National Library of Energy BETA

Sample records for decontaminated salt solution

  1. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    SciTech Connect (OSTI)

    Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

    2008-10-28

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and precipitation of bayerite solid particles. (6) Based on analysis of the cleaning solutions from the full-scale test, the 'dirt capacity' of a 40 inch coalescer for these NAS solids was calculated to be 40-170 grams.

  2. Results of Analysis of Macrobatch 3 Decontaminated Salt Solution Coalescer from May 2010

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-18

    SRNL analyzed the Decontamination Salt Solution (DSS) coalescer from MCU by several analytical methods. This unit was removed from service in May 2010. The results of these analyses indicate that there is very little evidence of fouling via excessive solids, either from the leaching studies or X-Ray Diffraction (XRD) analysis.

  3. RESULTS OF ROUTINE STRIP EFFLUENT HOLD TANK AND DECONTAMINATED SALT SOLUTION HOLD TANK SAMPLES FROM MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT DURING MACROBATCH 3 OPERATIONS

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-10

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the 'microbatches' of Integrated Salt Disposition Project (ISDP) Salt Batch ('Macrobatch') 3 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate consistent operations. However, the Decontamination Factors for plutonium and strontium removal have declined in Macrobatch 3, compared to Macrobatch 2. This may be due to the differences in the Pu concentration or the bulk chemical concentrations in the feed material. SRNL is considering the possible reasons for this decline. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in ARP. During operation of the ISDP, quantities of salt waste are processed through the Actinide Removal Process (ARP) and MCU in batches of {approx}3800 gallons. Monosodium titanate (MST) is used in ARP to adsorb actinides and strontium from the salt waste and the waste slurry is then filtered prior to sending the clarified salt solution to MCU. The MCU uses solvent extraction technology to extract cesium from salt waste and concentrate cesium in an acidic aqueous stream (Strip Effluent - SE), leaving a decontaminated caustic salt aqueous stream (Decontaminated Salt Solution - DSS). Sampling occurs in the Decontaminated Salt Solution Hold Tank (DSSHT) and Strip Effluent Hold Tank (SEHT) in the MCU process. The MCU sample plan requires that batches be sampled and analyzed for plutonium and strontium content by Savannah River National Lab (SRNL) to determine MST effectiveness. The cesium measurement is used to monitor cesium removal effectiveness and the inductively coupled plasma emission spectroscopy (ICPES) is used to monitor inorganic carryover.

  4. Results Of Routine Strip Effluent Hold Tank And Decontaminated Salt Solution Hold Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 5 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.

    2013-04-30

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 5 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 4 samples indicate generally consistent operations. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in the Actinide Removal process (ARP).

  5. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample was moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.

  6. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  7. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-10-25

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  8. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2014-01-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  9. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-10-01

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  10. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  11. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  12. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  13. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  14. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  15. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    SciTech Connect (OSTI)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng; Kim, Heejae; Kim, Seongheun

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this computational approach will be of critical use in interpreting linear and nonlinear vibrational spectroscopies of HDO molecule that is considered as an excellent local probe for monitoring local electrostatic and hydrogen-bonding environment in not just salt but also other confined and crowded solutions.

  16. CONTROLLED CRYSTALLIZATION OF SALTS FROM NUCLEAR WASTE SOLUTIONS

    E-Print Network [OSTI]

    Gallivan, Martha A.

    CONTROLLED CRYSTALLIZATION OF SALTS FROM NUCLEAR WASTE SOLUTIONS Daniel Gri n Martha Grover Yoshiaki Kawajiri Ronald Rousseau Published in Proceedings of the Waste Management Conference, Phoenix, AR-activity salt from nuclear waste solutions. The viability of such a process hinges on the ability to partition

  17. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    SciTech Connect (OSTI)

    Kobayashi, Kazuya; Liang, Yunfeng E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Sakka, Tetsuo

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  18. Screening of hydrodynamic interactions for polyelectrolytes in salt solution

    E-Print Network [OSTI]

    Jens Smiatek; Friederike Schmid

    2008-09-30

    We provide numerical evidence that hydrodynamic interactions are screened for charged polymers in salt solution on time scales below the Zimm time. At very short times, a crossover to hydrodynamic behavior is observed. Our conclusions are drawn from extensive coarse-grained computer simulations of polyelectrolytes in explicit solvent and explicit salt, and discussed in terms of analytical arguments based on the Debye-Hueckel approximation.

  19. CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS

    SciTech Connect (OSTI)

    Stephens, K; Davoud Eghbali, D; Michelle Abney, M

    2008-01-15

    High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

  20. FEATURE ARTICLE Unified Molecular Picture of the Surfaces of Aqueous Acid, Base, and Salt Solutions

    E-Print Network [OSTI]

    FEATURE ARTICLE Unified Molecular Picture of the Surfaces of Aqueous Acid, Base, and Salt Solutions inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results

  1. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    E-Print Network [OSTI]

    -Regenerated Salt Solution Joo-Youn Nam, Roland D. Cusick, Younggy Kim, and Bruce E. Logan* Department of Civil-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation

  2. Salt-stabilized globular protein structure in 7 M aqueous urea solution

    E-Print Network [OSTI]

    Wider, Gerhard

    1 Salt-stabilized globular protein structure in 7 M aqueous urea solution V. Dötsch,1 G. Wider, G Hochschule- Hönggerberg, CH-8093 Zürich, Switzerland Keywords Protein folding; Urea denaturation; Salt changing the solution conditions. In this paper we describe the influence of various salts or non

  3. Brine Rejection from Freezing Salt Solutions: A Molecular Dynamics Study Lubos Vrbka and Pavel Jungwirth*

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Brine Rejection from Freezing Salt Solutions: A Molecular Dynamics Study Lubos Vrbka and Pavel process of brine rejection from freezing salt solutions is investigated with atomic resolution using. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next

  4. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  5. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  6. Environmental decontamination

    SciTech Connect (OSTI)

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  7. Solution mining code for studying axisymmetric salt cavern formation

    SciTech Connect (OSTI)

    Russo, A.J.

    1981-09-01

    The solution mining of oil storage caverns in salt domes for the Strategic Petroleum Reserve has prompted the development of a code to predict cavern shape and volume as a function of prescribed flow parameters. Of particular interest is the ability to predict shape changes while leaching is proceeding at the same time the cavern is being filled with oil (leach-fill) and when oil is being withdrawn by fresh water displacement. The theory and overall numerical procedures used in the code development are described. Implicit, finite difference methods are used to solve an axisymmetric mass conservation problem. Calculated results are given which exercise each of the code options and where possible these results are compared with other calculations or available data from solution mining in progress at Bryan Mound, Texas.

  8. Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR)

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups

  9. Salt Effect on Microstructures in Cationic Gemini Surfactant Solutions as Studied by Dynamic Light Scattering

    E-Print Network [OSTI]

    Huang, Jianbin

    Salt Effect on Microstructures in Cationic Gemini Surfactant Solutions as Studied by Dynamic Light, C12C12C12(Et) underwent a typical "ordinary-to-extraordinary (o-e) transition" with decreasing salt concentration to zero. At higher salt concentration, a single relaxation mode, corresponding to the diffusion

  10. Exchange Reactions Between a Molten Salt and a Solution of Tri...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Exchange Reactions Between a Molten Salt and a Solution of Tri-Butyl Phosphate in a Liquid Silicone; REACTIONS D'ECHANGE ENTRE UN SEL FONDU ET UNE SOLUTION DE...

  11. Water, salt water and alkaline solution uptake in epoxy thin films

    E-Print Network [OSTI]

    Scott, P.; Lees, Janet M.

    2013-05-10

    type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS...

  12. Improved germination of pansy seed at high temperatures by priming with salt solutions 

    E-Print Network [OSTI]

    Yoon, Beyoung-Han

    1995-01-01

    various salt solutions at defined osmotic potentials as effective priming treatment for improving germination and emergence of pansy seed at high temperatures. the second objectives was to compare respiration rates during germination for primed...

  13. Materials and methods for stabilizing nanoparticles in salt solutions

    DOE Patents [OSTI]

    Robinson, David Bruce; Zuckermann, Ronald; Buffleben, George M.

    2013-06-11

    Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.

  14. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  15. A route to explain water anomalies from results on an aqueous solution of salt

    E-Print Network [OSTI]

    D. Corradini; M. Rovere; P. Gallo

    2010-03-26

    In this paper we investigate the possibility to detect the hypothesized liquid-liquid critical point of water in supercooled aqueous solutions of salts. Molecular dynamics computer simulations are conducted on bulk TIP4P water and on an aqueous solution of sodium chloride in TIP4P water, with concentration c = 0.67 mol/kg. The liquid-liquid critical point is found both in the bulk and in the solution. Its position in the thermodynamic plane shifts to higher temperature and lower pressure for the solution. Comparison with available experimental data allowed us to produce the phase diagrams of both bulk water and the aqueous solution as measurable in experiments. Given the position of the liquid-liquid critical point in the solution as obtained from our simulations, the experimental determination of the hypothesized liquid-liquid critical point of water in aqueous solutions of salts appears possible.

  16. Composition suitable for decontaminating a porous surface contaminated with cesium

    DOE Patents [OSTI]

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  17. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect (OSTI)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

  18. Adding Salt to an Aqueous Solution of t-Butanol: Is Hydrophobic Association Enhanced or Reduced?

    E-Print Network [OSTI]

    Dietmar Paschek; Alfons Geiger; Momo Jeufack Herve; Dieter Suter

    2006-01-16

    Recent neutron scattering experiments on aqueous salt solutions of amphiphilic t-butanol by Bowron and Finney [Phys. Rev. Lett. {\\bf 89}, 215508 (2002); J. Chem. Phys. {\\bf 118}, 8357 (2003)] suggest the formation of t-butanol pairs, bridged by a chloride ion via ${O}-{H}...{Cl}^-$ hydrogen-bonds, and leading to a reduced number of intermolecular hydrophobic butanol-butanol contacts. Here we present a joint experimental/theoretical study on the same system, using a combination of molecular dynamics simulations and nuclear magnetic relaxation measurements. Both theory and experiment clearly support the more intuitive scenario of an enhanced number of hydrophobic contacts in the presence of the salt, as it would be expected for purely hydrophobic solutes [J. Phys. Chem. B {\\bf 107}, 612 (2003)]. Although our conclusions arrive at a structurally completely distinct scenario, the molecular dynamics simulation results are within the experimental errorbars of the Bowron and Finney work.

  19. Aqueous Biphasic Systems Based on Salting-Out Polyethylene Glycol or Ionic Solutions: Strategies for Actinide or Fission Product Separations

    SciTech Connect (OSTI)

    Rogers, Robin D.; Gutowski, Keith E.; Griffin, Scott T.; Holbrey, John D.

    2004-03-29

    Aqueous biphasic systems can be formed by salting-out (with kosmotropic, waterstructuring salts) water soluble polymers (e.g., polyethylene glycol) or aqueous solutions of a wide range of hydrophilic ionic liquids based on imidazolium, pyridinium, phosphonium and ammonium cations. The use of these novel liquid/liquid biphases for separation of actinides or other fission products associated with nuclear wastes (e.g., pertechnetate salts) has been demonstrated and will be described in this presentation.

  20. Underground physics without underground labs: large detectors in solution-mined salt caverns

    E-Print Network [OSTI]

    Benjamin Monreal

    2014-09-30

    A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

  1. Underground physics without underground labs: large detectors in solution-mined salt caverns

    E-Print Network [OSTI]

    Monreal, Benjamin

    2014-01-01

    A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

  2. Nuclear reactor cooling system decontamination reagent regeneration

    DOE Patents [OSTI]

    Anstine, Larry D. (San Jose, CA); James, Dean B. (Saratoga, CA); Melaika, Edward A. (Berkeley, CA); Peterson, Jr., John P. (Livermore, CA)

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  3. Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive

    E-Print Network [OSTI]

    Angell, C. Austen

    Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis solvents for high voltage lithium cells, we have explored a number of binary sulfone + cosolvent systems ionicity cannot be taken for granted. The extreme subionic case of -picoline + acetic acid1 dates back

  4. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  5. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  6. Decontamination of metals using chemical etching

    DOE Patents [OSTI]

    Lerch, Ronald E. (Kennewick, WA); Partridge, Jerry A. (Richland, WA)

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  7. Decontaminating Flooded Wells 

    E-Print Network [OSTI]

    Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

    2005-09-30

    This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

  8. Paint decontamination kinetics

    SciTech Connect (OSTI)

    Thornton, E.W.

    1984-04-01

    Decontamination kinetics of a high-gloss polyurethane paint have been investigated using a novel flow cell experiment where the sample was counted in situ during decontamination. The /sup 134/Cs, /sup 137/Cs, and /sup 90/Y decontaminations follow a rate law that can be predicted theoretically for contaminant ion desorption from weakly heterogeneous random surface adsorption sites. Paint surfaces show the same decontamination kinetics after damage by abrasion or ultraviolet irradiation prior to contamination. The systems investigated exhibit Freundlich adsorption isotherm behavior during contamination; this is also characteristic of weakly heterogeneous random surfaces and is very commonly observed in ion adsorption studies at low concentrations.

  9. The Influence of Adrenalin, Modified By Salt Solutions, On Blood-Pressure of the Frog and Cat

    E-Print Network [OSTI]

    Burket, Ivan R.

    1911-01-01

    that such was not the case in these experiments, a 1:10,000 solution of adrenalin was made alkaline and allowed to stand for several days, when it was found by cheaioal tests to be completely oxidized; this solution upon injection produced no change in blood... with the phosphates as the result of a test which showed the adrenalin base (P.D.& Co) to contain traces of these substances. The phosphates used were the acid, neutral and alkaline sodium salts. No definite effect could be observed either when used alome or when...

  10. Long lasting decontamination foam

    DOE Patents [OSTI]

    Demmer, Ricky L. (Idaho Falls, ID); Peterman, Dean R. (Idaho Falls, ID); Tripp, Julia L. (Pocatello, ID); Cooper, David C. (Idaho Falls, ID); Wright, Karen E. (Idaho Falls, ID)

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  11. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  12. Sample Results from Routine Salt Batch 7 Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-05-13

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the “microbatches” of Integrated Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 7B have been analyzed for 238Pu, 90Sr, 137Cs, Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Ion Chromatography Anions (IC-A). The results from the current microbatch samples are similar to those from earlier samples from this and previous macrobatches. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal, due to the use of the Next Generation Solvent (NGS). The Savannah River National Laboratory (SRNL) notes that historically, most measured Concentration Factor (CF) values during salt processing have been in the 12-14 range. However, recent processing gives CF values closer to 11. This observation does not indicate that the solvent performance is suffering, as the Decontamination Factor (DF) has still maintained consistently high values. Nevertheless, SRNL will continue to monitor for indications of process upsets. The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  13. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOE Patents [OSTI]

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  14. Method for the decontamination of metallic surfaces

    DOE Patents [OSTI]

    Purohit, Ankur (Darien, IL); Kaminski, Michael D. (Lockport, IL); Nunez, Luis (Elmhurst, IL)

    2003-01-01

    A method of decontaminating a radioactively contaminated oxide on a surface. The radioactively contaminated oxide is contacted with a diphosphonic acid solution for a time sufficient to dissolve the oxide and subsequently produce a precipitate containing most of the radioactive values. Thereafter, the diphosphonic solution is separated from the precipitate. HEDPA is the preferred diphosphonic acid and oxidizing and reducing agents are used to initiate precipitation. SFS is the preferred reducing agent.

  15. Oxidative Tritium Decontamination System

    DOE Patents [OSTI]

    Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  16. Finite-Width Bundle is Most Stable in a Solution with Salt

    E-Print Network [OSTI]

    Takuya Saito; Kenichi Yoshikawa

    2010-04-21

    We applied the mean-field approach to a columnar bundle assembled by the parallel arrangement of stiff polyelectrolyte rods in a salt bath. The electrostatic potential can be divided into two regions: inside the bundle for condensed counter-ions, and outside the bundle for free small ions. To determine the distribution of condensed counter-ions inside the bundle, we use a local self-consistent condition that depends on the charge density, the electrostatic potential, and the net polarization. The results showed that, upon bundle formation, the electric charge of polyelectrolytes, even those inside the bundle, tend to survive in an inhomogeneous manner, and thus their width remains finite under thermal equilibrium because of the long-range effect of charge instability.

  17. Concentrating aqueous volatile fatty acid salt solutions using a tertiary amine mixture 

    E-Print Network [OSTI]

    Gaskin, David J

    1997-01-01

    Lee (1993) has shown that tertiary amines are able to hics. extract water from low-concentration calcium acetate and sodium acetate solutions. This thesis extends the previous work to include calcium propionate and butyrate. Amine extraction may...

  18. Decontaminating metal surfaces

    DOE Patents [OSTI]

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  19. Modeling of activity coefficients of aqueous solutions of quaternary ammonium salts with the

    E-Print Network [OSTI]

    Stadtherr, Mark A.

    with the electrolyte-NRTL equation Lionel S. Belvèze, Joan F. Brennecke* and Mark A. Stadtherr Department of Chemical behavior of IL solutions, we will show how a conventional electrolyte model, the electrolyte nonrandom two, liquid and solid solubilities in ILs,2,11-31 and some liquid- liquid equilibrium data between ILs

  20. Viscosity and diffusion: crowding and salt effects in protein solutions Marco Heinen,a

    E-Print Network [OSTI]

    Schreiber, Frank

    for globular proteins. Proteins constitute identical solute units surpassing any synthetic colloid suspension is twofold. On the one hand, we explore how far a simple colloidal model in combination with state-of- the dimers and oligomers. Its stability and reproducibility make it well- suited as a model system

  1. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, Lien-Mow (North Augusta, SC); Kilpatrick, Lester L. (Aiken, SC)

    1984-01-01

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  2. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  3. Mesoscale phenomena in solutions of 3-methylpyridine, heavy water, and an antagonistic salt

    E-Print Network [OSTI]

    Jan Leys; Deepa Subramanian; Eva Rodezno; Boualem Hammouda; Mikhail A. Anisimov

    2013-08-22

    We have investigated controversial issues regarding the mesoscale behavior of 3-methylpyridine (3MP), heavy water, and sodium tetraphenylborate (NaBPh4) solutions by combining results obtained from dynamic light scattering (DLS) and small-angle neutron scattering (SANS). We have addressed three questions: (i) what is the origin of the mesoscale inhomogeneities (order of 100 nm in size) manifested by the "slow mode" in DLS? (ii) Is the periodic structure observed from SANS an inherent property of this system? (iii) What is the universality class of critical behavior in this system? Our results confirm that the "slow mode" observed from DLS experiments corresponds to long-lived, highly stable mesoscale droplets (order of 100 nm in size), which occur only when the solute (3MP) is contaminated by hydrophobic impurities. SANS data confirm the presence of a periodic structure with a periodicity of about 10 nm. This periodic structure cannot be eliminated by nanopore filtration and thus is indeed an inherent solution property. The critical behavior of this system, in the range of concentration and temperatures investigated by DLS experiments, indicates that the criticality belongs to the universality class of the 3-dimensional Ising model.

  4. Structural Properties of High and Low Density Water in a Supercooled Aqueous Solution of Salt

    E-Print Network [OSTI]

    D. Corradini; M. Rovere; P. Gallo

    2011-01-27

    We consider and compare the structural properties of bulk TIP4P water and of a sodium chloride aqueous solution in TIP4P water with concentration c = 0.67 mol/kg, in the metastable supercooled region. In a previous paper [D. Corradini, M. Rovere and P. Gallo, J. Chem. Phys. 132, 134508 (2010)] we found in both systems the presence of a liquid-liquid critical point (LLCP). The LLCP is believed to be the end point of the coexistence line between a high density liquid (HDL) and a low density liquid (LDL) phase of water. In the present paper we study the different features of water-water structure in HDL and LDL both in bulk water and in the solution. We find that the ions are able to modify the bulk LDL structure, rendering water-water structure more similar to the bulk HDL case. By the study of the hydration structure in HDL and LDL, a possible mechanism for the modification of the bulk LDL structure in the solution is identified in the substitution of the oxygen by the chloride ion in oxygen coordination shells.

  5. Method for electrochemical decontamination of radioactive metal

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  6. Process for preparing chemically modified micas for removal of cesium salts from aqueous solution

    DOE Patents [OSTI]

    Yates, Stephen Frederic (1539 S. Kennicott Dr., Arlington Heights, IL 60005); DeFilippi, Irene (208 E. Edgewood La., Palatine, IL 60067); Gaita, Romulus (6646 Davis Rd., Morton Grove, IL 60053); Clearfield, Abraham (Department of Chemistry, Texas A& M University, College Station, TX 77843); Bortun, Lyudmila (Department of Chemistry, Texas A& M University, College Station, TX 77843); Bortun, Anatoly (Department of Chemistry, Texas A& M University, College Station, TX 77843)

    2000-09-05

    A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.

  7. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water

    E-Print Network [OSTI]

    Vinh, N Q; Allen, S James; George, D K; Rahmani, A J; Plaxco, Kevin W

    2015-01-01

    Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bon...

