate to our specific boundary conditions - the NUMO Structured Approach. This takes into account, in particular, our need to balance competing goals, such as operational safety, post-closure safety and cost, during repository tailoring to specific sites. The most important challenge for NUMO is, however, to attract volunteers. We believe that our open and structured R and D program is critical to demonstrate technical competence which, in turn, enhances the credibility of our various public relations activities. (authors)

  16. Proceedings of the 1981 subseabed disposal program. Annual workshop

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  17. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    SciTech Connect (OSTI)

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-11-05

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

  18. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  19. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    SciTech Connect (OSTI)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  20. Disposable remote zero headspace extractor

    DOE Patents [OSTI]

    Hand, Julie J. (Idaho Falls, ID); Roberts, Mark P. (Arco, ID)

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  1. Impacts of a high-burnup spent fuel on a geological disposal system design

    SciTech Connect (OSTI)

    Cho, D.K.; Lee, Y.; Lee, J.Y.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon-city (Korea, Republic of)

    2007-07-01

    The influence of a burnup increase of a spent nuclear fuel on a deep geological disposal system was evaluated in this study. First, the impact of a burnup increase on each aspect related to thermal and nuclear safety concerns was quantified. And then, the tunnel length, excavation volume, and the raw materials for a cast insert, copper, bentonite, and backfill needed to constitute a disposal system were comprehensively analyzed based on the spent fuel inventory to generate 1 Terawatt-year (TWa), to establish the overall effects and consequences on a geological disposal. As a result, impact of a burnup increase on the criticality safety and radiation shielding was shown to be negligible. The disposal area, however, is considerably affected because of a higher thermal load. And, it is reasonable to use a canister such as the Korean Reference Disposal Canister (KDC-1) containing 4 spent fuels up to 50 GWD/MtU, and to use a canister containing 3 spent fuels beyond 50 GWD/MtU. Although a considerable increased, 33 % in the tunnel length and 30 % in the excavation volume, was observed as the burnup increases from 50 to 60 GWD/MtU, because a decrease in the canister needs can offset an increase in the excavation volume, it can be concluded that a burnup increase of a spent fuel is not a critical concern for a geological disposal of a spent fuel. (authors)

  2. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect (OSTI)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

  3. High-temperature batteries for geothermal and oil/gas borehole applications

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.

    2000-05-25

    A literature survey and technical evaluation was carried out of past and present battery technologies with the goal of identifying appropriate candidates for use in geothermal borehole and, to a lesser extent, oil/gas boreholes. The various constraints that are posed by such an environment are discussed. The promise as well as the limitations of various candidate technologies are presented. Data for limited testing of a number of candidate systems are presented and the areas for additional future work are detailed. The use of low-temperature molten salts shows the most promise for such applications and includes those that are liquid at room temperature. The greatest challenges are to develop an appropriate electrochemical couple that is kinetically stable with the most promising electrolytes--both organic as well as inorganic--over the wide operating window that spans both borehole environments.

  4. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  5. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel.","Brady, Patrick V.","2013-04-01T04:00:00Z",1078946,,"SAND2013-3639C","AC04-94AL85000","Other: 452378","Conference",,,"Conference: NEI Spent...

  6. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste.","Arnold, Bill Walter; Brady, Patrick Vane.","2013-11-01T04:00:00Z",1117586,,"SAND2013-9576C","AC04-94AL85000","Other:...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Research Development and Demonstration Roadmap for Deep Borehole Disposal.","Arnold, Bill W.; MacKinnon, Robert J.; Brady, Patrick V.","2013-01-01T05:00:00Z",1063610,,"SAND2013-063...

  8. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 21, 2014 Drilling for answers: Sandia pioneers nuclear waste disposal techniques PAT BRADY AND BOB McKINNON look over a state-of-the-art drill bit used in deep boreholes....

  9. Disposal systems evaluations and tool development : Engineered Barrier System (EBS) evaluation.

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Liu, Hui-Hai; Steefel, Carl I.; Serrano de Caro, M. A.; Caporuscio, Florie Andre; Birkholzer, Jens T.; Blink, James A.; Sutton, Mark A.; Xu, Hongwu; Buscheck, Thomas A.; Levy, Schon S.; Tsang, Chin-Fu; Sonnenthal, Eric; Halsey, William G.; Jove-Colon, Carlos F.; Wolery, Thomas J.

    2011-01-01

    Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems Evaluation Framework (DSEF). This report will focus on the multi-barrier concept of EBS and variants of this type which in essence is the most adopted concept by various repository programs. Empasis is given mainly to the evaluation of EBS materials and processes through the analysis of published studies in the scientific literature of past and existing repository research programs. Tool evaluations are also emphasized, particularly on THCM processes and chemical equilibria. Although being an increasingly important aspect of NW disposition, short-term or interim storage of NW will be briefly discussed but not to the extent of the EBS issues relevant to disposal systems in deep geologic environments. Interim storage will be discussed in the report Evaluation of Storage Concepts FY10 Final Report (Weiner et al. 2010).

  10. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

    1993-01-01

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  11. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  12. System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

    2012-10-16

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  13. Borehole deviation surveys are necessary for hydraulic fracture monitoring Leo Eisner, Schlumberger Cambridge Research, Petr Bulant, Charles University in Prague, Jol H. Le Calvez*,

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Borehole deviation surveys are necessary for hydraulic fracture monitoring Leo Eisner, Schlumberger Not performing accurate borehole deviation surveys for hydraulic fracture monitoring (HFM) and neglecting fracture parameters. Introduction Recently a large number of hydraulic fracture treatments have been

  14. Electrochemical Apparatus with Disposable and Modifiable Parts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    each. Those used for bulk electrolysis (800), for flow (850), and for general electrochemistry (20-200) are also too expensive to be considered disposable. High cost means...

  15. UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Morgan, Stephen L.

    UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL Introduction All biologically EHS: -South Carolina Infectious Waste Management Regulations R.61-105 #12;

  16. Paleoweathering profile developed on homogenous sedimentary basement: an integrated approach from the CDB1 deep borehole (Rennes Basin, France).

    E-Print Network [OSTI]

    Boyer, Edmond

    manuscript, published in "19th International Sedimentological Congress, GENEVE : Switzerland (2014)" #12;

  17. Parametric study of the total system life cycle cost of an alternate nuclear waste management strategy using deep boreholes

    E-Print Network [OSTI]

    Moulton, Taylor Allen

    2008-01-01

    The Department of Energy recently submitted a license application for the Yucca Mountain repository to the Nuclear Regulatory Commission, yet even the most optimistic timetable projects that the repository will not now ...

  18. Summary report of first and foreign high-level waste repository concepts; Technical report, working draft 001

    SciTech Connect (OSTI)

    Hanke, P.M.

    1987-11-04

    Reference repository concepts designs adopted by domestic and foreign waste disposal programs are reviewed. Designs fall into three basic categories: deep borehole from the surface; disposal in boreholes drilled from underground excavations; and disposal in horizontal tunnels or drifts. The repository concepts developed in Sweden, Switzerland, Finland, Canada, France, Japan, United Kingdom, Belgium, Italy, Holland, Denmark, West Germany and the United States are described. 140 refs., 315 figs., 19 tabs.

  19. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOE Patents [OSTI]

    Bevan, John E. (Spokane, WA); King, Grant W. (Spokane, WA)

    1998-01-01

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole.

  20. REFRACTION MICROTREMOR AND OPTIMIZATION METHODS AS ALTERNATIVES TO BOREHOLES FOR SITE STRENGTH AND

    E-Print Network [OSTI]

    -averaged shear velocity for foundation design; and estimating the seismic spectrum input for earthquake earthquake-hazard assessment and efficient foundation design. The only standard procedure for determining shear velocity, crosshole seismic (ASTM D4428), is not much used as it requires two boreholes with high

  1. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOE Patents [OSTI]

    Ward, S.H.

    1989-10-17

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth. 30 figs.

  2. Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures

    E-Print Network [OSTI]

    Biasutti, Michela

    Surface temperature trends in Russia over the past five centuries reconstructed from borehole in Russia and nearby areas to reconstruct the ground surface temperature history (GSTH) over the past five centuries. The data are drawn principally from three regions: the Urals, southwest Siberia, and northeast

  3. Annual Logging Symposium, June 3-6, 2007 RAPID SIMULATION OF BOREHOLE NUCLEAR MEASUREMENTS

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    with other well logs. The particular case of logging while drilling (LWD) logs in high-angle wells of Petrophysicists and Well Log Analysts (SPWLA) and the submitting authors. This paper was prepared for presentation techniques as well as for their quantitative integration with other borehole measurements

  4. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOE Patents [OSTI]

    Bevan, J.E.; King, G.W.

    1998-12-08

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole. 8 figs.

  5. Limitations of Using Uniform Heat Flux Assumptions in Sizing Vertical Borehole Heat Exchanger Fields

    E-Print Network [OSTI]

    of ground heat exchangers (GHE) used with ground source heat pump (GSHP) systems. These models can account approach with a parametric study. Keywords - Ground Source Heat Pumps; Borehole Heat Exchangers; Finite Line Source Theory; g-functions 1. Introduction Ground source heat pump (GSHP) systems are a widely

  6. RayKirchhoff multicomponent borehole seismic modelling in 3D heterogeneous, anisotropic media

    E-Print Network [OSTI]

    Edinburgh, University of

    of symmetry. This algorithm can be applied to vertical seismic profile (VSP) geometries and works well when; Anisotropy; Dipping reflectors; Converted waves 1. Introduction Using vertical seismic profiles (VSPsRay­Kirchhoff multicomponent borehole seismic modelling in 3D heterogeneous, anisotropic media $ A

  7. Hanford Borehole Geologic Information System (HBGIS) Updated User’s Guide for Web-based Data Access and Export

    SciTech Connect (OSTI)

    Mackley, Rob D.; Last, George V.; Allwardt, Craig H.

    2008-09-24

    The Hanford Borehole Geologic Information System (HBGIS) is a prototype web-based graphical user interface (GUI) for viewing and downloading borehole geologic data. The HBGIS is being developed as part of the Remediation Decision Support function of the Soil and Groundwater Remediation Project, managed by Fluor Hanford, Inc., Richland, Washington. Recent efforts have focused on improving the functionality of the HBGIS website in order to allow more efficient access and exportation of available data in HBGIS. Users will benefit from enhancements such as a dynamic browsing, user-driven forms, and multi-select options for selecting borehole geologic data for export. The need for translating borehole geologic data into electronic form within the HBGIS continues to increase, and efforts to populate the database continue at an increasing rate. These new web-based tools should help the end user quickly visualize what data are available in HBGIS, select from among these data, and download the borehole geologic data into a consistent and reproducible tabular form. This revised user’s guide supersedes the previous user’s guide (PNNL-15362) for viewing and downloading data from HBGIS. It contains an updated data dictionary for tables and fields containing borehole geologic data as well as instructions for viewing and downloading borehole geologic data.

