National Library of Energy BETA

Sample records for decommissioned reactor site

  1. Piqua, Ohio, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Piqua, Ohio, Decommissioned Reactor Site This fact sheet provides information about the Piqua, Ohio, Decommissioned Reactor. This site is managed by the U.S. Department of Energy Office of Legacy Management under the DOE Defense Decontamination and Decommissioning (D&D) Program. Location of the Piqua Decommissioned Reactor Site Description and History The Piqua, Ohio, Decommissioned Reactor site is located in southwestern Ohio in the city of Piqua on the east bank of the Great Miami River,

  2. Hallam, Nebraska, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Except for the concrete structure that housed the intermediate heat exchanger, the ... Hallam Site Intermediate Heat Exchanger Building (White Building). Grassy area covers the ...

  3. BONUS, Puerto Rico, Decommissioned Reactor Site Fact Sheet

    Office of Legacy Management (LM)

    information about the Defense Decontamination and Decommissioning Program Boiling Nuclear Superheater (BONUS) reactor located northwest of Rincn, Puerto Rico. The site is...

  4. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  5. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  6. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  7. Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor

    SciTech Connect (OSTI)

    Sarah Roberts

    2006-10-18

    Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

  8. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    SciTech Connect (OSTI)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and approximately 3,900 cubic yards (2,989 cubic meters) of structural concrete which will be placed over about an eighteen month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  9. Site A/Plot M, Illinois, Decommissioned Reactor Site Fact Sheet

    Office of Legacy Management (LM)

    Research programs conducted at Site A included reactor physics studies, fssion product separations, tritium recovery from irradiated lithium, and studies of radionuclide metabolism ...

  10. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  11. Site decommissioning management plan

    SciTech Connect (OSTI)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  12. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  13. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING DEACTIVATION AND DECOMMISSIONING OF REACTOR VESSELS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Wiersma, B.; Serrato, M.; Langton, C.

    2010-11-10

    The R- and P-reactor vessels at the Savannah River Site (SRS) are being prepared for deactivation and decommissioning (D&D). D&D activities will consist primarily of physically isolating and stabilizing the reactor vessel by filling it with a grout material. The reactor vessels contain aluminum alloy materials, which pose a concern in that aluminum corrodes rapidly when it comes in contact with the alkaline grout. A product of the corrosion reaction is hydrogen gas and therefore potential flammability issues were assessed. A model was developed to calculate the hydrogen generation rate as the reactor is being filled with the grout material. Three options existed for the type of grout material for D&D of the reactor vessels. The grout formulation options included ceramicrete (pH 6-8), a calcium aluminate sulfate (CAS) based cement (pH 10), or Portland cement grout (pH 12.4). Corrosion data for aluminum in concrete were utilized as input for the model. The calculations considered such factors as the surface area of the aluminum components, the open cross-sectional area of the reactor vessel, the rate at which the grout is added to the reactor vessel, and temperature. Given the hydrogen generation rate, the hydrogen concentration in the vapor space of the reactor vessel above the grout was calculated. This concentration was compared to the lower flammability limit for hydrogen. The assessment concluded that either ceramicrete or the CAS grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters did not provide a margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. Therefore, it was recommended that this grout not be utilized for this task. On the other hand, the R-reactor vessel contained significantly less aluminum surface area that the P-reactor vessel based on current facility process knowledge, surface observations, and drawings. Therefore, a Portland cement grout may be considered for grouting operations as well as the other grout formulations.

  14. Sodium Reactor Experiment decommissioning. Final report

    SciTech Connect (OSTI)

    Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

    1983-08-15

    The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

  15. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

  16. ADVANTAGES, DISADVANTAGES, AND LESSONS LEARNED FROM MULTI-REACTOR DECOMMISSIONING PROJECTS

    SciTech Connect (OSTI)

    Morton, M.R.; Nielson, R.R.; Trevino, R.A.

    2003-02-27

    This paper discusses the Reactor Interim Safe Storage (ISS) Project within the decommissioning projects at the Hanford Site and reviews the lessons learned from performing four large reactor decommissioning projects sequentially. The advantages and disadvantages of this multi-reactor decommissioning project are highlighted.

  17. Decommissioning of eight surplus production reactors at the Hanford Site, Richland, Washington. Addendum (Final Environmental Impact Statement)

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which contains additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.

  18. Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning

    Office of Environmental Management (EM)

    Department of Energy Makes Progress on Recovery Act-funded Cleanup Savannah River Site Makes Progress on Recovery Act-funded Cleanup February 9, 2011 - 12:00pm Addthis SRS loaded 14 standard waste boxes containing mixed and low-level waste that previously was classified as transuranic TRU waste. This shipment to a Florida treatment site marks the 1,000 cubic meter milestone of the 5,000 cubic meters in the Site’s TRU program that will be dispositioned through the Recovery Act. SRS

  19. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    SciTech Connect (OSTI)

    Smith, Anthony A.

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  20. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

  1. EIS-0259: Disposal of Decommissioned, Defueled Cruiser, Ohio Class and Los Angeles Class Naval Reactor Plants, Hanford Site, Richland (adopted from Navy)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines.

  2. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    SciTech Connect (OSTI)

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  3. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect (OSTI)

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  4. Power Burst Facility (PBF) Reactor Reactor Decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to ensure it protects the environment. Decommissioning of older, unused facilities saves money from on-going maintenance and utility requirements. Editorial Date September 25...

  5. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Environmental Management (EM)

    Site Closes Out Decontamination and Decommissioning Project about 440 Million under Cost Idaho Site Closes Out Decontamination and Decommissioning Project about 440 Million under...

  6. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  7. Decommissioning of the BR3 reactor: status and perspectives

    SciTech Connect (OSTI)

    Noynaert, L.; Verstraeten, I.

    2007-07-01

    The BR3 plant at Mol in Belgium built at the end of the fifties was the first PWR plant built outside the USA. The reactor had a small net power output (10 MWe) but comprised all the loops and features of a commercial PWR plant. The BR3 plant was operated with the main objective of testing advanced PWR fuels under irradiation conditions similar to those encountered in large commercial PWR plants. The reactor was started in 1962 and shut down in 1987 after 25 years of continuous operation. Since 1989, SCK.CEN is decommissioning the BR3 PWR research reactor. The dismantling of the metallic components including reactor pressure vessel and internals is completed and extensively reported in the literature. The dismantling of auxiliary components and the decontamination of parts of the infrastructure are now going on. The decommissioning progress is continuously monitored and costs and strategy are regularly reassessed. The first part of the paper describes the main results and lessons learned from the reassessment exercises performed in 1994, 1999, 2004 and 2007. Impacts of changes in legal framework on the decommissioning costs will be addressed. These changes concern e.g. licensing aspects, clearance levels, waste management... The middle part of the paper discusses the management of activated and/or contaminated concrete. The costing exercise performed in 1995 highlighted that the management of activated and contaminated concrete is the second main cost item after the dismantling of the reactor pressure vessel and internals. Different possible solutions were studied. These are evacuation as radioactive waste with or without supercompaction, recycling this 'radioactive' grout or concrete for conditioning of radioactive waste e.g. conditioning of metallic waste. The paper will give the results of the cost-benefit analysis made to select the solution retained. The last part of the paper will discuss the end goal of the decommissioning of the BR3. In the final decommissioning plan approved by ONDRAF/NIRAS, it was mentioned that the final goal of the BR3 decommissioning will be the 'green field' unless opportunities for reuse of the BR3 site will occur during decommissioning. A strategy of partial reuse of the BR3 facility is proposed and being discussed with the main stakeholders. The paper will give the present state of the discussion. (authors)

  8. Brookhaven Lab Completes Decommissioning of Graphite Research Reactor:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor core and associated structures successfully removed; waste shipped offsite for disposal | Department of Energy Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal September 1, 2012 - 12:00pm Addthis The

  9. Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative idea for cleaning up sodium in a decommissioned nuclear reactor at EM’s Idaho site grew from a carpool discussion.

  10. Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington

    SciTech Connect (OSTI)

    S.J. Roberts

    2007-03-20

    During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

  11. Decommissioning Plan of the Musashi Reactor and Its Progress

    SciTech Connect (OSTI)

    Tanzawa, Tomio

    2008-01-15

    The Musashi Reactor is a TRIGA-II, tank-type research reactor, as shown in Table 1. The reactor had been operated at maximum thermal power level of 100 kW since first critical, January 30, 1963. Reactor operation was shut down due to small leakage of water from the reactor tank on December 21,1989. After shutdown, investigation of the causes, making plan of repair and discussions on restart or decommissioning had been done. Finally, decision of decommissioning was made in May, 2003. The initial plan of the decommissioning was submitted to the competent authority in January, 2004. Now, the reactor is under decommissioning. The plan of decommissioning and its progress are described. In conclusion: considering the status of undertaking plan of the waste disposal facility for the low level radioactive waste from research reactors, the phased decommissioning was selected for the Musashi Reactor. First phase of the decommissioning activities including the actions of permanent shutdown and delivering the spent nuclear fuels to US DOE was completed.

  12. Management of Decommissioning on a Multi-Facility Site (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Management of Decommissioning on a Multi-Facility Site Citation Details In-Document Search Title: Management of Decommissioning on a Multi-Facility Site The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the

  13. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  14. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  15. Decommissioning experience from the Experimental Breeder Reactor-II.

    SciTech Connect (OSTI)

    Henslee, S.P.; Rosenberg, K.E.

    2002-03-28

    Consistent with the intent of this International Atomic Energy Agency technical meeting, decommissioning operating experience and contributions to the preparation for the Coordinated Research Project from Experimental Breeder Reactor-II activities will be discussed. This paper will review aspects of the decommissioning activities of the Experimental Breeder Reactor-II, make recommendations for future decommissioning activities and reactor system designs and discuss relevant areas of potential research and development. The Experimental Breeder Reactor-II (EBR-II) was designed as a 62.5 MWt, metal fueled, pool reactor with a conventional 19 MWe power plant. The productive life of the EBR-II began with first operations in 1964. Demonstration of the fast reactor fuel cycle, serving as an irradiation facility, demonstration of fast reactor passive safety and lastly, was well on its way to close the fast breeder fuel cycle for the second time when the Integral Fast Reactor program was prematurely ended in October 1994 with the shutdown of the EBR-II. The shutdown of the EBR-II was dictated without an associated planning phase that would have provided a smooth transition to shutdown. Argonne National Laboratory and the U.S. Department of Energy arrived at a logical plan and sequence for closure activities. The decommissioning activities as described herein fall into in three distinct phases.