  8. A new equation of state of salt-free flexible-chain polyelectrolyte solution: phase equilibria and osmotic pressure

    E-Print Network [OSTI]

    Yu. A. Budkov; A. L. Kolesnikov; N. Georgi; E. A. Nogovitsyn; M. G. Kiselev

    2015-01-06

    We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by strong correlation attraction. As a reference system we choose a set of two independent ideal subsystems -- charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and couterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of Modified Random Phase Approximation, whereas a contribution of charge densities fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte-Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

  9. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  10. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 C

    E-Print Network [OSTI]

    California at Riverside, University of

    compared to treatment with just pressurized hot water at the same temperature. Although the addition, and especially the latter, significantly increased xylose mono- mer and xylotriose degradation in water heated of these inorganic salts produced a significant drop in pH, the degradation rates with salts were much faster than

  11. Condensation of Self-assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene glycol and Doped with Salt

    E-Print Network [OSTI]

    Heung-Shik Park; Shin-Woong Kang; Luana Tortora; Satyendra Kumar; Oleg D. Lavrentovich

    2011-04-06

    We use optical and fluorescence microscopy, densitometry, cryo-transmission electron microscopy (cryo-TEM), spectroscopy, and synchrotron X-ray scattering, to study the phase behavior of the reversible self-assembled chromonic aggregates of an anionic dye Sunset Yellow (SSY) in aqueous solutions crowded with an electrically neutral polymer polyethylene glycol (PEG) and doped with the salt NaCl. PEG causes the isotropic SSY solutions to condense into a liquid-crystalline region with a high concentration of SSY aggregates, coexisting with a PEG-rich isotropic (I) region. PEG added to the homogeneous nematic (N) phase causes separation into the coexisting N and I domains; the SSY concentration in the N domains is higher than the original concentration of PEG-free N phase. Finally, addition of PEG to the highly concentrated homogeneous N phase causes separation into the coexisting columnar hexagonal (C) phase and I phase. This behavior can be qualitatively explained by the depletion (excluded volume) effects that act at two different levels: at the level of aggregate assembly from monomers and short aggregates and at the level of inter-aggregate packing. We also show a strong effect of a monovalent salt NaCl on phase diagrams that is different for high and low concentrations of SSY. Upon the addition of salt, dilute I solutions of SSY show appearance of the condensed N domains, but the highly concentrated C phase transforms into a coexisting I and N domains. We suggest that the salt-induced screening of electric charges at the surface of chromonic aggregates leads to two different effects: (a) increase of the scission energy and the contour length of aggregates, and (b) decrease of the persistence length of SSY aggregates.

  12. Glovebox decontamination technology comparison

    SciTech Connect (OSTI)

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  13. Granulated decontamination formulations

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM)

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  14. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  15. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2Omore »and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.« less

  16. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Utilized in the Reprocessing of Used Uranium Oxide Fuel

    SciTech Connect (OSTI)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyas, Josef; Burns, Carolyn A.

    2015-04-01

    This paper describes various approaches for making sodalite with a LiCl-Li2O oxide reduction salt used to recover uranium from used oxide fuel. The approaches include sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt.

  17. Microstructure and corrosion behavior of die-cast AM60B magnesium alloys in a complex salt solution: A slow positron beam study

    SciTech Connect (OSTI)

    Liu, Y.F. [Wuhan University] [Wuhan University; Qin, Q.L. [Wuhan University] [Wuhan University; Yang, W. [Wuhan University] [Wuhan University; Wen, W. [University of Kentucky] [University of Kentucky; Zhai, T. [University of Kentucky] [University of Kentucky; Yu, B. [University of Alberta] [University of Alberta; Liu, D.Y. [University of Alberta] [University of Alberta; Luo, A. [GM Research and Development Center] [GM Research and Development Center; Song, GuangLing [ORNL] [ORNL

    2014-01-01

    The microstructure and corrosion behavior of high pressure die-cast (HPDC) and super vacuum die-cast (SVDC) AM60B magnesium alloys were investigated in a complex salt solution using slow positron beam technique and potentiodynamic polarization tests. The experiments revealed that a CaCO3 film was formed on the surface of the alloys and that the rate of CaCO3 formation for the SVDC alloy with immersion time was slower than that of the HPDC alloy. The larger volume fraction of b-phase in the skin layer of the SVDC alloy than that of the HPDC alloy was responsible for the better corrosion resistance.

  18. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halide solution: A model for aqueous sea salt aerosols

    E-Print Network [OSTI]

    Ghosal, Sutapa

    2009-01-01

    A model for aqueous sea salt aerosols Sutapa Ghosal, 1species associated with sea salt ice and aerosols has beena minor component in sea salt, which has a Br – /Cl – molar

  19. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect (OSTI)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  20. Foam and gel methods for the decontamination of metallic surfaces

    DOE Patents [OSTI]

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  1. Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process

    SciTech Connect (OSTI)

    Norton, G.

    1990-09-21

    The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

  2. Electrolytic decontamination of conductive materials

    SciTech Connect (OSTI)

    Nelson, T.O.; Campbell, G.M.; Parker, J.L.; Getty, R.H.; Hergert, T.R.; Lindahl, K.A.; Peppers, L.G.

    1993-10-01

    Using the electrolytic method, the authors have demonstrated removal of Pu from contaminated conductive material. At EG&G Rocky Flats, they electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging > 1,000,000 counts per minute (cpm) down to levels ranging from 1,500 to < 250 cpm with the electrolytic method. More recently, the electrolytic work has continued at LANL as a joint project with EG&G. Impressively, electrolytic decontamination experiments on removal of Pu from oralloy coupons have shown decreases in swipable contamination that initially ranged from 500,000 to 1,500,000 disintegrations per minute (dpm) down to 0--2 dpm.

  3. Portsmouth Decommissioning and Decontamination Project Director...

    Energy Savers [EERE]

    Portsmouth Waste Disposition Record of Decision Portsmouth RIFS Report for the Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project...

  4. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  5. REVIEW SHEET 3 (1) A tank contains 100 gallon of salt water which ...

    E-Print Network [OSTI]

    2014-04-30

    REVIEW SHEET 3. (1) A tank contains 100 gallon of salt water which contains 10 lbs of salt. A salt solution of 2lbs of salt per gallon enters the tank at a rate of 3 ...

  6. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    SciTech Connect (OSTI)

    Rudisill, T; John Mickalonis, J

    2006-09-27

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO{sub 2}) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO{sub 2} layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH{sub 4}F)/ammonium nitrate (NH{sub 4}NO{sub 3}) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO{sub 2} layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH{sub 4}){sub 2}ZrF{sub 6}) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of contamination. The thermal decomposition of this material is also undesirable if the cladding hulls are melted for volume reduction or to produce waste forms. Handling and disposal of the corrosive off-gas stream and ZrO{sub 2}-containing dross must be addressed. The stability of Zr{sup 4+} in the NHF{sub 4}/NH{sub 4}NO{sub 3} solution is also a concern. Precipitation of ammonium zirconium fluorides upon cooling of the dissolving solution was observed in the feasibility experiments. Precipitation of the solids was attributed to the high fluoride to Zr ratios used in the experiments. The solubility of Zr{sup 4+} in NH{sub 4}F solutions decreases as the free fluoride concentration increases. The removal of the ZrO{sub 2} layer from Zircaloy-4 coupons with HF showed a strong dependence on both the concentration and temperature. Very rapid dissolution of the oxide layer and significant amounts of metal was observed in experiments using HF concentrations {ge} 2.5 M. Treatment of the coupons using HF concentrations {le} 1.0 M was very effective in removing the oxide layer. The most effective conditions resulted in dissolution rates which were less than approximately 2 mg/cm{sup 2}-min. With dissolution rates in this range, uniform removal of the oxide layer was obtained and a minimal amount of Zircaloy metal was dissolved. Future HF dissolution studies should focus on the decontamination of actual spent fuel cladding hulls to determine if the treated hulls meet criteria for disposal as a LLW.

  7. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt

    E-Print Network [OSTI]

    A. V. Simakin; G. A. Shafeev

    2009-11-29

    Laser exposure of suspension of either gold or palladium nanoparticles in aqueous solutions of UO2Cl2 of natural isotope abundance was experimentally studied. Picosecond Nd:YAG lasers at peak power from 1011 to 1013 W/cm2 at the wavelength of 1064 and 355 nm were used as well as a visible-range Cu vapor laser at peak power of 1010 W/cm2. The composition of colloidal solutions before and after laser exposure was analyzed using atomic absorption and gamma spectroscopy between 0.06 and 1 MeV range of photon energy. A real-time gamma-spectroscopy was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that laser exposure initiated nuclear reactions involving both 238U and 235U nuclei via different channels in H2O and D2O. The influence of saturation of both the liquid and nanoparticles by gaseous H2 and D2 on the kinetics of nuclear transformations was found. Possible mechanisms of observed processes are discussed.

  8. Crushed Salt Constitutive Model

    SciTech Connect (OSTI)

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  9. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    E-Print Network [OSTI]

    Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks Geoffrey is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt resistance of the membranes separating different salt concentration solutions has implications for modeling

  10. TREATABILITY STUDIES USED TO TEST FOR EXOTHERMIC REACTIONS OF PLUTONIUM DECONTAMINATION CHEMICALS

    SciTech Connect (OSTI)

    EWALT, J.R.

    2005-06-06

    Fluor Hanford is decommissioning the Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal as low level waste. Chemicals being considered for decontamination of gloveboxes in PFP include cerium(IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids, degreasers, and sequestering agents. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. This process effectively transfers the transuranic materials to the decontamination liquids, which are then absorbed by rags and packaged for disposal as TRU waste. Concerns regarding the safety of this procedure developed following a fire at Rocky Flats in 2003. The fire occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. The investigation of the event was hampered by the copious use of chemicals and water to extinguish the fire, and was not conclusive regarding the cause. However, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. With that uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials in the decontamination process. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Treatability tests under CERCLA were used to assess the use of certain chemicals and wipes during the decontamination process. Chemicals being considered for decontamination of gloveboxes at PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions as RadPro{trademark} that include acids, degreasers, and sequestering agents. As part of the treatability study, Fluor and the Pacific Northwest National Laboratory (PNNL) personnel have evaluated the potential for self-heating and exothermic reactions in the residual decontamination materials. Exothermic reactions that release significant heat and off-gas have been discovered for both the cerium nitrate, as seen in a fire at Rocky Flats, and proprietary solutions developed for decontamination purposes. From the treatability studies, certain limiting conditions have been defined that will aid in assuring safe operations and waste packaging during the decommissioning process.

  11. Solution

    E-Print Network [OSTI]

    Jony

    Qurz 2 SOLUTIONS, SECTION ALL. (10 pts.) Find the length of the curve. Solution. Using the formula for the arclength, of a curve onthe interval [0, 2],. 0. (5 pts.) ...

  12. Decontamination formulation with additive for enhanced mold remediation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Irvine, Kevin (Huntsville, AL); Berger, Paul (Rome, NY); Comstock, Robert (Bel Air, MD)

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  13. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-01-01

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  14. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-12-31

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D&D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D&D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  15. Decontamination formulation with sorbent additive

    DOE Patents [OSTI]

    Tucker; Mark D. (Albuquerque, NM), Comstock; Robert H. (Gardendale, AL)

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  16. Urban Decontamination Experience at Pripyat Ukraine - 13526

    SciTech Connect (OSTI)

    Paskevych, Sergiy; Voropay, Dmitry; Schmieman, Eric

    2013-07-01

    This paper describes the efficiency of radioactive decontamination activities of the urban landscape in the town of Pripyat, Ukraine. Different methods of treatment for various urban infrastructure and different radioactive contaminants are assessed. Long term changes in the radiation condition of decontaminated urban landscapes are evaluated: 1. Decontamination of the urban system requires the simultaneous application of multiple methods including mechanical, chemical, and biological. 2. If a large area has been contaminated, decontamination of local areas of a temporary nature. Over time, there is a repeated contamination of these sites due to wind transport from neighboring areas. 3. Involvement of earth-moving equipment and removal of top soil by industrial method achieves 20-fold reduction in the level of contamination by radioactive substances, but it leads to large amounts of waste (up to 1500 tons per hectare), and leads to the re-contamination of treated areas due to scatter when loading, transport pollutants on the wheels of vehicles, etc.. (authors)

  17. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

  18. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  19. Protein Diffusiophoresis and Salt Osmotic Diffusion in Aqueous Onofrio Annunziata,* Daniela Buzatu,

    E-Print Network [OSTI]

    Annunziata, Onofrio

    Protein Diffusiophoresis and Salt Osmotic Diffusion in Aqueous Solutions Onofrio Annunziata salt osmotic diffusion induced by a protein concentration gradient, and is related to protein

  20. Solutions

    E-Print Network [OSTI]

    2015-02-09

    Tank Mania! (1) Consider a 200 liter tank used to hold a dye solution with a concentration of 1g/liter. The tank needs to be rinsed with fresh water flowing in a

  1. Solution

    E-Print Network [OSTI]

    Jony

    2011-09-04

    Quiz 2, Section 11. P1. Find the cosine of the angle between the vectors bbb. AB and bbb. AC, where A = (2,b1,3), B = (1,1,2),. C = (3,1,0). Solution: First, we ...

  2. Solution

    E-Print Network [OSTI]

    2011-09-09

    Solution: We're looking for the presale cost of the shirt, so let x be the price of ... The sale price is $10 and we've called the presale price x, so we need to solve.

  3. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  4. Structural Evaluation and Solution Integrity of Alkali Metal Salt Complexes of the Manganese 12-Metallacrown-4 (12-MC-4) Structural Type

    E-Print Network [OSTI]

    Gibney, Brian R.

    of crystalline salts (LiCl2)[12-MCMn(III)N(shi)-4]- ([(LiCl2),1]-), (Li(trifluoro- acetate))[12-MCMn(III)N(shi)-4:1 metal:metallacrown adducts with lithium and 2:1 metal:metallacrown complexes with sodium and potassium

  5. Solution

    E-Print Network [OSTI]

    Jony

    sz 6, SECTION 171, T 2:30 PM. P1. Find the points in the cone 22 = x2 + y2 that are closest to the point (4, 2, 0). Solution 1: First, we note that given the point (4, ...

  6. Decontamination trade study for the Light Duty Utility Arm

    SciTech Connect (OSTI)

    Rieck, R.H.

    1994-09-29

    Various methods were evaluated for decontaminating the Light Duty Utility Arm (LDUA). Physical capabilities of each method were compared with the constraints and requirements for the LDUA Decontamination System. Costs were compared and a referred alternative was chosen.

  7. Uranium enrichment decontamination and decommissioning fund, 1995 report

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    This report describes strategies for the decontamination and decommissioning of gaseous diffusion plants. Progress in remedial action activities are discussed.

  8. Decontamination of Terrorist-Dispersed Radionuclides from Surfaces in Urban Environments

    SciTech Connect (OSTI)

    Fischer, Robert; Sutton, Mark; Gates-Anderson, Dianne; Gray, Jeremy; Hu, Qinhong; McNab, Walt; Viani, Brian

    2008-01-15

    Research is currently underway at Lawrence Livermore National Laboratory (LLNL) to advance the basic scientific knowledge of radionuclide-substrate interactions in the urban environment. Investigations have focused on more optimized decontamination agents for cesium (Cs) and americium (Am) specifically for use in mass transit infrastructure and urban environments. This project is designed to enhance the capability of the United States to effectively respond to a Radiological Dispersal Device (RDD) attack. The work addresses recognized data gaps by advancing the basic scientific knowledge of radionuclide-substrate interactions in the urban environment and provides a solution to a national need. The research is focused in four major areas: (1) a better understanding of urban surface conditions that influence the efficacy of decontamination processes, (2) development of prototype decontamination agents for Am and Cs optimized for use in urban environments, (3) the development of capabilities to realistically contaminate surfaces at both the real world and laboratory scale and (4) a validated model for radionuclide-surface interactions. The decontamination of urban surfaces following the detonation of an RDD presents a number of challenges. The following key points are found to be critical for the efficiency of decontamination agents in an urban environment: - Particle size and surface deposition of radionuclide particles on urban surface materials. - Interactions between radionuclides and urban materials. - The presence of grime and carbonation/alteration layers on the surface of urban surfaces. - Post-detonation penetration of radionuclides strongly affected by the dynamic wetting/drying processes. A laboratory scale contamination system has been developed allowing for samples to be contaminated and radionuclide interactions to be studied. In combination with laboratory scale experiments, a real scale outdoor test is scheduled for the spring of 2007. In conclusion, integrated laboratory, field, and numerical approaches are utilized to better understand the radionuclide behavior and the development/utility of decontamination agents.

  9. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  10. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  11. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  12. Electrolytic decontamination of the 3013 inner can

    SciTech Connect (OSTI)

    Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

    1998-12-31

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. This standard specifies both the requirements for containment and furthermore specifies that the inner container be decontaminated to a level of {le}20 dpm/100 cm{sup 2} swipable and {le}500 dpm/100 cm{sup 2} direct alpha such that a failure of the outer containment barrier will have a lower probability of resulting in a spread of contamination. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. The passage of current through this electrolytic cell results in a uniform anodic dissolution of the surface metal layers of the can. This process results in a rapid decontamination of the can. The electrolyte is fully recyclable, and the separation of the chromium from the actinides results in a compact, non RCRA secondary waste product.

  13. Advanced robotics for decontamination and dismantlement

    SciTech Connect (OSTI)

    Hamel, W.R.; Haley, D.C.

    1994-06-01

    The decontamination and dismantlement (D&D) robotics technology application area of the US Department of Energy`s Robotics Technology Development Program is explained and described. D&D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given.

  14. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2...

  15. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    SciTech Connect (OSTI)

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during operation of the facility.

  16. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    SciTech Connect (OSTI)

    Dickerson, K.S.; Wilson-Nichols, M.J.; Morris, M.I.

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

  17. Electrolyte salts for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  18. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-11-10

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate (MST) and crystalline silicotitanate (CST) laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both Sr-85 and Cs-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor (D{sub F}) for Sr-85 with MST impregnated filter membrane cartridges measured 26, representing 96% Sr-85 removal efficiency. On the other hand, the Sr-85 instantaneous D{sub F} with co-sintered active MST cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the MST impregnated membrane cartridges and CST impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active MST cartridges and co-sintered active CST cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of Cs-137 with co-sintered CST cartridges. Tests results with CST impregnated membrane cartridges for Cs-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating MST and CST sorbents into membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  19. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOE Patents [OSTI]

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN); Presley, Derek J. (Ooltewah, TN)

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  20. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode

    E-Print Network [OSTI]

    Efficient salt removal in a continuously operated upflow microbial desalination cell with an air of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of $62 mA, the UMDC was able

  1. Decontamination, decommissioning, and vendor advertorial issue, 2006

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  2. Decontamination formulations for disinfection and sterilization

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Engler, Daniel E. (Albuquerque, NM)

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  3. Salt never calls itself sweet.

    E-Print Network [OSTI]

    Baliga, Ragavendra R; Narula, Jagat

    2009-01-01

    54. 11. Frohlich ED. The role of salt in hypertension: theblockade, diuretics, and salt restriction for the managementa low- sodium high-potassium salt in hypertensive patients

  4. Decontamination Techniques and Fixative Coatings Evaluated in the Building 235-F Legacy Source Term Removal Study

    SciTech Connect (OSTI)

    WAYNE, FARRELL

    2005-04-21

    Savannah River Site Building 235-F was being considered for future plutonium storage and stabilization missions but the Defense Nuclear Facilities Safety Board (DNFSB) noted that large quantities of Plutonium-238 left in cells and gloveboxes from previous operations posed a potential hazard to both the existing and future workforce. This material resulted from the manufacture of Pu-238 heat sources used by the NASA space program to generate electricity for deep space exploration satellites. A multi-disciplinary team was assembled to propose a cost- effective solution to mitigate this legacy source term which would facilitate future DOE plutonium storage activities in 235-F. One aspect of this study involved an evaluation of commercially available radiological decontamination techniques to remove the legacy Pu-238 and fixative coatings that could stabilize any residual Pu-238 following decontamination activities. Four chemical methods were identified as most likely to meet decontamination objectives for this project and are discussed in detail. Short and long term fixatives will be reviewed with particular attention to the potential radiation damage caused by Pu-238, which has a high specific activity and would be expected to cause significant radiation damage to any coating applied. Encapsulants that were considered to mitigate the legacy Pu-238 will also be reviewed.

  5. Decontamination and decommissioning of the Kerr-McGee Cimarron Plutonium Fuel Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This final report is a summary of the events that completes the decontamination and decommissioning of the Cimarron Corporation`s Mixed Oxides Fuel Plant (formally Sequoyah Fuels Corporation and formerly Kerr-McGee Nuclear Corporation - all three wholly owned subsidiaries of the Kerr-McGee Corporation). Included are details dealing with tooling and procedures for performing the unique tasks of disassembly decontamination and/or disposal. That material which could not be economically decontaminated was volume reduced by disassembly and/or compacted for disposal. The contaminated waste cleaning solutions were processed through filtration and ion exchange for release or solidified with cement for L.S.A. waste disposal. The L.S.A. waste was compacted, and stabilized as required in drums for burial in an approved burial facility. T.R.U. waste packaging and shipping was completed by the end of July 1987. This material was shipped to the Hanford, Washington site for disposal. The personnel protection and monitoring measures and procedures are discussed along with the results of exposure data of operating personnel. The shipping containers for both T.R.U. and L.S.A. waste are described. The results of the decommissioning operations are reported in six reports. The personnel protection and monitoring measures and procedures are contained and discussed along with the results of exposure data of operating personnel in this final report.

  6. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

  7. Slime-busting Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    past issues All Issues submit Slime-busting Salt A potential new treatment gets bacteria deep in their hiding places May 1, 2015 Slime-busting Salt Biofilms are made of...

  8. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  9. Long-term decontamination engineering study. Volume 1

    SciTech Connect (OSTI)

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  10. Preconceptual design of the gas-phase decontamination demonstration cart

    SciTech Connect (OSTI)

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

  11. Supporting Information Geobacter sp. SD-1 with enhanced electrochemical activity in high salt

    E-Print Network [OSTI]

    1 Supporting Information Geobacter sp. SD-1 with enhanced electrochemical activity in high salt title: Geobacter sp. SD-1 in high salt solutions #12;2 Fig. S1. Current generation as a function of time

  12. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect (OSTI)

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

  13. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect (OSTI)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires h

  14. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOE Patents [OSTI]

    Betty, Rita G. (Rio Rancho, NM); Tucker, Mark D. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM); Levin, Bruce L. (Tijeras, NM); Leonard, Jonathan (Albuquerque, NM)

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  15. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, J.E.; Fritz, J.S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C[sub 3] or larger.