  8. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal More Documents...

  9. Deep East Texas HTC 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    To better understand how the evolution of Cenozoic deep-water circulation related to changes in global climate and ocean basin configuration, we generated Nd isotope records from Ocean Drilling Program sites in the southeastern Atlantic to track...

  10. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  11. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  12. Generic disposal concepts and thermal load management for larger...

    Office of Scientific and Technical Information (OSTI)

    Generic disposal concepts and thermal load management for larger waste packages. Citation Details In-Document Search Title: Generic disposal concepts and thermal load management...

  13. NDAA Section 3116 Waste Determinations with Related Disposal...

    Office of Environmental Management (EM)

    NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section...

  14. Nevada Industrial Solid Waste Disposal Site Permit Application...

    Open Energy Info (EERE)

    Nevada Industrial Solid Waste Disposal Site Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Industrial Solid Waste Disposal Site...

  15. Low-Level Waste Disposal Facility Federal Review Group Manual

    Office of Environmental Management (EM)

    Low- LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcilil' Federal Review Group...

  16. Plans and Progress on Hanford MLLW Treatment and Disposal

    SciTech Connect (OSTI)

    MCKENNEY, D.E.

    2003-01-01

    Fluor Hanford's WMP has shown consistent success in treating and disposing of waste since the mixed waste disposal unit opened in 1999

  17. Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments

    SciTech Connect (OSTI)

    Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

    2012-11-26

    In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 µg/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.3–2.5 µg/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of “total” uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

  18. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura Savannah River Nuclear Solutions, LLC M-TRT-H-00087 Rev 0 Date: 4102014 Tritium Facilities...

  19. Supplement Analysis for Disposal of Polychlorinated Biphenyl...

    Office of Environmental Management (EM)

    Disposal of Polychlorinated Biphenyl-Commingled Transuranic Waste at the Waste Isolation Pilot Plant (DOEEIS-0026-SA02) 1.0 Purpose and Need for Action Transuranic (TRU) waste is...

  20. Economic assessment of CO? capture and disposal

    E-Print Network [OSTI]

    Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

    A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

  1. Electrochemical apparatus comprising modified disposable rectangular...

    Office of Scientific and Technical Information (OSTI)

    include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates...

  2. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  3. Disposal of Specific Articles Containing Radioactive Materials

    E-Print Network [OSTI]

    Jia, Songtao

    Am-241 3. NRC: United States Nuclear Regulatory Commission 4. Sodium Iodide (NaI) Detector: Uses. Disposal of these signs is governed by United States Nuclear Regulatory Commission (NRC) regulations, 10

  4. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    EPA's rule, equipment that is typically dismantled on site before disposal (e.g., retail food vacuum, and for small appliances the recover equipment performance requirements are 90 percent efficiency

  5. A disposable, self-administered electrolyte test

    E-Print Network [OSTI]

    Prince, Ryan, 1977-

    2003-01-01

    This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

  6. Technical and philosophical aspects of ocean disposal 

    E-Print Network [OSTI]

    Zapatka, Marchi Charisse

    1976-01-01

    and demolition debris Solid wastes 26 26 30 30 31 32 lii 1 i tary wastes. Radioactive wastes Disposal Methods. 32 32 34 Harges Containerized methods. Submarine outfalls CHASE. Indirect discharge . 40 44 Transport Mechanisms of iiaste... disposal of wastes is not a new idea, although it is only in recent years that this issue has received considerable attention. Man is concerned about the condition of the ocean because i+ is a valuable source of many resources from the marine environment...

  7. Borehole temperatures and a baseline for 20th-century global warming estimates

    SciTech Connect (OSTI)

    Harris, R.N.; Chapman, D.S.

    1997-03-14

    Lack of a 19th-century baseline temperature against which 20th-century warming can be referenced constitutes a deficiency in understanding recent climate change. Combination of borehole temperature profiles, which contain a memory of surface temperature changes in previous centuries, with the meteorologicl archive of surface air temperatures can provide a 19th-century baseline temperature tied to the current observational record. A test case in Utah, where boreholes are interspersed with meteorological stations belonging to the Historical Climatological network, Yields a noise reduction in estimates of 20th-century warming and a baseline temperature that is 0.6{degrees} {+-} 0.1{degrees}C below the 1951 to 1970 mean temperature for the region. 22 refs., 3 figs., 1 tab.

  8. Portable apparatus and method for assisting in the removal and emplacement of pipe strings in boreholes

    DOE Patents [OSTI]

    Mitchell, Brian R.

    2005-03-22

    A portable pipe installation/removal support apparatus for assisting in the installation/removal of a series of connectable pipe strings from a ground-level borehole. The support apparatus has a base, an upright extending from the base, and, in an exemplary embodiment, a pair of catch arms extending from the upright to define a catch platform. The pair of catch arms serves to hold an upper connector end of a pipe string at an operator-convenient standing elevation by releasably catching an underside of a pipe coupler connecting two pipe strings of the series of connectable pipe strings. This enables an operator to stand upright while coupling/uncoupling the series of connectable pipe strings during the installation/removal thereof from the ground-level borehole. Additionally, a process for installing and a process for removing a series of connectable pipe strings is disclosed utilizing such a support apparatus.

  9. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  10. Deep Maps”: A Brief for Digital Palimpsest Mapping Projects (DPMPs, or “Deep Maps”)

    E-Print Network [OSTI]

    Fishkin, Shelley Fisher

    2011-01-01

    DEEP  MAPS”:  A  Brief  for   Digital  Projects   (DPMPs,  or  “Deep  Maps”)   SHELLEY  FISHER  acronym   DPMPs   as   “Deep   Maps. ”   They   would  

  11. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  12. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  13. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    SciTech Connect (OSTI)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  14. In Situ Grouting of Liquid Waste Disposal Trenches and Experimental Reactor Fuel Disposal Wells at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J.; Lambert, R. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Trujillo, E. [BWXT Pantex, LLC, Amarillo, TX (United States); Julius, J. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States)

    2008-07-01

    In the early to mid-1960's, liquid low-level wastes (LLLW) generated at Oak Ridge National Laboratory were disposed of in specially-constructed, gravel-filled trenches within the Melton Valley watershed at the lab. The initial selected remedy for Trenches 5 and 7 was in situ vitrification; however, an amendment to the record of decision changed the remedy to in situ grouting of the trenches. The work was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout. At the HRE fuel wells, a 1-m ring of soil surrounding the fuel wells was grouted with acrylamide. The results of the hydraulic conductivity tests ranged from 4.74 x 10{sup -6} to 3.60 x 10{sup -7} cm/sec, values that were well below the 1 x 10{sup -5} cm/sec design criterion. In summary: The ISG Project was conducted to decrease hydraulic conductivity and thereby decrease water flow and contaminate migration from the area of the trenches. The initial remedy for Trenches 5 and 7 in the Melton Valley ROD was for in situ vitrification of the trench matrix. The remedy was changed to in situ grouting of the trenches and HRE fuel wells through an amendment to the ROD after moisture was found in the trenches. The grouting of the trenches was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout to further reduce water infiltration. Soil backfill above each of the seven HRE fuel wells was removed to a depth of approximately 1 m by augering, and the soils were replaced with a cement plug to prevent water infiltration from migrating down the original borehole. Soil surrounding the fuel wells was then grouted with acrylamide to ensure water infiltration through the HRE fuel wells is prevented. A summary of the quantities used is shown. After completion of grouting, in-situ hydraulic conductivities of the grouted materials were measured to verify attainment of the design objective. The areas were then covered with multi-layer caps as part of the MV hydrologic isolation project. (authors)

  15. Deep Deference, Autonomy, and The Deferential Wife

    E-Print Network [OSTI]

    Silverstein, Elizabeth Rachel

    2013-01-01

    OF CALIFORNIA RIVERSIDE Deep Deference, Autonomy, and thev ABSTRACT OF THE DISSERTATION Deep Deference, Autonomy, andby DW and AF, which I call deep deference. Next, I identify

  16. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    SciTech Connect (OSTI)

    Gregory J. Shott; Vefa Yucel

    2009-07-16

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

  17. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOE Patents [OSTI]

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  18. Borehole SASW testing to evaluate log(G{sub max}) - log({sigma}{prime}) relationships in situ

    SciTech Connect (OSTI)

    Kalinski, M.E.; Stokoe, K.H. II; Young, Y.L.; Roesset, J.M.

    1999-07-01

    A new method is being developed for the in-situ measurement of shear wave velocity, V{sub s}, in the soil surrounding a borehole. The method involves the measurement of axially propagating surface waves inside an uncased borehole using the Spectral-Analysis-of-Surface-Waves (SASW) approach. Testing if performed with instrumentation housed inside an inflatable tool. Inflation pressures applied by the tool are used to vary radial stresses in the soil surrounding the borehole. Surface wave velocities over a range of frequencies are measured at each inflation pressure. These measurements are then theoretically modeled so that the variation in V{sub s} (an hence small-strain shear module, G{sub max}) with distance behind the borehole wall is determined at each pressure. The results of field tests with the borehole SASW tool at two sites composed of unsaturated clayey soil are presented. These results are compared with independent field seismic measurements and with laboratory tests on intact specimens using the torsional resonant column to assess the validity of the new field method.

  19. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  20. Ethidium Bromide: Disposal, Decontamination, and Destruction

    E-Print Network [OSTI]

    Jia, Songtao

    of the environment. 4. Hazardous Chemicals/Wastes: For the purposes of this policy, a hazardous waste or chemical requirements for the safe storage, use, handling, and disposal of particularly hazardous substances, including and the environment, and to comply with OSHA regulations. 2. Additional safety requirements may apply, depending

  1. Land Disposal Restrictions (LDR) program overview

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) enacted in 1984 required the Environmental Protection Agency (EPA) to evaluate all listed and characteristic hazardous wastes according to a strict schedule and to develop requirements by which disposal of these wastes would be protective of human health and the environment. The implementing regulations for accomplishing this statutory requirement are established within the Land Disposal Restrictions (LDR) program. The LDR regulations (40 CFR Part 268) impose significant requirements on waste management operations and environmental restoration activities at DOE sites. For hazardous wastes restricted by statute from land disposal, EPA is required to set levels or methods of treatment that substantially reduce the waste`s toxicity or the likelihood that the waste`s hazardous constituents will migrate. Upon the specified LDR effective dates, restricted wastes that do not meet treatment standards are prohibited from land disposal unless they qualify for certain variances or exemptions. This document provides an overview of the LDR Program.