  16. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect (OSTI)

    Devgun, Jas S.; Laraia, Michele; Dinner, Paul

    2012-07-01

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-line sharing of information and especially the creation of an on-line compendium of methods, tools, and techniques by which damaged fuel and other unique situations have been addressed can be addressed sooner and maintained as new problems and solutions arise and are resolved. The IAEA's new 'WEB 2.0 tool' CONNECT is expected to play a significant role in this and related information-sharing activities. The trend in some countries such as the United States has been to re-license the existing reactors for additional twenty years, beyond the original design life. Given the advances in technology over the past four decades, and considering that the newer designs incorporate significant improvements in safety systems, it may not be economical or technically feasible to retrofit enhancements into some of the older reactors. In such cases, the reactors may be retired from service and decommissioned. Overall, the energy demand in the world continues to rise, with sharp increases in the Asian countries, and nuclear power's role in the world's energy supply is expected to continue. Events at Fukushima have led to a re-examination on many fronts, including reactor design and regulatory requirements. Further changes may occur in these areas in the post-Fukushima era. These changes in turn will also impact the world-wide decommissioning scene and the decommissioning phase of the future reactors. (authors)

  17. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  18. Decommissioning strategy options for MR reactor at the Kurchatov Institute, Moscow

    SciTech Connect (OSTI)

    Cross, M.T.; Harman, N.F.; Charles, D.; Harper, A.; Bylkin, B.K.; Gorlinsky, Yu.E.; Kolyadin, V.I.; Kutkov, V.A.; Pavlenko, V.I.; Sivintsev, Yu.V.; Lobach, Yu.N.

    2007-07-01

    The principal decommissioning goal for the nuclear installations of the Kurchatov Institute is the removal of spent fuel, reactor facilities and radioactive waste from the Institute's site. As the result of decommissioning, the buildings, constructions and areas should be cleaned to residual contamination levels acceptable to the stakeholders. These levels are determined in view of possible options for the rehabilitation of the Institute's areas under conditions of compliance with acting legislation for safety provisions for staff, population noting the proximity of the site to the local urban environment. Research reactor MR was commissioned in 1963 for reactor materials testing and finally shutdown in 1993. The reactor power with the experimental loops was 50 MW,. Several features were identified for the development of a decommissioning strategy for this reactor, namely: the strategy should consider many factors in a broad approach with international, inter-industry and long-term perspectives; the current situation for decommissioning is uncertain and must account for the views of a variety of stakeholders on possible final conditions and further use of the site and the route to achieve these; and a lack of sufficiency in the national legislation base for execution of the work and the possible options for its completion. On the basis of worldwide experience, the strategy for decommissioning of reactor MR was determined as follows: - determination of the options for the final rehabilitation of the Institute's areas; - determination of the stakeholders and their priority concerns; - determination of the strategy options for achievement of the final status; - determination of the main factors influencing the selection of the decommissioning strategy; - selection of the most acceptable strategies on the basis of a multi-attribute analysis; - determination of the main stages and principles of implementation of the selected strategy; and - development of the decommissioning activities considering the work that will be required. As the result of the multi-attribute analysis, the following conclusion has been made: the preferred final status of the facility is for a nuclear re-use application the preferred decommissioning option is immediate dismantling. (authors)

  19. Regulatory process for decommissioning nuclear power reactors. Final report

    SciTech Connect (OSTI)

    1998-03-01

    This report provides regulatory guidance for utilities consistent with the changes in the decommissioning rule, 10 CFR50.82 as revised in July 1996. The purpose of this report is to explain the new rule in the context of related industry experience and to provide practical guidance to licensees contemplating or implementing a shutdown. Because the regulatory process is still rapidly evolving, this report reflects only a current status of the acceptable methods and practices derived from a review of the current regulations, guidance documents and industry experience for decommissioning a nuclear power reactor. EPRI anticipates periodic updates of this document to incorporate various utility experiences with decommissioning, and also to reflect any regulatory changes. The report provides a summary of ongoing federal agency and industry activities and the regulatory requirements that are currently applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning action plan, providing industry experience and guidance for licensees considering or implementing permanent shutdown.

  20. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect (OSTI)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  1. DECOMMISSIONING OF NUCLEAR FACILITIES IN GERMANY - STATUS AT BMBF SITES

    SciTech Connect (OSTI)

    Papp, R.; Komorowski, K.

    2002-02-25

    In a period of approximately 40 years prior to 1994, the German Federal Government had spent about {approx} 15 billion to promote nuclear technology. These funds were earmarked for R&D projects as well as demonstration facilities which took up operation between 1960 and 1980. These BMBF (Federal Ministry for Research) facilities were mainly located at the sites of the federal research centers at Juelich and Karlsruhe (the research reactors AVR, FR2, FRJ-1, KNK, and MZFR, the pilot reprocessing plant WAK) but included also the pilot plants SNR-300 and THTR-300 for fast breeder and high-temperature gas-cooled reactor development, respectively, and finally the salt mine Asse which had been used for waste emplacement prior to conversion into an underground research laboratory. In the meantime, almost all of these facilities were shut down and are now in a state of decommissioning and dismantling. This is mainly due to the facts that R&D needs are satisfied or do not exist any more and that, secondly, the lack of political consensus led to the cancellation of advanced nuclear technology.

  2. DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE

    SciTech Connect (OSTI)

    U. Helwig, W. Boessert

    2003-02-27

    VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

  3. Two Approaches to Reactor Decommissioning: 10 CFR Part 50 License Termination and License Amendment, Lessons Learned from the Regulatory Perspective

    SciTech Connect (OSTI)

    Watson, B.A.; Buckley, J.T.; Craig, C.M.

    2006-07-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in decommissioning planning, conduct of decommissioning operations, volumes of low- level radioactive waste disposed, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated their 10 CFR Part 50 license. Maine Yankee elected to obtain a general license under 10 CFR Part 50 for the ISFSI and reduce the physical site footprint to the ISFSI through a series of license amendments. While the NRC regulations are flexible and allow different approaches to ISFSI licensing there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, public input resulted in the licensee entering into an agreement with a concerned citizen group and resulted in State legislation that significantly lowered the dose limit below the NRC radiological criteria of 25 mrem (0.25 mSv) per year (yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs) that were well below the NRC DCGL screening values. This contributed to a longer than anticipated period to obtain NRC approval of the Maine Yankee License Termination Plan (LTP). By employing the lessons learned from its first LTP submittal, which was not accepted by the NRC staff, Trojan was able to obtain approval of its revised LTP promptly. While both licensees provided final status survey reports (FSSRs) for NRC approval, the Trojan approach to decommissioning and data management allowed NRC to efficiently review FSS records and supporting documentation. Therefore, NRC was able to review Trojan's FSSR more efficiently than Maine Yankee's FSSR. This paper describes the regulatory impacts of the two different approaches to the decommissioning, the development of licensee required plans, decommissioning operations and records, the differences in licensing processes, and the lessons learned for improving the processes. (authors)

  4. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor Citation Details In-Document Search Title: Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its

  5. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    SciTech Connect (OSTI)

    Zakaria, Norasalwa Mustafa, Muhammad Khairul Ariff Anuar, Abul Adli Idris, Hairul Nizam Ba'an, Rohyiza

    2014-02-12

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  6. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  7. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  8. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  9. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect (OSTI)

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  10. Status of the NRC Decommissioning Program

    SciTech Connect (OSTI)

    Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

    2003-02-24

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

  11. INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-12-15

    5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

  12. LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-10-22

    5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

  13. H Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  14. C Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  15. N Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  16. F Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  18. A survey of commercially available manipulators, end-effectors, and delivery systems for reactor decommissioning activities

    SciTech Connect (OSTI)

    Henley, D.R.; Litka, T.J.

    1996-05-01

    Numerous nuclear facilities owned by the U.S. Department of Energy (DOE) are under consideration for decommissioning. Currently, there are no standardized, automated, remote systems designed to dismantle and thereby reduce the size of activated reactor components and vessels so that they can be packaged and shipped to disposal sites. Existing dismantling systems usually consist of customized, facility-specific tooling that has been developed to dismantle a specific reactor system. Such systems have a number of drawbacks. Generally, current systems cannot be disassembled, moved, and reused. Developing and deploying the tooling for current systems is expensive and time-consuming. In addition, the amount of manual work is significant because long-handled tools must be used; as a result, personnel are exposed to excessive radiation. A standardized, automated, remote system is therefore needed to deliver the tooling necessary to dismantle nuclear facilities at different locations. Because this system would be reusable, it would produce less waste. The system would also save money because of its universal design, and it would be more reliable than current systems.

  19. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  20. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  1. B Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as for the atomic bomb dropped on Nagasaki, Japan, to end World War II. The reactor was designed and built by the DuPont company based on experimental designs tested by Dr. ...

  2. Selecting the optimum decommissioning strategy for UKAEA`s redundant reactors

    SciTech Connect (OSTI)

    Wratten, T.J.; Nelson, R.L.

    1995-12-31

    The United Kingdom Atomic Energy Authority has built and operated a wide range of radioactive facilities since the late 1940s for the development of weapons, reactor systems, radioisotopes, fuel and reprocessing technology. Most of these plants are now closed and a major task for UKAEA Government Division (UKAEA-GD) is to manage their decommissioning safely and at minimum cost to the UK taxpayer. Safety and economic considerations generally require that some decommissioning work is undertaken immediately after closure, and for this work to be completed as quickly as possible. For a reactor, this normally involves the removal of irradiated fuel and coolant and the reduction of the radioactive inventory by removal of non-fixed items of plant and equipment. Beyond this, there are a large number of possible options for the timing and scope of decommissioning work. This paper describes how a methodology has been developed which uses option studies to establish the minimum discounted cost strategy for the decommissioning of major facilities, using as examples the wide range of reactors which form part of UKAEA-GD`s list of nuclear liabilities.