  16. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect (OSTI)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  17. Y-12 Plant decontamination and decommissioning Technology Logic Diagram for Building 9201-4: Volume 3, Technology evaluation data sheets: Part B, Decontamination; robotics/automation; waste management

    SciTech Connect (OSTI)

    1994-09-01

    This volume consists of the Technology Logic Diagrams (TLDs) for the decontamination, robotics/automation, and waste management areas.

  18. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect (OSTI)

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  19. Anthrax Sampling and Decontamination: Technology Trade-Offs

    SciTech Connect (OSTI)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  20. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect (OSTI)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  1. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  2. Impact of Salt Purity on Interfacial Water Organization Revealed by Conventional and Heterodyne-Detected Vibrational Sum Frequency

    E-Print Network [OSTI]

    Impact of Salt Purity on Interfacial Water Organization Revealed by Conventional and Heterodyne of the chosen salts and their solutions. This is true not only for the ACS grade salts but also vibrational sum frequency generation (VSFG) and heterodyne-detected VSFG (HD-VSFG) spectroscopy that salt

  3. SAMPLE RESULTS FROM THE INTERIM SALT DISPOSITION PROGRAM MACROBATCH 8 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L.

    2015-01-13

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for the Interim Salt Disposition Program (ISDP). An Actinide Removal Process (ARP) and several Extraction-Scrub- Strip (ESS) tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). No issues with the projected Salt Batch 8 strategy are identified. A demonstration of the monosodium titanate (MST) (0.2 g/L) removal of strontium and actinides provided acceptable average decontamination factors for plutonium of 2.62 (4 hour) and 2.90 (8 hour); and average strontium decontamination factors of 21.7 (4 hour) and 21.3 (8 hour). These values are consistent with results from previous salt batch ARP tests. The two ESS tests also showed acceptable performance with extraction distribution ratios (D{sub (Cs)}) values of 52.5 and 50.4 for the Next Generation Solvent (NGS) blend (from MCU) and NGS (lab prepared), respectively. These values are consistent with results from previous salt batch ESS tests. Even though the performance is acceptable, SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed in order to improve our predictive capabilities for the ESS tests.

  4. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect (OSTI)

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R.

    1993-10-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  5. Kit systems for granulated decontamination formulations

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM)

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  6. Dosimetry using silver salts

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM)

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  7. A Dash of Salt 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2006-01-01

    stream_source_info A dash of salt.pdf.txt stream_content_type text/plain stream_size 9159 Content-Encoding ISO-8859-1 stream_name A dash of salt.pdf.txt Content-Type text/plain; charset=ISO-8859-1 tx H2O | pg. 18 A... Texas A&M researcher is assessing the impact of using moderately saline water for irrigating urban landscapes in West Texas and southern New Mexico. A DASH OF SALT Researcher assesses salinity impacts on grasses, trees and shrubs A Dash of Salt...

  8. Molecular dynamics simulations of the effects of salts on the aggregation properties of benzene in water.

    SciTech Connect (OSTI)

    Smith, P. E.

    2003-07-16

    The specific aims of the project were: to provide an atomic level description of the interactions between benzene, water and ions in solutions. To determine the degree of association between two benzene molecules in aqueous and salt solutions. To investigate the structure and dynamics of the interface between benzene and water or salt solution.

  9. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect (OSTI)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  10. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  11. NOVEL SALTS OF GRAPHITE AND A BORON NITRIDE SALT

    E-Print Network [OSTI]

    Bartlett, Neil

    2011-01-01

    ~ i\\f'{y AND DOCUMENTS SECTION NOVEL SALTS OF GRAPHITE ANDA BORON NITRIDE SALT Neil Bartlett, R. N. Biagioni, B. W.privately owned rights. Novel Salts of Graphite and a Boron

  12. Amended Record of Decision for the Savannah River Site Salt Processing...

    Office of Environmental Management (EM)

    facility. The remaining salt solution, which would have high concentrations of cesium (Cs) but very low concentrations of actinides after the MST step, would be further...

  13. Hydroxycarboxylic acids and salts

    SciTech Connect (OSTI)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  14. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  15. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  16. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  17. Miniaturized Turbine Offers Desalination Solution | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    salt from ice New solution draws from the GE Store, integrating GE's experience with steam turbine, oil & gas compressors, 3D printing and water processing NISKAYUNA, NY,...

  18. RMDF leach-field decontamination. Final report

    SciTech Connect (OSTI)

    Carroll, J W; Marzec, J M; Stelle, A M

    1982-09-15

    The objective of the decontamination effort was to place the Radioactive Materials Disposal Facility (RMDF) leach field in a condition suitable for release for unrestricted use. Radioactively contaminated soil was excavated from the leach field to produce a condition of contamination as low as reasonably achievable (ALARA). The contaminated soil was boxed and shipped to an NRC-licensed burial site at Beatty, Nevada, and to the DOE burial site at Hanford, Washington. The soil excavation project successfully reduced the contamination level in the leach field to background levels, except for less than 0.6 mCi of Sr-90 and trace amounts of Cs-137 that are isolated in cracks in the bedrock. The cracks are greater than 10 ft below the surface and have been sealed with a bituminous asphalt mastic. A pathways analysis for radiation exposure to humans from the remaining radionuclides was performed, assuming intensive home gardening, and the results show that the total first year whole body dose equivalent would be about 0.1 mrem/year. This dose equivalent is a projection for the hypothetical ingestion of vegetables grown on the site. Assuming that an average adult consumes 64 kg of green leafy vegetables per year and that the entire yearly supply could be grown on the site, the amount of ingested Sr-90 and Cs-137 is calculated to be 1100 pCi/year and 200 pCi/year. This ingested quantity would produce a total first year whole body dose equivalent of 0.10 mrem, using the accepted soil-to-plant transfer factors of 0.0172 and 0.010 for Sr-90 and Cs-137, respectively. The whole body dose equivalent exposure value of 0.1 mrem/year is far below the tentative limit established by NRC of 5 mrem/year for areas released for unrestricted use.

  19. Technology needs for decommissioning and decontamination

    SciTech Connect (OSTI)

    Bundy, R.D.; Kennerly, J.M.

    1993-12-01

    This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

  20. Decontamination Systems Information and Reseach Program

    SciTech Connect (OSTI)

    Echol E. Cook

    1998-04-01

    The following paragraphs comprise the research efforts during the first quarter of 1998 (January 1 - March 31). These tasks have been granted a continuation from the 1997 work and will all end in June 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final reports for all of the 1997 projects will be submitted afterwards as one document. During this period, groundwater extraction operations were completed on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data have been evaluated and graphs are presented. The plot of TCE Concentration versus Time shows that the up-gradient groundwater monitoring well produced consistent levels of TCE contamination. A similar trend was observed for the down-gradient wells via grab samples tested. Groundwater samples from the PVD test pad Zone of Influence showed consistent reductions in TCE concentrations with respect to time. In addition, a natural pulse frequency is evident which will have a significant impact on the efficiency of the contaminant removal under natural groundwater advection/diffusion processes. The relationships between the PVD Extraction Flow Rate versus Cumulative Time shows a clear trend in flow rate. Consistent values between 20 to 30 g.p.m. at the beginning of the extraction duration, to less than 10 g.p.m. by the end of the extraction cycle are observed. As evidenced by the aquifer?s diminishing recharge levels, the PVD extraction is affecting the response of the aquifer?s natural attenuation capability. Progress was also marked on the Injection and Circulation of Potable Water Through PVDs task. Data reduction from this sequence of testing is ongoing. Work planned for next quarter includes completing the Injection / Extraction of potable water task and beginning the Surfactant Injection and removal task.

  1. Doctoral Defense "Frost Deterioration in Concrete Due to Deicer Salt Exposure

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Frost Deterioration in Concrete Due to Deicer Salt Exposure: Mechanism-freeze climate zone. During winter a deicer-salt application is needed to melt snow on highways. Freezing in the presence of a deicer salt solution is considered a severe concrete exposure condition. Prolonged exposure

  2. Salt removal using multiple microbial desalination cells under continuous flow conditions

    E-Print Network [OSTI]

    Salt removal using multiple microbial desalination cells under continuous flow conditions Youpeng that inhibit bacterial metabolism. The salt solution also moved through each desalination chamber in series. Increasing the hydraulic retention times (HRTs) of the salt so- lution from 1 to 2 days increased total Na

  3. Unusual Salt Stability in Highly Charged Diblock Co-polypeptide Hydrogels

    E-Print Network [OSTI]

    Breedveld, Victor

    Unusual Salt Stability in Highly Charged Diblock Co-polypeptide Hydrogels Andrew P. Nowak, Victor of poly(L-lysine HBr) or poly(L-glutamic acid sodium salt), and helical, hydrophobic segments of poly as low as 0.25 wt %, stability in salt or buffer solutions was found to be only achieved at moderately

  4. Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers

    E-Print Network [OSTI]

    Huang, Jianbin

    Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers November 2011 Available online 6 December 2011 Keywords: Surfactant self-assembly Hydrotropic salt Fiber dodecylbenzene sulfo- nate, SDBS) and a hydrotropic salt (benzylamine hydrochloride, BzCl) in aqueous solution

  5. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Elder, H.H.

    2001-07-11

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  6. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  7. Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials

    E-Print Network [OSTI]

    Koenig, Kristi L MD

    2008-01-01

    radiological exposures may also present first to healthcare facilities.facility-based decontamination of victims exposed to chemical, biological, and radiologicalfacility-based decontamination of victims exposed to chemical, biological, and radiological

  8. Testing and evaluation of electrokinetic decontamination of concrete

    SciTech Connect (OSTI)

    DePaoli, D.W.; Harris, M.T.; Ally, M.R.

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  9. Criteria for the evaluation of a dilute decontamination demonstration

    SciTech Connect (OSTI)

    FitzPatrick, V.F.; Divine, J.R.; Hoenes, G.R.; Munson, L.F.; Card, C.J.

    1981-12-01

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required.

  10. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    SciTech Connect (OSTI)

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  11. Laser decontamination: A new strategy for facility decommissioning

    SciTech Connect (OSTI)

    Pang, H.M.; Lipert, R.J.; Hamrick, Y.M.; Bayrakal, S.; Gaul, K.; Davis, B.; Baldwin, D.P.; Edelson, M.C.

    1992-01-01

    Lasers can be employed to remove both surface and bulk contamination from metals. Experiments demonstrate that {approximately}5{mu}m can be removed from an Al surface by one powerful laser pulse. Focusing with cylindrical lenses is shown to result in good surface coverage and reduced surface redeposition. High-resolution laser spectroscopy in a small atomic beam device is demonstrated and discussions of bulk decontamination by AVLIS-like methods are described. A plan for estimating the cost-effectiveness of laser decontamination technology is discussed.

  12. Laser decontamination: A new strategy for facility decommissioning

    SciTech Connect (OSTI)

    Pang, H.M.; Lipert, R.J.; Hamrick, Y.M.; Bayrakal, S.; Gaul, K.; Davis, B.; Baldwin, D.P.; Edelson, M.C.

    1992-06-01

    Lasers can be employed to remove both surface and bulk contamination from metals. Experiments demonstrate that {approximately}5{mu}m can be removed from an Al surface by one powerful laser pulse. Focusing with cylindrical lenses is shown to result in good surface coverage and reduced surface redeposition. High-resolution laser spectroscopy in a small atomic beam device is demonstrated and discussions of bulk decontamination by AVLIS-like methods are described. A plan for estimating the cost-effectiveness of laser decontamination technology is discussed.

  13. Process for decontaminating radioactive liquids using a calcium cyanamide-containing composition. [Patent application

    DOE Patents [OSTI]

    Silver, G.L.

    1980-09-24

    The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.

  14. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Salt Repository Research, Design, and Operation La Fonda Hotel Santa Fe, New Mexico September 7 - 11, 2014 Please join us Sunday September 7, 2014 for a welcome and reception at...

  15. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 th USGerman Workshop on Salt Repository Research, Design, and Operation Hotel Pullmann Dresden Newa Dresden September 7 - 9, 2015 September 7- Monday 08:00-08:30 Registration...

  16. Amine salts of nitroazoles

    DOE Patents [OSTI]

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  17. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  18. Atmospheric-pressure plasma decontamination/sterilization chamber

    DOE Patents [OSTI]

    Herrmann, Hans W. (Los Alamos, NM); Selwyn, Gary S. (Los Alamos, NM)

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  19. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    E-Print Network [OSTI]

    Qin, Lu-Chang

    of TiO2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination experiments showed that powders of metal oxide, MgO [2], CaO [3], Al2O3 [4], and TiO2 [5], when pene- trated to nanocrystals, nanostruc- tures with large aspect ratios such as nanotubes and nanoscrolls might stack together

  20. Process for cesium decontamination and immobilization

    DOE Patents [OSTI]

    Komarneni, S.; Roy, R.

    1988-04-25

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time. 6 figs., 2 tabs.

  1. Process for cesium decontamination and immobilization

    DOE Patents [OSTI]

    Komarneni, Sridhar (Altoona, PA); Roy, Rustum (State College, PA)

    1989-01-01

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time.

  2. Cloud-Point Phenomena in Wormlike Micellar Systems Containing Cationic Surfactant and Salt

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    unusual phase behavior in aqueous solution as a function of temperature and added salt concentration. Low and the zero-shear viscosity 0 pass in parallel through minima as a function of NaTos concentration. Cloud M NaSal. High concentrations of salt can also cause cationic surfactant solutions to separate

  3. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  4. The Thorium Molten Salt Reactor : Moving on from the MSBR

    E-Print Network [OSTI]

    L. Mathieu; D. Heuer; R. Brissot; C. Le Brun; E. Liatard; J. M. Loiseaux; O. Méplan; E. Merle-Lucotte; A. Nuttin; J. Wilson; C. Garzenne; D. Lecarpentier; E. Walle; the GEDEPEON Collaboration

    2005-06-02

    A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

  5. Sol-gel processing with inorganic metal salt precursors

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  6. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    SciTech Connect (OSTI)

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  7. Decontamination and Decommissioning activities photobriefing book FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01

    The Decontamination and Decommissioning (D and D) Program at Argonne National Laboratory-East (ANL-E) is dedicated to the safe and cost effective D{ampersand}D of surplus nuclear facilities. There is currently a backlog of more than 7,000 contaminated US Department of Energy facilities nationwide. Added to this are 110 licensed commercial nuclear power reactors operated by utilities learning to cope with deregulation and an aging infrastructure that supports the commercial nuclear power industry, as well as medical and other uses of radioactive materials. With this volume it becomes easy to understand the importance of addressing the unique issues and objectives associated with the D{ampersand}D of surplus nuclear facilities. This photobriefing book summarizes the decontamination and decommissioning projects and activities either completed or continuing at the ANL-E site during the year.

  8. Decontamination analysis of the NUWAX-83 accident site using DECON

    SciTech Connect (OSTI)

    Tawil, J.J.

    1983-11-01

    This report presents an analysis of the site restoration options for the NUWAX-83 site, at which an exercise was conducted involving a simulated nuclear weapons accident. This analysis was performed using a computer program deveoped by Pacific Northwest Laboratory. The computer program, called DECON, was designed to assist personnel engaged in the planning of decontamination activities. The many features of DECON that are used in this report demonstrate its potential usefulness as a site restoration planning tool. Strategies that are analyzed with DECON include: (1) employing a Quick-Vac option, under which selected surfaces are vacuumed before they can be rained on; (2) protecting surfaces against precipitation; (3) prohibiting specific operations on selected surfaces; (4) requiring specific methods to be used on selected surfaces; (5) evaluating the trade-off between cleanup standards and decontamination costs; and (6) varying of the cleanup standards according to expected exposure to surface.

  9. RECHARGEABLE MOLTEN-SALT CELLS

    E-Print Network [OSTI]

    Cairns, Elton J.

    2013-01-01

    KC! /FeS 2 cell lithium-silicon magnesium oxide molten-saltmolten-salt cells Na/Na glass/Na:z.Sn-S cell Na/NazO•xA!Symposium on Molten Salts, Physical Electrochemistry

  10. Proceedings: Decommissioning, Decontamination, ALARA, and Worker Safety Workshop

    SciTech Connect (OSTI)

    None

    2000-09-01

    This workshop on decontamination, ALARA, and worker safety was the sixth in a series initiated by EPRI to aid utility personnel in assessing the technologies for decommissioning nuclear power plants. The workshop focused on specific aspects of decommissioning related to the management of worker radiation exposure and safety. The information presented will help individual utilities assess benefits of programs in these areas for their projects, including their potential to reduce decommissioning costs.

  11. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    SciTech Connect (OSTI)

    Rudolph, A.; Kirsch, G.; Toy, H.L. (comps.)

    1984-11-12

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980.

  12. APPLICATIONS OF SALT IN ELECTROFISHING

    E-Print Network [OSTI]

    APPLICATIONS OF SALT IN ELECTROFISHING iNlarine Biological Laboratory LIB55.A.K.Y WOODS HOLE, MASS OF SALT IN ELECTROFISHING By Robert E . Lennon and Phillip S . Parker Fishery Research Biologists Leetown. Electric fisliliiK. 2. Salt. i. Farker, Phillip Slieridaii, 192t>- .joiut author, ii. Title. ( Series : IT

  13. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  14. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    SciTech Connect (OSTI)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation.

  15. Denaturation of DNA at high salt concentrations

    E-Print Network [OSTI]

    Maity, Arghya; Singh, Navin

    2015-01-01

    Cations present in the solution are important for the stability of two negative strands of DNA molecules. Experimental as well as theoretical results show that the DNA molecule is more stable as the concentration of salt (or cations) increases. It is known that the two strands of DNA molecule carry negative charge due to phosphate group along the strands. These cations act as a shielding particles to the two like charge strands. Recently, in an experiment it is shown that there is a critical value in the concentration of salts (or cations) that can stabilize the helical structure of DNA. If one add more salt in the solution beyond this critical value, the stability of the DNA molecule will disrupt. In this work we study the stability of DNA molecules at higher concentrations. How the stability at higher concentration can be explained through some theoretical calculations is the aim of this manuscript. We consider the PBD model with proper modifications that can explain the negative stability of the molecule a...

  16. Denaturation of DNA at high salt concentrations

    E-Print Network [OSTI]

    Arghya Maity; Amar Singh; Navin Singh

    2015-08-19

    Cations present in the solution are important for the stability of two negative strands of DNA molecules. Experimental as well as theoretical results show that the DNA molecule is more stable as the concentration of salt (or cations) increases. It is known that the two strands of DNA molecule carry negative charge due to phosphate group along the strands. These cations act as a shielding particles to the two like charge strands. Recently, in an experiment it is shown that there is a critical value in the concentration of salts (or cations) that can stabilize the helical structure of DNA. If one add more salt in the solution beyond this critical value, the stability of the DNA molecule will disrupt. In this work we study the stability of DNA molecules at higher concentrations. How the stability at higher concentration can be explained through some theoretical calculations is the aim of this manuscript. We consider the PBD model with proper modifications that can explain the negative stability of the molecule at higher concentration. Our findings are in close match with the experimental results.

  17. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF[sub 6]), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF[sub 3]) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF[sub 6] and other gases are evacuated. The UF[sub 6] is recovered by chemical trapping. The lab results demonstrated that ClF[sub 3] gas at subatmospheric pressure and at [approx] 75[degree]F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  18. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  19. Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

  20. Water Dynamics in Divalent and Monovalent Concentrated Salt Chiara H. Giammanco, Daryl B. Wong, and Michael D. Fayer*

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water Dynamics in Divalent and Monovalent Concentrated Salt Solutions Chiara H. Giammanco, Daryl B, United States ABSTRACT: Water hydrogen bond dynamics in concentrated salt solutions are studied using causes a shift in absorption frequency relative to that of the OD stretch absorption in bulk pure water

  1. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  2. Decontamination and Management of Human Remains Following Incidents of Hazardous Chemical Release

    SciTech Connect (OSTI)

    Hauschild, Veronique [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL; Bock, Robert Eldon [ORNL

    2012-01-01

    Abstract Objective: To provide specific procedural guidance and resources for identification, assessment, control, and mitigation of compounds that may contaminate human remains resulting from chemical attack or release. Design: A detailed technical, policy, and regulatory review is summarized. Setting: Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present. Settings would include sites of transportation accidents, natural disasters, terrorist or military operations, mortuary affairs or medical examiner processing and decontamination points, and similar. Patients, Participants: While recommended procedures have not been validated with actual human remains, guidance has been developed from data characterizing controlled experiments with fabrics, materiel, and laboratory animals. Main Outcome Measure(s): Presentation of logic and specific procedures for remains management, protection and decontamination of mortuary affairs personnel, as well as decision criteria for determining when remains are sufficiently decontaminated so as to pose no chemical health hazard. Results: Established procedures and existing equipment/materiel available for decontamination and verification provide appropriate and reasonable means to mitigate chemical hazards from remains. Extensive characterization of issues related to remains decontamination indicates that supra-lethal concentrations of liquid chemical warfare agent VX may prove difficult to decontaminate and verify in a timely fashion. Specialized personnel can and should be called upon to assist with monitoring necessary to clear decontaminated remains for transport and processing. Conclusions: Once appropriate decontamination and verification have been accomplished, normal procedures for remains processing and transport to the decedent s family and the continental United States can be followed.