  2. Description Disposable Membrane Chromatography Units for Scale-

    E-Print Network [OSTI]

    Lebendiker, Mario

    traceable to raw components. Constructed of component materials that meet United States Pharmacopeia (USP for a free product sample! Materials of Construction Membrane Bed Volume Device volume of chromatography systems. Disposable 25 mm units. Available in Q and S chemistries. Manufactured in accordance

  3. Environmental waste disposal contracts April 3, 2012

    E-Print Network [OSTI]

    and radioactive waste. The companies are · ARS Cavanagh Environmental Services, LLC · Portage, Inc. · Navarro of these materials may include trace or low levels of radioactive material. Waste materials also include transuranic the knowledge and experience to safely treat, package, and transport the waste for disposal in accordance

  4. Low level tank waste disposal study

    SciTech Connect (OSTI)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  5. Solving the problems of infectious waste disposal

    SciTech Connect (OSTI)

    Hoffman, S.L.; Cabral, N.J. )

    1989-06-01

    Lawmakers are increasing pressures to ensure safe, appropriate disposal of infectious waste. This article discusses the problems, the regulatory climate, innovative approaches, and how to pay for them. The paper discusses the regulatory definition of infectious waste, federal and state regulations, and project finance.

  6. The Very Deep Hole Concept: Evaluation of an Alternative for Nuclear Waste Disposal

    E-Print Network [OSTI]

    1979-01-01

    Costs could be substantially underestimated, particularly if the expansion of activities in oil-well drilling

  7. Analysis of Mineral Trapping for CO2 Disposal in Deep Aquifers

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby a contractor ofvarDOE PAGES

  8. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  9. Strategy for the Management and Disposal of Used Nuclear Fuel...

    Energy Savers [EERE]

    for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

  10. Z-Bed Recovery Water Disposal | Department of Energy

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Z-Bed Recovery Water Disposal Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. Z-Bed...

  11. TITLE: DISPOSAL OF PROTECTED HEALTH INFORMATION POLICY & PURPOSE

    E-Print Network [OSTI]

    Salzman, Daniel

    TITLE: DISPOSAL OF PROTECTED HEALTH INFORMATION POLICY & PURPOSE: To assure confidential information including patient and research information is disposed of in an appropriate manner. PROCEDURE patient and research information. 1. All staff must assure that paper containing confidential patient

  12. Grout treatment facility land disposal restriction management plan

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1991-04-04

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

  13. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  14. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  15. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  16. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  17. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Johnson Paul A. (Santa Fe, NM); Ten Cate, James A. (Los Alamos, NM); Guyer, Robert (Reno, NV); Le Bas, Pierre-Yves (Los Alamos, NM); Vu, Cung (Houston, TX); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2012-02-14

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  18. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  19. Acceptance of Classified Excess Components for Disposal at Area 5

    SciTech Connect (OSTI)

    Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

    2012-04-09

    This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

  20. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  1. Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs

    SciTech Connect (OSTI)

    Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

    2008-12-31

    This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and EM measurements. This algorithm assumed radial 1D variations of fluid saturation due to mud-filtrate invasion. Subsequently, we adapted the estimation method to interpret borehole field measurements acquired in both a shaly-sand sedimentary sequence and a tight-gas sandstone formation. In the two cases, we simulated the process of mud-filtrate invasion and concomitantly honored sonic and EM measurements. We produced reliable estimates of permeability and dry-rock moduli that were successfully validated with rock-core measurements. Finally, we introduced a new stochastic inversion procedure to estimate elastic, electrical, and petrophysical properties of layered media jointly from waveform sonic and frequency-domain EM measurements. The procedure was based on Bayesian statistical inversion and delivered estimates of uncertainty under various forms of a-priori information about the unknown properties. Tests on realistic synthetic models confirmed the reliability of this procedure to estimate elastic and petrophysical properties jointly from sonic and EM measurements. Several extended abstracts and conference presentations stemmed from this project, including 2 SEG extended abstracts, 1 SPE extended abstract, and 2 SPWLA extended abstracts. Some of these extended abstracts have been submitted for publication in peer-reviewed journals.

  2. LANL completes excavation of 1940s waste disposal site

    E-Print Network [OSTI]

    - 1 - LANL completes excavation of 1940s waste disposal site September 30, 2011 Waste safely removed from 65-year-old site LANL completed excavation of its oldest waste disposal site, Material from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for the Manhattan Project

  3. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    SciTech Connect (OSTI)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of longterm disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  4. CITY OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD

    E-Print Network [OSTI]

    #12;CITY OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAPH7 #12;Dayton & Knight Ltd. CITY OF PRINCE GEORGE SNOW DISPOSAL STUDY AT THE LANSDOWNE ROAD of Prince George. #12;CITY OF PRINCE GEORGE SNOW DISPOSAL STUDY AT THE LANSDOWNE ROAD WASTEWATER TREATMENT

  5. World Wide WebWWWDeep Web Web Deep Web

    E-Print Network [OSTI]

    Deep Web Web World Wide WebWWWDeep Web Web Deep Web Deep Web Deep Web Deep Web Deep Web 1 World Wide Web [1] Web 200,000TB Web Web Web Internet Web Web Web "" Surface Web Deep Web Surface Web 21.3% Surface Web Deep Web [2] Deep Web Web Crawler Deep Web 1 Web

  6. A deep earthquake goes supershear

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2014-09-01

    Seismic analysis of an aftershock off Russia’s Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  7. Pesticide fate in an aboveground disposal system 

    E-Print Network [OSTI]

    Vanderglas, Brian Richard

    1988-01-01

    Major Subject: Soil Science PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Approved as to style and content by: K. W. Brown (Chair of Committee) John M. Sweeten (Member) Jack D. Price (Member) E. C. A.... Pesticides applied to digesters. . 3. Mass of active ingredient (A. l. ) per treatment. . . . 17 4. Mean efficiencies of pesticide extraction methods from the soil and water. 21 5. Optimal gas chromatograph conditions for analysis of pesticides extracted...

  8. High Level Waste Disposal System Optimization

    SciTech Connect (OSTI)

    Dirk Gombert; M. Connolly; J. Roach; W. Holtzscheiter

    2005-02-01

    The high level waste (HLW) disposal system consists of the Yucca Mountain Facility (YMF) and waste product (e.g. glass) generation facilities. Responsibility for management is shared between the U. S. Department of Energy (DOE) Offices of Civilian Radioactive Waste Management (DOE-RW) and Environmental Management (DOE-EM). The DOE-RW license application and the Waste Acceptance System Requirements Document (WASRD), as well as the DOE-EM Waste Acceptance Product Specification for Vitrified High Level Waste Forms (WAPS) govern the overall performance of the system. This basis for HLW disposal should be reassessed to consider waste form and process technology research and development (R&D), which have been conducted by DOE-EM, international agencies (i.e. ANSTO, CEA), and the private sector; as well as the technical bases for including additional waste forms in the final license application. This will yield a more optimized HLW disposal system to accelerate HLW disposition, more efficient utilization of the YMF, and overall system cost reduction.

  9. Deep Inelastic Neutrino Interactions

    E-Print Network [OSTI]

    S. Kretzer; M. H. Reno

    2003-06-30

    Understanding neutrino interactions is an important task in searches for neutrino oscillations; e.g. the nu_{mu} -> nu_{tau} oscillation hypothesis will be tested through nu_{tau} production of tau in long-baseline experiments as well as underground neutrino telescopes. An anomaly in the deep inelastic interaction of neutrinos has recently been observed by the NuTeV collaboration -- resulting in a measured weak mixing angle sin^2 Theta_{W} that differs by ~ 3 sigma from the standard model expectation. In this contribution to the proceedings of NUINT02, we summarize results on the NLO neutrino structure functions and cross sections in which charm quark mass and target mass effects in the collinear approximation are included.

  10. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  11. A multi-physics, integrated approach to formation evaluation using borehole geophysical measurements and 3D seismic data

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    A multi-physics, integrated approach to formation evaluation using borehole geophysical at Austin Summary This paper describes a methodology for formation evaluation based on the integration and DC resistivity sensors. Finally, 3D seismic data, post-stack and pre-stack, are used to ascertain

  12. Numerical Simulation of 3D EM Borehole Measurements Using an hp-Adaptive Goal-Oriented Finite Element Formulation

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of simulation of electromagnetic borehole resistivity measurements for the assessment of rock formation self-adaptive method. The resulting grid enables fast simulations (few seconds per logging position of 3D simulators of resistivity log- ging measurements have been developed within the oil industry

  13. Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    with energized steel casing to water displacement in hydrocarbon-bearing layers David Pardo1 , Carlos Torres is energized with a finite-size sole- noid antenna located along the axis of the borehole. Measure- ments more recent work concerning energized steel casing, in which an ar- ray of steel-casing segments

  14. Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments

    SciTech Connect (OSTI)

    Shirish Patil; Godwin A. Chukwu; Gang Chen; Santanu Khataniar

    2008-12-31

    Novel chemically bonded phosphate ceramic borehole sealant, i.e. Ceramicrete, has many advantages over conventionally used permafrost cement at Alaska North Slope (ANS). However, in normal field practices when Ceramicrete is mixed with water in blenders, it has a chance of being contaminated with leftover Portland cement. In order to identify the effect of Portland cement contamination, recent tests have been conducted at BJ services in Tomball, TX as well as at the University of Alaska Fairbanks with Ceramicrete formulations proposed by the Argonne National Laboratory. The tests conducted at BJ Services with proposed Ceramicrete formulations and Portland cement contamination have shown significant drawbacks which has caused these formulations to be rejected. However, the newly developed Ceramicrete formulation at the University of Alaska Fairbanks has shown positive results with Portland cement contamination as well as without Portland cement contamination for its effective use in oil well cementing operations at ANS.

  15. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  16. Thermal Fracturing of Geothermal Wells and the Effects of Borehole Orientation

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01

    An enhanced geothermal system (EGS) expands the potential of geothermal energy by enabling the exploitation of regions that lack conventional hydrothermal resources. The EGS subsurface system is created by engineering enhanced flow paths between injection and production wells. Hydraulic stimulation of existing fracture networks has been successfully achieved for unconventional geothermal resources. More recently proposed concepts increase the use of drilled wellbores in hard rock to connect the injection and production wells. The present work investigates the long-term thermal effects of deviated geothermal wellbores and studies how the cooling of the borehole wall results in thermally induced tensile fractures. The results show that induced fractures are created by a combination of in situ and thermal stresses, and that the extent to which thermally induced tensile wall fractures are created largely depends on how the wellbores are oriented with respect to the pre-existing stresses of the reservoir. If the s...

  17. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt T. (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2012-07-31

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  18. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-09-04

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  19. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2010-11-23

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  20. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  1. Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration

    E-Print Network [OSTI]

    Birkholzer, J.T.

    2012-01-01

    of direct collaboration with international disposal programsdirect access to information, data, and expertise on various disposal

  2. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells.