  3. USE OF CEMENTITIOUS MATERIALS FOR SRS REACTOR FACILITY IN-SITU DECOMMISSIONING - 11620

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-12-07

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes for filling the reactor vessels, and (2) a specialty grout mix to fill a selected portion of the P-Reactor Disassembly Basin. Details of the grout mixes designed for ISD of he SRS Reactor Disassembly Basins and below grade portions of the 105-Buildings was described elsewhere. Material property test results, placement strategies, full-scale production and delivery systems will also be described.

  4. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  5. STATUS OF THE NRC'S DECOMMISSIONING PROGRAM

    SciTech Connect (OSTI)

    Orlando, D. A.; Camper, L. W.; Buckley, J.

    2002-02-25

    On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

  6. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  7. Decommissioning of the secondary containment of the steam generating heavy water reactor at UKAEA-Winfrith

    SciTech Connect (OSTI)

    Miller, Keith; Cornell, Rowland; Parkinson, Steve; McIntyre, Kevin; Staples, Andy

    2007-07-01

    Available in abstract form only. Full text of publication follows: The Winfrith SGHWR was a prototype nuclear power plant operated for 23 years by the United Kingdom Atomic Energy Authority (UKAEA) until 1990 when it was shut down permanently. The current Stage 1 decommissioning contract is part of a multi-stage strategy. It involves the removal of all the ancillary plant and equipment in the secondary containment and non-containment areas ahead of a series of contracts for the decommissioning of the primary containment, the reactor core and demolition of the building and all remaining facilities. As an outcome of a competitive tending process, the Stage 1 decommissioning contract was awarded to NUKEM with operations commencing in April 2005. The decommissioning processes involved with these plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium-contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations and establishing effective containments within a larger secondary containment structure. Disposal of these wastes in a timely and cost-effective manner is a major challenge facing the decommissioning team and has required the development of a highly efficient means of packing the resultant materials into mainly one-third height ISO containers for disposal as LLW. Details of the quantities of LLW and exempt wastes handled during this process will be given with a commentary about the difficulty in segregating these two waste streams efficiently. (authors)

  8. NEW MATERIALS DEVELOPED TO MEET REGULATORY AND TECHNICAL REQUIREMENTS ASSOCIATED WITH IN-SITU DECOMMISSIONING OF NUCLEAR REACTORS AND ASSOCIATED FACILITIES

    SciTech Connect (OSTI)

    Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

    2012-01-18

    For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m{sup 3} (250,000 yd{sup 3}) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker exposure to radioactive or hazardous contamination exceeding Principal Threat Source Material levels; (2) Minimize human and ecological exposure to unacceptable risk associated with radiological and hazardous constituents that are or may be present; (3) Prevent to the extent practicable the migration of radioactive or hazardous contaminants from the closed facility to the groundwater so that concentrations in groundwater do not exceed regulatory standards; (4) Eliminate or control all routes of human exposure to radiological and chemical contamination; and (5) Prevent animal intruder exposure to radioactive and hazardous contamination.

  9. Decommissioning of the secondary containment of the steam generating heavy water reactor at UKAEA Winfrith

    SciTech Connect (OSTI)

    Miller, K.D.; Cornell, R.M.; Parkinson, S.J.; McIntyre, K.; Staples, A.

    2007-07-01

    The Winfrith SGHWR was a prototype nuclear power plant operated for 23 years by the United Kingdom Atomic Energy Authority (UKAEA) until 1990 when it was shut down permanently. The current Stage 1 decommissioning contract is part of a multi-stage strategy. It involves the removal of all the ancillary plant and equipment in the secondary containment and non-containment areas ahead of a series of contracts for the decommissioning of the primary containment, the reactor core and demolition of the building and ail remaining facilities. As an outcome of a competitive tending process, the Stage 1 decommissioning contract was awarded to NUKEM with operations commencing in April 2005. The decommissioning processes involved with these plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium-contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations and establishing effective containments within a larger secondary containment structure. Disposal of these wastes in a timely and cost-effective manner is a major challenge facing the decommissioning team and has required the development of a highly efficient means of packing the resultant materials into mainly one-third height IS0 containers for disposal as LLW. Details of the quantities of LLW and exempt wastes handled during this process will be given with a commentary about the difficulty in segregating these two waste streams efficiently. The paper sets out to demonstrate the considerable progress that has been made with these challenging decommissioning operations at the SGHWR plant and to highlight some of the techniques and processes that have contributed to the overall success of the process. The overall management and control of safety during ail aspects of this challenging contract are major features of the paper, greatly assisted by the adoption from the outset of a non-adversarial team working approach between client and contractor. This has greatly assisted in developing safe and cost-effective solutions to a number of problems that have arisen during the programme, demonstrating the worth of adopting this co-operative approach for mutual benefit. (authors)

  10. DOE - Office of Legacy Management -- West Milton Reactor Site...

    Office of Legacy Management (LM)

    Milton Reactor Site - NY 21 FUSRAP Considered Sites Site: West Milton Reactor Site (NY.21) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

  11. EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

  12. Decontamination and decommissioning of building 889 at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Dorr, K.A.; Hickman, M.E.; Henderson, B.J.; Sexton, R.J.

    1997-09-01

    At the Rocky Flats site, the building 889 decommissioning project was the first large-scale decommissioning project of a radiologically contaminated facility at Rocky Flats. The scope consisted of removal of all equipment and utility systems from the interior of the building, decontamination of interior building surfaces, and the demolition of the facility to ground level. Details of the project management plan, including schedule, engineering, cost, characterization methodologies, decontamination techniques, radiological control requirements, and demolition methods, are provided in this article. 1 fig., 3 tabs.

  13. Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining

    SciTech Connect (OSTI)

    J. A. Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

    2005-09-01

    The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

  14. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    SciTech Connect (OSTI)

    Weigl, M. [Karlsruhe Institute of Technology, Projekttraeger Karlsruhe (PTKA-WTE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  16. Challenges with Final Status Surveys at a Large Decommissioning Site - 13417

    SciTech Connect (OSTI)

    Downey, Heath; Collopy, Peter; Shephard, Eugene; Walter, Nelson; Conant, John

    2013-07-01

    As part of decommissioning a former nuclear fuel manufacturing site, one of the crucial final steps is to conduct Final Status Surveys (FSS) in order to demonstrate compliance with the release criteria. At this decommissioning site, the area for FSS was about 100 hectares (248 acres) and included varying terrain, wooded areas, ponds, excavations, buildings and a brook. The challenges in performing the FSS included determining location, identifying FSS units, logging gamma walkover survey data, determining sample locations, managing water in excavations, and diverting water in the brook. The approaches taken to overcome these challenges will be presented in the paper. The paper will present and discuss lessons learned that will aid others in the FSS process. (authors)

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  18. Groundwater Monitoring and Control Before Decommissioning of the Research Reactor VVR-S from Magurele-Bucharest

    SciTech Connect (OSTI)

    Dragusin, Mitica

    2008-01-15

    The research reactor type VVR-S (tank type, water is cooler, moderator and reflector, thermal power- 2 MW, thermal energy- 9. 52 GW d) was put into service in July 1957 and, in December 1997 was shout down. In 2002, Romanian Government decided to put the research reactor in the permanent shut-down in order to start the decommissioning. This nuclear facility was used in nuclear research and radioisotope production for 40 years, without events, incidents or accidents. Within the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: Radioactive Waste Treatment Plant, Tandem Van der Graaf heavy ions accelerator, Cyclotron, Industrial Irradiator, Radioisotope Production Center. The objectives of this work were dedicated on the water underground analyses described in the following context: - presentation of the approaches in planning the number of drillings, vertical soil profiles (characteristics, analyses, direction of the flow of underground water, uncertainties in measurements); - presentation of the instrumentation used in analyses of water, soil and vegetation samples - analyses and final conclusions on results of the measurements; - comparison of the results of measurements on underground water from drillings with the measurements results on samples from the town and the system of drinking water - supplied from the second level of underground water. According to the analysis, in general, no values higher than the Minimum Detectable Activity were detected in water samples (MDA) for Pb{sup 212}, Bi{sup 214}, Pb{sup 214}, Ac{sup 228}, but situated under values foreseen in drinking water. Distribution of Uranium As results of the Uranium determination, values higher than 0,004 mg/l (4 ppb) were detected, values that represent the average contents in the underground water. The higher values, 2-3 times higher than background, were detected in the water from the drillings F15, F12, F5, F13, drillings located between RWTP (Radioactive Waste Treatment Plant) - the 300 m{sup 3} tanks and the Spent Filters Storage (SFS). At south of this area, on the leaking direction of the underground water layer, in the drillings F1, F2, F3, F18 and at east, in F6, F7, the natural Uranium values are within the background for the underground-water. Distribution of Radon For the Radon determination with RAD 7 equipment, water samples were taken from the same piezo-metrical drilling, 2 or 4 times during of six months period, and then, the average contents were calculated, which varied between 0,35 - 2,1 Bq/l. The values higher than 1,1 -1,2 Bq/l were detected in the water taken from the drillings located in the northern part (F10, F11) and in the eastern part (F6, F8) of the Institute fences (around of the radioactive waste storage facilities). The concentrations of 0,3 - 0,5 Bq/l are in the underground-water layer 'intercepted' by the piezo-metrical drillings (F1, F2, F3) located near the Nuclear Reactor. Concentration of heavy metals: 0.04-0.08 mg/l Pb in F5, F14, F7, F8 exceeding MCA-Maximum Admissible Concentration (0.01 mg/l) for Pb, and for Zn in F5, F7, F8, F14 are 0.2-0.5 mg/l situated under MCA , and 0.18 mg/l in F18, in accordance with tendency of decreasing of concentration of contaminants. After 50 years of deploying nuclear activities on the site the underground water quality is in very good condition. Taking into consideration the direction of the underground water flow, it results that, only in the area of underground pipe, around of the research reactor and radioactive waste treatment plant, the quality of water is influenced, and remediation actions are not necessary. Based on measurements executed in F18, the water quality is the same with any other part of the region. During the decommissioning of the Research Reactor, the samples from 18 drillings will be analysed monthly, and the contents of the heavy metals, Pb and Zn, will be monitored carefully, together with all the factors: air, soil, vegetation, subsoil, water surface and underground water. A great attention will be paid to the dismantlement of the underground structures, the 30 m{sup 3} tank, that collects all the liquid radioactive waste from the reactor, the pipes that connects this tank to the other two 300 m{sup 3} tanks, from RWTP, the ventilation ducts between the Spent Filters Storage and reactor's stack, in order to prevent contamination of surface and underground water. Engineering Absorbent Barriers will be used both for hydrophilic substances and for hydrophobic substances, tents will be used for preventing the spread of possible contaminants from the pipes and tanks, owing to the precipitation or wind, and the tanks and pipes will be drained to eliminate the spills. Since we are dealing with a multinuclear facility site, the on site and off site Monitoring Program of Institute will be properly upgraded, taking into account the values of the derived emission limit approved by Regulatory Body, before, during and after the completion of the works with impact on underground water. In another work will be presented radiological map of land associated of decommissioning project (on surface, at 0.15 m and 0.30 m in depth of soil) and estimation of migration rate in soil up to ground water level. Applying these measures, taking account of the radiological status at the beginning of the project, will mean savings and a good protection of the environment in completing the decommissioning project.