  3. RIS-M-2472 FORCED DECONTAMINATION OF FISSION PRODUCTS DEPOSITED ON

    E-Print Network [OSTI]

    a serious reactor accident. Areas of special concern are cities where the collective dose might be high, DECONTAMINATION, FISSION, PROD- UCTS, REACTOR ACCIDENTS, REMEDIAL ACTION, REVIEWS, ROADS, SURFACE CLEANING-550-1067-9 ISSN 0418-6435 Risø Repro 1985 #12;CONTENTS Paqe 1. INTRODUCTION 5 2. DECONTAMINATION PRINCIPLES 6 2

  4. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  5. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  6. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  7. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  8. RECHARGEABLE MOLTEN-SALT CELLS

    E-Print Network [OSTI]

    Cairns, Elton J.

    2013-01-01

    polysulfide sodium/sulfur cell solid electrolyte Ti0 2ion conducting solid electrolyte would add flexibility forwith a combination of a solid electrolyte and a molten salt

  9. Technology for treatment of salt residue stored at NPPs

    SciTech Connect (OSTI)

    Kobelev, A.P.; Savkin, A.E.; Sinjakin, O.G.; Kachalova, E.A.; Sorokoletova, A.N.; Nechaev, V.R. [SUE Moscow SIA Radon (Russian Federation)

    2007-07-01

    At Moscow SIA 'Radon', three (3) options for NPP salt residue treatment were developed and tested. Option 1 consists of dissolving the salt residue and subsequent treatment by ozonization, separation of the deposits formed from ozonization and selective cleaning by ferrocyanide sorbents. Option 2 consists of fusion of the salt residue, addition of glass-forming additives and melting of borosilicate glass in a melter such as a 'cold crucible'. Option 3 consists of dissolving the salt residue, oxidation of the solution obtained, removal of radionuclides by collectors and the separate handling of formed deposits and the solution. The deposits containing more than 99 % of the activity are directed to vitrification and the solution is directed either to a concentrates dryer or to cementation. The vitrified waste product is placed in repository for solid radioactive waste storage and the solidified product from the solution goes to an industrial waste disposal site or a repository specially developed at NPP sites for 'exempt waste' products by IAEA classification. (authors)

  10. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes

    E-Print Network [OSTI]

    Pai-Yi Hsiao; Erik Luijten

    2006-10-05

    We study the salt-dependent conformations of dilute flexible polyelectrolytes in solution via computer simulations. Low concentrations of multivalent salt induce the known conformational collapse of individual polyelectrolyte chains, but as the salt concentration is increased further this is followed by a reexpansion. We explicitly demonstrate that multivalent counterions can overcompensate the bare charge of the chain in the reexpansion regime. Both the degree of reexpansion and the occurrence of overcharging sensitively depend on ion size. Our findings are relevant for a wide range of salt-induced complexation phenomena.

  11. EIS-0082-S2: Savannah River Site Salt Processing, Savannah River Site, Aiken, South Carolina

    Office of Energy Efficiency and Renewable Energy (EERE)

    This SEIS evaluates the potential environmental impacts of alternatives for separating the high-activity fraction from the low-activity fraction of the high-level radioactive waste salt solutions...

  12. COLLIGATIVE PROPERTIES OF SOLUTIONS: I. FIXED CONCENTRATIONS

    E-Print Network [OSTI]

    by noting that the migration of salt increases the entropic cost of freezing so the energy-entropy balance separation in solutions upon freezing (or boiling). A well-known example from "real world" is the formation

  13. Damage in porous media due to salt crystallization

    E-Print Network [OSTI]

    Noushine Shahidzadeh-Bonn; Julie Desarnaud; François Bertrand; Xavier Chateau; Daniel Bonn

    2010-07-13

    We investigate the origins of salt damage in sandstones for the two most common salts: sodium chloride and sulfate. The results show that the observed difference in damage between the two salts is directly related to the kinetics of crystallization and the interfacial properties of the salt solutions and crystals with respect to the stone. We show that, for sodium sulfate, the existence of hydrated and anhydrous crystals and specifically their dissolution and crystallization kinetics are responsible for the damage. Using magnetic resonance imaging and optical microscopy we show that when water imbibes sodium sulfate contaminated sandstones, followed by drying at room temperature, large damage occurs in regions where pores are fully filled with salts. After partial dissolution, anhydrous sodium sulfate salt present in these regions gives rise to a very rapid growth of the hydrated phase of sulfate in the form of clusters that form on or close to the remaining anhydrous microcrystals. The rapid growth of these clusters generates stresses in excess of the tensile strength of the stone leading to the damage. Sodium chloride only forms anhydrous crystals that consequently do not cause damage in the experiments.

  14. Plant salt-tolerance mechanisms

    SciTech Connect (OSTI)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  15. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore »and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  16. Characterization of bedded salt for storage caverns -- A case study from the Midland Basin, Texas

    SciTech Connect (OSTI)

    Hovorka, Susan D.; Nava, Robin

    2000-06-13

    The geometry of Permian bedding salt in the Midland Basin is a product of interaction between depositional facies and postdepositional modification by salt dissolution. Mapping high-frequency cycle patterns in cross section and map view using wireline logs documents the salt geometry. Geologically based interpretation of depositional and dissolution processes provides a powerful tool for mapping and geometry of salt to assess the suitability of sites for development of solution-mined storage caverns. In addition, this process-based description of salt geometry complements existing data about the evolution of one of the best-known sedimentary basins in the world, and can serve as a genetic model to assist in interpreting other salts.

  17. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates:...

  18. Laser ablation system, and method of decontaminating surfaces

    DOE Patents [OSTI]

    Ferguson, Russell L. (Idaho Falls, ID); Edelson, Martin C. (Ames, IA); Pang, Ho-ming (Ames, IA)

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  19. Concrete decontamination by Electro-Hydraulic Scabbling (EHS). Topical report

    SciTech Connect (OSTI)

    NONE

    1996-03-30

    Electro-Hydraulic Scabbling (EHS) technology and equipment for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals is being developed by Textron Systems Division (TSD). This wet scabbling technique involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface. The high pressure impulse results in stresses which crack and peel off a concrete layer of a controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. This new technology is being developed under Contract No. DE-AC21-93MC30164. The project objective is to develop and demonstrate a cost-efficient, rapid, controllable process to remove the surface layer of contaminated concrete while generating minimal secondary waste. The primary target of this program is uranium-contaminated concrete floors which constitute a substantial part of the contaminated area at DOE weapon facilities.

  20. Method and apparatus for the gas phase decontamination of chemical and biological agents

    DOE Patents [OSTI]

    O'Neill, Hugh J.; Brubaker, Kenneth L.

    2003-10-07

    An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.

  1. Solvent wash solution

    DOE Patents [OSTI]

    Neace, James C. (Blackville, SC)

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  2. Solvent wash solution

    DOE Patents [OSTI]

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  3. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  4. Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

    2014-04-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

  5. Analytical cell decontamination and shielding window refurbishment. Final report, March 1984-March 1985

    SciTech Connect (OSTI)

    Smokowski, R.T.

    1985-12-01

    This is a report on the decontamination and refurbishment of five inactive contaminated analytical cells and six zinc bromide filled shielding windows. The analytical cells became contaminated during the nuclear fuel reprocessing carried out by Nuclear Fuel Services from 1966 to 1972. The decontamination and decommissioning (D and D) work was performed in these cells to make them useful as laboratories in support of the West Valley Demonstration Project. To accomplish this objective, unnecessary equipment was removed from these cells. Necessary equipment and the interior of each cell were decontaminated and repaired. The shielding windows, essentially tanks holding zinc bromide, were drained and disassembled. The deteriorated, opaque zinc bromide was refined to optical clarity and returned to the tanks. All wastes generated in this operation were characterized and disposed of properly. All the decontamination and refurbishment was accomplished within 13 months. The Analytical Hot Cell has been turned over to Analytical Chemistry for the performance high-level waste (HLW) characterization analysis.

  6. Evaluation of Salmonella disinfection strategies for pre-slaughter broiler crop decontamination 

    E-Print Network [OSTI]

    Barnhart, Eric Thomas

    1998-01-01

    The purpose of the following studies was to evaluate selected potential decontamination methods for ability to reduce the incidence of Salmonella recovery from broiler crops during pre-slaughter feed withdrawal. The efficacy of prolonged lactose...

  7. EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's...

  8. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    SciTech Connect (OSTI)

    Vogt , B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  9. Demonstration of gas-phase in situ decontamination of a diffusion cascade cell

    SciTech Connect (OSTI)

    Riddle, R.J. [Lockheed Martin Utility Services, Piketon, OH (United States)

    1995-12-31

    This paper describes the testing conditions and outlines the test procedures for a full-scale demonstration of the long-term, low temperature (LTLT) process for decontamination of a diffusion cascade cell. The gas-phase in situ technique involves conversion of solid uranium oxyfluoride deposit materials to gaseous uranium hexafluoride using the oxidants fluorine and chlorine trifluoride. The primary goal of the demonstration is to determine the effectiveness of the LTLT process for the decontamination of diffusion cascade equipment.

  10. BYU Salt Lake Center Financial Assistance

    E-Print Network [OSTI]

    Hart, Gus

    BYU Salt Lake Center Financial Assistance Program 2015 A financial assistance program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake

  11. Cite this: DOI: 10.1039/c3lc41271g A Microfluidic Platform for Evaporation-based Salt

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Cite this: DOI: 10.1039/c3lc41271g A Microfluidic Platform for Evaporation-based Salt Screening,b Yuchuan Gong*b and Paul J. A. Kenis*a We describe a microfluidic platform to screen for salt forms of PC and salt former solutions in a 24-well array (y200 nL/well), which is a drastic reduction

  12. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect (OSTI)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  13. MODELING OF A NOVEL SOLUTION POTASH MINING PROCESS Sergio Almada, Harvey Haugen

    E-Print Network [OSTI]

    by drilling followed by a number of steps to develop a solution mining cavern. Water is injected to dissolve a sump area within the salt at the base of the solution mining cavern. The sump allows insoluble materials settle within the cavern to avoid affecting the solution mining process and the dissolved salt can

  14. Effect of hydrotropic salts on phase relationships involving hydrocarbons, water, and alcohols

    SciTech Connect (OSTI)

    Ho, P.C.; Kraus, K.A.

    1980-01-01

    Hydrotropic salts, which can increase the solubility of organic materials in aqueous solutions, are useful to tertiary oil recovery. We have examined effects on solubility of hydrocarbons in water (with and without alcohols) through addition of inorganic hydrotropic salts, such as perchlorates, thiocyanates, and iodides - high in the usual Hofmeister series - and of organic salts such as short chain alkyl benzene sulfonates and other salts based on substituted benzene derivatives. Although the inorganic salts are relatively ineffective in increasing solubility of hydrocarbons in water, many of the organic salts are excellent hydrotropic agents for hydrocarbons. We have examined the phase relationships for several series of aromatic salts such as sulfonates, carboxylates and hydroxycarboxylates, as a function of alkyl-carbon substitution in three-component (hydrocarbon, salt, water) and in four-component (hydrocarbon, salt, alcohol, water) systems. We have also examined miscibility relationships for a given hydrotropic salt as the chain length of alkanes and alkyl benzenes is systematically varied. While miscibilities decrease with increase in chain length of the hydrocarbon, the hydrotropic properties in these systems increase rapidly with the number of alkyl carbons on the benzene ring of the salts and they are relatively insensitive to the type of charged group (sulfonate vs carboxylate) attached to the benzene ring. However, there were significant increases in hydrotropy as one goes from equally substituted sulfonates or carboxylates to salicylates. A number of salts have been identified which have much greater hydrotropic properties for hydrocarbons than such well-known hydrotropic materials as toluene and xylene sulfonates.

  15. Solution-based approaches for making high-density sodalite waste...

    Office of Scientific and Technical Information (OSTI)

    solution-based approaches were taken to make sodalite minerals as a host for a mixed salt simulating the waste generated during the electrochemical separations process of...

  16. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    SciTech Connect (OSTI)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency cleanup responses, has a sound approach for decontamination decision-making that has been applied several times. The anthrax contamination at the U. S. Hart Senate Office Building and numerous U. S. Post Office facilities are examples of employing novel technical responses. Decontamination of the Hart Office building required development of a new approach for high level decontamination of biological contamination as well as techniques for evaluating the technology effectiveness. The World Trade Center destruction also demonstrated the need for, and successful implementation of, appropriate cleanup methodologies. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly “package and dispose” method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination.

  17. Concrete decontamination by electro-hydraulic scabbling (EHS). Final report

    SciTech Connect (OSTI)

    NONE

    1997-10-01

    Contamination of concrete structures by radionuclides, hazardous metals and organic substances (including PCB`s) occurs at many DOE sites. The contamination of concrete structures (walls, floors, ceilings, etc.) varies in type, concentration, and especially depth of penetration into the concrete. In many instances, only the surface layer of concrete is contaminated, up to a depth of one inch, according to estimates provided in the R and D ID document. Then, removal of the concrete surface layer (scabbling) is considered to be the most effective decontamination method. Textron Systems Corp. (TSC) has developed a scabbling concept based on electro-mechanical phenomena accompanying strong electric pulses generated by applying high voltage at the concrete/water interface. Depending on the conditions, the electric discharge may occur either through a waste layer or through the concrete body itself. This report describes the development, testing, and results of this electro-mechanical process. Phase 1 demonstrated the feasibility of the process for the controlled removal of a thin layer of contaminated concrete. Phase 2 designed, fabricated, and tested an integrated subscale unit. This was tested at Fernald. In Phase 3, the scabbling unit was reconfigured to increase its power and processing rate. Technology transfer to an engineering contracting company is continuing.

  18. Raman and far ir spectroscopic study of quaternary ammonium polybromide fused salt phases for zinc bromine circulating electrolyte batteries

    SciTech Connect (OSTI)

    Larrabee, J.A.; Graf, K.R.; Grimes, P.G.

    1985-01-01

    The circulating electrolyte zinc bromine battery is an attractive advanced battery system. The electrolyte is a solution of zinc bromide, quaternary ammonium bromides for bromine complexation and added salts to enhance properties. Laser Raman spectroscopy and far infrared spectroscopy were used to characterize the liquid quaternary ammonium polybromide fused salt phases.

  19. Reduced weight decontamination formulation utilizing a solid peracid compound for neutralization of chemical and biological warfare agents

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM)

    2011-09-20

    A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.

  20. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect (OSTI)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

  1. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  2. EA-1266: Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for the decontamination and disassembly of the U.S. Department of Energy's Argonne Thermal Source Reactor.

  3. Off-gas recycle for long-term low temperature gas phase uranium decontamination

    SciTech Connect (OSTI)

    Bundy, R.D.; Bunch, D.H.; Munday, E.B.; Simmons, D.W.

    1994-07-01

    In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile UF{sub 6}, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric ClF{sub 3} for higher reaction rates at higher temperatures. Laboratory-scale experiments have demonstrated the feasibility of using LTLT gas phase decontamination with ClF{sub 3} to remove uranium deposits from this equipment. A mobile gas phase system is being designed to demonstrate the decontamination process on a full scale. If used to decontaminate the GDPs, the LTLT process would use large amounts of ClF{sub 3} and exhaust large volumes of by-product gases (ClF, C1O{sub 2}F, etc.). Initially, the excess ClF{sub 3} and reaction byproducts will be destroyed in a KOH scrubber. This paper describes a proposed system that could recover the excess ClF{sub 3}and regenerate the reaction by-products into ClF{sub 3} for use in decontamination of additional equipment. Use of this regeneration and recovery system would reduce raw material costs and also reduce the waste scrubber sludge disposal costs by reducing the amount of corrosive gases fed to the scrubber.

  4. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect (OSTI)

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR5257 CEA-CNRS-UM2-ENSCM, BP17171, 30207 Bagnols sur Ceze (France); Prevost, T.; Valery, J.F. [AREVA NC, Paris La Defense (France); Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette (France)

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in standard effluents resulting from nuclear activities; - To develop reversible solid adsorbents for cartridge-type applications in order to minimize wastes. (authors)

  5. Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts: Reinvestigation for Time-Dependent Effects

    E-Print Network [OSTI]

    Kim, Ji Man

    compounds with aqueous solutions of hydrogen peroxide.5 However, the structure of the TiMCM-41 is reported and Center for Molecular Science, Korea AdVanced Institute of Science and Technology, Taejon 305-701, Korea of hydrothermal stability of mesoporous silica using salts solutions (Ryoo, R.; Jun, S. J. Phys. Chem. B 1997, 101

  6. Numerical methods for the simulation of salt migration in regional groundwater

    E-Print Network [OSTI]

    Vuik, Kees

    Numerical methods for the simulation of salt migration in regional groundwater flow E.S. van Baaren . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Groundwater flow equation . . . . . . . . . . . . . . . . . 10 2.3 Solute transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Groundwater equation . . . . . . . . . . . . . . . . . . . . 20 3.2.3 Solute transport

  7. Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells

    E-Print Network [OSTI]

    such as drilling mud and work- over fluids. These are all shallow wells using injected fresh water to dissolve salt Disposal Wells in the Nine Township Area ­ 2009 September 2009 Prepared by Delaware Basin Drilling into a brine solution. In order to develop a solution mine, either a new well is drilled for brine extraction

  8. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect (OSTI)

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  9. Salt Dynamics in Non-Riparian Freshwater Wetlands

    E-Print Network [OSTI]

    Stacey, Mark T

    2007-01-01

    Resources Center Project “Salt Dynamics in Non-RiparianTechnical Completion Report “Salt Dynamics in Non-Riparianindicate that the flux of salt between the soil and water

  10. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integrated genomics approach

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2010-01-01

    machinery against salt-induced damage in Synechococcus.Lactobacillus plantarum to salt and nonelectrolyte stress. Jregulation of acid, heat, and salt tolerance in Escherichia

  11. Chemical decontamination of the residual heat removal system (RHRS) of Flamanville 1

    SciTech Connect (OSTI)

    Steinkuhler, Claude; Coomans, Reginald; Koen, Lenie

    2007-07-01

    The purpose of the decontamination of the RHRS at Flamanville 1 was the reduction of the general dosimetry and the elimination of hot spots. This was done to allow the maintenance on the RHRS equipment. The main challenge of this project was the execution of a complicated operation on the critical path of a shutdown. The redox attack of the oxides at the surface of the circuit in Flamanville, was performed by an EDF qualified process of the EMMAC family. The functions required by the decontamination system were very diverse and therefore an existing decontamination loop, which was previously developed for the decontamination of small system volumes, was re-developed and adapted for bigger circuits. Due to different reasons, an important delay on the planning happened. Therefore, only one cycle EMMAg was performed, totalling 2 hours of decontamination. Despite this, a DRRF (dose rate reduction factor) of 3,7 average was reached. The re-designed equipment and a shortened process were validated during this project. An acceptable DRRF was reached with no delay on the critical path. The capability of maintenance on the RHRS equipment is recovered with a gain of factor 5 on dosimetry. (authors)

  12. All-Weather Hydrogen Peroxide-Based Decontamination of CBRN Contaminants

    SciTech Connect (OSTI)

    Wagner, George W.; Procell, Lawrence R.; Sorrick, David C.; Lawson, Glenn E.; Wells, Claire M.; Reynolds, Charles M.; Ringelberg, D. B.; Foley, Karen L.; Lumetta, Gregg J.; Blanchard, David L.

    2010-04-07

    A hydrogen peroxide-based decontaminant, Decon Green, is efficacious for the decontamination of chemical agents VX (S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (mustard, bis(2-chloroethyl) sulfide); the biological agent anthrax (Bacillus anthracis); and radiological isotopes Cs-137 and Co-60; thus demonstrating the ability of this decontamination approach to ameliorate the aftermath of all three types of weapons of mass destruction (WMD). Reaction mechanisms afforded for the chemical agents are discussed as are rationales for the enhanced removal efficacy of recalcitrant 60Co on certain surfaces. Decontaminants of this nature can be deployed, and are effective, at very low temperatures (-32 ?C), as shown for studies done with VX and HD simulants, without the need for external heat sources. Finally, the efficacy of a lower-logistics, dry decontaminant powder concentrate (utilizing the solid active-oxygen compounds peracetyl borate and Peroxydone) which can be reconstituted with water in the field prior to use, is presented.

  13. Reuse of Concrete within DOE from Decontamination and Decommissioning Projects

    SciTech Connect (OSTI)

    Tripp, Julia Lynn; Meservey, Richard Harlan; Smith, Anthony Mactier; Chen, S. Y.; Kamboj, S.

    2000-09-01

    A protocol has been developed for use in the disposition of concrete from Decontamination and Decommissioning (D&D) projects. The purpose of this protocol is to assist U.S. Department of Energy (DOE) sites in releasing concrete for re-use within the DOE complex. Current regulations allow sites to release surface-contaminated materials if they contain very low amounts of radioactivity and to possibly release materials with volumetric contamination, or higher levels of surface contamination on a case-bycase basis. In all cases, an ALARA (as low as reasonably achievable) analysis that evaluates the risks of releasing volumetrically contaminated concrete or concrete with higher levels of surface contamination, is required. To evaluate the dose impacts of re-using radioactively contaminated material, the measured radiation levels (pCi/g or disintegrations per minute (dpm)/100 cm2) must be converted to the estimated dose (mrem/yr) that would be received by affected individuals. The dose depends on the amounts and types of isotopes present and the time, distance, and method of exposure (e.g., inhalation or external exposure). For each disposition alternative, the protocol provides a systematic method to evaluate the impact of the dose on affected individuals. The cost impacts of re-using concrete also need to be evaluated. They too depend on the disposition alternative and the extent and type of contamination. The protocol provides a method to perform a detailed analysis of these factors and evaluate the dose and cost impacts for various disposition alternatives. Once the dose and cost impacts of the various alternatives have been estimated, the protocol outlines the steps required to release and re-use the concrete material.