  3. Deep water gives up another secret

    E-Print Network [OSTI]

    Manning, CE

    2013-01-01

    COMMENTARY Deep water gives up another secret Craig E.important properties at deep-earth conditions: its dielec-magmas carry water from the deep interior. Water in?u- ences

  4. Direct Experiments on the Ocean Disposal of Fossil Fuel CO2

    SciTech Connect (OSTI)

    Barry, James, P.

    2010-05-26

    Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progress in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the effects of high CO2 waters on marine animals (Barry et al. 2008). This system is capable of controlling oxygen, pH, and temperature of seawater for use in studies of the physiological responses of animals under acidified conditions. We have investigated the tolerance of deep- and shallow-living crabs to high CO2 levels (Pane and Barry 2007; Pane et al. 2008), and are now working on brachiopods (Barry et al. in prep.) and a comparison of deep and shallow living sea urchins. This research program, supported in part by DoE has contributed to a number of other publications authored or co-authored by Barry (Caldeira et al. 2005; Brewer and Barry 2008; Barry et al. 2006, 2010a,b,c; National Research Council, in press; Hoffman et al. in press) as well as over 40 invited talks since 2004, including Congressional briefings and testimony at U.S. Senate Hearings on Ocean Acidification. Through the grant period, the research emphasis shifted from studies of the effects of direct deep-sea carbon dioxide sequestration on deep-sea animals, to a broader conceptual framework of the effects of ocean acidification (whether purposeful or passive) on the physiology and survival of deep and shallow living marine animals. We feel that this has been a very productive program and are grateful to DoE for its support.

  5. Appendix K Disposal Cell Groundwater Monitoring Plan

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VANaval ,, *' ; . Final Disposal Cell

  6. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    DOE Patents [OSTI]

    Wilson, Robert D. (477 W. Scenic Dr., Grand Junction, CO 81503)

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  7. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  8. Defense High Level Waste Disposal Container System Description

    SciTech Connect (OSTI)

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials will be selected for the disposal container inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lids will be a barrier made of high-nickel alloy. The defense HLW disposal container interfaces with the emplacement drift environment and the internal waste by transferring heat from the canisters to the external environment and by protecting the canisters and their contents from damage/degradation by the external environment. The disposal container also interfaces with the canisters by limiting access of moderator and oxidizing agents to the waste. A loaded and sealed disposal container (waste package) interfaces with the Emplacement Drift System's emplacement drift waste package supports upon which the waste packages are placed. The disposal container interfaces with the Canister Transfer System, Waste Emplacement /Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement, and retrieval for the disposal container/waste package.

  9. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  10. Final disposal of VOCs from industrial wastewaters

    SciTech Connect (OSTI)

    Ying, W.; Bonk, R.R.; Hannam, S.C. (Occidential Chemical Corp., Grand Island, NY (United States)); Qi-dong Li (Fudan Univ., Shanghai (China))

    1994-08-01

    Vapor phase carbon adsorption followed by spent carbon regeneration and catalytic oxidation were evaluated as methods for disposal of volatile organic compounds (VOCs) released from industrial wastewaters during treatment operations such as aeration, air-stripping and aerobic biodegradation. Adsorptive capacities and breakthrough characteristics for eight VOCs found in many hazardous landfill leachates and contaminated groundwater were compared for selection of the best adsorbent and optimum treatment conditions. Coconut shell-based activated carbons exhibited higher VOC loading capacities than coal-based carbons, fiber carbon, molecular sieve and zeolite. Steam and hot nitrogen were both effective for regeneration of the spent carbon. A small quantity of adsorbates left in the regenerated carbon did not result in immediate VOC breakthrough in the next cycle adsorption treatment. Catalytic oxidation was found to be an attractive alternative for VOC disposal. Using a new commercial catalyst developed for destruction of halogenated organic compounds, even stable VOCs such as trichloroethylene and tetrachloroethylene were completely destroyed at <350[degrees]C when oxidation was conducted at a space velocity of 17000/hr. 25 refs., 10 figs., 10 tabs.

  11. Iraq nuclear facility dismantlement and disposal project

    SciTech Connect (OSTI)

    Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  12. FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Crapse, K; Benjamin Culbertson, B

    2007-03-15

    The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

  13. Will new disposal regulations undo decades of progress?

    SciTech Connect (OSTI)

    Ward, J. [John Ward Inc. (United States)

    2009-07-01

    In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

  14. Wireless Magnetothermal Deep Brain Stimulation

    E-Print Network [OSTI]

    Chen, Ritchie

    Wireless deep brain stimulation of well-defined neuronal populations could facilitate the study of intact brain circuits and the treatment of neurological disorders. Here we demonstrate minimally-invasive and remote neural ...

  15. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  16. Low-Level Waste Disposal Alternatives Analysis Report

    SciTech Connect (OSTI)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  17. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit with form History ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search...

  18. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been...

  19. Characterization of Vadose Zone Sediment: Borehole C3103 Located in the 216-B-7A Crib Near the B Tank Farm

    SciTech Connect (OSTI)

    Lindenmeier, Clark W.; Serne, R JEFFREY.; Bjornstad, Bruce N.; Last, George V.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-12-01

    This report summarizes data collected from samples in borehole C3103. Borehole C3103 was completed to further characterize the nature and extent of vadose zone contaminants supplied by intentional liquid discharges into the crib 216-B7A/7B between 1954 and 1967. These cribs received dilute waste streams from the bismuth phosphate fuel reprocessing program in the 1950's and decontamination waste in the 1960's. Elevated concentrations of several constituents were primarily measured at different depth intervals. The primary radionuclides present in this borehole are cesium-137 and uranium near the top of the borehole. Chemical characteristics attributed to wastewater-soil interaction at different locations within this zone are elevated pH, sodium, fluoride, carbonate nitrate, and sulphate

  20. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Noel, J.S.; Martin, R.J. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    Experimental results are presented for bulk and mechanical properties measurements on specimens of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5, at Yucca Mountain, Nevada. Measurements have been performed on three thermal/mechanical units, PTn, TSwl, and TSw2. On each specimen the following bulk properties have been reported: dry bulk density, saturated bulk density, average grain density, and porosity. Unconfined compression to failure, confined compression to failure, and indirect tensile strength tests were performed on selected specimens recovered from the boreholes. In addition, compressional and shear wave velocities were measured on specimens designated for unconfined compression and confined compression experiments. Measurements were conducted at room temperature on nominally water-saturated specimens. The nominal rate for the fracture experiments was 10{sup -5}s{sup -1}.

  1. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect (OSTI)

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization (FGD) by-product disposed in the Midwest, and a mixture of Class C fly ash and wet process FGD by-product codisposed in North Dakota, appeared relatively unchanged mineralogically over the up to 5 and 17 years of emplacement, respectively. Each of these two materials contained mineralogies consistent with short-term hydration products of their respective starting (dry) materials. The hydration product ettringite persisted throughout the duration of emplacement at each site, and the diagenetic ash alteration product thaumasite did not form at either site. Explanations for the absence of thaumasite in these two sites include a lack of significant carbonate, sulfate, and alkalinity sources in the case of the North Dakota site, and a lack of sulfate, alkalinity, and sufficient moisture in the Midwest site. Potential for future thaumasite formation in these materials may exist if placed in contact with cold, wet materials containing the missing components listed above. In the presence of the sulfite scrubber mineral hannebachite, the ettringites formed had crystallographic unit cell dimensions smaller than those of pure sulfate ettringite, suggesting either incorporation of sulfite ions into the ettringite structure, or incorporation of silicon and carbonate ions, forming a solid solution towards thaumasite.

  2. PERSPECTIVES Deep Earthquakes: A Fault Too Big?

    E-Print Network [OSTI]

    Stein, Seth

    PERSPECTIVES Deep Earthquakes: A Fault Too Big? Seth Stein Because deep Earth processes are inacces. Recent results for the mys- terious deep earthquakes that occur to depths greater than 600 km is that large deep earthquakes (1-3) seem to have occurred on faults larger than ex- pected from the competing

  3. The DEEP2 Galaxy Redshift Survey: Overview

    E-Print Network [OSTI]

    The DEEP2 Galaxy Redshift Survey: Overview David C. Koo & DEEP2 Team UCO/Lick Observatory. Univ. of California, Santa Cruz AAS Seattle Jan 2003 DEIMOSKECK #12;l What is DEEP2 ? l What are its Scientific Goals? l What is its Current Status? #12;The DEEP2 Collaboration Team Members: M. Davis (PI, UCB), S. Faber

  4. SEQUENTIAL DEEP BELIEF NETWORKS Galen Andrew

    E-Print Network [OSTI]

    Noble, William Stafford

    SEQUENTIAL DEEP BELIEF NETWORKS Galen Andrew University of Washington Department of Computer bilmes@ee.washington.edu ABSTRACT Previous work applying Deep Belief Networks (DBNs) to problems sequential information in the hidden layers. Index Terms-- deep learning, deep belief network, phone recog

  5. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

  6. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  7. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  8. Disposable sludge dewatering container and method

    DOE Patents [OSTI]

    Cole, Clifford M. (1905 Cottonwood Dr., Aiken, SC 29803)

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  9. WebDeep Web Surface Web

    E-Print Network [OSTI]

    Web WebWeb WebWeb WebHTML Web WebDeep Web Surface Web " " Deep Web21 Dot-ComWebWeb2.0 WebWeb ""Web WebWeb Deep Web WebWeb SNS Web WebWeb 20017BrightPlanet.comDeep Web Web43,000-96,000Web7,500TB(Surface Web500) UIUCDeep Web2004Deep Web 307,000366,000-535,000 WebDeep Web "" Deep Web 1 Web Web #12

  10. Consolidation and disposal of PWR fuel inserts

    SciTech Connect (OSTI)

    Wakeman, B.H. (Virginia Electric and Power Co., Glen Allen, VA (United States))

    1992-08-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry Installation will accommodate 84 such casks with a total storage capacity of 811 MTU of spent pressurized water reactor fuel assemblies. Virginia Power provided three storage casks for testing at the Idaho National Engineerinq Laboratory's Test Area North and the testing results have been published by the Electric Power Research Institute. Sixty-nine spent fuel assemblies were transported in truck casks from the Surry Power Station to Test Area North for testing in the three casks. Because of restrictions imposed by the cask testing equipment at Test Area North, the irradiated insert components stored in these fuel assemblies at Surry were removed prior to transport of the fuel assemblies. Retaining these insert components proved to be a problem because of a shortage of spent fuel assemblies in the spent fuel storage pool that did not already contain insert components. In 1987 Virginia Power contracted with Chem-Nuclear Systems, Inc. to process and dispose of 136 irradiated insert components consisting of 125 burnable poison rod assemblies, 10 thimble plugging devices and 1 part-length rod cluster control assembly. This work was completed in August and September 1987, culminating in the disposal at the Barnwell, SC low-level radioactive waste facility of two CNS 3-55 liners containing the consolidated insert components.