  19. DECOMMISSIONING CHALLENGES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    SciTech Connect (OSTI)

    Dorr, K. A.; Hoover, J.

    2002-02-25

    This paper presents a discussion of the demolition of the Building 788 cluster at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The Building 788 Cluster was a Resource Conservation and Recovery Act (RCRA) permitted storage facilities and ancillary structures. Topics covered include the methods employed for Project Planning, Regulatory Compliance, Waste Management, Hazard Identification, Radiological Controls, Risk Management, Field Implementation, and Cost Schedule control, and Lessons Learned and Project Closeout.

  20. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  3. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  4. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  5. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  6. NMSS handbook for decommissioning fuel cycle and materials licensees

    SciTech Connect (OSTI)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  7. Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor

    SciTech Connect (OSTI)

    Abramenkova, G.; Klavins, M.; Abramenkovs, A.

    2008-01-15

    The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification temperature up to 83 deg. C. Experimental data shows, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas. Significant reduction of viscosity is an important factor, which facilitates the fulfillment all gaps and cavities with the mortar during conditioning of solid radioactive wastes in containers. On the other hand, increase water ratio from 0.45 up to 0.65 decreases mechanical stability of water-cement samples from 23 N/mm{sup 2} to the 12 N/mm{sup 2}. It means that water-cement bulk stability significantly decreases with increasing of water content. Technologically is important to increase the tritiated water content in container with cemented radioactive wastes. It gives a possibility to increase the fulfillment of container with radioactive materials. On the other hand, additional water significantly reduces bulk stability of containers with cemented radioactive wastes, which can result in disintegration of radioactive wastes packages in repository during 300 years. Taking into account the experimental results, it is not recommended to exceed the water/cement ratio more than 0.60. Tritium and Cs{sup 137} leakage tests show, that radionuclides release curves has a complicate structure. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium release in water phase. This is unpleasant factor, which significantly decreases the safety of disposed radioactive wastes. Despite the positive impact on solidification temperature drop, the addition of fly ash to the cement-water mortar is not recommended in case of cementation of radionuclides in concrete containers. In conclusion: The cementation processes of solid radioactive wastes in concrete containers were investigated. The influence of additives on cementation processes was studied. It was shown, that the increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  9. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  10. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  11. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  12. Decommissioning handbook

    SciTech Connect (OSTI)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  14. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  16. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  17. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.

    1994-09-01

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

  18. Deactivation & Decommissioning (D&D) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation & Decommissioning (D&D) Deactivation & Decommissioning (D&D) American Recovery and Reinvestment Act workers at the Savannah River Site imploded the 455-foot-tall K Reactor Cooling Tower in May 2010. The project was completed safely and contributed 36.5 square miles to the site's total footprint reduction. On August 3, 2013, contractors and the Oak Ridge Office of Environmental Management successfully completed the explosive demolition of the K-1206-F Fire Water

  19. Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex

    SciTech Connect (OSTI)

    A. B. Culp

    2006-10-01

    Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

  20. Characterization of radioactive aerosols generated during the demolition of the concrete bioshield of a reactor undergoing decommissioning

    SciTech Connect (OSTI)

    Landolt, R.R.

    1996-12-31

    Particle size distribution studies were performed on aerosols generated during the cutting of the core support floor of the Ft. St. Vrain reactor which is undergoing decommissioning. The activity median aerodynamic diameter (AMAD) for Co-60 in the aerosol was found to be considerably larger than the currently used 1-micron default value and in one case larger than the newly recommended 5-micron reference value for occupational exposure. The reverse was true for Cs-137 where the AMAD was found to be in the sub-micron range possibly caused by high solubility of the radiocesium into the water spray used in the cutting operation.

  1. DOE - Office of Legacy Management -- SiteA

    Office of Legacy Management (LM)

    Illinois Site A/Plot M Decommissioned Reactor Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2013 Inspection and Annual Site Status Report for the Site A/Plot M, Cook County, Illinois Decontamination and Decommissioning Program Site Annual Monitoring Report Environmental Monitoring Program at Site A and Plot M, Palos Forest Preserve, Cook County, Illinois Long-Term Surveillance and Maintenance Plan for Site A/Plot M, Illinois,Decommissioned

  2. EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

  3. DOE - Office of Legacy Management -- Reactor Site - Fort Belvoir...

    Office of Legacy Management (LM)

    VA.0-02-1 Site Disposition: Eliminated - Referred to DOD VA.0-02-1 Radioactive Materials Handled: Reactor fuel Primary Radioactive Materials Handled: Reactor Fuel Radiological ...

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  5. Idaho Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho Cleanup Project (ICP) successfully closed out a $796 million nuclear facility decontamination and decommissioning project. The work was completed about $440 million under cost.

  6. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S.

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  7. Fukushima Daiichi Unit 1 Accident Progression Uncertainty Analysis and Implications for Decommissioning of Fukushima Reactors - Volume I.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.

    2016-01-01

    Sandia National Laboratories (SNL) has conducted an uncertainty analysis (UA) on the Fukushima Daiichi unit (1F1) accident progression with the MELCOR code. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). That study focused on reconstructing the accident progressions, as postulated by the limited plant data. This work was focused evaluation of uncertainty in core damage progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, reactor damage state, fraction of intact fuel, vessel lower head failure). The primary intent of this study was to characterize the range of predicted damage states in the 1F1 reactor considering state of knowledge uncertainties associated with MELCOR modeling of core damage progression and to generate information that may be useful in informing the decommissioning activities that will be employed to defuel the damaged reactors at the Fukushima Daiichi Nuclear Power Plant. Additionally, core damage progression variability inherent in MELCOR modeling numerics is investigated.

  8. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  9. Lessons Learned from the Application of Bulk Characterization to Individual Containers on the Brookhaven Graphite Research Reactor Decommissioning Project at Brookhaven National Laboratory - 12056

    SciTech Connect (OSTI)

    Kneitel, Terri; Rocco, Diane

    2012-07-01

    When conducting environmental cleanup or decommissioning projects, characterization of the material to be removed is often performed when the material is in-situ. The actual demolition or excavation and removal of the material can result in individual containers that vary significantly from the original bulk characterization profile. This variance, if not detected, can result in individual containers exceeding Department of Transportation regulations or waste disposal site acceptance criteria. Bulk waste characterization processes were performed to initially characterize the Brookhaven Graphite Research Reactor (BGRR) graphite pile and this information was utilized to characterize all of the containers of graphite. When the last waste container was generated containing graphite dust from the bottom of the pile, but no solid graphite blocks, the material contents were significantly different in composition from the bulk waste characterization. This error resulted in exceedance of the disposal site waste acceptance criteria. Brookhaven Science Associates initiated an in-depth investigation to identify the root causes of this failure and to develop appropriate corrective actions. The lessons learned at BNL have applicability to other cleanup and demolition projects which characterize their wastes in bulk or in-situ and then extend that characterization to individual containers. (authors)

  10. Decommissioning Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioning Documents PDF icon Decommissioning Documents More Documents & Publications Decommissioning Benchmarking Study Final Report Decommissioning Handbook ...

  11. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    SciTech Connect (OSTI)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  12. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  13. Evaluation of Potential Locations for Siting Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Proposed Hampton Roads Area Sites for Using Small Modular Reactors to Support Federal Clean Energy Goals Population Sensitivity Evaluation of Two Candidate Locations ...

  14. D and DR Reactors - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  15. DOE Reactor Site Returns To Green Field Conditions | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration DOE Reactor Site Returns To Green Field Conditions October 18, 2006 First Unrestricted Release Of A Nuclear Power Site On Wednesday, October 18, 2006, the U.S. Naval Nuclear Propulsion Program commemorates the first-ever chemical and radiological release of a U.S. nuclear power reactor site for unrestricted future use - the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut. The 10:30 a.m. ceremony, held at the DOE Windsor Site off Prospect Hill

  16. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    SciTech Connect (OSTI)

    Weiss, A. J.

    1988-02-01

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  17. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    SciTech Connect (OSTI)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

  18. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    SciTech Connect (OSTI)

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs.

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  1. Portsmouth Decontamination & Decommissioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decontamination & Decommissioning Portsmouth Decontamination & Decommissioning The Decontamination & Decommissioning (D&D) Program at the Portsmouth Site addresses potential future demolition and disposal of approximately 415 facilities (including buildings, utilities, systems, ponds and infrastructure units) currently identified on the Portsmouth site. This includes the three Gaseous Diffusion Process buildings that housed the process equipment and span the size of 158 football

  2. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submit Roadrunner supercomputer: Rest in pieces Decommissioning a classified computer into hardware "mulch." May 1, 2013 The Roadrunner supercomputer broke the petaflop...

  3. Decommissioning Handbook

    Broader source: Energy.gov [DOE]

    The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioing...

  4. Decommissioning Handbook

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  5. Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) |

    Energy Savers [EERE]

    Department of Energy Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) As the DOE complex sites

  6. Missouri University Research Reactor Site Fact Sheet

    Office of Legacy Management (LM)

    The Japanese agencies-Central Research Institute for the Electric Power Industries of ... The drums remained in storage at the MURR site pending certifcation of acceptability and ...