  14. Mobile worksystems for decontamination and decommissioning operations. Final report

    SciTech Connect (OSTI)

    1997-02-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

  15. Measurements of Evaporation Kinetics of Pure Water and Salt Solutions

    E-Print Network [OSTI]

    Drisdell, Walter

    2010-01-01

    sat is the equilibrium vapor pressure, and the accommodationB (1969) Algorithms For Vapor Pressure Of Water Over Aqueous= p 2 ? mkT , where p is the vapor pressure above the liquid

  16. Solution Package Scope Definition, Report 72, Salt Waste (SP #72)

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  17. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    SciTech Connect (OSTI)

    1997-05-06

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D&D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D&D activities beginning in 1997.

  18. Effect of decontamination on aging processes and considerations for life extension

    SciTech Connect (OSTI)

    Diercks, D.R.

    1987-10-01

    The basis for a recently initiated program on the chemical decontamination of nuclear reactor components and the possible impact of decontamination on extended-life service is described. The incentives for extending plant life beyond the present 40-year limit are discussed, and the possible aging degradation processes that may be accentuated in extended-life service are described. Chemical decontamination processes for nuclear plant primary systems are summarized with respect to their corrosive effects on structural alloys, particularly those in the aged condition. Available experience with chemical cleaning processes for the secondary side of PWR steam generators is also briefly considered. Overall, no severe materials corrosion problems have been found that would preclude the use of these chemical processes, but concerns have been raised in several areas, particularly with respect to corrosion-related problems that may develop during extended service.

  19. Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Editorial Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference Evidence that the three-dimensional structure of salt marsh, and the ratio of marsh edge:marsh interior have all been shown to affect the distribution and density of salt

  20. First Robert Stobie SALT Workshop Science with SALT Workshop Proceedings, Vol. 2, 2004

    E-Print Network [OSTI]

    Bershady, Matthew A.

    First Robert Stobie SALT Workshop Science with SALT Workshop Proceedings, Vol. 2, 2004 D.A.H. Buckley Galaxy Kinematics with SALT M. A. Bershady1, M. A. W. Verheijen2, D. R. Andersen3, R. A. Swaters4-gathering power of SALT coupled with the high-throughput performance of the Prime Focus Imaging Spec- trograph

  1. Prevention of Salt Damage inPrevention of Salt Damage in LimestoneLimestone

    E-Print Network [OSTI]

    Petta, Jason

    Prevention of Salt Damage inPrevention of Salt Damage in LimestoneLimestone Kathy Whitaker.jpg #12;Introduction: Sodium Sulfate Thenardite: Na2SO4 Mirabilite: Na2SO4·10H2O Salt exposure for 5 weeks the stone by capillary uptake of water containing the dissolved salt. Degradation of mortar. #12

  2. Great Salt Lake Basin Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    Great Salt Lake Basin Hydrologic Observatory Contact Information David Tarboton Utah State University of Utah 135 South 1460 East Rm 719 Salt Lake City, Utah (801) 581-5033 wjohnson. The Great Salt Lake Basin Hydrologic Observatory development team is highly committed to this concept

  3. 2013 -2014 SALT Center SCHOLARSHIP AWARD APPLICATION

    E-Print Network [OSTI]

    Watkins, Joseph C.

    2013 - 2014 SALT Center SCHOLARSHIP AWARD APPLICATION Deadline: March 1, 2013 Scholarship Awards of the candidate. (Factors considered: FAFSA, GPA, SALT Center usage) Scholarship Awards are based upon available funds. Scholarship Awards apply to SALT Center program fees only. Scholarship Application materials

  4. Salt in Dutchess Co. Waters Stuart Findlay

    E-Print Network [OSTI]

    Berkowitz, Alan R.

    Salt in Dutchess Co. Waters Stuart Findlay Vicky Kelly Where are we now? Compared to what? Where or Groundwater? STREAM · Road salt biggest source ­ others? #12;SOIL CORES HOLD Cl LONGER THAN WATER Kincaid be increasing · What else is coming along? #12;Scope for Action · Reduced Salt is in Everyone's Interest

  5. Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

    SciTech Connect (OSTI)

    Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

    2005-09-29

    This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

  6. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    E-Print Network [OSTI]

    Lumia, M E

    2002-01-01

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  7. Decontamination and decommissioning of building 889 at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Dorr, K.A.; Hickman, M.E.; Henderson, B.J.; Sexton, R.J.

    1997-09-01

    At the Rocky Flats site, the building 889 decommissioning project was the first large-scale decommissioning project of a radiologically contaminated facility at Rocky Flats. The scope consisted of removal of all equipment and utility systems from the interior of the building, decontamination of interior building surfaces, and the demolition of the facility to ground level. Details of the project management plan, including schedule, engineering, cost, characterization methodologies, decontamination techniques, radiological control requirements, and demolition methods, are provided in this article. 1 fig., 3 tabs.

  8. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  9. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J. [and others

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  10. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  11. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  12. Reduced weight decontamination formulation for neutralization of chemical and biological warfare agents

    SciTech Connect (OSTI)

    Tucker, Mark D.

    2014-06-03

    A reduced weight DF-200 decontamination formulation that is stable under high temperature storage conditions. The formulation can be pre-packed as an all-dry (i.e., no water) or nearly-dry (i.e., minimal water) three-part kit, with make-up water (the fourth part) being added later in the field at the point of use.

  13. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  14. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    SciTech Connect (OSTI)

    Ebadian, M.A. Ross, T.L.

    1998-01-01

    Concrete surfaces contaminated with radionuclides present a significant challenge during the decontamination and decommissioning (D and D) process. As structures undergo D and D, coating layers and/or surface layers of the concrete containing the contaminants must be removed for disposal in such a way as to present little to no risk to human health or the environment. The selection of a concrete decontamination technology that is safe, efficient, and cost-effective is critical to the successful D and D of contaminated sites. To support U.S. Department of Energy (DOE) Environmental Management objectives and to assist DOE site managers in the selection of the best-suited concrete floor decontamination technology(s) for a given site, two innovative and three baseline technologies have been assessed under standard, non-nuclear conditions at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The innovative technologies assessed include the Pegasus Coating Removal System and Textron's Electro-Hydraulic Scabbling System. The three baseline technologies assessed include: the Wheelabrator Blastrac model 1-15D, the NELCO Porta Shot Blast{trademark} model GPx-1O-18 HO Rider, and the NELCO Porta Shot Blast{trademark} model EC-7-2. These decontamination technology assessments provide directly comparable performance data that have previously been available for only a limited number of technologies under restrictive site-specific constraints. Some of the performance data collected during these technology assessments include: removal capability, production rate, removal gap, primary and secondary waste volumes, and operation and maintenance requirements. The performance data generated by this project is intended to assist DOE site managers in the selection of the safest, most efficient, and cost-effective decontamination technologies to accomplish their remediation objectives.

  15. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  16. Interior cavern conditions and salt fall potential

    SciTech Connect (OSTI)

    Munson, D.E.; Molecke, M.A. [Sandia National Labs., Albuquerque, NM (United States); Myers, R.E. [Strategic Petroleum Reserve, New Orleans, LA (United States)

    1998-03-01

    A relatively large number of salt caverns are used for fluid hydrocarbon storage, including an extensive set of facilities in the Gulf Coast salt domes for the Strategic Petroleum Reserve (SPR) Program. Attention is focused on the SPR caverns because of available histories that detail events involving loss and damage of the hanging string casing. The total number of events is limited, making the database statistically sparse. The occurrence of the events is not evenly distributed, with some facilities, and some caverns, more susceptible than others. While not all of these events could be attributed to impacts from salt falls, many did show the evidence of such impacts. As a result, a study has been completed to analyze the potential for salt falls in the SPR storage caverns. In this process, it was also possible to deduce some of the cavern interior conditions. Storage caverns are very large systems in which many factors could possibly play a part in casing damage. In this study, all of the potentially important factors such as salt dome geology, operational details, and material characteristics were considered, with all being logically evaluated and most being determined as secondary in nature. As a result of the study, it appears that a principal factor in determining a propensity for casing damage from salt falls is the creep and fracture characteristics of salt in individual caverns. In addition the fracture depends strongly upon the concentration of impurity particles in the salt. Although direct observation of cavern conditions is not possible, the average impurity concentration and the accumulation of salt fall material can be determined. When this is done, there is a reasonable correlation between the propensity for a cavern to show casing damage events and accumulation of salt fall material. The accumulation volumes of salt fall material can be extremely large, indicating that only a few of the salt falls are large enough to cause impact damage.

  17. Orientationally ordered aggregates of stiff polyelectrolytes in the presence of multivalent salt

    E-Print Network [OSTI]

    Sarah Mohammadinejad; Hossein Fazli; Ramin Golestanian

    2009-03-25

    Aggregation of stiff polyelectrolytes in solution and angle- and distance-dependent potential of mean force between two like-charged rods are studied in the presence of 3-valent salt using molecular dynamics simulations. In the bulk solution, formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration. The system finally goes to a state with lower free energy in which finite-sized bundles of parallel polyelectrolytes form. Preferred angle and interaction type between two like-charged rods at different separations and salt concentrations are also studied, which shed some light on the formation of orientationally ordered structures.

  18. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  19. Independent Oversight Assessment, Salt Waste Processing Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight),...

  20. STANDARD OPERATING PROCEDURE HEAVY METAL SALTS (selected)

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    (s): ___________________________________________________ Chemical(s): heavy metal salts: acetates, chlorides, sulfates, nitrates, anhydrides, oxides, hydroxides, etc., of arsenic, cadmium, chromium, cobalt, lead, mercury, osmium, silver, and uranium. Specific

  1. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect (OSTI)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stührenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  2. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  3. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  4. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect (OSTI)

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  5. Supplementary Figure S1 Additional characterization of salt responses of [Low] and [High] responsive salt cells.

    E-Print Network [OSTI]

    Faraon, Andrei

    Supplementary Figure S1 Additional characterization of salt responses of [Low] and [High] responsive salt cells. (a) Diagram illustrating the imaging preparation (see Methods for details). Taste buds.e.m. dF/F responses for the [Low] and [High] salt-responding cells (n3). (c) TRCs activated by low

  6. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  7. Concentration of perrhenate and pertechnetate solutions

    DOE Patents [OSTI]

    Knapp, Furn F. (Oak Ridge, TN); Beets, Arnold L. (Clinton, TN); Mirzadeh, Saed (Knoxville, TN); Guhlke, Stefan (Bonn, DE)

    1998-01-01

    A method of preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: a. providing a generator column loaded with a composition containing a parent radioisotope; b. eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate. c. eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; d. eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and e. eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution.

  8. Concentration of perrhenate and pertechnetate solutions

    DOE Patents [OSTI]

    Knapp, F.F.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-03-17

    A method is described for preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: (a) providing a generator column loaded with a composition containing a parent radioisotope; (b) eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate; (c) eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; (d) eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and (e) eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution. 1 fig.

  9. Metal salt catalysts for enhancing hydrogen spillover

    SciTech Connect (OSTI)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  10. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  11. Decontamination and decommissioning of the Westinghouse nuclear fuel facility at Cheswick, PA. Volume 1 of 2

    SciTech Connect (OSTI)

    Denero, J.V.; Lange, R.A.; Ray, M.L.; Shoulders, J.L.; Woodsum, H.C.

    1984-06-01

    This report documents the efforts associated with the decontamination and decommissioning of the Westinghouse Nuclear Fuel Facility at Cheswick, Pennsylvania. The facility and its operations, along with non-destructive assay techniques, the management of transuranic waste, and the equipment required for dismantling and packaging these waste, are described. The report also presents detailed plans and procedures that were developed and implemented for this effort. The construction and use of a sectioning facility for large contaminated items is also discussed, and the results of the radiological survey are summarized. Finally, recommendations are given for the decontamination and decommissioning of existing facilities and for the design and construction of new facilities. Volume I contains: site/facility description; project summary; project scheduling and organization; final site condition; conclusions and recommendations; references; Appendix A - contaminated equipment contained in PFDL facility; and Appendix B - PFDL operating procedures, PFDL administrative procedures, PFDL analytical laboratory procedures, and Cheswick site industrial hygiene procedures. 7 references, 101 figures, 25 tables.

  12. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  13. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D D. Additional details on specific technologies and applications to D D will be made available on request.

  14. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D&D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D&D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D&D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D&D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D&D. Additional details on specific technologies and applications to D&D will be made available on request.

  15. Neutrinoless Double Beta Decay in Light of SNO Salt Data

    E-Print Network [OSTI]

    Murayama, Hitoshi

    2009-01-01

    Beta Decay in Light of SNO Salt Data Hitoshi Murayama andBeta Decay in Light of SNO Salt Data Hitoshi Murayama ? andIn the SNO data from its salt run, probably the most signi?

  16. THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Yagnik, S.K.

    2010-01-01

    OF BRINE INCLUSIONS IN SALT Suresh K. Yagnik February 1982 TOF BRINE INCLUSIONS IN SALT by Suresh K. Yagnik Materialsb u i l t in future. The salt deposits, however, are known

  17. THE MECHANISM OF INTRAGRANULAR MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Machiels, A.J.

    2010-01-01

    of Brine Inclusions in a Salt Repository", ORM. -5526 (JulyOF BRINE INCLUSIONS IN SALT A.J. Machiels, S. Yagnik, D.R.OF BRINE INCLUSIONS IN SALT by A.J. Machiels S. Yagnik D.R.

  18. Advances in alleviating growth limitations of maize under salt stress

    E-Print Network [OSTI]

    Schubert, Sven

    2009-01-01

    during the first phase of salt stress. J. Appl. Bot. 2004;during the first phase of salt stress. J. Plant Nutr. SoilC, Hartung W, Schubert S. Salt resistance is determined by

  19. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    SciTech Connect (OSTI)

    Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States)] [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)] [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States)] [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)] [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

    2013-07-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  20. Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis

    SciTech Connect (OSTI)

    Chesley, G.D.

    1993-01-01

    Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

  1. Solar Policy Environment: Salt Lake

    Broader source: Energy.gov [DOE]

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  2. Decontamination and decommissioning of the Westinghouse nuclear fuel facility at Cheswick, PA. Volume 2 of 2

    SciTech Connect (OSTI)

    Denero, J.V.; Lange, R.A.; Ray, M.L.; Shoulders, J.L.; Woodsum, H.C.

    1984-06-01

    This report documents the efforts associated with the decontamination and decommissioning of the Westinghouse Nuclear Fuel Facility at Cheswick, Pennsylvania. The facility and its operations, along with non-destructive assay techniques, the management of transuranic waste, and the equipment required for dismantling and packaging these waste, are described. The report also presents detailed plans and procedures that were developed and implemented for this effort. The construction and use of a sectioning facility for large contaminated items is also discussed, and the results of the radiological survey are summarized. Finally, recommendations are given for the decontamination and decommissioning of existing facilities and for the design and construction of new facilities. Volume II contains the following Appendices: Appendix C - requests for approval and drawings for galvanized drums, epoxy coated corrugated steel boxes, fiberglass-reinforced polyester-coated plywood boxes, non-TRU waste containers; Appendix D - certificates of compliance for overpacks; Appendix E - training program on use of full-face respirators; Appendix F - radiological survey measurement equipment; Appendix G - health physics checks on decontaminated areas identified in ORAU/NRC survey; and Appendix H - tooling, equipment, and supplies.

  3. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect (OSTI)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E. [SUE MosSIA 'Radon', 7th Rostovsky lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  4. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    SciTech Connect (OSTI)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussions with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.

  5. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  6. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Energy Savers [EERE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  7. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern...

  8. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Broader source: Energy.gov (indexed) [DOE]

    LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container Isolation Plan for identified nitrate salt bearing waste...

  9. Hybrid Polymer/Lipid Vesicles via Salt and Agitation Induced...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Hybrid PolymerLipid Vesicles via Salt and Agitation Induced Fusion. Citation Details In-Document Search Title: Hybrid PolymerLipid Vesicles via Salt and...

  10. Project Profile: Modular and Scalable Baseload Molten Salt Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility...

  11. Energy Department Completes Salt Coolant Material Transfer to...

    Office of Environmental Management (EM)

    Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research Energy Department Completes Salt Coolant Material Transfer to Czech Republic for Advanced...

  12. Microsoft Word - UFD-salt-testing-technical-baseline-FCRD-UFD...

    Energy Savers [EERE]

    pressure, room closure, salt permeability, salt resistivity, active and passive seismic, self-potential, and gas-generation were all being observed during the...

  13. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

  14. Correlation of Creep Behavior of Domal Salts

    SciTech Connect (OSTI)

    Munson, D.E.

    1999-02-16

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

  15. The Method of Generated Solutions for Numerical Verification of ICE

    E-Print Network [OSTI]

    for verifying numerical code. The exact solution to the set of equations is derived using mathematical methodsThe Method of Generated Solutions for Numerical Verification of ICE Code Amjidanutpan Ramanujam, Christopher Sikorski, Todd Harman* UUCS­07­006 School of Computing University of Utah Salt Lake City, UT 84112

  16. The Method of Generated Solutions for Numerical Verification of ICE

    E-Print Network [OSTI]

    for verifying numerical code. The exact solution to the set of equations is derived using mathematical methodsThe Method of Generated Solutions for Numerical Verification of ICE Code Amjidanutpan Ramanujam, Christopher Sikorski, Todd Harman* UUCS-07-006 School of Computing University of Utah Salt Lake City, UT 84112

  17. The Decontamination and Characterization Challenges of Legacy Material

    SciTech Connect (OSTI)

    Baker, D. IV, Rohrer, S.; Brown, J.

    2003-02-26

    The legacy project at Lovelace Respiratory Research Institute (LRRI) was an opportunity to work with decades worth of research. LRRI was founded in 1963 to provide inhalation research using radioactive nuclides. Over the next 35 years, scientists at the institute researched the effects of radioactivity on the lungs and the effects of inhaled radiation on the body. There were two outcomes of the research. First, the studies provided valuable information regarding radiation safety and the prevention of the inhalation of radioactive material. Second, the studies created a large amount of legacy waste that is now being cleaned up. Overall, the legacy materials project at LRRI was an interesting challenge. It provided opportunities to the team of LRRI and SEC to engineer solutions to remove and release material. It involved unique ALARA engineering to minimize dose exposure to the project team. And finally, it provided an opportunity to minimize low-level radioactive waste. This paper will expand on the waste management challenges and lessons learned.

  18. The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania

    SciTech Connect (OSTI)

    Barariu, G. [National Authority for Nuclear Activity-Subsidiary of Technology and Engineering for Nuclear Projects (Romania)

    2008-07-01

    The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)

  19. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  20. Continuity of states between the cholesteric ? line hexatic transition and the condensation transition in DNA solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; Johnson, Mark R.; Parsegian, V. Adrian

    2014-11-05

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric ? line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded ? condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds somemore »light on the complicated interactions between DNA molecules at high densities.« less

  1. Continuity of states between the cholesteric ? line hexatic transition and the condensation transition in DNA solutions

    SciTech Connect (OSTI)

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; Johnson, Mark R.; Parsegian, V. Adrian

    2014-11-05

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric ? line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded ? condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds some light on the complicated interactions between DNA molecules at high densities.

  2. Manning free counterions fraction for a rod-like polyion - short DNA fragments in very low salt

    E-Print Network [OSTI]

    Tomislav Vuletic; Sanja Dolanski Babic; Danijel Grgicin; Damir Aumiler; Joachim Raedler; Francoise Livolant; Silvia Tomic

    2011-01-05

    We quantified the Manning free (uncondensed) counterions fraction $\\theta$ for dilute solutions of rod-like polyions - 150bp DNA fragments, in very low salt $salt environment, with the decrease in DNA concentration itself. The extremes of the experimental $\\theta(c)$ range occur towards the highest, above 1 mM and the lowest, below 0.05 mM, DNA concentrations, and correspond to the theoretical $\\theta$ values for dsDNA and ssDNA, respectively. Therefore, we confirmed Manning condensation and conductivity models to be valuable in description of dilute solutions of rod-like polyions.

  3. Director, Salt Waste Processing Facility Project Office

    Broader source: Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  4. Determining Salt Tolerance Among Sunflower Genotypes 

    E-Print Network [OSTI]

    Masor, Laura Lee

    2012-02-14

    Crop lands around the world are becoming more salt-affected due to natural processes and agricultural practices. Due to this increase of salinization, acquisition of saline tolerant germplasm for breeding purposes is becoming a priority. Although...

  5. Advanced heat exchanger development for molten salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore »in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically « less

  6. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  7. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect (OSTI)

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  8. The Effect of Salt Water on Rice. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1909-01-01

    NO. izz. June, 1909. THE EFFECT OF SALT WATE ON RICE, LAPS, Che Postoffice College Station, 1 --- Texas. TEXAS AGRICULTURAL EXPERIMENT S I'ATIONS. OFFICERS. GOVERNING BOARD. (Board of Directors A. and M. College..., Texas. Reports and bulletins are sent upon application to the Director. The Effect of Salt Water on Rice. . ...... By G. S. FRAPS. At some of the rice farms located near the coast, the amount of water lxml~etl is sometimes greater than...

  9. Decontamination and decommissioning of the Chemical Process Cell (CPC): Topical report for the period January 1985-March 1987

    SciTech Connect (OSTI)

    Meigs, R. A.

    1987-07-01

    To support interim storage of vitrified High-Level Waste (HLW) at the West Valley Demonstration Project, the shielded, remotely operated Chemical Process Cell (CPC) was decommissioned and decontaminated. All equipment was removed, packaged and stored for future size reduction and decontamination. Floor debris was sampled, characterized, and vacuumed into remotely handled containers. The cell walls, ceiling, and floor were decontaminated. Three 20 Mg (22.5 ton) concrete neutron absorber cores were cut with a high-pressure water/abrasive jet cutting system and packaged for disposal. All operations were performed remotely using two overhead bridge cranes which included two 1.8 Mg (2 ton) hoists, one 14.5 Mg (16 ton) hoist, and an electromechanical manipulator or an industrial robot mounted on a mobile platform. Initial general area dose rates in the cell ranged from 1 to 50 R/h. Target levels of less than 10 mR/h general area readings were established before decontamination and decommissioning was initiated; general area dose rates between 200 mR/h and 1200 mR/h were obtained at the completion of the decontamination work. 4 refs., 11 figs., 8 tabs.