  11. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  12. Relationship between acoustic body waves and in situ stresses around a borehole

    E-Print Network [OSTI]

    Rousseau, A

    2005-01-01

    This paper shows that there are three types of shape of acoustic body waves propagating inside competent and homogeneous formations penetrated by a borehole : simple, double, and resonant. This fact is connected to the modifications undergone by the area located around a well after drilling in relation to in situ state of stress. There are overstressed and understressed vertical cylindrical zones with "bubble-shaped" cross-sections, in which acoustic body waves are supposed to reflect. The horizontal size and the shape of the stress modified areas depend on the values of (K1+K2)/2 - with K1=SH/Sv (the overburden pressure) and K2=Sh/Sv -, that is to say on the in situ horizontal stress and the anisotropy of this stress. The calculation of the velocities of the P and S double waves allows us to evaluate the radial thicknesses of these stress modified areas. As their values are different according to whether they result from P or S waves, we propose an explanation based on their wavelengths. The comparisons with...

  13. Hydrothermally altered and fractured granite as an HDR reservoir in the EPS-1 borehole, Alsace,

    SciTech Connect (OSTI)

    Genter, A.; Traineau, H.

    1992-01-01

    As part of the European Hot Dry Rocks Project, a second exploration borehole, EPS-1, has been cored to a depth of 2227 m at Soultz-sous-Forets (France). The target was a granite beginning at 1417 m depth, overlain by post-Paleozoic sedimentary cover. Structural analysis and petrographic examination of the 800-m porphyritic granite core, have shown that this rock has undergone several periods of hydrothermal alteration and fracturing. More than 3000 natural structures were recorded, whose distribution pattern shows clusters where low-density fracture zones (less than 1 per meter) alternate with zones of high fracture density (more than 20 per meter). Vein alteration, ascribed to paleohydrothermal systems, developed within the hydrothermally altered and highly fractured zones, transforming primary biotite and plagioclase into clay minerals. One of these zones at 2.2 km depth produced a hot-water outflow during coring, indicating the existence of a hydrothermal reservoir. Its permeability is provided by the fracture network and by secondary porosity of the granitic matrix resulting from vein alteration. This dual porosity in the HDR granite reservoir must be taken into account in the design of the heat exchanger, both for modeling the water-rock interactions and for hydraulic testing.

  14. 1 INSTRODUCTION In the concept of geological radioactive waste disposal,

    E-Print Network [OSTI]

    Boyer, Edmond

    1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being-hydro-mechanical characterization of Opalinus clay are presented. The material is one of the argillites being studied in several research projects in Europe in the context of geological radioactive waste disposal. 2 MATERIAL STUDIED

  15. Laboratory to demolish excavation enclosures at Material Disposal Area B

    E-Print Network [OSTI]

    of a decades-old waste disposal site at the historic Technical Area 21. Pre-demolition activities are beginning, federal project manager with the National Nuclear Security Administration's Los Alamos Site Office. "We requirements and shipped offsite to an approved waste disposal facility. MDA B was used from 1944 to 1948

  16. Procedure for the Recycling Material and Disposal of Waste from

    E-Print Network [OSTI]

    Guillas, Serge

    that waste is produced, stored, transported and disposed of without harming the environment. This is your, transport and disposal of wastes produced by UCL as requested by Facilities Services waste managers Clinical Wastes Radioactive Wastes Laboratory Wastes of Unknown Hazard Non-Hazardous Laboratory Wastes

  17. Paint and Paint Thinner Waste: Collection, Storage and Disposal

    E-Print Network [OSTI]

    Jia, Songtao

    Paint and Paint Thinner Waste: Collection, Storage and Disposal Procedure: 8.01 Created: 09 paint and paint thinner waste, including solvent contaminated rags, is collected and stored in a manner&S) employees who handle, store or dispose of paint and paint thinner materials. Paint and paint thinner waste

  18. The Silent Deep: The Discovery, Ecology and Conservation of the Deep Sea.

    E-Print Network [OSTI]

    Koehl, Mimi

    The Silent Deep: The Discovery, Ecology and Conservation of the Deep Sea. By Tony Koslow. Chicago and Tyler's excellent textbook, Deep-Sea Biology: A Natural History of Organisms at the Deep- Sea Floor and line drawings of deep-sea organisms and exploration give it broad appeal. The text is deceptive

  19. Evolution of Spheroidal Galaxies at z Deep Extragalactic Evolutionary Probe (DEEP)

    E-Print Network [OSTI]

    Evolution of Spheroidal Galaxies at z Deep Extragalactic Evolutionary Probe (DEEP) Myungshin Im 1 and DEEP team 2 UCO/Lick Observatory, UCSC, Santa Cruz, CA 95064 Abstract. DEEP is a multi about DEEP, see an article by D.C. Koo in this conference proceedings). So far, our data consist

  20. Scoping survey of perceived concerns, issues, and problems for near-surface disposal of FUSRAP waste

    SciTech Connect (OSTI)

    Robinson, J.E.; Gilbert, T.L.

    1982-12-01

    This report is a scoping summary of concerns, issues, and perceived problems for near-surface disposal of radioactive waste, based on a survey of the current literature. Near-surface disposal means land burial in or within 15 to 20 m of the earth's surface. It includes shallow land burial (burial in trenches, typically about 6 m deep with a 2-m cap and cover) and some intermediate-depth land burial (e.g., trenches and cap similar to shallow land burial, but placed below 10 to 15 m of clean soil). Proposed solutions to anticipated problems also are discussed. The purpose of the report is to provide a better basis for identifying and evaluating the environmental impacts and related factors that must be analyzed and compared in assessing candidate near-surface disposal sites for FUSRAP waste. FUSRAP wastes are of diverse types, and their classification for regulatory purposes is not yet fixed. Most of it may be characterized as low-activity bulk solid waste, and is similar to mill tailings, but with somewhat lower average specific activity. It may also qualify as Class A segregated waste under the proposed 10 CFR 61 rules, but the parent radionuclides of concern in FUSRAP (primarily U-238 and Th-232) have longer half-lives than do the radionuclides of concern in most low-level waste. Most of the references reviewed deal with low-level waste or mill tailings, since there is as yet very little literature in the public domain on FUSRAP per se.

  1. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  2. Issues and Experiences on Radioactive Waste Quality Control / Quality Assurance with Regard to Future Disposal

    SciTech Connect (OSTI)

    Beckmerhagen, I.; Brennecke, P.; Steyer, S.; Bandt, G.

    2006-07-01

    In the Federal Republic of Germany all types of radioactive waste (short-lived, long-lived) are to be disposed of in deep geological formations. Thus, the safe management of radioactive waste presupposes an appropriate conditioning of primary waste-to-waste packages suitable for emplacement in a repository as well as the documentation of pre-treatment, processing and packaging steps and the waste package characteristics being relevant for disposal. Due to the operation, decommissioning and dismantling of nuclear facilities as well as the application of radioisotopes in industry, medicine and research and development radioactive waste continuously arises in Germany. In order to manage this waste different measures and procedures regarding its conditioning and quality control/quality assurance were introduced and since many years successfully applied. Waste conditioning is especially characterized by a flexible application of the Konrad waste acceptance requirements. The rationale for this approach is due to the present non-availability of a repository in Germany. Several examples of a 'tailor-made' application of the waste acceptance requirements in treatment, conditioning and documentation processes as well as the quality assurance/quality control processes illustrate the current German approach. (authors)

  3. Fracture Characteristics in a Disposal Pit on Mesita del Buey, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    David T. Vaniman; Steven L. Reneau

    1998-12-01

    The characteristics of fractures in unit 2 of the Tshirege Member of the Bandelier Tuff were documented in Pit 39, a newly excavated 13.7 m deep disposal pit at Material Disposal Area G on Mesita del Buey. The average spacing between fractures is about 1.0 to 1.3 m, the average fracture aperture is about 3 to 5 mm, and the average fracture dip is about 76o to 77o. Fracture spacing and dip in Pit 39 are generally consistent with that reported from other fracture studies on the Pajarito Plateau, although the fracture apertures in Pit 39 are less than reported elsewhere. Measured fracture orientations are strongly affected by biases imparted by the orientations of the pit walls, which, combined with a small data set, make identification of potential preferred orientations dlfflcult. The most prominent fracture orientations observed in Pit 39, about E-W and N20E, are often not well represented elsewhere on the Pajarito Plateau. Fracture fills contain smectite to about 3 m depth, and calcite and opal may occur at all depths, principally associated with roots or root fossils (rhizoliths). Roots of pifion pine extend in fractures to the bottom of the pit along the north side, perhaps indicating a zone of preferred infiltration of water. Finely powdered tuff with clay-sized particles occurs within a number of fractures and may record abrasive disaggregation associated with small amounts of displacement on minor local faults.

  4. The thermal conductivity of filler materials and permeability of a cement sealant for deep borehole repositories for high level nuclear waste

    E-Print Network [OSTI]

    Salazar, Alex, III

    2013-01-01

    The Department of Energy is contractually obligated to begin the removal of spent nuclear fuel from reactor sites by the year 2020 at the risk of increased liabilities. The Blue Ribbon Commission on America's Nuclear Future ...

  5. RADIOACTIVE WASTE DISPOSAL PROCEDURES 1. Radioactive waste is accepted for disposal by Radiation Safety on Monday, Wednesday and

    E-Print Network [OSTI]

    Hammack, Richard

    attire including lab coats when transporting radioactive waste. LABS OUTSIDE SANGER HALL 1RADIOACTIVE WASTE DISPOSAL PROCEDURES 1. Radioactive waste is accepted for disposal by Radiation are required and may be scheduled by calling 8289131. 2. Segregate and package radioactive waste according

  6. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from a deep borehole. This report emphasizes more recent borehole science and engineering activities including: 1. Establishing a reference borehole design; 2. Developing...

  7. SAND2012-7789

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m ovement from a deep borehole. This report emphasizes more recent borehole science and engineering activities including: 1. Establishing a reference borehole design; 2....

  8. The full fuel cycle of CO{sub 2} capture and disposal capture and disposal technology

    SciTech Connect (OSTI)

    Saroff, L.