  7. DOE/EA-1519: Environmental Assessment for the Proposed Decontamination and Decommissioning of the Zero Power Reactors (Building 315) at Argonne National Laboratory (April 2005)

    SciTech Connect (OSTI)

    N /A

    2005-04-30

    The U.S. Department of Energy (DOE) is proposing to decontaminate and decommission the Zero Power Reactor (ZPR) facilities located in Building 315 at Argonne National Laboratory (ANL) in Argonne, Illinois (Figure 1-1). The proposed action would occur in two phases: ZPR-6 would be the focus of Phase I and ZPR-9 would be the focus of Phase II. DOE has prepared this environmental assessment (EA) in accordance with the National Environmental Policy Act (NEPA), 42 U.S.C. {section} 4321 et seq., and applicable regulations (Title 40, Code of Federal Regulations [CFR] Parts 1500-1508 and 10 CFR Part 1021). This section describes the reactors and their current status.

  8. Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

  9. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    SciTech Connect (OSTI)

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  10. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan, T.

    2014-09-24

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  11. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  12. Supercomputer decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputer decommissioning Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Roadrunner supercomputer: Rest in pieces Decommissioning a classified computer into hardware "mulch." May 1, 2013 The Roadrunner supercomputer broke the petaflop barrier The Roadrunner supercomputer broke the petaflop barrier. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email

  13. Site specific health and safety plan, 233-S decontamination and decommissioning

    SciTech Connect (OSTI)

    J. E. Fasso

    1997-12-31

    The deactivated 233-S Plutonium Concentration Facility, located in the 200 Area at the Hanford Site, is the subject of this Health and Safety Plan.The 233-S Facility operated from January 1952 until July 1967 at which time the building entered the U.S. Department of Energy`s Surplus Facility Management Program as a retired facility. The facility has since undergone severe degradation due to exposure to extreme weather conditions. Additionally, the weather caused existing cracks in concrete structures of the building to lengthen, thereby increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred causing portions of the facility to separate from the main building structure, increasing the potential for release of radioactive material to the environment. An expedited response is proposed to remove this threat and ensure protection of human health and the environment. On this premise it is intended that the 233-S Facility removal action be performed as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Time-Critical Project being conducted under the Pilot Hanford Environmental Restoration (ER) Initiative

  14. Hanford Site production reactor data pertinent to actinide burning

    SciTech Connect (OSTI)

    Toffer, H.; Roblyer, S.P.

    1993-06-01

    During the 44 years of operation, irradiation of special actinides occurred in the Hanford Site production reactors. The data derived from such irradiations could be of value to advanced actinide burners having a thermal neutron spectrum. Recently, such information has become unclassified and, therefore available for public release. This data is discussed in this report.

  15. Technology Requirements for In-Situ Decommissioning Workshop Report |

    Energy Savers [EERE]

    Department of Energy Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of

  16. Brookhaven Graphite Research Reactor Workshop | Department of Energy

    Energy Savers [EERE]

    Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Brookhaven Graphite Research Reactor Workshop Brookhaven Graphite Research Reactor Workshop The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II. Construction began in 1947 and the reactor started operating in August 1950. In the next 18 years, an estimated 25,000 scientific experiments were

  17. Demo of below ground site that once held the Plutonium Recycle Test Reactor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Hanford | Department of Energy Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford Addthis Description Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford

  18. Implementing 'Continuous Improvement' in the U.S. Nuclear Regulatory Commission's Decommissioning Program

    SciTech Connect (OSTI)

    Orlando, D. A.; Buckley, J. T.; Johnson, R. L.; Gillen, D. M.

    2006-07-01

    The United States Nuclear Regulatory Commission's (US NRC's) comprehensive decommissioning program encompasses the decommissioning of all US NRC licensed facilities, ranging from the termination of routine licenses for sealed sources, to the closure of complex materials sites and nuclear power reactor facilities. Of the approximately 200 materials licenses that are terminated each year, most are routine and require little, if any, remediation to meet the US NRC unrestricted release criteria. However, some present technical and policy challenges that require large expenditures of resources, including a few complex materials sites that have requested license termination under the restricted-use provisions of 10 CFR 20.1403. Fiscal constraints to reduce budgeted resources in the decommissioning program, as well as concerns over the time to complete the decommissioning process have led to actions to improve the program and use resources more efficiently. In addition, the US NRC's Strategic Plan requires efforts to identify and implement improvements to US NRC programs in order to improve efficiency, effectiveness, timeliness, and openness, of the US NRC's activities, while maintaining the necessary focus on safety. Decommissioning regulations, and more recently the analysis of several issues associated with implementing those regulations, also have been significant catalysts for improvements in the decommissioning program. Actions in response to these catalysts have resulted in a program focused on the management of complex sites in a comprehensive, consistent, and risk-informed manner, as opposed to the past practice of focusing on sites deemed to be problematic. This paper describes the current status of the decommissioning of US NRC-licensed nuclear facilities, including an overview of recent decommissioning project completion efforts. It provides a detailed summary of past, current, and future improvements in the US NRC decommissioning program including the significant improvements implemented since 2000, and ongoing improvement efforts. Finally, the paper discusses how these efforts have been applied at specific sites and have contributed to the improvement in the decommissioning process at nuclear facilities, typically resulting in a reduction in the length of time needed for the decommissioning project or the reduction in the amount of US NRC and licensee resources necessary to complete a project. (authors)

  19. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    SciTech Connect (OSTI)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  20. Deactivation and Decommissioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Deactivation and Decommissioning Deactivation and Decommissioning TA-21-286 being demolished TA-21-286 being demolished The EM-LA Deactivation and Decommissioning (D&D) Team is dedicated to demolishing, deactivating and disposing material from historical buildings at Los Alamos National Laboratory. Current workscope is focused on Technical Area 21 (TA-21), one of the early sites of the Manhattan Project and Cold War-era work conducted at LANL. TA-21 was the location of the

  1. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  2. Initiating Events for Multi-Reactor Plant Sites

    SciTech Connect (OSTI)

    Muhlheim, Michael David; Flanagan, George F.; Poore, III, Willis P.

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  3. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  4. U.S.Statements on International Fusion Reactor (ITER) Siting Decision |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S.Statements on International Fusion Reactor (ITER) Siting Decision U.S.Statements on International Fusion Reactor (ITER) Siting Decision June 28, 2005 - 1:45pm Addthis WASHINGTON, DC - Today in Moscow, Russia, the ministers representing the six ITER parties, including Dr. Raymond L. Orbach, Director of the U.S. Department of Energy's Office of Science, announced the ITER international fusion reactor will be located at the EU site in Cadarache, France. Below are

  5. Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting

    Broader source: Energy.gov [DOE]

    Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting ORNL/TM-2014/300 August 2014

  6. K-East and K-West Reactors - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  7. Decommissioning Plan RM

    Broader source: Energy.gov [DOE]

    The Decommissioning Plan Review (DPR) Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the decommissioning plan prior to approval of the associated CD.

  8. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy

    Broader source: Energy.gov [DOE]

    Secretary Chu to deliver remarks at new nuclear reactors site in Waynesboro, tour nuclear energy innovation hub in Oak Ridge

  9. Deactivation, Decontamination and Decommissioning Project Summaries

    SciTech Connect (OSTI)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  10. Hanford Site Inspections Give Four Cocooned Reactors Clean Bill of Health

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Workers at the Hanford Site took a step back in time as they removed welds from the doors and entered four of the site’s cocooned reactors for required inspections.

  11. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

  12. Site Risks:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - IM: BeckyLaura) o Hanford site traffic status update: Weather - who decides the roads ... assumptions? o Waste processing Decommissioning and Decontamination workers - ...

  13. DOI Designates B Reactor at DOE's Hanford Site as a National Historic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landmark | Department of Energy DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark August 25, 2008 - 3:20pm Addthis DOE to offer regular public tours in 2009 WASHINGTON, DC - U.S. Department of the Interior (DOI) Deputy Secretary Lynn Scarlett and U.S. Department of Energy (DOE) Acting Deputy Secretary Jeffrey F. Kupfer today announced the designation of DOE's B Reactor as a National

  14. Interim Safe Storage of Plutonium Production Reactors at the US DOE Hanford Site - 13438

    SciTech Connect (OSTI)

    Schilperoort, Daryl L.; Faulk, Darrin

    2013-07-01

    Nine plutonium production reactors located on DOE's Hanford Site are being placed into an Interim Safe Storage (ISS) period that extends to 2068. The Environmental Impact Statement (EIS) for ISS [1] was completed in 1993 and proposed a 75-year storage period that began when the EIS was finalized. Remote electronic monitoring of the temperature and water level alarms inside the safe storage enclosure (SSE) with visual inspection inside the SSE every 5 years are the only planned operational activities during this ISS period. At the end of the ISS period, the reactor cores will be removed intact and buried in a landfill on the Hanford Site. The ISS period allows for radioactive decay of isotopes, primarily Co-60 and Cs-137, to reduce the dose exposure during disposal of the reactor cores. Six of the nine reactors have been placed into ISS by having an SSE constructed around the reactor core. (authors)

  15. Deactivation & Decommissioning Knowledge Management Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge ...

  16. Decommissioning Benchmarking Study Final Report

    Broader source: Energy.gov [DOE]

    DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

  17. Savannah River Site Removes Dome, Opening Reactor for Recovery Act

    Office of Environmental Management (EM)

    Rating | Department of Energy Savannah River Site Liquid Waste Contractor Earns Excellent Performance Rating Savannah River Site Liquid Waste Contractor Earns Excellent Performance Rating February 11, 2016 - 12:35pm Addthis SRR workers oversaw placement of nearly 6,100 cubic yards of grout into Tank 16 from June to September 2015, achieving operational closure ahead of the October 2015 scheduled deadline, and making it the seventh tank closed at SRS. SRR workers oversaw placement of nearly

  18. 105-H Reactor Interim Safe Storage Project Final Report

    SciTech Connect (OSTI)

    E.G. Ison

    2008-11-08

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  19. Environmental Impact Assessment (EIA) Process of V1 NPP Decommissioning

    SciTech Connect (OSTI)