  10. SchoolFEFLOW Exercise Salt Intrusion From Top

    E-Print Network [OSTI]

    Kornhuber, Ralf

    Summer SchoolFEFLOW® Exercise Salt Intrusion From Top Vertical cross section #12;Summer SchoolSalt refinement (via Rubberbox and Border Options) FEFLOW Mesh Generation Height approx. 100 m #12;Summer SchoolSalt time stepping, FE/BE time integration Final time: 36500 days (100 years) #12;Summer SchoolSalt

  11. SALT--Structured Assertion Language for Temporal Logic

    E-Print Network [OSTI]

    Cengarle, María Victoria

    SALT--Structured Assertion Language for Temporal Logic Andreas Bauer, Martin Leucker , and Jonathan,leucker,streit}@informatik.tu-muenchen.de Abstract. This paper presents Salt. Salt is a general purpose speci- fication and assertion language other formalisms used for temporal specification of properties, Salt does not target a specific domain

  12. SALT---Structured Assertion Language for Temporal Logic

    E-Print Network [OSTI]

    Leucker, Martin

    SALT---Structured Assertion Language for Temporal Logic Andreas Bauer, Martin Leucker,leucker,streit}@informatik.tu­muenchen.de Abstract. This paper presents Salt. Salt is a general purpose speci­ fication and assertion language other formalisms used for temporal specification of properties, Salt does not target a specific domain

  13. Non-Normal Effects on Salt Finger Growth IAN EISENMAN

    E-Print Network [OSTI]

    Eisenman, Ian

    , but the more rapid diffusion of heat than salt in water allows the potential energy stored in the salinity pockets of salty or sugary water called salt fingers. Since solar heating of the up- per ocean leads 2004) ABSTRACT Salt fingers, which occur because of the difference in diffusivities of salt and heat

  14. Agricultural pathogen decontamination technology-reducing the threat of infectious agent spread.

    SciTech Connect (OSTI)

    Betty, Rita G.; Bieker, Jill Marie; Tucker, Mark David

    2005-10-01

    Outbreaks of infectious agricultural diseases, whether natural occurring or introduced intentionally, could have catastrophic impacts on the U.S. economy. Examples of such agricultural pathogens include foot and mouth disease (FMD), avian influenza (AI), citrus canker, wheat and soy rust, etc. Current approaches to mitigate the spread of agricultural pathogens include quarantine, development of vaccines for animal diseases, and development of pathogen resistant crop strains in the case of plant diseases. None of these approaches is rapid, and none address the potential persistence of the pathogen in the environment, which could lead to further spread of the agent and damage after quarantine is lifted. Pathogen spread in agricultural environments commonly occurs via transfer on agricultural equipment (transportation trailers, tractors, trucks, combines, etc.), having components made from a broad range of materials (galvanized and painted steel, rubber tires, glass and Plexiglas shields, etc), and under conditions of heavy organic load (mud, soil, feces, litter, etc). A key element of stemming the spread of an outbreak is to ensure complete inactivation of the pathogens in the agricultural environment and on the equipment used in those environments. Through the combination of enhanced agricultural pathogen decontamination chemistry and a validated inactivation verification methodology, important technologies for incorporation as components of a robust response capability will be enabled. Because of the potentially devastating economic impact that could result from the spread of infectious agricultural diseases, the proposed capability components will promote critical infrastructure protection and greater border and food supply security. We investigated and developed agricultural pathogen decontamination technologies to reduce the threat of infectious-agent spread, and thus enhance agricultural biosecurity. Specifically, enhanced detergency versions of the patented Sandia decontamination chemistry were developed and tested against a few surrogate pathogens under conditions of relatively heavy organic load. Tests were conducted on surfaces commonly found in agricultural environments. Wide spectrum decontamination efficacy, low corrosivity, and biodegradability issues were addressed in developing an enhanced detergency formulation. A method for rapid assessment of loss of pathogenic activity (inactivation) was also assessed. This enhanced technology will enable rapid assessment of contamination following an intentional event, and will also be extremely useful in routine assessment of agricultural environments. The primary effort during the second year was progress towards a demonstration of both decontamination and viral inactivation technologies of Foot and Mouth virus (FMDv) using the modified SNL chemistry developed through this project. Lab studies using a surrogate virus (bovine enterovirus) were conducted using DF200, modified DF200 chemistry, and decontaminants currently recommended for use in heavily loaded organic, agricultural environments (VirkonS, 10% bleach, sodium hydroxide and citric acid). Tests using actual FMD virus will be performed at the Department of Homeland Security's Plum Island facilities in the fall of 2005. Success and the insight gained from this project will lead to enhanced response capability, which will benefit agencies such as USDA, DHS, DOD, and the agricultural industry.

  15. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

  16. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    SciTech Connect (OSTI)

    D. W. Simmons

    1994-09-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF{sub 3}) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF{sub 6}) gas. The potential existence of chlorine dioxide (ClO{sub 2}) during gas phase decontamination with ClF{sub 3} has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO{sub 2} in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO{sub 2} was not detected in the flow loop in the absence of ClF{sub 3}; (2) ClO{sub 2} was not detected in the static reactors in the absence of both ClF{sub 3} and ClF; and (3) ClO{sub 2} was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO{sub 2} will not exist in the presence of ClF{sub 3}, ClF, or UF{sub 6}. The data analyzed to date is insufficient to determine the stability of ClO{sub 2} in the presence of ClO{sub 2}F. Thermodynamic calculations of the ClF{sub 3} + H{sub 2}O system support the experimental evidence, and suggest that ClO{sub 2} will not exist in the presence of ClO{sub 2}F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF{sub 3} treatments and the product gases. However, preliminary evidence to date suggests that ClO{sub 2} should not be present as a product during the normal operations of the gas phase decontamination project.

  17. Lessons learned at West Valley during facility decontamination for re-use (1982--1988)

    SciTech Connect (OSTI)

    Tundo, D.; Gessner, R.F.; Lawrence, R.E.

    1988-11-01

    The primary mission of the West Valley Demonstration Project (WVDP) is to solidify a large volume of high-level liquid waste (2.3 million liters -- 600,000 gallons) produced during reprocessing plant operations and stored in underground tanks. This is to be accomplished through the maximum use of existing facilities. This required a significant effort to remove existing equipment and to decontaminate areas for installation of liquid and cement processing systems in a safe environment while maintaining exposure to workers as low as reasonably achievable. The reprocessing plant occupied a building of about 33,000 m/sup 2/ (350,000 ft/sup 2/). When the WVDP was initiated, approximately 6 percent of the plant area was in a non-contaminated condition where personnel could function without protective clothing or radiological controls. From 1982 to 1988, an additional 64 percent of the plant was cleaned up and much of this converted to low- and high-level waste processing areas. The high-level liquid and resulting low-level liquids are now being treated in these areas using an Integrated Radwaste Treatment System (IRTS). The Project has now focused attention on installation, qualification and operation of a vitrification system which will convert the remaining high-level waste into borosilicate glass logs. The stabilized waste will be sent to a Federal Repository for long-term storage. From 1982 to 1988, about 70 technical reports were dealing with specific tasks and cleanup efforts. This report provides an overview of the decontamination and decommissioning work done in that period. The report emphasizes lessons learned during that effort. Significant advances were made in: remote and contact decontamination technology; personnel protection and training; planning and procedures; and radiological controls. 62 refs., 35 figs., 5 tabs.

  18. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    SciTech Connect (OSTI)

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W.

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it`s toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL`s Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal.

  19. Study of Cd-chalcogenide/ferri-ferrocyanide photoelectrochemical cells: effect of surface morphology and added salt

    SciTech Connect (OSTI)

    Tenne, R.

    1983-11-01

    The authors carried out an investigation of the Cd-chalcogenide/ferri-ferrocyanide photoelectrochemical cells. In particular, the effect of surface morphology and the effect of added salts upon the characteristics of these cells were investigated. Successive etching with Br/sub 2/ (3%)/methanol, aqua regia, and finally photoetching increases the surface roughness of CdSe (CdS, CdTe) which has a marked effect on the cell characteristics in the ferri-ferrocyanide electrolyte (and polysulfide electrolyte as well). In contrast with polysulfide electrolyte, added salts decrease the output stability of the cell and the onset potential for the photocurrent, which can be explained by the removal of the physiosorbed ferrocyanide ions from the electrode surface by the ions of the salt. On increasing the surface roughness of the electrode, while keeping the salt concentration unchanged, the output stability and the onset potential were increased. A kinetic model is used to explain these phenomena. Thus, added salts can be used to probe the strength of the adsorption of the active electrolyte on the surface of the photoelectrode. Finally, we report on the surface morphology of CdSe and CdTe after irradiation in ferri-ferrocyanide solution and compare our findings to surface morphologies which were observed previously with the help of photoelectrochemical etching (photoetching). It is found that small rectangular crystallites, probably of cadmium ferrocyanide, deposit on the crystal surface during the photocorrosion process in addition to elemental Se(Te).

  20. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  1. Method for cleaning solution used in nuclear fuel reprocessing

    DOE Patents [OSTI]

    Tallent, Othar K. (Oak Ridge, TN); Crouse, David J. (Oak Ridge, TN); Mailen, James C. (Oak Ridge, TN)

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  2. Method for cleaning solution used in nuclear fuel reprocessing

    DOE Patents [OSTI]

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  3. Decontamination systems information and research program. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  4. Mechanisms of Radionuclide-Hyroxycarboxylic Acid Interactions for Decontamination of Metallic Surfaces

    SciTech Connect (OSTI)

    A.J. Francis; C.J. Dodge; J.B. Gillow; G.P. Halada; C.R. Clayton

    2002-04-24

    Is this EMSP program we investigated the key fundamental issues involved in the use of simple and safe methods for the removal of radioactive contamination from equipment and facilities using hydroxycarboxylic acids. Specifically, we investigate (i) the association of uranium with various iron oxides commonly formed on corroding plain carbon steel surfaces, (ii) the association of uranium with corroding metal coupons under a variety of conditions, and (iii) the decontamination of the uranium contaminated metal coupons by citric acid or citric acid formulations containing oxalic acid and hydrogen peroxide.

  5. Exploratory Use of Microaerosol Decontamination Technology (PAEROSOL) in Enclosed, Unoccupied Hospital Setting

    SciTech Connect (OSTI)

    Rainina, Evguenia I.; McCune, D. E.; Luna, Maria L.; Cook, J. E.; Soltis, Michele A.; Demons, Samandra T.; Godoy-Kain, Patricia; Weston, J. H.

    2012-05-31

    The goal of this study was to validate the previously observed high biological kill performance of PAEROSOL, a semi-dry, micro-aerosol decontamination technology, against common HAI in a non-human subject trial within a hospital setting of Madigan Army Medical Center (MAMC) on Joint Base Lewis-McChord in Tacoma, Washington. In addition to validating the disinfecting efficacy of PAEROSOL, the objectives of the trial included a demonstration of PAEROSOL environmental safety, (i.e., impact to hospital interior materials and electronic equipment exposed during testing) and PAEROSOL parameters optimization for future deployment.

  6. Office of Environmental Management uranium enrichment decontamination and decommissioning fund financial statements. September 30, 1994 and 1993

    SciTech Connect (OSTI)

    Marwick, P.

    1994-12-15

    The Energy Policy Act of 1992 (Act) transferred the uranium enrichment enterprise to the United States Enrichment Corporation as of July 1, 1993. However, the Act requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio (diffusion facilities). The Act established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; Pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and Reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  7. Efficacy of a solution-based approach for making sodalite waste...

    Office of Scientific and Technical Information (OSTI)

    solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel Citation Details In-Document Search This...

  8. Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation

    E-Print Network [OSTI]

    Bathe, Mark

    The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation ...

  9. Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.; Fink, S. D.

    2013-02-25

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. {sup 237}Np and {sup 243}Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU.

  10. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

  11. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  12. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  13. Solution A

    E-Print Network [OSTI]

    2011-03-27

    MA 261 - Quiz 7 (20 minutes). Tuesday, March 8, 2011. Solution. Statistics (out of 20): Section. 23. 24. Average. 14.4 13.4. Standard Deviation 4.5. 4.6. Median.

  14. Solutions 5

    E-Print Network [OSTI]

    2001-12-07

    Solutions 5. 1. A ring A is called a Boolean ring if x2 = x for all x ? A. (a) Let E be a set and 2E its power set. Show that a Boolean ring structure is defined.

  15. Multimechanism-Deformation Parameters of Domal Salts Using Transient Creep Analysis

    SciTech Connect (OSTI)

    MUNSON, DARRELL E

    1999-09-01

    Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, among the largest developers of storage caverns along the Gulf Coast is the Strategic Petroleum Reserve (SPR) which has purchased or constructed 62 crude oil storage caverns in four storage sites (domes). Although SPR and commercial caverns have been operated economically for many years, the caverns still exhibit some relatively poorly understood behaviors, especially involving creep closure volume loss and hanging string damage from salt falls. Since it is possible to postulate that some of these behaviors stem from geomechanical or reformational aspects of the salt, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable value. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of limited non-steady state data to establish an approach or bound to steady state, as an estimate of the steady state behavior of a given salt. This permitted analysis of sparse creep databases for domal salts. It appears that a shortcoming of this steady state analysis method is that it obscures some critical differences of the salt material behavior. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on integration of the Multimechanism-Deformation (M-D) creep constitutive model to obtain fits to the transient response. This integration process permits definition of all the material sensitive parameters of the model, while those parameters that are constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Characteristics defined by the transient analysis are related quantitatively to the volume loss creep rate of the SPR caverns. This increase in understanding of the domal material creep response already has pointed to the possibility y of delineating the existence of material spines within a specific dome. Further definition of the domal geology and structure seems possible only through expansion of the creep databases for domal salts.

  16. Transient Analysis for the Multimechanism-Deformation Parameters of Several Domal Salts

    SciTech Connect (OSTI)

    Munson, Darrell E.

    1999-08-16

    Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, a nationally important Strategic Petroleum Reserve (SPR) storage occurs in large cavern arrays in some of these domes. Although caverns have been operated economically for these many years, these caverns have a range of relatively poorly understood behaviors, involving creep closure fluid loss and damage from salt falls. It is certainly possible to postulate that many of these behaviors stem from geomechanical or deformational aspects of the salt response. As a result, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable importance. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of the limited non-steady state data to give a bound, or an approach to steady state, as an estimate of the steady state behavior of a given domal salt. This permitted the analysis of sparse creep databases for domal salts. It appears that a shortcoming of the steady state analysis was in masking some of the salt material differences. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on the integration of the Multimechanism-Deformation (M-D) creep constitutive model to fit the transient response. This integration process essentially permits definition of the material sensitive parameters of the model, while those parameters that are either constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Creep characteristics, as defined by the transient analysis of the creep rate, are related quantitatively to the volume loss creep rate of the caverns. This type of understanding of the domal material creep response already has pointed to the possibility of establishing various distinct material spines within a given dome. Furthermore, if the creep databases for domal salts can be expanded, one could expect additional definition of domal geology and structure.

  17. Distribution and Invasion Potential of Limonium ramosissimum subsp. provinciale in San Francisco Estuary Salt Marshes

    E-Print Network [OSTI]

    Archbald, Gavin; Boyer, Katharyn E.

    2014-01-01

    of southern California coastal salt marshes: a communitygrowth and cation uptake of salt marsh plants. New Phytolof vegetation patterns in salt marshes of central Argentina.

  18. The Effect of Salt Water on Rice. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1927-01-01

    *. .. r * - .=.-ksl-, G v $. THE EFFECT OF SALT WATER ON RICE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President \\ STATION ,,,bfINISTRATION: *B. YOUNGBLOOD, M. S., Ph. D.,, Director A B CONNER M. S Actrng Drrector R: E: KARPER: B.... SYNOPSIS Rice farmers sometimes have trouble with salt in the water used for irrigation. Varying conditions, such as character of soil, amount of water already on the land, stage of growth of the rice, and others, render it difficult to say how much...

  19. Method and apparatus for the in situ decontamination of underground water with the aid of solar energy

    DOE Patents [OSTI]

    Bench, Thomas R. (Pittsburgh, PA); McCann, Larry D. (Elizabeth, PA)

    1989-01-01

    A method for the in situ decontamination of underground water containing -volatile contaminants comprising continuously contacting in situ underground water containing non-volatile contaminants with a liquid-absorbent material possessing high capillary activity, allowing the non-volatile contaminants to deposit in the material while the water moves upwardly through the material by capillary action, allowing substantially decontaminated water to be volatilized by impinging solar radiation, and then allowing the volatilized water to escape from the material into the atmosphere. An apparatus for the in situ decontamination of underground water containing non-volatile contaminants comprising at least one water-impermeable elongated conduit having an upper portion and first and second open ends and containing a homogeneous liquid-absorbent material possessing high capillary activity, means for supporting said conduit, and means for accelerating the escape of the volatilized decontamined water from the material, said means being detachably connected to the second end of the elongated conduit; wherein when underground water contaminated with non-volatile contaminants is continuously contacted in situ with the material contained in the first end of the conduit and the second end of the conduit is placed in contact with atmospheric air, non-volatile contaminants deposit in said material as the water moves upwardly through the material by capillary action, is then volatilized by impinging solar energy and escapes to the atmosphere.

  20. A hypothesis concerning the distribution of salt and salt structures in the Gulf of Mexico 

    E-Print Network [OSTI]

    Antoine, John Woodworth

    1970-01-01

    is that the Gu'f v;as a shallow sea during latest Triassic and Jusas ic time (the age cf the salt) and thick salt deposits accumulated across the entire sea, including the present Sigsbee Deep (Fig. 1). Later, the central part subsided and received great... is that the Gulf always has been a deep bas n, and during Triassic and Jurassic times salt v as deposited in beth the shallow marginal areas and the deep central basin. T?e diapirs su?sequently began to form. Schmalz's (1969) genetic model for the deposition...

  1. Ketone Production from the Thermal Decomposition of Carboxylate Salts 

    E-Print Network [OSTI]

    Landoll, Michael 1984-

    2012-08-15

    The MixAlco process uses an anaerobic, mixed-culture fermentation to convert lignocellulosic biomass to carboxylate salts. The fermentation broth must be clarified so that only carboxylate salts, water, and minimal impurities remain. Carboxylate...

  2. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program, benefits from the agreement by not having to dispose of the salt and put it in a landfill. Except for the excavated salt that is removed as a result of this agreement -...

  3. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  4. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells...

  5. Summary - Salt Waste Processing Facility Design at the Savannah...

    Office of Environmental Management (EM)

    Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing...

  6. Nuclear salt-in-crude monitor

    SciTech Connect (OSTI)

    Sheikh, S.; Richter, A.P.

    1983-05-01

    The Arabian American Oil Co. (ARAMCO) recently installed a nuclear salt-in-crude monitor (SICM) that continuously measures the salt content of a flowing stream of crude oil. This device was developed by Texaco Inc.'s Bellaire (TX) Research Laboratory. The monitor consists of two parts: a counting chamber and an instrument console. The counting chamber is a length of 24-in.-diameter pipe containing a long-life neutron source and a gamma ray detector, both mounted in cross pipes so that there is no direct contact with the flowing crude. Neutrons from the source are absorbed by chloride ions in the stream, which in turn emit gamma rays. The intensity of the gamma rays is proportional to the amount of chlorine in the crude. The gamma ray detector is electrically connected to the instrument console, which is located in a control room. The console contains the necessary instrumentation to process the data from the detector, to compute the salt concentration, and to provide a continuous printed record of the salt per thousand barrels (PTB).

  7. Salt repository project closeout status report

    SciTech Connect (OSTI)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  8. Polymer solutions

    SciTech Connect (OSTI)

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  9. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  10. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    SciTech Connect (OSTI)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

  11. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    SciTech Connect (OSTI)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

  12. Systems and strippable coatings for decontaminating structures that include porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID); Avci, Recep (Bozeman, MT); Groenewold, Gary S. (Idaho Falls, ID)

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  13. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOE Patents [OSTI]

    Ortiz, J.P.

    1985-07-03

    An apparatus for measuring the overall decontamination factors of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  14. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOE Patents [OSTI]

    Ortiz, John P. (Santa Fe, NM)

    1986-01-01

    An apparatus for measuring the overall decontamination factor of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  15. Method for the decontamination of soil containing solid organic explosives therein

    DOE Patents [OSTI]

    Radtke, Corey W. (Idaho Falls, ID); Roberto, Francisco F. (Idaho Falls, ID)

    2000-01-01

    An efficient method for decontaminating soil containing organic explosives ("TNT" and others) in the form of solid portions or chunks which are not ordinarily subject to effective bacterial degradation. The contaminated soil is treated by delivering an organic solvent to the soil which is capable of dissolving the explosives. This process makes the explosives more bioavailable to natural bacteria in the soil which can decompose the explosives. An organic nutrient composition is also preferably added to facilitate decomposition and yield a compost product. After dissolution, the explosives are allowed to remain in the soil until they are decomposed by the bacteria. Decomposition occurs directly in the soil which avoids the need to remove both the explosives and the solvents (which either evaporate or are decomposed by the bacteria). Decomposition is directly facilitated by the solvent pre-treatment process described above which enables rapid bacterial remediation of the soil.