    1995-12-31

    The overall objective of this study was to develop a methodology for the evaluation of the energy usage and cost both private and societal (external cost)for full fuel cycles. It was envisioned that other organizations could employ the methodology with minor alterations for a consistent means of evaluating full fuel cycles. The methodology has been applied to three fossil fuel electric generation processes each producing 500 MWe (net). These are: a Natural Gas Combined Cycle (NGCC) power plant burning natural gas with direct CO{sub 2} capture and disposal; an Integrated Gasification Combined Cycle (IGCC) power plant burning coal with direct CO{sub 2} capture and disposal; and a Pulverized Fuel (PC) power plant burning coal with a managed forest indirectly sequestering CO{sub 2}. The primary aim is to provide decision makers with information from which to derive policy. Thus, the evaluation reports total energy used, private costs to build the facility, emissions and burdens, and the valuation (externalities) of the impacts of the burdens. The energy usage, private costs including capture and disposal, and emissions are reported in this paper. The valuations and analysis of the impact of the plant on the environment are reported in the companion paper. The loss in efficiency (LHV) considering the full fuel cycle as opposed to the thermal efficiency of the power plant is; 0.9, 2.4, and 4.6 for the NGCC, IGCC, and PC+controls, respectively. Electricity cost, c/kWh, including capital, operating and fuel, at a 10% discount rate. ranges from 5.6 to 7.08 for NGCC and 7.24 to 8.61 for IGCC. The range is dependent on the mode of disposal, primarily due to the long pipeline to reach a site for the pope disposal in the ocean. For the PC+ controls then is a considerable range from 7.66 to over 16 c/kWh dependent on the size and cost of the managed forest.

  9. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  10. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    2000-03-13

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

  11. A one-time excess inventory disposal decision under stochastic and price dependent demand 

    E-Print Network [OSTI]

    Zhu, Xiaoyan

    2002-01-01

    This thesis studies a one-time excess inventory disposal problem where the demand during the disposal period (DDDP) is stochastic and its distribution depends on the disposal price. More specifically, this thesis considers a periodic...

  12. Standardization of DOE Disposal Facilities Waste Acceptance Process

    SciTech Connect (OSTI)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  13. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  14. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  15. Hazardous-Substance Generator, Transporter and Disposer Liability under the Federal and California Superfunds

    E-Print Network [OSTI]

    Vernon, James; Dennis, Patrick W.

    1981-01-01

    Carpenter-Presley-Tanner Hazardous Substance Account Act ofincluding spills and hazardous- waste disposal sites thatlabel for the disposal of hazardous wastes. Id. at 607. The

  16. Assessment of Disposal Options for DOE-Managed High-Level Radioactive...

    Energy Savers [EERE]

    of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste Repository Reference Disposal Concepts and Thermal Load Management Analysis...

  17. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  18. Analysis of alternatives for immobilized low activity waste disposal

    SciTech Connect (OSTI)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  19. Deep-web search engine ranking algorithms

    E-Print Network [OSTI]

    Wong, Brian Wai Fung

    2010-01-01

    The deep web refers to content that is hidden behind HTML forms. The deep web contains a large collection of data that are unreachable by link-based search engines. A study conducted at University of California, Berkeley ...

  20. The Phoenix Deep Survey: A Deep Microjansky Radio Survey

    E-Print Network [OSTI]

    J. Afonso; B. Mobasher; A. Hopkins; L. Cram

    1999-09-05

    The study of the nature of faint radio sources is of great importance since a significant fraction of these objects is thought to be composed of actively star-forming galaxies. Due to the increased sensitivity of radio telescopes, we are now not only able to catalogue large numbers of these sources in the sub-millijansky regime, but also to start the study of the nature of increasingly fainter microjansky sources. This paper presents a new very deep 1.4 GHz radio survey made as a part of the Phoenix Deep Survey, a project aimed to study the nature of the faintest radio sources. With a limiting sensitivity of 45 microJy, this new survey has allowed us to assemble a large number of sources with 1.4 GHz flux densities below 100 microJy. The resulting source counts and the analysis of the optical properties of the faintest radio sources are presented.

  1. Disposal Facility Reaches 15-Million-Ton Milestone

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – EM’s Environmental Restoration Disposal Facility (ERDF) — a massive landfill for low-level radioactive and hazardous waste at the Hanford site — has achieved a major cleanup milestone.

  2. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  3. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  4. Laboratory to demolish excavation enclosures at Material Disposal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Colleen Curran Communications Office (505) 664-0344 Email "We look forward to the day we officially...

  5. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    by calling 1 (800) 336-9477 COVER SHEET Lead Agency: U.S. Department of Energy Title: Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental Impact Statement...

  6. Maintenance Guide for DOE Low-Level Waste Disposal Facility

    Office of Environmental Management (EM)

    for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF...

  7. Laboratory to demolish excavation enclosures at Material Disposal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work...

  8. Draft Geologic Disposal Requirements Basis for STAD Specification

    SciTech Connect (OSTI)

    Ilgen, Anastasia G.; Bryan, Charles R.; Hardin, Ernest

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.

  9. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  10. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  11. Isoform discovery by targeted cloning,`deep-

    E-Print Network [OSTI]

    Roth, Frederick

    Isoform discovery by targeted cloning,`deep- well' pooling and parallel sequencing Kourosh Salehi transcriptase (RT)- PCR recombinational cloning,`deep-well' pooling and a next- generation sequencing platform and demonstrate the ORFeome primer pairs ORFeome minipool arrays Single colony isolates `Deep wells' of pooled

  12. THE DEEP PROJECT DAVID C. KOO

    E-Print Network [OSTI]

    THE DEEP PROJECT DAVID C. KOO UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA Abstract. DEEP is a multi­institutional program designed to undertake a ma­ jor new spectroscopic goal of securing large numbers of redshifts (10,000 + ) to very faint limits of I ¸ 23, DEEP intends

  13. Deep Web Entity Monitoring Mohammadreza Khelghati

    E-Print Network [OSTI]

    Hiemstra, Djoerd

    Deep Web Entity Monitoring Mohammadreza Khelghati Database Group University of Twente, Netherlands. This data is defined as hidden web or deep web which is not accessible through search engines. It is estimated that deep web contains data in a scale several times bigger than the data accessible through

  14. Deep Mixtures of Factor Analysers Introduction

    E-Print Network [OSTI]

    Toronto, University of

    Deep Mixtures of Factor Analysers Introduction Experiments - High dimensional data (avg. log An efficient way to learn deep density models is to greedily learn one layer at a time using one layer latent Graphical Model of Deep MFA Illustration with 2D data Each ellipse is a Gaussian Component Aggregated

  15. Deep-Space Optical Communications: Future

    E-Print Network [OSTI]

    Djordjevic, Ivan B.

    INVITED P A P E R Deep-Space Optical Communications: Future Perspectives and Applications Current technologies available for deep-space optical data transmission and networking are discussed in this paper IEEE, Abhijit Biswas, and Ivan B. Djordjevic, Senior Member IEEE ABSTRACT | The concept of deep

  16. Deep Vadose Zone Applied Field Research Initiative

    E-Print Network [OSTI]

    Deep Vadose Zone­ Applied Field Research Initiative Fiscal Year 2012 Annual Report #12;Prepared Tasks 25 References 25 Appendix: FY2012 Products for the Deep Vadose Zone­ Applied Field Research Initiative Contents #12;Message from the Deep Vadose Zone- Applied Field Research Initiative Project Manager

  17. Boston Harbor -Deep Draft Navigation Improvement Massachusetts

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of Massachusetts Bay and is the New England region's largest port. The main deep water harbor is comprised for the Chelsea River which has an authorized depth of 38 feet MLLW. Deep water access to the harbor is providedBoston Harbor - Deep Draft Navigation Improvement Massachusetts 21 August 2008 and 18 September

  18. Sampling the National Deep Web Denis Shestakov

    E-Print Network [OSTI]

    Hammerton, James

    Sampling the National Deep Web Denis Shestakov Department of Media Technology, Aalto University pages filled with information from myriads of online databases. This part of the Web, known as the deep a problem of deep Web characterization: how to estimate the total number of online databases on the Web? We

  19. New Horizons for Deep Subsurface Microbiology

    E-Print Network [OSTI]

    Onstott, Tullis

    life cannot exist. · Experiments being designed for the Deep Un- derground Science and EngineeringNew Horizons for Deep Subsurface Microbiology Subsurface microorganisms may grow slowly 200-m-deep wells along with procedures to monitor for drilling-related contaminants, uncovered

  20. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  1. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    SciTech Connect (OSTI)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  2. Deep-Sea Research I 49 (2002) 681705 Modification and pathways of Southern Ocean Deep Waters

    E-Print Network [OSTI]

    Naveira Garabato, Alberto

    2002-01-01

    Deep-Sea Research I 49 (2002) 681­705 Modification and pathways of Southern Ocean Deep Waters of the deep water masses flowing through the region, and to quantify changes in their properties as they cross and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global

  3. Location standards for RCRA Treatment, Storage, and Disposal Facilities (TSDFs). RCRA Information Brief

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This bulletin describes RCRA location standards for hazardous waste storage and disposal facilities.

  4. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  5. Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

  6. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  7. hp-Adaptive Multiphysics Finite Element Simulation of LWD Borehole Sonic Waveforms Pawel J. Matuszyk, University of Texas at Austin, on leave from AGH University of Science and Technology,

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    hp-Adaptive Multiphysics Finite Element Simulation of LWD Borehole Sonic Waveforms Pawel J-physics, finite-element method to simulate LWD borehole acoustic waveforms in the presence of the tool. The method truncation of the spatial domain. Examples of appli- cation are shown for the simulation of LWD sonic

  8. Accepted for publication in Energy and Buildings. 2014. http://dx.doi.org/10.1016/j.enbuild.2014.03.056 Improvement of Borehole Thermal Energy Storage Design Based on

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .03.056 1 Improvement of Borehole Thermal Energy Storage Design Based on Experimental and Modelling Results Thermal Energy Storage appears to be an attractive solution for solar thermal energy storage. The SOLARGEOTHERM research project aimed to evaluate the energetic potential of borehole thermal energy storage

  9. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  10. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

  11. Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015

    SciTech Connect (OSTI)

    Ouzounian, P. [ANDRA, Chatenay-Malabry (France); Palmu, Marjatta [Posiva Oy, Eurajoki (Finland); Eng, Torsten [SKB, Stockholm (Sweden)

    2012-07-01

    Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel, high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge Management as well as activities remaining specific for the WMOs were as well identified in the document. For example, each WMO has to develop their own waste acceptance rules, and plan for the economics and the funding of their waste management programmes. The challenge at hand for the IGD-TP is to deploy the SRA. This is carried out by agreeing on a Deployment Plan (DP) that guides organizing the concrete joint activities between the WMOs and the other participants of the IGD-TP. The first DP points out the coordinated RD and D projects and other activities that need to be launched to produce these results over the next four to five years (by the end of 2016). The DP also describes general principles for how the joint work can be organised and funded. (authors)

  12. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  13. Quantification of Wellbore Leakage Risk Using Non-destructive Borehole Logging Techniques

    SciTech Connect (OSTI)

    Duguid, Andrew; Butsch, Robert; Cary, J.; Celia, Michael; Chugunov, Nikita; Gasda, Sarah; Hovorka, Susan; Ramakrishnan, T. S.; Stamp, Vicki; Thingelstad, Rebecca; Wang, James