    Matejovic, Igor; Polak, Vincent

    2007-07-01

    Through the adoption of Governmental Resolution No. 801/99 the Slovak Republic undertook a commitment to shutdown units 1 and 2 of Jaslovske Bohunice V 1 NPP (WWER 230 reactor type) in 2006 and 2008 respectively. Therefore the more intensive preparation of a decommissioning documentation has been commenced. Namely, the VI NPP Conceptual Decommissioning Plan and subsequently the Environmental Impact Assessment Report of VI NPP Decommissioning were developed. Thus, the standard environmental impact assessment process was performed and the most suitable alternative of V1 NPP decommissioning was selected as a basis for development of further decommissioning documents. The status and main results of the environmental impact assessment process and EIA report are discussed in more detail in this paper. (authors)

  20. Chu Visits Site of America's First New Nuclear Reactor in Three Decades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chu Visits Site of America's First New Nuclear Reactor in Three Decades Chu Visits Site of America's First New Nuclear Reactor in Three Decades February 15, 2012 - 12:40pm Addthis WASHINGTON, D.C. - Just two days after the Department of Energy requested more than $770 million for nuclear energy in 2013, U.S. Secretary of Energy Steven Chu visited the Vogtle nuclear power plant in Waynesboro, Georgia and Oak Ridge National Laboratory to highlight the steps the Obama

  1. Evaluation of Proposed Hampton Roads Area Sites for Using Small Modular Reactors to Support Federal Clean Energy Goals

    Broader source: Energy.gov [DOE]

    Evaluation of Proposed Hampton Roads Area Sites for Using Small Modular Reactors to Support Federal Clean Energy Goals ORNL/LTR-2014/155 April 2014

  2. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    Broader source: Energy.gov [DOE]

    Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals ORNL/TM-2014/433 September 2014

  3. Geologic setting of the New Production Reactor within the Savannah River Site

    SciTech Connect (OSTI)

    Price, V.; Fallaw, W.C.; McKinney, J.B.

    1991-12-31

    The geology and hydrology of the reference New Production Reactor (NPR) site at Savannah River Site (SRS) have been summarized using the available information from the NPR site and areas adjacent to the site, particularly the away from reactor spent fuel storage site (AFR site). Lithologic and geophysical logs from wells drilled near the NPR site do not indicate any faults in the upper several hundred feet of the Coastal Plain sediments. However, the Pen Branch Fault is located about 1 mile south of the site and extends into the upper 100 ft of the Coastal Plain sequence. Subsurface voids, resulting from the dissolution of calcareous portions of the sediments, may be present within 200 ft of the surface at the NPR site. The water table is located within 30 to 70 ft of the surface. The NPR site is located on a groundwater divide, and groundwater flow for the shallowest hydraulic zones is predominantly toward local streams. Groundwater flow in deeper Tertiary sediments is north to Upper Three Runs Creek or west to the Savannah River Swamp. Groundwater flow in the Cretaceous sediments is west to the Savannah River.

  4. Safety of Department of Energy-Owned Nuclear Reactors

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23

    To establish reactor safety program requirements assure that the safety of each Department of Energy-owned (DOE-owned) reactor is properly analyzed, evaluated, documented, and approved by DOE; and reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate protection for health and safety and will be in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. Cancels Chap. 6 of DOE O 5480.1A. Paragraphs 7b(3), 7e(3) & 8c canceled by DOE O 5480.23 & canceled by DOE N 251.4 of 9-29-95.

  5. The 100K West Reactor Water Treatment Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DOE) and CH2M HILL Plateau Remediation Company are using American Recovery and Reinvestment Act (Recovery Act) funding to accelerate decommissioning and demolition (D&D) work at the 100K West Reactor Water Treatment Facilities at the Hanford Site in southeast Washington State. The K Area spans 535 acres and includes Hanford's K East and K West reactors, adjacent fuel storage basins, and several facilities and waste sites that supported reactor operations from the 1950s to the 1970s. The

  6. STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Foss, D. L.; Stevens, J. L.; Gerdeman, F. W.

    2002-02-25

    Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions.

  7. Portsmouth Decommissioning and Decontamination Project Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination Project Director's Final Findings and Order...

  8. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  9. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

  10. Idaho Site Advances Recovery Act Cleanup after Inventing Effective

    Office of Environmental Management (EM)

    Treatment | Department of Energy Advances Recovery Act Cleanup after Inventing Effective Treatment Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment process. The American Recovery and Reinvestment Act invested $70 million in the project, which employs 130 workers. DOE

  11. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed; Connor, Donna; Keighley, Debbie

    2013-07-01

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  12. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    SciTech Connect (OSTI)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-07-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m{sup 2}, concrete volume 12,500 m{sup 3}, and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also specific breathing and cooling air systems have been provided to allow the operators to carry out the decommissioning tasks in acceptable working conditions. (authors)

  13. Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361

    SciTech Connect (OSTI)

    Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike; Daniska, Vladimir

    2013-07-01

    The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

  14. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    SciTech Connect (OSTI)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires that contaminated components either be: (1) decontaminated to restricted or unrestricted release levels or (2) packaged and shipped to an authorized disposal site. This study considers unrestricted release only. The new decommissioning criteria of July 1997 are too recent for this study to include a cost analysis of the restricted release option, which is now allowed under these new criteria. The costs of decommissioning facility components are generally estimated to be in the range of $140 to $27,000, depending on the type of component, the type and amount of radioactive contamination, the remediation options chosen, and the quantity of radioactive waste generated from decommissioning operations. Estimated costs for decommissioning the example laboratories range from $130,000 to $205,000, assuming aggressive low-level waste (LLW) volume reduction. If only minimal LLW volume reduction is employed, decommissioning costs range from $150,000 to $270,000 for these laboratories. On the basis of estimated decommissioning costs for facility components, the costs of decommissioning typical non-fuel-cycle laboratory facilities are estimated to range from about $25,000 for the decommissioning of a small room containing one or two fume hoods to more than $1 million for the decommissioning of an industrial plant containing several laboratories in which radiochemicals and sealed radioactive sources are prepared. For the reference sites of this study, the basic decommissioning alternatives are: (1) site stabilization followed by long-term care and (2) removal of the waste or contaminated soil to an authorized disposal site. Cost estimates made for decommissioning three reference sites range from about $130,000 for the removal of a contaminated drain line and hold-up tank to more than $23 million for the removal of a tailings pile that contains radioactive residue from ore-processing operations in which tin slag is processed for the recovery of rare metals. Total occupational radiation doses generally range from 0.00007 person-rem to 13 person-rem for decommissioning the laboratory facilities of this study. The results of this study are: (1) decommissioning costs have continued to increase since publication of the original study, due primarily to rapidly escalating costs for disposal of radioactive wastes at the available LLW burial sites; (2) these swiftly increasing LLW disposal costs provide a significant incentive for NRC licensees to effectively manage LLW generation, treatment, and disposal from decommissioning activities; and (3) decommissioning costs have increased on the order of 34% to 66% since the Final Decommissioning Rule was issued in 1988, due in large part to the 3.5-fold increase in burial costs.

  15. Decommissioning Implementation Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-02

    The Department of Energy (DOE) faces an enormous task in the disposition of the nation's excess facilities. Many of these facilities are large and complex and contain potentially hazardous substances. As DOE facilities complete mission operations and are declared excess, they pass into a transition phase which ultimately prepares them for disposition. The disposition phase of a facility's life-cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  16. Draft environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R

    SciTech Connect (OSTI)

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.

  17. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 1, Summary

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public.

  18. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  19. Recordkeeping in the decommissioning process

    SciTech Connect (OSTI)

    Boing, L. E.

    2000-02-29

    In the US, there are two sets of key decommissioning records clearly identified -- those that are essential for planning the D and D of a facility and then those that are the result of the decommissioning process itself. In some cases, the regulatory authorities require and in others advise the licensees of the records that may be useful or which are required to be kept from the decommissioning. In the remainder of the paper, the author attempts to highlight some important aspects of decommissioning recordkeeping.

  20. EVALUATION OF ACTIVATION PRODUCTS IN REMAINING IN REMAINING K-, L- AND C-REACTOR STRUCTURES

    SciTech Connect (OSTI)

    Vinson, D.; Webb, R.

    2010-09-30

    An analytic model and calculational methodology was previously developed for P-reactor and R-reactor to quantify the radioisotopes present in Savannah River Site (SRS) reactor tanks and the surrounding structural materials as a result of neutron activation of the materials during reactor operation. That methodology has been extended to K-reactor, L-reactor, and C-reactor. The analysis was performed to provide a best-estimate source term input to the Performance Assessment for an in-situ disposition strategy by Site Decommissioning and Demolition (SDD). The reactor structure model developed earlier for the P-reactor and R-reactor analyses was also used for the K-reactor and L-reactor. The model was suitably modified to handle the larger Creactor tank and associated structures. For all reactors, the structure model consisted of 3 annular zones, homogenized by the amount of structural materials in the zone, and 5 horizontal layers. The curie content on an individual radioisotope basis and total basis for each of the regions was determined. A summary of these results are provided herein. The efficacy of this methodology to accurately predict the radioisotopic content of the reactor systems in question has been demonstrated and is documented in Reference 1. As noted in that report, results for one reactor facility cannot be directly extrapolated to other SRS reactors.

  1. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab

    Office of Environmental Management (EM)

    UPTON, N.Y. - American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for research. The Brookhaven National Laboratory is using $39 million from the Recovery Act to decommission the Brookhaven Graphite Research Reactor, the world's first reactor built solely for peaceful research purposes. The decommissioning is slated for completion later this year and will

  2. A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP

    SciTech Connect (OSTI)

    Milchikov, A.; Hund, G.; Davidko, M.

    1999-10-20

    The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

  3. DOE - Office of Legacy Management -- Elk River Reactor - MN 01

    Office of Legacy Management (LM)

    Eliminated from consideration under FUSRAP - Reactor was dismantled and decommissioned by 1974 Designated Name: Not Designated Alternate Name: None Location: Elk River , Minnesota ...