  16. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    SciTech Connect (OSTI)

    Parajuli, Durga; Minami, Kimitaka; Tanaka, Hisashi; Kawamoto, Tohru [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology - AIST (Japan)] [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology - AIST (Japan)

    2013-07-01

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  17. Solution Package Scope Definition

    Office of Environmental Management (EM)

    ductwork. Homogeneous solid waste includes: hydroxide cakefilter materials, salts, and ash residues. Hydroxide cakefilter materials are composed of precipitated materials such...

  18. Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers A. Cuneyt Tas*,

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers A. Cu¨neyt Tas¸*, Department hydroxyapatite (HA) whiskers and crystals were produced by the route of molten salt synthesis. The effects. A tentative X-ray diffraction pattern was proposed for the HA whiskers. Molten salt synthesis with a K2SO4

  19. Graphic: FL Dept. of Environmental Protection Please pass the Salt!!

    E-Print Network [OSTI]

    Graphic: FL Dept. of Environmental Protection Please pass the Salt!! Mangroves are a very unique protruding from the tree trunk and branches. These prop roots are special because they exclude salt from actually absorb saltwater through their roots, but have specially designed leaves with salt glands

  20. New York State Salt Marsh Restoration and Monitoring Guidelines

    E-Print Network [OSTI]

    #12;New York State Salt Marsh Restoration and Monitoring Guidelines prepared by: Nancy L. Niedowski;The Salt Marsh Restoration and Monitoring Guidelines were prepared under the National OceanicState,Division of CoastalResources,41 State Street,Albany, New York 12231. December 2000 #12;PREFACE All salt marsh

  1. Developing salt-tolerant crop plants: challenges and opportunities

    E-Print Network [OSTI]

    Blumwald, Eduardo

    Developing salt-tolerant crop plants: challenges and opportunities Toshio Yamaguchi and Eduardo areas of the world; the need to produce salt-tolerant crops is evident. Two main approaches are being used to improve salt tolerance: (i) the exploitation of natural genetic variations, either through

  2. South Bay Salt Pond Restoration Project SYNTHESES OF SCIENTIFIC KNOWLEDGE

    E-Print Network [OSTI]

    South Bay Salt Pond Restoration Project SYNTHESES OF SCIENTIFIC KNOWLEDGE for Maintaining and Improving Functioning of the South Bay Ecosystem and Restoring Tidal Salt Marsh and Associated Habitats over) Maintaining and Improving Functioning of the South Bay Ecosystem and (2) Restoring tidal salt marsh

  3. SALT-flSH INPUSTRIES FISHERY LEAFLET 240

    E-Print Network [OSTI]

    SALT-flSH INPUSTRIES FISHERY LEAFLET 240 FISH AND WILDLIFE SERVICE UNITED STATES DEPARTMENT, Albert M. Day, Director #12;THE VENEZUKLAN SALT-FISH INDUSTRIES CONTE^fTS Part II Potential Productive and Craft 29 Development of Unused or Underutilized Species 29 Development of New Areas 35 Salt 35 Studies

  4. Production of carboxylic acid and salt co-products

    DOE Patents [OSTI]

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  5. Influence of Salt Purity on Na+ and Palmitic Acid Interactions

    E-Print Network [OSTI]

    Influence of Salt Purity on Na+ and Palmitic Acid Interactions Zishuai Huang, Wei Hua, Dominique of salt purity on the interactions between Na+ ions and the carboxylate (COO- ) head group of palmitic frequency generation (VSFG) spectroscopy. Ultrapure (UP) and ACS grade NaCl salts are used for aqueous

  6. Simulation of salt migrations in density dependent groundwater flow

    E-Print Network [OSTI]

    Vuik, Kees

    Simulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis for the salt migration in the groundwater underneath the polders near the coast. The problem description of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater

  7. Tracking the Salt Front Page 1 Name __________________________________________ Date____________________

    E-Print Network [OSTI]

    Lance, Veronica P.

    , moving the salt front inland. Scientists track the salt front using Hudson River Miles, abbreviated HRM, is HRM 0. The George Washington Bridge is at HRM 12, the city of Kingston at HRM 91. Ocean tides reach the Federal Dam in Troy at HRM 153. Using the graph "Hudson River Salt Front: Average Location by Month

  8. Capillary forces and osmotic gradients in salt water -oil systems

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Capillary forces and osmotic gradients in salt water - oil systems Georg Ellila Chemical study. This is to my knowledge the first time the transport mechanisms in capillary oil-salt water and the Vista Program. 1 #12;Abstract This project looks at the capillary systems with salt water and oil

  9. Structural restoration of Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico 

    E-Print Network [OSTI]

    Guo, Mengdong

    1997-01-01

    The continental margin of the northeastern Gulf of Mexico is suited for seismic stratigraphic analysis and salt tectonism analysis. Jurassic strata include the Louann Salt on the continental shelf and upper slope of the Destin Dome OCS area...

  10. Wettability and Swelling Behavior of a Weak Polybasic Brush: Influence of Divalent Salts in the Environment

    E-Print Network [OSTI]

    Chen Qu

    2015-11-07

    We have studied the response of surface properties and swelling behaviors of annealed poly(2-vinyl pyridine) (P2VP) brushes covalently tethered to solid planar surfaces to divalent salts in aqueous solutions at varied pH values. Results derived from the quartz crystal microbalance technique, atomic force microscope and contact angle goniometry indicate that annealed polybase brushes undergo conformational transitions upon addition of divalent salts over a wide range of pH values below pKa: at low ionic strength, polybase brushes swell upon salts addition; at high ionic strength, polybase brushes collapse with salts addition. The extent and sensitive range of brushes conformational transition induced by divalent ions are found to be grater and broader than that caused by monovalent ions at similar ionic strength, indicating stronger effects on screening, osmotic pressure and bridging interaction. In addition, wetting measurements indicate that polybase-divalent counterions interactions can be used to switch surface characteristics from hydrophilic to hydrophobic in a predictable manner. The immediate implications of these experimental results are related to design of "smart" surfaces with controllable charge distribution, membrane thickness and wettability.

  11. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.; Jugan, M. R.; Chapman, J.; Meyer, K. E.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.

  12. ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER

    SciTech Connect (OSTI)

    Minichan, R; Russell Eibling, R; James Elder, J; Kevin Kane, K; Daniel Krementz, D; Rodney Vandekamp, R; Nicholas Vrettos, N

    2008-06-01

    The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipment (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the results of the demonstration testing performed on the integrated system. The crawler was modified to address the two primary objectives of the task (inspection and spot cleaning). SRNL recommends this technology as a viable option for annulus inspection and salt removal in tanks with minimal salt deposits (such as Tanks 5 and 6.) This report further recommends that the technology be prepared for field deployment by: (1) developing an improved mounting system for the magnetic idler wheel, (2) improving the robustness of the cleaning tool mounting, (3) resolving the nozzle selection valve connections, (4) determining alternatives for the brush and bristle assembly, and (5) adding a protective housing around the motors to shield them from water splash. In addition, SRNL suggests further technology development to address annulus cleaning issues that are apparent on other tanks that will also require salt removal in the future such as: (1) Developing a duct drilling device to facilitate dissolving salt inside ventilation ducts and draining the solution out the bottom of the ducts. (2) Investigating technologies to inspect inside the vertical annulus ventilation duct.

  13. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect (OSTI)

    Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  14. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Tichenor, Mark S. (San Diego, CA); Artau, Alexander (Humacao, PR)

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  15. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  16. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  17. Dense QCD: a Holographic Dyonic Salt

    E-Print Network [OSTI]

    Mannque Rho; Sang-Jin Sin; Ismail Zahed

    2009-10-23

    Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.

  18. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  19. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  20. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Dirk, Shawn M. (Albuquerque, NM); Trudell, Daniel E. (Albuquerque, NM)

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  1. New public information resources on salt caverns.

    SciTech Connect (OSTI)

    Tomasko, D.; Veil, J. A.

    1999-08-25

    For the past decade, interest has been growing in using underground salt caverns for disposing of wastes. The Railroad Commission of Texas has permitted a few caverns for disposal of nonhazardous oil field waste (NOW) and one cavern for disposal of naturally occurring radioactive materials (NORM) from oil field activities. Several salt caverns in Canada have also been permitted for disposal of NOW. In addition, oil and gas agencies in Louisiana and New Mexico are developing cavern disposal regulations. The US Department of Energy (DOE) has funded several studies to evaluate the technical feasibility, legality, economic viability, and risk of disposing of NOW and NORM in caverns. The results of these studies have been disseminated to the scientific and regulatory communities. However, as use of caverns for waste disposal increases, more government and industry representatives and members of the public will become aware of this practice and will need adequate information about how disposal caverns operate and the risks they pose. In anticipation of this need, DOE has fi.mded Argonne National Laboratory to develop a salt cavern public outreach program. Key components of this program are an informational brochure designed for nontechnical persons and a website that provides greater detail on cavern operations and allows downloadable access to the reports on the topic funded by DOE. This paper provides an overview of the public outreach program.

  2. New public information resources on salt caverns.

    SciTech Connect (OSTI)

    Tomasko, D.; Veil, J. A.

    1999-08-25

    For the past decade, interest has been growing in using underground salt caverns for disposing of wastes. The Railroad Commission of Texas has permitted a few caverns for disposal of nonhazardous oil field waste (NOW) and one cavern for disposal of naturally occurring radioactive materials (NORM) from oil field activities. Several salt caverns in Canada have also been permitted for disposal of NOW. In addition, oil and gas agencies in Louisiana and New Mexico are developing cavern disposal regulations. The US Department of Energy (DOE) has funded several studies to evaluate the technical feasibility, legality, economic viability, and risk of disposing of NOW and NORM in caverns. The results of these studies have been disseminated to the scientific and regulatory communities. However, as use of caverns for waste disposal increases, more government and industry representatives and members of the public will become aware of this practice and will need adequate information about how disposal caverns operate and the risks they pose. In anticipation of this need, DOE has funded Argonne National Laboratory to develop a salt cavern public outreach program. Key components of this program are an informational brochure designed for nontechnical persons and a website that provides greater detail on cavern operations and allows downloadable access to the reports on the topic funded by DOE. This paper provides an overview of the public outreach program.

  3. Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E. [Oak Ridge National Lab., TN (United States); Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J. [Rockwell International Corp., Canoga Park, CA (United States)

    1993-03-01

    The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored.

  4. Analysis of tank 23H samples in support of salt batch planning

    SciTech Connect (OSTI)

    Hay, M. S.; Coleman, C. J.; Diprete, D. P.

    2015-08-14

    Savannah River Remediation obtained three samples from different heights within Tank 23H. The samples were analyzed by Savannah River National Laboratory to support salt batch planning. The results from the analysis indicate the top two samples from the tank appear similar in composition. The lowest sample from the tank contained significantly more solids and a more concentrated salt solution. The filtered supernate from the bottom sample showed ~60% lower Sr-90 and Pu-238 concentrations than the decanted (unfiltered) supernate results which may indicate the presence of some small amount of entrained solid particles in the decanted sample. The mercury concentrations measured in the filtered supernate were fairly low for all three samples ranging from 11.2 to 42.3 mg/L.

  5. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    SciTech Connect (OSTI)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 {micro}Sv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 {micro}Sv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey.

  6. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part A, Characterization, decontamination, dismantlement

    SciTech Connect (OSTI)

    Fellows, R.L. [ed.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.

  7. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  8. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, Erhard T. (5423 Vista Sandia, NE., Albuquerque, NM 87111)

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  9. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  10. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    SciTech Connect (OSTI)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  11. Gas-phase decontamination demonstration on PORTS cell X-25-4-2. Final technology status report

    SciTech Connect (OSTI)

    Riddle, R.J.

    1997-09-01

    The Long-Term, Low Temperature (LTLT) process is a gas-phase in situ decontamination technique which has been tested by LMES/K-25 personnel on the laboratory scale with promising results. The purpose of the Gas-Phase Decontamination Demonstration at PORTS was to evaluate the LTLT process on an actual diffusion cascade cell at conditions similar to those used in the laboratory testing. The demonstration was conducted on PORTS diffusion cell X-25-4-2 which was one of the X-326 Building cells which was permanently shutdown as part of the Suspension of HEU Production at PORTS. The demonstration full-scale test consisted of rendering the cell leak-tight through the installation of Dresser seals onto the process seals, exposing the cell to the oxidants ClF{sub 3} and F{sub 2} for a period of 105 days and evaluating the effect of the clean-up treatment on cell samples and coupons representing the major diffusion cascade materials of construction. The results were extrapolated to determine the effectiveness of LTLT decontamination over the range of historical uranium isotope assays present in the diffusion complex. It was determined that acceptable surface contamination levels could be obtained in all of the equipment in the lower assay cascades which represents the bulk of the equipment contained in the diffusion complex.

  12. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  13. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    SciTech Connect (OSTI)

    Kwon, K.C.

    2001-09-18

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  14. Graphite Waste Tank Cleanup and Decontamination under the Marcoule UP1 D and D Program - 13166

    SciTech Connect (OSTI)

    Thomasset, Philippe [AREVA D and D BU, Marcoule (France)] [AREVA D and D BU, Marcoule (France); Chabeuf, Jean-Michel [AREVA D and D BU, La Hague (France)] [AREVA D and D BU, La Hague (France); Thiebaut, Valerie [CEA/DEN/DAPD/CPUP, Marcoule (France)] [CEA/DEN/DAPD/CPUP, Marcoule (France); Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia, MD (United States)] [AREVA FEDERAL SERVICES, Columbia, MD (United States)

    2013-07-01

    The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pits had to be retrieved and transferred into a newer and safer pit. After an extensive R and D program, the equipment and process necessary for retrieval operations were designed, built and tested. The innovative process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. The retrieval of the most irradiating fragments was a challenge. Today, the first pit is totally empty and its stainless steel walls have been decontaminated using gels. In the second pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. After more than 6 years of operations in sludge retrieval, a lot of experience was acquired from which important 'lessons learned' could be shared. (authors)

  15. Engineering evaluation/cost analysis for decontamination at the St. Louis Downtown Site, St. Louis, Missouri

    SciTech Connect (OSTI)

    Picel, M.H.; Hartmann, H.M.; Nimmagadda, M.R. ); Williams, M.J. )

    1991-05-01

    The US Department of Energy (DOE) is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area: the St. Louis Downtown Site (SLDS), the St. Louis Airport Site (SLAPS) and vicinity properties, and the Latty Avenue Properties, including the Hazelwood Interim Storage Site (HISS). The general location of these properties is shown in Figure 1; the properties are referred to collectively as the St. Louis Site. None of the properties are owned by DOE, but each property contains radioactive residues from federal uranium processing activities conducted at the SLDS during and after World War 2. The activities addressed in this environmental evaluation/cost analysis (EE/CA) report are being proposed as interim components of a comprehensive cleanup strategy for the St. Louis Site. As part of the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP), DOE is proposing to conduct limited decontamination in support of proprietor-initiated activities at the SLDS, commonly referred to as the Mallinckrodt Chemical Works. The primary goal of FUSRAP activity at the SLDS is to eliminate potential environmental hazards associated with residual contamination resulting from the site's use for government-funded uranium processing activities. 17 refs., 3 figs., 5 tabs.

  16. Proceedings of the workshop on transite decontamination dismantlement and recycle/disposal

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    On February 3--4, 1993, a workshop was conducted to examine issues associated with the decontamination, dismantlement, and recycle/disposal of transite located at the US Department of Energy Fernald site near Cincinnati, OH. The Fernald Environmental Management Project (FEMP) is a Superfund Site currently undergoing remediation. A major objective of the workshop was to assess the state-of-the-art of transite remediation, and generate concepts that could be useful to the Fernald Environmental Restoration Management Co. (FERMCO) for remediation of transite. Transite is a building material consisting of asbestos fiber and cement and may be radioactively contaminated as a result of past uranium processing operations at the FEMP. Many of the 100 buildings within the former uranium production area were constructed of transite siding and roofing and consequently, over 180,000 m{sup 2} of transite must be disposed or recycled. Thirty-six participants representing industry, academia, and government institutions such as the EPA and DOE assembled at the workshop to present their experience with transite, describe work in progress, and address the issues involved in remediating transite.

  17. Decontamination Systems Information and Research Program. Quarterly report, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report is a summary of the work conducted for the period of October--December 1993 by the West Virginia University for the US DOE Morgantown Energy Technology Center. Research under the program focuses on pertinent technology for hazardous waste clean-up. This report reflects the progress performed on sixteen technical projects encompassed by this program: Systematic assessment of the state of hazardous waste clean-up technologies; Site remediation technologies: (a) Drain-enhanced soil flushing and (b) In situ bio-remediation of organic contaminants; Excavation systems for hazardous waste sites: Dust control methods for in-situ nuclear waste handling; Chemical destruction of polychlorinated biphenyls; Development of organic sensors: Monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale test facility implementation; Remediation of hazardous sites with steam reforming; Microbial enrichment for enhancing biodegradation of hazardous organic wastes in soil; Soil decontamination with a packed flotation column; Treatment of volatile organic compounds using biofilters; Use of granular activated carbon columns for the simultaneous removal of organic, heavy metals, and radionuclides; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; and Improved socio-economic assessment of alternative environmental restoration techniques.

  18. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect (OSTI)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  19. Summary of the Hanford Site decontamination, decommissioning, and cleanup, FY 1974--FY 1990

    SciTech Connect (OSTI)

    Wahlen, R.K.

    1991-08-01

    At the end of World War II, the demand for more production along with process and military surveillance changes at the Hanford Site caused a continuing cycle of building and obsolescence. This trend continued until 1964, when the cutback in plutonium production began. The cutback caused the shutdown of excess production facilities. The last of eight reactors was shut down in 1971. Since that time, N Reactor has been the only production reactor that has operated. In addition, changes in the method of separating plutonium caused a number of excess facilities in the 200 Areas. Before 1973, no structured program existed for the disposal of unusable facilities or for general cleanup. Following a plant-wide safety and housekeeping inspection in 1973, a program was developed for the disposal of all surplus facilities. Since the start of FY 1974, a total of 46 radioactively contaminated sites have been demolished and disposed of. In addition, 28 buildings have been decontaminated for in situ disposal or for reuse, 21 contaminated sites have been stabilized, 131 clean structures have been removed, and 93 clean sites have received special remedial action to eliminate potential safety and/or environmental hazards. This report summarizes these activities. 3 refs, 1 fig., 18 tabs.

  20. Experimental studies of actinides in molten salts

    SciTech Connect (OSTI)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  1. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD Wind FarmSmart Grid Project Jump to:Salt

  2. The Salt or Sodium Chloride Content of Feeds 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Lomanitz, S. (Sebastian)

    1920-01-01

    STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, Preeident BULLETIN NO. 271 OCTOBER, 1920 DIVISION OF CHEMISTRY THE SALT OR SODIUM CHLORIDE CONTENT OF FEEDS B. YOUNGBLOOD, DIRECTOK COLLEGE STATION, BRAZOS COUNTT, TEXAS I..... ................... Summary ancl conclusions. Page. l1 [Blank Page in Original Bulletin] BULLETIN XO. 271. OCTOBE- '"On THE SALT OR SODIUM CHLORIDE CONTENT OF FEI The Texas feed law requires the statement of the ingredients of many mixed feeds. Common salt or sodium...

  3. Structural Interactions within Lithium Salt Solvates: Cyclic...

    Office of Scientific and Technical Information (OSTI)

    and ester solvents coordinate Li+ cations in electrolyte solutions for lithium batteries. One approach to gleaning significant insight into these interactions is to examine...

  4. Leached salt cavern design using a fracture criterion for rock salt

    SciTech Connect (OSTI)

    Preece, D.S.; Wawersik, W.R.

    1984-01-01

    In 1975 Congress passed the Energy Conservation Act to establish a US Strategic Petroleum Reserve (SPR) with a capacity of 750 million barrels of crude oil. The most economic storage medium was determined to be salt caverns leached in salt domes in Louisiana and Texas. Salt caverns existed at several sites when the reserve was created. These were obtained by the US Department of Energy (DOE) and used to initiate SPR oil storage. In order to meet the storage capacity approved by Congress, new caverns also had to be leached. To support the resulting design effort, finite element computer programs have been used to determine the creep closure and structural stability of salt caverns. Using site specific material properties including creep models, elastic moduli and fracture data, the finite element analyses have been replaced earlier empirical approaches to cavern design. This report presents results of such finite element analyses to determine the best cavern roof shape and the minimum pillar to diameter ratio, P/D. These numerical predictions indicate that the current cavern design is safe. 12 references, 7 figures, 2 tables.

  5. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and...

  6. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Environmental Management (EM)

    Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014,...

  7. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  8. Salt River Electric- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  9. Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...

    Open Energy Info (EERE)

    Multispectral Imaging At Columbus Salt Marsh Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging...

  10. Controlled Source Frequency-Domain Magnetics At Salt Wells Area...

    Open Energy Info (EERE)

    Controlled Source Frequency-Domain Magnetics At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...

    Broader source: Energy.gov (indexed) [DOE]

    addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1) provide greater insight and...

  12. Compound and Elemental Analysis At Salt Wells Area (Coolbaugh...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Salt Wells Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  13. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and Oversight...

  14. Project Profile: Molten Salt-Carbon Nanotube Thermal Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    Texas Engineering Experiment Station (TEES), under the Thermal Storage FOA, created a composite thermal energy storage material by embedding nanoparticles in a molten salt base material.

  15. Method for the production of uranium chloride salt

    DOE Patents [OSTI]

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  16. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Salt Wells Area (Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  17. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is...

  18. Surface Indicators of Geothermal Activity at Salt Wells, Nevada...

    Open Energy Info (EERE)

    Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Jump to: navigation, search OpenEI Reference...

  19. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells...

  20. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and...