    2014-08-29

    Well integrity is important at all potential CCS locations and may play a crucial role establishing leakage risk in areas where there is a high density of existing wells that could be impacted by the storage operations including depleted petroleum fields where EOR or CCS will occur. To address a need for risk quantification methods that can be directly applied to individual wells using borehole logging tools a study was conducted using data from five wells in Wyoming. The objectives of the study were: Objective 1: Develop methods to establish the baseline flow parameters (porosity and permeability or mobility) from individual measurements of the material properties and defects in a well. Objective 2: Develop a correlation between field flow-property data and cement logs that can be used to establish the flow-properties of well materials and well features using cement mapping tools. Objective 3: Establish a method that uses the flow-property model (Objective 2) to analyze the statistical uncertainties associated with individual well leakage that can provide basis for uncertainty in risk calculations. The project objectives were met through the logging of five wells in Carbon and Natrona County Wyoming to collect data that was used to estimate individual and average well flow properties and model the results using ultrasonic data collected during the logging. Three of the five wells provided data on point and average flow properties for well annuli. Data from the other two wells were used to create models of cement permeability and test whether information collected in one well could be used to characterize another well. The results of the in-situ point measurements were confirmed by the lab measurements sidewall cores collected near the same depths Objective 1 was met using the data collected through logging, testing, and sampling. The methods were developed that can establish baseline flow parameters of wells by both point and average test methods. The methods to estimate the flow properties modeling of point pressure tests, modeling of vertical interference tests, and laboratory measurement of cased-hole sidewall cores The wells were in sufficiently good shape to allow the development of the characterization methods while still having enough defects to study differences in results as they relate to well integrity. Samples and tests analyzed from three of five wells studied in showed the cements were largely intact and had not degraded from exposure native brines. Log results taken in conjunction with the core measurements indicate that interfaces and/or problems with cement placement due to eccentering provide preferential flow paths for fluids, which can increase the effective permeability of the barrier several orders of magnitude above the permeability of intact cement. The results of the maps created using logging tools indicating that the cement condition and bond are generally good identify a need for more research to understand how logs can be used to predicteffective well permeabilities such as those measured by the VITs in this study.

  14. Deep Sky Astronomical Image Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOEDanielDe novo Design of Debugging6DecodingDeep Sky

  15. Deep Vadose Zone - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOEDanielDe novo Design of Debugging6DecodingDeep

  16. Earth melter and method of disposing of feed materials

    DOE Patents [OSTI]

    Chapman, C.C.

    1994-10-11

    An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

  17. Earth melter and method of disposing of feed materials

    DOE Patents [OSTI]

    Chapman, Christopher C. (Richland, WA)

    1994-01-01

    An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

  18. Classified Component Disposal at the Nevada National Security Site

    SciTech Connect (OSTI)

    Poling, J.; Arnold, P.; Saad, M.; DiSanza, F.; Cabble, K.

    2012-11-05

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012.

  19. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  20. Mike Batzle holds the Baker Hughes Distinguished Chair of Petrophysics and Borehole Geophysics, at the Colorado School of Mines, where he has been a member of the geophysics

    E-Print Network [OSTI]

    Mike Batzle holds the Baker Hughes Distinguished Chair of Petrophysics and Borehole Geophysics, at the Colorado School of Mines, where he has been a member of the geophysics department for the past 17 years from the University of California, Riverside, and a PhD in geophysics from MIT. His main interests have

  1. Fourier series expansion in a non-orthogonal system of coordinates for the simulation of 3D-DC borehole resistivity measurements

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    -logging measurements, the planning and drilling of a single well may cost several millions of dollars, borehole logging measurements are widely used by the oil-industry for hydrocarbon reservoir as to invert well-log measurements. Most numerical methods used by the oil-industry are based on 1D and 2D

  2. Geophysical Prospecting, 2007, 55, 891899 doi:10.1111/j.1365-2478.2007.00654.x Importance of borehole deviation surveys for monitoring of hydraulic

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    of borehole deviation surveys for monitoring of hydraulic fracturing treatments Petr Bulant1 , Leo Eisner2 accepted April 2007 ABSTRACT During seismic monitoring of hydraulic fracturing treatment, it is very common to ig- nore the deviations of the monitoring or treatment wells from their assumed positions

  3. 2009 Performance Assessment for the Saltstone Disposal Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116

  4. INERT-MATRIX FUEL: ACTINIDE ''BURINGIN'' AND DIRECT DISPOSAL

    SciTech Connect (OSTI)

    Rodney C. Ewing; Lumin Wang

    2002-10-30

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers.

  5. . . . . . 85 . . . . . International Deep Drawing Research Group

    E-Print Network [OSTI]

    . . . . . 85 . . . . . International Deep Drawing Research Group IDDRG 2009 International 20899-855 USA e-mail: mark.iadicola@nist.gov, Web page: www

  6. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  7. 200-DV-1OU Sediment and Pore Water Analysis and Report for Samples at Borehole C8096

    SciTech Connect (OSTI)

    Lindberg, Michael J.

    2011-10-01

    This is an analytical data report for sediment samples received at 200-DV-1 OU. On August 30, 2011 sediment samples were received from 200-DV-1 OU Borehole C8096 for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

  8. Creep properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report

    SciTech Connect (OSTI)

    Martin, R.J.; Noel, J.S.; Boyd, P.J.

    1997-09-01

    Experimental results are presented for seven creep experiments on welded specimens of the Paintbrush tuff recovered from borehole USW NRG-7/7A at Yucca Mountain, Nevada. The measurements were performed at differential stresses of 40, 70, 100, and 130 MPa. The confining pressure and temperature for each of the experiments was 10 MPa and 225 {degrees}C respectively. All of the specimens were tested drained, in a room dry condition. All of the experiments were terminated prior to failure. The duration of the experiments range from 2.6 x 10{sup 6} seconds to 5.9 x 10{sup 6} seconds. Creep strain is observed for those specimens tested at a stress difference. The strain rate is not constant. A primary creep stage is observed. Secondary creep does not exhibit a constant strain rate, but decreases with increasing time.

  9. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  10. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  11. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  12. DeepCough: A Deep Convolutional Neural Network in A Wearable Cough Detection System

    E-Print Network [OSTI]

    Odam, Kofi

    DeepCough: A Deep Convolutional Neural Network in A Wearable Cough Detection System Justice Amoh that employs a wearable acoustic sensor and a deep convolutional neural network for detecting coughs. We evaluate the performance of our system on 14 healthy volunteers and compare it to that of other cough

  13. Doctoral Defense "Biogeochemical evaluation of disposal options for arsenic-

    E-Print Network [OSTI]

    Kamat, Vineet R.

    generated during drinking water treatment" Tara Clancy Date: December 2, 2014 Time: 9:00 AM Location: GM Lutgarde Raskin Professor, Civil & Environmental Engineering Arsenic contamination of drinking water of arsenic removal technologies requires disposal options for produced wastes that limit the release

  14. Landfill Disposal of CCA-Treated Wood with Construction and

    E-Print Network [OSTI]

    Florida, University of

    those found in municipal solid waste (MSW) (e.g., food waste). However, research has shown that C liners (11). When CCA-treated wood is managed in the C&D debris waste stream and is disposed in unlined C&D debris can impact leachate quality which, in turn could affect leachate management practices or aquifers

  15. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal · Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. · ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP · Bio-hazardous

  16. Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1 Vanderbilt Environmental Health and Safety Telephone: 322-2057 Fax: 343-4957 After hours pager: 835-4965 www.safety.vanderbilt.edu HAZARDOUS WASTE COLLECTION PROGRAM VEHS has implemented a Hazardous Waste Collection Program to collect hazardous

  17. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    SciTech Connect (OSTI)

    C.A Kouts

    2006-11-22

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others.

  18. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  19. 8-Waste treatment and disposal A. Responsibility for waste management

    E-Print Network [OSTI]

    8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

  20. Support of the Iraq nuclear facility dismantlement and disposal program

    SciTech Connect (OSTI)

    Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

  1. Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)

    SciTech Connect (OSTI)

    Cook, J

    2005-05-26

    New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

  2. Deep Learning in Speech Synthesis August 31st, 2013

    E-Print Network [OSTI]

    Cortes, Corinna

    Deep Learning in Speech Synthesis Heiga Zen Google August 31st, 2013 #12;Outline Background Deep Learning Deep Learning in Speech Synthesis Motivation Deep learning-based approaches DNN-based statistical-to-speech synthesis (TTS) Text (discrete symbol sequence) Speech (continuous time series) Heiga Zen Deep Learning

  3. Natural Radiocarbon Distribution in the Deep Ocean Katsumi MATSUMOTO1

    E-Print Network [OSTI]

    Matsumoto, Katsumi

    , World Ocean Circulation Experiment (WOCE), ocean ventilation, North Atlantic Deep Water, Antarctic Bottom Water, Circumpolar Deep Water, Pacific Deep Water, thermohaline circulation 1. INTRODUCTION Deep in the subtropical North Atlantic, revealed that much of the deep water is cold, and warm water is confined to a thin

  4. Backpropagation in Sequential Deep Neural Networks

    E-Print Network [OSTI]

    Noble, William Stafford

    Backpropagation in Sequential Deep Neural Networks Galen Andrew University of Washington galen neural networks to problems in speech processing has combined the output of a static network trained over developed Sequential Deep Neural Network (SDNN) model allows sequential dependencies between internal hidden

  5. Deep into Pharo ESUG 2013 Edition

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Deep into Pharo ESUG 2013 Edition Alexandre Bergel Damien Cassou Stéphane Ducasse Jannik Laval #12;ii This book is available as a free download from http://rmod.lille.inria.fr/deep of this work. The best way to do this is with a link to this web page: creativecommons.org/licenses/ by-sa/3

  6. Mathematical Properties of the Deep Coalescence Cost

    E-Print Network [OSTI]

    Rosenberg, Noah

    the maximum cost. We also study corresponding problems for a fixed gene tree. Index Terms--Deep coalescenceMathematical Properties of the Deep Coalescence Cost Cuong V. Than and Noah A. Rosenberg Abstract coalescence cost for reconciling a collection of gene trees is taken as an estimate of the species tree

  7. ELECTRICAL CONDUCTIVITY OF THE DEEP MANTLE

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    ELECTRICAL CONDUCTIVITY OF THE DEEP MANTLE Jakub Vel´imsk´y Department of Geophysics Faculty´imsk´y (CUP) Electrical conductivity of the deep mantle C2C Mari´ansk´e l´azne 2010 1 / 39 #12;Introduction Sensitivity of EMI data to 3-D conductivity in D" Conclusions J. Vel´imsk´y (CUP) Electrical conductivity

  8. Food Image Recognition with Deep Convolutional Features

    E-Print Network [OSTI]

    Yanai, Keiji

    Food Image Recognition with Deep Convolutional Features Yoshiyuki Kawano, Keiji Yanai and diseases. If there is a food recommendation system, it is work to keep people in good health. A food recognition engine is needed to build a automatic food recommendation system. Food recognition: Deep

  9. Educators' Guide Lessons from the Deep

    E-Print Network [OSTI]

    .the.Gulf.of.Mexico......................................... 15 Suggested.Learning.Procedures.and.Options....... 17 Initial.Lessons.in.the.Lessons1 Educators' Guide Lessons from the Deep: Exploring the Gulf of Mexico's Deep-Sea Ecosystems on the mobile offshore drilling unit Deepwater Horizon about 40 miles southeast of the Louisiana coast

  10. Model Evaluation of the Thermo-Hydrological Response in Argillaceous Sedimentary Rock Repository for Direct Disposal of Dual-Purpose Canisters

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    Alternative Concepts for Direct Disposal of Dual-PurposeRock Repository for Direct Disposal of Dual-PurposeRock Repository for Direct Disposal of Dual-Purpose

  11. Thermodynamic stability of actinide pyrochlore minerals in deep...

    Office of Scientific and Technical Information (OSTI)

    SCIENCE; HIGH-LEVEL RADIOACTIVE WASTES; PLUTONIUM; PYROCHLORE; STABILITY; THERMODYNAMICS; WASTE FORMS; RADIOACTIVE WASTE DISPOSAL; BACKFILLING; RADIOACTIVE WASTE...