  4. Decommissioning Plan RM

    Office of Environmental Management (EM)

    Decommissioning Plan Review Module March 2010 CD-0 O 0 C OFFICE OF D C CD-1 F ENVIRO Standard R Decomm Rev Critical Decisi CD-2 M ONMENTAL Review Plan missioning view Module ion (CD) Ap CD March 2010 L MANAGE n (SRP) g Plan e plicability D-3 EMENT CD-4 Post Oper ration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of

  5. Performance and review of safety assessment for decommissioning

    SciTech Connect (OSTI)

    Percival, K.; Thierfeldt, S.; Joubert, A.; Kaulard, J.; Manson, P.; Ferch, R.; Batandjieva, B.

    2007-07-01

    Available in abstract form only. Full text of publication follows: Safety assessment is required by national and international safety standards to be performed for all stages of life cycle of facilities that are using radioactive material. It is required to be performed by operators and reviewed by regulators in support of a decommissioning plan for every facility before decommissioning commences. With the growing amount of decommissioning activities world-wide, the need for assistance to Member States in development and review of such assessments was highlighted in the Berlin Conference in 2002 and reflected in the International Action Plan on Decommissioning of Nuclear Facilities, approved by the International Atomic Energy Agency (IAEA) Board of Governors in 2004. In order to respond to this need, the IAEA initiated an international project on Evaluation and Demonstration of Safety during Decommissioning of Nuclear Facilities (DeSa Project) in the same year. More than fifty experts from over thirty Member States have been working over the last three years on (i) the establishment of a harmonized safety assessment methodology for decommissioning; (ii) development of recommendations for a regulatory approach and procedure for review of such assessments; (iii) development of recommendations on the application of the graded approach to development and review of safety assessments; and (iv) application of the methodology, the regulatory review procedure and graded approach recommendations to three test cases - safety assessment for decommissioning of a nuclear power plant (NPP), a research reactor and a nuclear laboratory. This paper presents the current status of the DeSa project work, the consensus achieved, the main preliminary outcomes and lessons learned. The project results are envisaged to be presented and discussed at the 4. Joint DeSa meeting in October 2007 in Vienna, where the scope and objectives of a follow- up project will be also discussed. (authors)

  6. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  7. Characterization of wastes in and around early reactors at the Hanford Site: The use of historical research

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-10-01

    This paper will present the waste characterization knowledge that has been gained in the first, ``Large-Scale Remediation Study`` to be performed on the reactor areas (100 Areas) of the Hanford Site. Undertaken throughout the past year, this research project has identified thousands of pieces of buried hardware, as well as the volumes of liquid wastes in burial sites in the reactor areas. The author of this landmark study, Dr. Michele Gerber, will discuss historical research as a safe and cost-effective characterization tool.

  8. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    SciTech Connect (OSTI)

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  9. REACTOR

    DOE Patents [OSTI]

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  10. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  11. EIS-0147: Continued Operation of the K, L, and P Reactors, Savannah River Site, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental impacts of the proposed action, which is to continue operation of the K, L, and P Reactors at the Savannah River Site (SRS) to ensure the capability to produce nuclear materials, and to produce nuclear materials as necessary for United States defense and nondefense programs.

  12. REACTORS

    DOE Patents [OSTI]

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  13. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  14. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

    SciTech Connect (OSTI)

    Nick A. Altic

    2011-11-11

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  15. Dismantling of Loop-Type Channel Equipment of MR Reactor in NRC 'Kurchatov Institute' - 13040

    SciTech Connect (OSTI)

    Volkov, Victor; Danilovich, Alexey; Zverkov, Yuri; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Fadin, Sergey; Shisha, Anatoly; Chesnokov, Alexander

    2013-07-01

    In 2009 the project of decommissioning of MR and RTF reactors was developed and approved by the Expert Authority of the Russian Federation (Gosexpertiza). The main objective of the decommissioning works identified in this project: - complete dismantling of reactor equipment and systems; - decontamination of reactor premises and site in accordance with the established sanitary and hygienic standards. At the preparatory stage (2008-2010) of the project the following works were executed: loop-type channels' dismantling in the storage pool; experimental fuel assemblies' removal from spent fuel repositories in the central hall; spent fuel assembly removal from the liquid-metal-cooled loop-type channel of the reactor core and its placement into the SNF repository; and reconstruction of engineering support systems to the extent necessary for reactor decommissioning. The project assumes three main phases of dismantling and decontamination: - dismantling of equipment/pipelines of cooling circuits and loop-type channels, and auxiliary reactor equipment (2011-2012); - dismantling of equipment in underground reactor premises and of both MR and RTF in-vessel devices (2013-2014); - decontamination of reactor premises; rehabilitation of the reactor site; final radiation survey of reactor premises, loop-type channels and site; and issuance of the regulatory authorities' de-registration statement (2015). In 2011 the decommissioning license for the two reactors was received and direct MR decommissioning activities started. MR primary pipelines and loop-type facilities situated in the underground reactor hall were dismantled. Works were also launched to dismantle the loop-type channels' equipment in underground reactor premises; reactor buildings were reconstructed to allow removal of dismantled equipment; and the MR/RTF decommissioning sequence was identified. In autumn 2011 - spring 2012 results of dismantling activities performed are: - equipment from underground rooms (No. 66, 66A, 66B, 72, 64, 63) - as well as from water and gas loop corridors - was dismantled, with the total radwaste weight of 53 tons and the total removed activity of 5,0 x 10{sup 10} Bq; - loop-type channel equipment from underground reactor hall premises was dismantled; - 93 loop-type channels were characterized, chopped and removed, with radwaste of 2.6 x 10{sup 13} Bq ({sup 60}Co) and 1.5 x 10{sup 13} Bq ({sup 137}Cs) total activity removed from the reactor pool, fragmented and packaged. Some of this waste was placed into the high-level waste (HLW) repository of the Center. Dismantling works were executed with application of remotely operated mechanisms, which promoted decrease of radiation impact on the personnel. The average individual dose for the personnel was 1.9 mSv/year in 2011, and the collective dose is estimated as 0.0605 man x Sv/year. (authors)

  16. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    SciTech Connect (OSTI)

    Belles, Randy J.; Omitaomu, Olufemi A.

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  17. Processing Tritiated Water at the Savannah River Site: A Production-Scale Demonstration of a Palladium Membrane Reactor

    SciTech Connect (OSTI)

    Sessions, Kevin L. [Westinghouse Savannah River Company (United States)

    2005-07-15

    The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory.The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented.

  18. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    SciTech Connect (OSTI)

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

  19. DISMANTLING OF THE UPPER RPV COMPONENTS OF THE KARLSRUHE MULTI-PURPOSE RESEARCH REACTOR (MZFR), GERMANY

    SciTech Connect (OSTI)

    Prechtl, E.; Suessdorf, W.

    2003-02-27

    The Multi-purpose Research Reactor was a pressurized-water reactor cooled and moderated with heavy water. It was built from 1961 to 1966 and went critical for the first time on 29 September 1965. After nineteen years of successful operation, the reactor was de-activated on 3 May 1984. The reactor had a thermal output of 200 MW and an electrical output of 50 MW. The MZFR not only served to supply electrical power, but also as a test bed for: - research into various materials for reactor building (e. g. zirkaloy), - the manufacturing and operating industry to gain experience in erection and operation, - training scientific and technical reactor staff, and - power supply (first nuclear combined-heat-and-power system, 1979-1984). The experience gained in operating the MZFR was very helpful for the development and operation of power reactors. At first, safe containment and enclosure of the plant was planned, but then it was decided to dismantle the plant completely, step by step, in view o f the clear advantages of this approach. The decommissioning concept for the complete elimination of the plant down to a green-field site provides for eight steps. A separate decommissioning license is required for each step. As part of the dismantling, about 72,000 Mg [metric tons] of concrete and 7,200 Mg of metal (400 Mg RPV) must be removed. About 700 Mg of concrete (500 Mg biological shield) and 1300 Mg of metal must be classified as radioactive waste.

  20. EIS-0275: Disposal of the S1C Prototype Reactor Plant, Hanford Site, Richland, WA (Navy Document)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Office of Naval Reactors (Naval Reactors) proposed action to dismantle the defueled S1C Prototype reactor plant.

  1. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.

  2. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    SciTech Connect (OSTI)

    Weigl, M. [Forschungszentrum Karlsruhe GmbH, Projekttragerforschungszentrum Karlsruhe (PTKA-WTE), Karlsruhe (Germany)

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich and Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)

  3. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 2, Sections 1-6

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains the analysis of programmatic alternatives, project alternatives, affected environment of alternative sites, environmental consequences, and environmental regulations and permit requirements.

  4. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  5. Capturing Process Knowledge for Facility Deactivation and Decommissioning

    Office of Environmental Management (EM)

    Tech Assistance Savannah River National Laboratory- Assess Adequacy of Process Knowledge for D&D Guidance for Determining Adequacy of Process Knowledge Page 1 of 2 Savannah River National Laboratory South Carolina Capturing Process Knowledge for Facility Deactivation and Decommissioning Challenge The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission

  6. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 3, Sections 7-12, Appendices A-C

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains references; a list of preparers and recipients; acronyms, abbreviations, and units of measure; a glossary; an index and three appendices.

  7. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect (OSTI)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  8. Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor

    SciTech Connect (OSTI)

    Belles, R. J.; Omitaomu, O. A.

    2014-08-01

    The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

  9. Portsmouth Decommissioning and Decontamination Project Director's Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Findings and Order | Department of Energy Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination (D&D) Project Director's Final Findings and Order defines the steps for identifying a range of technical alternatives for the D&D and waste disposition components of the project, and reaching formal decisions on how best to

  10. Decommissioning abandoned roads to protect fish

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decommissioning-abandoned-roads-to-protect-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  11. In-Situ Decommissioning | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In-Situ Decommissioning (ISD) is the permanent entombment of a facility that contains residual radiological andor chemical contamination. The ISD approach is a cost-effective ...

  12. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  13. Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, Randy; Copinger, Donald A; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  14. Nuclear Decommissioning Authority of the United Kingdom NDA ...

    Open Energy Info (EERE)

    Decommissioning Authority of the United Kingdom NDA Jump to: navigation, search Name: Nuclear Decommissioning Authority of the United Kingdom (NDA) Place: Cumbria, England, United...

  15. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect (OSTI)

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R.

    1993-10-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  16. SITE

    Office of Legacy Management (LM)

    ... from thorium, fast plutonium breeders ,e&ning fuel that can be processed simply, pressurized water re- % tom with Iong-life fuel elements, and sodium-graphite reactors vvith ...