  1. Domestic Material Content in Molten-Salt Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Material Content in Molten-Salt Concentrating Solar Power Plants Craig Turchi, Parthiv Kurup, Sertac Akar, and Francisco Flores Technical Report NRELTP-5500-64429 August...

  2. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Environmental Management (EM)

    SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead CivilStructural Sub Team Facility Safety Sub Team Engineering...

  3. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C....

  4. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  5. Project Profile: Novel Molten Salts Thermal Energy Storage for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    characteristics compared to current salts: Lower melting point Higher energy density Lower power-generation cost This program aims to develop a heat transfer fluidstorage...

  6. Effect of salt concentration on the stability of heterogeneous DNA

    E-Print Network [OSTI]

    Amar Singh; Navin Singh

    2015-09-28

    We study the role of cations on the stability of double stranded DNA (dsDNA) molecules.It is known that the two strands of double stranded DNA(dsDNA) have negative charge due to phosphate group. Cations in the form of salt in the solution, act as shielding agents thereby reducing the repulsion between these strands. We study several heterogeneous DNA molecules. We calculate the phase diagrams for DNA molecules in thermal as well as in force ensembles using Peyrard-Bishop-Dauxois (PBD) model. The dissociation and the stacking energies are the two most important factors that play an important role in the DNA stability. With suitable modifications in the model parameters we investigate the role of cation concentration on the stability of different heterogeneous DNA molecules. The objective of this work is to understand how these cations modify the strength of different pairs or bases along the strand. The phase diagram for the force ensemble case (a dsDNA is pulled from an end) is compared with the experimental results.

  7. Turbidity study of solar ponds utilizing seawater as salt source

    SciTech Connect (OSTI)

    Li, Nan; Sun, Wence; Shi, Yufeng [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023 (China); Yin, Fang [YLab, 358 South 700 East, Suit B-139, Salt Lake City, UT 84102 (United States); Zhang, Caihong [Dalian Thermoelectric Group Co. Ltd., Dalian 116001 (China)

    2010-02-15

    A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

  8. Process for separating and recovering an anionic dye from an aqueous solution

    DOE Patents [OSTI]

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  9. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  10. Salt Screening and Selection: New Challenges and Considerations in the Modern

    E-Print Network [OSTI]

    Capecchi, Mario R.

    Salt Screening and Selection: New Challenges and Considerations in the Modern Pharmaceutical R · Introduction · Theoretical Considerations · pH-solubility profiles, pKa and salt formation · Prediction of salt solubility · Solubility product and in situ salt screening · Solubility/dissolution rate of salts

  11. Lead and other metals distribution in local cooking salt from the Fofi salt- spring in Akwana, Middle Benue Trough, Nigeria

    SciTech Connect (OSTI)

    Dim, L.A.; Kinyua, A.M.; Munyithya, J.M.; Adetunji, J. (Centre for Nuclear Science Techniques, Faculty of Engineering, University of Nairobi (Kenya))

    1991-06-01

    Energy Dispersive X-ray Fluorescence (EDXRF) technique has been used to determine the concentrations of lead(Pb) and other heavy metals in local cooking salts (LCS) from Akwana village, Middle Benue Trough, Nigeria. The comparison of the distribution of these metals in LCS, fake salt (FS) and the usual common salts (CS) are given. Lead was found to be enriched in LCS by factor exceeding 200 times compared to the other salts. The origin of Pb contamination in the LCS is examined and its effects on the inhabitants of the village are considered.

  12. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  13. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    SciTech Connect (OSTI)

    Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  14. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  15. Salt-sensitive hypertension in mitochondrial superoxide dismutase deficiency is associated with intra-renal oxidative stress and inflammation

    E-Print Network [OSTI]

    Jin, K; Vaziri, ND

    2014-01-01

    tion, autoimmunity and salt-sensitive hypertension. Clin ExpSOD deficiency with salt-sensitive hypertension andblood pressure levels in salt-sensitive hypertension. Am J

  16. Why SALT WorksSALTwascreatedbythenonprofitAmericanStudentAssistance(ASA),who'sbeenhelpingstudents managetheireducationdebtfor50+years.ASAhasworkedwithnearly1.4millionstudentswithcollege

    E-Print Network [OSTI]

    Spirtes, Peter

    Why SALT Works. FinancialEducation SALT'sfinancialeducationcoursesuseatraditionalmethodology,aswell asself,attherighttime,intherightformat,resultinginbetter educationaloutcomes. EducationDebtManagement ThroughSALT

  17. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    SciTech Connect (OSTI)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.; Sawada, K.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  18. ANALYSIS OF THE SALT FEED TANK CORE SAMPLE

    SciTech Connect (OSTI)

    Reigel, M.; Cheng, W.

    2012-01-26

    The Saltstone Production Facility (SPF) immobilizes and disposes of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS). Low-level waste (LLW) streams from processes at SRS are stored in Tank 50 until the LLW can be transferred to the SPF for treatment and disposal. The Salt Feed Tank (SFT) at the Saltstone Production Facility (SPF) holds approximately 6500 gallons of low level waste from Tank 50 as well as drain water returned from the Saltstone Disposal Facility (SDF) vaults. Over the past several years, Saltstone Engineering has noted the accumulation of solids in the SFT. The solids are causing issues with pump performance, agitator performance, density/level monitoring, as well as taking up volume in the tank. The tank has been sounded at the same location multiple times to determine the level of the solids. The readings have been 12, 25 and 15 inches. The SFT is 8.5 feet high and 12 feet in diameter, therefore the solids account for approximately 10 % of the tank volume. Saltstone Engineering has unsuccessfully attempted to obtain scrape samples of the solids for analysis. As a result, Savannah River National Laboratory (SRNL) was tasked with developing a soft core sampler to obtain a sample of the solids and to analyze the core sample to aid in determining a path forward for removing the solids from the SFT. The source of the material in the SFT is the drain water return system where excess liquid from the Saltstone disposal vaults is pumped back to the SFT for reprocessing. It has been shown that fresh grout from the vault enter the drain water system piping. Once these grout solids return to the SFT, they settle in the tank, set up, and can't be reprocessed, causing buildup in the tank over time. The composition of the material indicates that it is potentially toxic for chromium and mercury and the primary radionuclide is cesium-137. Qualitative measurements show that the material is not cohesive and will break apart with some force.

  19. Observations of solute effects on bubble formation

    SciTech Connect (OSTI)

    Hofmeier, U.; Yaminsky, V.V.; Christenson, H.K.

    1995-09-01

    The authors have studied the effects of solute, in particular aqueous electrolyte, on bubble formation at capillary orifices and frits at varying gas flow rates. Using a stroboscope, video microscope, and rotating mirror, they have obtained pictures which show how bubble formation involves the interaction of bubbles at the orifice. These interactions depend on the value of the surface elasticity E due to positively (ethanol) or negatively (NaCl) adsorbed solute. At low flow rates consecutive bubbles do not interact. Each bubble detaches and leaves the orifice region before the next one starts forming. A intermediate flow rates the more closely spaced, consecutive bubbles begin to interact. In pure liquids there is no barrier to bubble coalescence and the detached bubble is fed by the subsequent bubble as this starts to grow. The process may be repeated several times before the original bubble has risen out of range. In solutions where E is large enough bubble coalescence is inhibited. Instead of feeding into the detached bubble the following bubble pushes it aside, and the bubbles appear to bounce off each other. Bouncing may give rise to a characteristic sequence of larger and smaller bubbles if the emerging bubbles break off prematurely from the orifice due to the inertia of the original bubble. The transition from feeding to bouncing depends critically on E of the solution and leads to a smaller average bubble size for large E values. At high flow rates detached bubbles are invariably fed by several subsequent ones. At very high flow rates the bubbling becomes chaotic, but the interaction of bubbles after leaving the orifice area produces smaller bubbles in solutions. Bouncing is more likely to occur with narrow and irregular capillaries. The dramatically different appearance of gas-sparged columns in salt water and freshwater has its origin in the difference between assemblies of pores showing mainly feeding (freshwater) or bouncing (salt water).

  20. The "salt hypothesis" is that higher levels of salt in the diet lead to higher levels of blood pressure, increasing the risk of cardiovascular disease. Intersalt, a cross-

    E-Print Network [OSTI]

    Freedman, David A.

    The "salt hypothesis" is that higher levels of salt in the diet lead to higher levels of blood pressure, increasing the risk of cardiovascular disease. Intersalt, a cross- sectional study of salt levels and blood pressures in 52 populations, is often cited to support the salt hypothesis, but the data

  1. Leucobacter salsicius sp. nov., from a salt-fermented food

    E-Print Network [OSTI]

    Bae, Jin-Woo

    Leucobacter salsicius sp. nov., from a salt- fermented food Ji-Hyun Yun,1 Seong Woon Roh,1,2 Min, Daejeon 305-806, Republic of Korea Strain M1-8T was isolated from jeotgal, a Korean salt-fermented food contained 2,4-diaminobutyric acid, glutamic acid, alanine, glycine and c-aminobutyric acid. The major

  2. Molten salts and nuclear energy production Christian Le Bruna*

    E-Print Network [OSTI]

    Boyer, Edmond

    with solid fuels, liquid fuel in molten salt reactor, solvents for spent nuclear solid fuel in the caseMolten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches

  3. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  4. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect (OSTI)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  5. SALT DAMAGE CRITERION PROOF-OF-CONCEPT RESEARCH

    SciTech Connect (OSTI)

    Kerry L. DeVries; Kirby D. Mellegard; Gary D. Callahan

    2002-11-01

    The purpose of this study was to conduct a field-scale application demonstrating the use of continuum damage mechanics to determine the minimum allowable operating pressure of compressed natural gas storage caverns in salt formations. A geomechanical study was performed of two natural gas storage caverns (one existing and one planned) utilizing state-of-the-art salt mechanics to assess the potential for cavern instability and collapse. The geomechanical study consisted primarily of laboratory testing, theoretical development, and analytical/numerical tasks. A total of 50 laboratory tests was performed on salt specimens to aid in the development and definition of the material model used to predict the behavior of rock salt. Material model refinement was performed that improved the predictive capability of modeling salt during damage healing, recovery of work-hardened salt, and the behavior of salt at stress states other than triaxial compression. Results of this study showed that the working gas capacity of the existing cavern could be increased by 18 percent and the planned cavern could be increased by 8 percent using the proposed method compared to a conventional stress-based method. Further refinement of the continuum damage model is recommended to account for known behavior of salt at stress conditions other than triaxial compression that is not characterized accurately by the existing model.

  6. Salt River (Rio Salado Oeste), Phoenix, Maricopa County, Arizona

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Salt River (Rio Salado Oeste), Phoenix, Maricopa County, Arizona 18 October 2006 Abstract: The Rio of Phoenix encompassing eight miles of the Salt River from 19th to 83rd Avenues on the southwest side is $164,950,000. The project cost will be shared between the Federal government and the city of Phoenix

  7. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    SciTech Connect (OSTI)

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  8. Does jasmonic acid control the maize shoot growth during the first phase of salt stress?

    E-Print Network [OSTI]

    Shahzad, Ahmad Naeem; Pollmann, Stephan; Schubert, Sven

    2009-01-01

    Introduction Salt stress affects plant growth in twohormones, pH) in response to salt/drought stress is notin response to osmotic/salt stress (Creelman and Mullet

  9. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    E-Print Network [OSTI]

    He, Z.

    2010-01-01

    Zhou, and J. D. Keasling. 2006. Salt stress in Desulfovibrioregulation of acid, heat, and salt tolerance in EscherichiaMR-1 in response to elevated salt conditions. J. Bacteriol.

  10. Salt stress affects polyamine concentrations and plasma membrane H+-ATPase proton pumping in maize

    E-Print Network [OSTI]

    Ingold, Mariko; Hanstein, Stefan; Schubert, Sven

    2009-01-01

    during the first phase of salt stress? J. Plant Nutr. SoilH + -ATPase in roots, is lowered by salt treatment.synthesis of polyamines under salt stress may contribute to

  11. PEP-carboxylase activity supports organic acid metabolism of maize (Zea mays) under salt stress

    E-Print Network [OSTI]

    Hatzig, Sarah Vanessa; Kumar, Ashwani; Neubert, Anja; Schubert, Sven

    2009-01-01

    physical basis for improving salt resistance in maize. Inand their expression under salt stress. J. Plant Physiol.may have a function for the salt resistance of maize during

  12. An Algorithm for Locating Microseismic Events Brian L.F. Daku, J. Eric Salt, Li Sha

    E-Print Network [OSTI]

    Saskatchewan, University of

    An Algorithm for Locating Microseismic Events Brian L.F. Daku, J. Eric Salt, Li Sha University is potash mines. Potash mines produce potash salts, and potas- sium, extracted from potash salts, is a major

  13. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01

    and Distichlis spicata in salt marshes at Humboldt Bay,Carolina Spartina alterniflora salt marsh. Estuaries 4:97-die-off of southern U.S. salt marshes. Science 310:1803-

  14. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    E-Print Network [OSTI]

    Suo, Zhigang

    Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt 2014; published online 14 October 2014) Polyacrylamide hydrogels containing salt as electrolyte have of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced

  15. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  16. Technical review of Molten Salt Oxidation

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

  17. Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress

    SciTech Connect (OSTI)

    Simmons, D.W.; Munday, E.B.

    1995-05-01

    Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF{sub 3} for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF{sub 3}, planning and preparation for experiments to assess hazard of rapid reaction of ClF{sub 3} and hydrated UO{sub 2}F{sub 2} or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material.

  18. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect (OSTI)

    Munson, D.E.

    1998-10-01

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  19. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    SciTech Connect (OSTI)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  20. 1 | De-icing salt damage to trees | November 2011 Pathology Advisory Note

    E-Print Network [OSTI]

    1 | De-icing salt damage to trees | November 2011 Pathology Advisory Note (No. 11) De-icing salt damage to trees De-icing Salt Damage to Trees Joan F Webber, David R Rose, Martin C Dobson #12;2 | De-icing salt damage to trees | November 2011 S a l t D a m a g e De-icing Salt Damage Introduction Rock salt

  1. United States Department of Energy, Office of Environmental Management, Uranium Enrichment Decontamination and Decomissioning Fund financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    The Energy Policy Act of 1992 (Act) established the Uranium Enrichment Decontamination and Decommissioning Fund (D and D Fund, or Fund) to pay the costs for decontamination and decommissioning three gaseous diffusion facilities located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio (diffusion facilities). The Act also authorized the Fund to pay remedial action costs associated with the Government`s operation of the facilities and to reimburse uranium and thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government. The report presents the results of the independent certified public accountants` audit of the D and D Fund financial statements as of September 30, 1996. The auditors have expressed an unqualified opinion on the 1996 statement of financial position and the related statements of operations and changes in net position and cash flows.

  2. Proceedings of 3rd US/German Workshop on Salt Repository Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings of 3rd USGerman Workshop on Salt Repository Research, Design, and Operation Proceedings of 3rd USGerman Workshop on Salt Repository Research, Design, and Operation...

  3. Sandia Energy - 2014 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2014 USGerman Workshop on Salt...

  4. Sandia Energy - 2016 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2016 USGerman Workshop on Salt...

  5. Sandia Energy - 2015 US/German Workshop on Salt Repository Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 USGerman Workshop on Salt Repository Research, Design, and Operation Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2015 USGerman Workshop on Salt...

  6. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    E-Print Network [OSTI]

    Konopacki, S.; Akbari, H.

    2000-01-01

    Commission Report P300-94-007. Sacramento, CA. Commercialthe (New Orleans, Sacramento & Salt Lake City) MetropolitanStrategies in Baton Rouge, Sacramento and Salt Lake City S.

  7. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01

    alterniflora and benthic microalgae in salt marsh food webs:dynamics of benthic microalgae in salt marshes. Pages 81-106primary productivity of microalgae and cyanobacteria (Geider

  8. Levels of metals from salt marsh plants from Southern California, USA

    E-Print Network [OSTI]

    Hoyt, Kimberly Ann

    2009-01-01

    alterniflora and benthic microalgae in salt marsh foodalterniflora and benthic microalgae in salt marsh foodSpartina, but feed on microalgae (Currin,1990). Isotope

  9. Elucidation of Mechanisms of Salinity Tolerance in Zoysia matrella Cultivars: A Study of Structure and Function of Salt Glands 

    E-Print Network [OSTI]

    Rao, Sheetal

    2012-07-16

    Salt glands are important structural adaptations in some plant and animal species that are involved in the excretion of excess salts. Zoysia matrella is a highly salt tolerant turf grass that has salt glands. Two cultivars of Z. matrella, ‘Diamond...

  10. Delayed luminescence induced by complex domains in water and in aqueous solutions

    E-Print Network [OSTI]

    C. Colleoni; S. Esposito; R. Grasso; M. Gulino; F. Musumeci; D. Romeli; G. Rosace; G. Salesi; A. Scordino

    2014-11-09

    Many recent studies on water have conjectured a complex structure composed of hydrogen bonded low- and high-density domains. In this work the structure of pure water and aqueous solutions of silica gel (TEOS) has been investigated by using delayed luminescence, which previously have showed significant increase in aqueous salt solutions where low-density domain formation is expected. Photon emission shows an Arrhenius trend with an activation energy in water-TEOS solutions larger than in pure water and salt-water solutions. Moreover, delayed photon emission decay shows an intrinsic lifetime of about 5 microseconds both in solutions and in pure water that, along with secondary lifetimes induced by the presence of TEOS, could be related to the formation of different domains.

  11. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect (OSTI)

    Poderis, Reed J.; King, Rebecca A.

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

  12. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    SciTech Connect (OSTI)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  13. Ultra-high tritium decontamination of simulated fusion fuel exhaust using a 2-stage palladium membrane reactor

    SciTech Connect (OSTI)

    Birdsell, S.A.; Willms, R.S.; Wilhelm, R.C.

    1996-12-31

    A 2-stage cold (non-tritium) PMR system was tested with the ITER mix in61 days of continuous operation. No decrease in performance was observed over the duration of the test. Decontamination factor (DF) was found to increase with decreasing inlet rate. Decontamination factors in excess of 1.4 {times} 10{sup 5} were obtained, but the exact value of the highest DF could not be determined because of analysis limitations. Results of the 61-day test were used to design a 2-stage PMR system for use in tritium testing. The PMR system was scaled up by a factor of 6 and built into a glovebox in the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory. This system is approximately 1/5th of the expected full ITER scale. The ITER mix was injected into the PMR system for 31 hours, during which 4.5 g of tritium were processed. The 1st stage had DF = 200 and the 2nd stage had DF = 2.9 {times} 10{sup 6}. The overall DF = 5.8 {times} 10{sup 8}, which is greater than ITER requirements.

  14. Improved Technologies for Decontamination of Crated Large Metal Objects LANL Release No: LA-UR-02-0072

    SciTech Connect (OSTI)

    McFee, J.; Stallings, E.; Barbour, K.

    2002-02-26

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. The previously conducted demonstrations supported characterization and ''front end'' aspects of the Los Alamos Decontamination and Volume Reduction System (DVRS) project. The first demonstration was shown to save the DVRS project approximately $200,000 per year and characterization technologies have been estimated to save DVRS a month of DVRS operation per year. In FY01 demonstrations for decontamination technologies, communication systems, and waste data collection systems have provided additional savings equivalent to another $200K per year of operation. The Los Alamos Large Scale demonstration and Deployment Project continues to provide substantial cost savings to the DVRS process in this second round of demonstrations. DVRS cost savings of $400K per year can now be counted, with additional efficiency savings of up to 30% on many tasks.

  15. Decontamination of surfaces by blasting with crystals of H{sub 2}O and CO{sub 2}

    SciTech Connect (OSTI)

    Benson, C.E.; Parfitt, J.E.; Patton, B.D.

    1995-02-01

    A major mission of the US Department of Energy during the 1990s is site and environmental cleanup. In pursuit of this mission, numerous remediation projects are under way and many others are being planned at Oak Ridge National Laboratory (ORNL). In this report, tests using two proposed methods for decontaminating surfaces one using water ice crystals [Crystalline Ice Blast (CIB)], the other using dry ice crystals (CO{sub 2} Cleanblast{trademark}) -- are described. Both methods are adaptations of the commonly used sand blasting technology. The two methods tested differ from sand blasting in that the particles are not particularly abrasive and do not accumulate as particles in the wastes. They differ from each other in that the CO{sub 2} particles sublime during and after impact and the ice particles melt. Thus, the two demonstrations provide important information about two strong candidate decontamination methodologies. Each process was tested at ORNL using contaminated lead bricks and contaminated tools and equipment. Demonstrations with the prototype Crystalline Ice Blast and the CO{sub 2} Cleanblast systems showed that paint, grease, and oil can be removed from metal, plastic, asphalt, and concrete surfaces. Furthermore, removal of contamination from lead bricks was highly effective. Both processes were found to be less effective, under the conditions tested, with contaminated tools and equipment that had chemically bonded contamination or contamination located in crevices since neither technology abrades the substrates or penetrates deeply into crevices to remove particulates. Some process improvements are recommended.

  16. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Bradley,, D. J.; Serne,, R. J.; Soldat, J. K; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  17. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Raymond,, J. R.; Brandley,, D. J.; Serne,, R. J.; Soldat,, J. K.; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was sUGcessful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  18. Experimental Investigation of Two-Phase Flow in Rock Salt

    SciTech Connect (OSTI)

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  19. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  20. A mechanical model of early salt dome growth 

    E-Print Network [OSTI]

    Irwin, Frank Albert

    1988-01-01

    salt and the upper layer representing the overlying sediment, is used to study the mechanics of growth in the early stages of salt dome formation. Three cases of this model, each representing a particular rate of removal of the surface topography..., are examined to determine which case best fits observations of salt domes in East Texas, Northwest Germany, and the North Sea. These observations include the spacing and growth rate of the dome and the amount of deformation of the sediments above the dome...