  12. Interface control document between PUREX Plant Transition and Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Carlson, A.B.

    1995-09-01

    The interfacing responsibilities regarding solid waste management are described for the Solid Waste Disposal Division and the PUREX Transition Organization.

  13. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  14. Deep hypothermia for the treatment of refractory status epilepticus

    E-Print Network [OSTI]

    2015-01-01

    as: Niquet J, et al, Deep hypothermia for the treatment ofas: Niquet J, et al, Deep hypothermia for the treatment ofSchmitt FC, Holtkamp M. Deep hypothermia terminates status

  15. Deep inference proof theory equals categorical proof theory minus coherence

    E-Print Network [OSTI]

    Pratt, Vaughan

    Deep inference proof theory equals categorical proof Abstract This paper links deep inference proof theory, as studied by Gugliel* *mi et al., to categorical proof theory in the sense of Lambek et al.. It obs* *erves how deep

  16. Deep tissue fluorescence imaging and in vivo biological applications

    E-Print Network [OSTI]

    2012-01-01

    17(11) Crosignani et al. : Deep tissue fluorescence imaging16. D. Kobat et al. , “Deep tissue multiphoton microscopyV. Crosignani et al. , “ In vivo deep tissue fluorescence

  17. Guide to Laboratory Sink/Sewer Disposal of Wastes EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Guide to Laboratory Sink/Sewer Disposal of Wastes EPA Compliance Fact Sheet: Revision 1 Vanderbilt.safety.vanderbilt.edu Page 1 of 17 INTRODUCTION Vanderbilt University is required to comply with sewer disposal restrictions or limited from sink/sewer disposal. Wastes must NOT be intentionally diluted to comply with sink/sewer

  18. ACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT

    E-Print Network [OSTI]

    California at San Diego, University of

    throughout the device and to compute the Fetter and NRC 10CFR 61 waste disposal ratings (WDR) for variousACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT D. Henderson, L, decay heat and waste disposal calculations of the ARIES-AT design are performed to evaluate the safety

  19. Monthly Theme Hazardous Waste Disposal July 2009 Monthly Theme for discussion at Department Meetings -July 2009

    E-Print Network [OSTI]

    Calgary, University of

    Monthly Theme ­ Hazardous Waste Disposal ­ July 2009 Monthly Theme for discussion at Department Meetings - July 2009 Hazardous Waste Disposal Often a waste pick-up is initiated but the waste isn't picked that it would be beneficial to have a stand and deliver course on Hazardous Waste Disposal offered

  20. The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic

    E-Print Network [OSTI]

    The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic, New Mexico to dispose of this waste. The TRU waste being disposed at the WIPP is packaged into drums-level waste and spent nuclear fuel. The WIPP has a total capacity of 6.2 million cubic feet of TRU waste

  1. Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania

    E-Print Network [OSTI]

    Jackson, Robert B.

    Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R bioaccumulation in localized areas of shale gas wastewater disposal. INTRODUCTION The safe disposal of large States, oil and gas wastewater is managed through recycling of the wastewater for shale gas operations

  2. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  3. THE ROLE OF DEEP INELASTIC PROCESSES IN NUCLEAR PHYSICS: EXPERIMENTAL AND THEORETICAL ASPECTS OF DEEP INELASTIC REACTIONS

    E-Print Network [OSTI]

    Moretto, L.G.

    2010-01-01

    618MeV 0 =4O° ro I in "IT N Deep inelastic component -•s 50nwnetl npin* llE THE ROLE OF DEEP INELASTIC PROCESSES INAND THEORETICAL ASPECTS OF DEEP INELASTIC REACTIONS L. G. M

  4. Deep Sky Astronomical Image Database Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  5. Building America Webinar: A National Summary of Deep Energy Retrofits...

    Energy Savers [EERE]

    Webinar: A National Summary of Deep Energy Retrofits Building America Webinar: A National Summary of Deep Energy Retrofits This presentation by Brennan Less is included in the...

  6. Presentation at the Weatherization Program Deep Dive Briefing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 U.S. Department of...

  7. Test of factorization in diffractive deep inelastic scattering...

    Office of Scientific and Technical Information (OSTI)

    Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep...

  8. Building America Webinar: Results from Phased Deep Retrofits...

    Energy Savers [EERE]

    Building America Webinar: Results from Phased Deep Retrofits in Florida Building America Webinar: Results from Phased Deep Retrofits in Florida This presentation by Danny Parker is...

  9. General Guidelines for the Disposal of Refrigerators, Freezers, and other Refrigeration Abandon or dispose of refrigerators, freezers, or window air conditioning units in

    E-Print Network [OSTI]

    Cina, Jeff

    not Abandon or dispose of refrigerators, freezers, or window air conditioning units in dumpsters or in common working and nonworking household refrigeration units (refrigerators, freezers, window air conditioning

  10. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  11. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  12. Larger foraminifer biostratigraphy of PEACE boreholes, Enewetak Atoll, Western Pacific Ocean. Geologic and geophysical investigations of Enewetak Atoll, Republic of the Marshall Islands. Professional paper

    SciTech Connect (OSTI)

    Gibson, T.G.; Margerum, R.

    1991-01-01

    Larger foraminiferal assemblages, including Lepidocyclina orientalis, Miogypsina thecideaeformis, Miogypsinoides dehaartii, etc., and a smaller foraminifer, Austrotrillina striata, are used to correlate upper Oligocene and lower Miocene strata in the Pacific Atoll Exploration Program (PEACE) boreholes at Enewetak Atoll, Republic of the Marshall Islands, western Pacific Ocean, with the Te and Tf zones of the previously established Tertiary Far East Letter Zonation. Correlation using these two benthic groups is critical because calcareous nannofossils and planktic foraminifers are absent in the lower Miocene strata. Biostratigraphic data from these boreholes delineate a thick (greater than 700 feet) sequence of upper Oligocene and lower Miocene strata corresponding to lower and upper Te zone. These strata document a major period of carbonate accumulation at Enewetak during the Late Oligocene and early Miocene (26 to 18 million years ago).

  13. Generator Certification Process for Envirocare's Containerized Class A Disposal Facility

    SciTech Connect (OSTI)

    Rogers, B. C.

    2002-02-25

    On October 19, 2001, the Utah Division of Radiation Control issued Amendment 12 to Radioactive Material License UT2300249 (RML) for Envirocare of Utah, Inc. (Envirocare) disposal operations. The license amendment provides the mechanism for Envirocare to receive and dispose of containerized Class A Low-Level Radioactive Waste (LLRW) at the newly constructed Containerized Waste Facility (CWF). Due to the increased radioactivity and external dose rates of waste that will be shipped to the CWF, a Generator Certification Program has been implemented that eliminates the requirement to sample incoming shipments, thus keeping worker doses to as low as reasonably achievable (ALARA). This paper presents the key elements of the Generator Certification Program and describes the review and approval process for certifying generators to ship waste to the CWF. Each phase of the program will be discussed to assist generators in gaining a better understanding of the certification process. Additionally, the paper will present unique differences between the CWF Waste Acceptance Criteria and the requirements from other commercial disposal facilities.

  14. Disposal of Draeger Tubes at Savannah River Site

    SciTech Connect (OSTI)

    Malik, N.P.

    2000-10-13

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

  15. Mined Geologic Disposal System Requirements Document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS.

  16. Iraq nuclear facility dismantlement and disposal project (NDs Project).

    SciTech Connect (OSTI)

    Cochran, John Russell

    2010-06-01

    The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.

  17. A critical comparison of ten disposable cup LCAs

    SciTech Connect (OSTI)

    Harst, Eugenie van der, E-mail: eugenie.vanderharst@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Potting, José, E-mail: jose.potting@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands) [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Environmental Strategies Research (fms), KTH Royal Institute of Technology, SE-110 44 Stockholm (Sweden)

    2013-11-15

    Disposable cups can be made from conventional petro-plastics, bioplastics, or paperboard (coated with petro-plastics or bioplastics). This study compared ten life cycle assessment (LCA) studies of disposable cups with the aim to evaluate the robustness of their results. The selected studies have only one impact category in common, namely climate change with global warming potential (GWP) as its category indicator. Quantitative GWP results of the studies were closer examined. GWPs within and across each study show none of the cup materials to be consistently better than the others. Comparison of the absolute GWPs (after correction for the cup volume) also shows no consistent better or worse cup material. An evaluation of the methodological choices and the data sets used in the studies revealed their influence on the GWP. The differences in GWP can be attributed to a multitude of factors, i.e., cup material and weight, production processes, waste processes, allocation options, and data used. These factors basically represent different types of uncertainty. Sensitivity and scenario analyses provided only the influence of one factor at once. A systematic and simultaneous use of sensitivity and scenario analyses could, in a next research, result in more robust outcomes. -- Highlights: • Conflicting results from life cycle assessment (LCA) on disposable cups • GWP results of LCAs did not point to a best or worst cup material. • Differences in GWP results are due to methodological choices and data sets used. • Standardized LCA: transparency of LCA studies, but still different in approaches.

  18. Pyramiding tumuli waste disposal site and method of construction thereof

    DOE Patents [OSTI]

    Golden, Martin P. (Hamburg, NY)

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  19. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    SciTech Connect (OSTI)

    Bennecke, W.M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  20. Deep Energy Retrofits - Eleven California Case Studies

    E-Print Network [OSTI]

    Less, Brennan

    2014-01-01

    www.lowesforpros.com/deep-energy-retrofits-for- existing-R. H. (Ed. ). (1978). Saving Energy in the Home: Princeton’sA Homeowner’s Guide to Energy-Efficient Renovation. Firefly