  17. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    SciTech Connect (OSTI)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private sector, universities or other agencies are expected to have greater expertise will be accomplished through an open, competitive solicitation process. Several areas will require joint efforts from the two classes of resources.

  18. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  19. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Energy Savers [EERE]

    Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of...

  20. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for...

  1. FY 2000 Deactivation and Decommissioning Focus Area Annual Report

    SciTech Connect (OSTI)

    2001-03-01

    This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

  2. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department of Energy ACTION: Notice of Availability of Archival Information Package SUMMARY: The Office of Operational Safety of the Department of Energy (DOE) has, reviewed documentation relating to the decontamination and decommissioning operations conducted at the Westinghouse Advanced Reactor Division laboratories (buildings 7

  3. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  4. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect (OSTI)

    Poderis, Reed J.; King, Rebecca A.

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Reactor

  6. In-Situ Decommissioning: A Strategy for Environmental Management |

    Energy Savers [EERE]

    Department of Energy In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning (ISD) is an effective decommissioning practice offering a safe and environmentally-favorable alternative to completely demolishing a facility and transporting its debris elsewhere for disposal. Regulatory approval to decommission a facility through ISD is authorized primarily by the Environmental Protection Agency under

  7. Reactor surface contamination stabilization. Innovative technology summary report

    SciTech Connect (OSTI)

    1998-11-01

    Contaminated surfaces, such as the face of a nuclear reactor, need to be stabilized (fixed) to avoid airborne contamination during decontamination and decommissioning activities, and to prepare for interim safe storage. The traditional (baseline) method of fixing the contamination has been to spray a coating on the surfaces, but ensuring complete coverage over complex shapes, such as nozzles and hoses, is difficult. The Hanford Site C Reactor Technology Demonstration Group demonstrated innovative technologies to assess stabilization properties of various coatings and to achieve complete coverage of complex surfaces on the reactor face. This demonstration was conducted in two phases: the first phase consisted of a series of laboratory assessments of various stabilization coatings on metal coupons. For the second phase, coatings that passed the laboratory tests were applied to the front face of the C Reactor and evaluated. The baseline coating (Rust-Oleum No. 769) and one of the innovative technologies did not completely cover nozzle assemblies on the reactor face, the most critical of the second-phase evaluation criteria. However, one of the innovative coating systems, consisting of a base layer of foam covered by an outer layer of a polymeric film, was successful. The baseline technology would cost approximately 33% as much as the innovative technology cost of $64,000 to stabilize an entire reactor face (196 m{sup 2} or 2116 ft{sup 2}) with 2,004 nozzle assemblies, but the baseline system failed to provide complete surface coverage.

  8. Decommissioning Under CERCLA Information Sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioning Under CERCLA Information Sheet This Question and Answer (Q&A) Sheet ... This Q&A Sheet is presented in four parts. The first part presents the bottom line: what ...

  9. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  10. EIS-0119-SA-01: Supplement Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington, Richland Operations Office

  11. Technology needs for decommissioning and decontamination

    SciTech Connect (OSTI)

    Bundy, R.D.; Kennerly, J.M.

    1993-12-01

    This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

  12. DOE - Office of Legacy Management -- Ohio

    Office of Legacy Management (LM)

    East Site Columbus Sites Fairfield Site Fernald Preserve Hamilton Site Mound Site Oxford Site Painesville Site Piqua Decommissioned Reactor Site Toledo Site Last Updated: 1...

  13. Systematic Approach for Decommissioning Planning and Estimating

    SciTech Connect (OSTI)

    Dam, A. S.

    2002-02-26

    Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises.

  14. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY ON DECOMMISSIONING DOE FACILITIES UNDER CERCLA This policy is the result of a joint effort by EPA and DOE to develop an approach to decommissioning that ensures protection ...

  15. Uranium enrichment decontamination and decommissioning fund, 1995 report

    SciTech Connect (OSTI)

    1996-11-01

    This report describes strategies for the decontamination and decommissioning of gaseous diffusion plants. Progress in remedial action activities are discussed.

  16. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    J. L. Smith

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

  17. The Status of NRC Decommissioning Guidance on Intentional Soil Mixing

    SciTech Connect (OSTI)

    Watson, B.A.

    2007-07-01

    In 1997, the U.S. Nuclear Regulatory Commission (NRC) published the License Termination Rule (LTR) as Subpart E of 10 CFR Part 20, which established the license termination criteria for unrestricted use and the controls for restricted use. By 2003, the NRC staff's experience with the LTR revealed some important implementation issues impacting the decommissioning of sites, and these were addressed to the Commission (SECY-03-0069). In 2004, the staff provided the Commission with its analysis of a ninth issue, intentional soil mixing (SECY-04-0035). The Commission approved the staff's recommendations, with comments. In the draft revision of Supplement 1 to NUREG-1757, 'Consolidated Decommissioning Guidance', the staff endorsed the current practice of allowing intentional soil mixing to meet the waste acceptance criteria of offsite disposal facilities and the limited use of this practice to demonstrate compliance with the LTR criteria. The staff recommended including a provision that the staff would consider intentional mixing on a case-by-case basis, provided that the resulting contaminated area footprint is not increased and clean soil from outside the footprint is not mixed with contaminated soil to lower the concentrations. In addition, the staff would consider only those rare cases in which the mixing of clean soil is the only viable option for achieving the dose levels of the LTR. In 2005, the staff issued draft Supplement 1 to NUREG-1757 for public comment. The staff evaluated the public comments, including those from a number of States, and revised the guidance. The staff subsequently summarized the public comments on the draft guidance for the Commission (SECY-06-0143) in early 2006. This paper will discuss the public comments related to intentional mixing, the Commission's comments in its staff requirements memorandum, and the revision to the guidance in NUREG-1757 incorporating the current NRC decommissioning policy for intentional soil mixing. (authors)

  18. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    SciTech Connect (OSTI)

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  19. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    SciTech Connect (OSTI)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  20. Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security

  1. Public Comment Period for Portsmouth Site D&D and Waste Disposition Decisions

    Broader source: Energy.gov [DOE]

    Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste Disposition Decisions at the Portsmouth Gaseous Diffusion Plant

  2. DOE Announces Additional Tour Seats Available: Tours of B Reactor at the Hanford Site Begin and End in Richland, Wash.

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) has made additional seats available for tours of the B Reactor National Historic Landmark this July and August.

  3. Decontamination, decommissioning, and vendor advertorial issue, 2006

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  4. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect (OSTI)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Several methods to assure that the licensee has adequate funds for decommissioning are considered. The methods investigated (all based on expected decommissioning costs) range from a single payment when plant operations begin, to payments into a sinking fund during the normal plant operating period, to a single payment when normal plant operations cease and decommissioning begins.

  5. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    SciTech Connect (OSTI)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

  6. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    SciTech Connect (OSTI)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

  7. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  8. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2010 August 31, 2010 Notice of Upcoming Comment Period, K East Reactor The Department of Energy is preparing an Engineering Evaluation/Cost Analysis (EE/CA) to evaluate alternatives for decommissioning and removal of the 105-K East Reactor. August 24, 2010 Hanford Waste Treatment Plant completes critical system design for High-Level Waste Vitrification Facility Waste Treatment Plant (WTP) engineers recently completed the design for the High-Level Waste (HLW) Vitrification Facility's

  9. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  10. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.; Massaro, Lawrence M.; Jensen, Philip J.

    2014-10-01

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportation of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites; Although there are common aspects, each site has some unique features and/or conditions; Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel; Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin; Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.

  11. DOE Awards New York Decommissioning Services Contract

    Broader source: Energy.gov [DOE]

    West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP).

  12. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  13. US graphite reactor D&D experience

    SciTech Connect (OSTI)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  14. Impact of Lack of Consistent Free Release Standards on Decommissioning Projects and Costs

    SciTech Connect (OSTI)

    Devgun, J. S.

    2002-02-26

    While the Nuclear Regulatory Commission has had specific and dose-based standards for the release of liquids and gases for a long time, there are no regulatory mechanisms in place for the release of solid bulk materials from a nuclear power plant. Even though free releases of small quantities of solid materials continue under existing guidelines from the operating plants, the regulatory void creates major difficulties for the bulk materials that result from the decommissioning of a nuclear site. Decommissioning of a commercial nuclear power plant generates large quantities of solid bulk materials such as concrete, metal, and demolition debris. Disposition of such materials has a large impact on the overall decommissioning cost. Yet, there are no clear and cost-effective alternatives for the disposal of these materials from a regulatory perspective. This paper discusses the methodologies for clearance of solid materials1, their applicability to the disposition of bulk materials, and the impact of lack of consistent free release standards on the decommissioning projects and costs.

  15. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect (OSTI)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  16. First big U.S. reactor dismantled: Project may point the way to a huge market, if sufficient waste disposal sites become available

    SciTech Connect (OSTI)

    Soast, A.,

    1994-07-18

    This article is a review of the Ft. St. Vrain decommissioning efforts. The chain of events leading to actual dismantlement is covered. The projected storage of its fuel at INEL is noted, pending the resolution of legal problems, and the disposal of low-level wastes at Hanford is also noted.

  17. Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    1996-02-21

    The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  18. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This policy ensures protection of the environment, worker health and public health,

  19. DOE - Office of Legacy Management -- Bonus

    Office of Legacy Management (LM)

    of the DOE Defense Decontamination and Decommissioning (D&D) Program, the Office of Legacy Management manages the Boiling Nuclear Superheater (BONUS) Decommissioned Reactor Site...

  20. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect (OSTI)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.

  1. Portsmouth Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Portsmouth Site Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant The Environmental Cleanup Program at Portsmouth supports site investigations, environmental response actions, and facility decontamination and decommissioning. Read more Portsmouth SSAB tours a disposal cell Portsmouth SSAB tours a disposal cell The Portsmouth Site Specific Advisory Board works with the Department of Energy to make recommendations that reflect the communities concerns. Read more Demolition

  2. Fossil plant decommissioning: Tracking deferred costs in a competitive market

    SciTech Connect (OSTI)

    Ferguson, J.S.

    1995-06-15

    Widespread concern over nuclear plant decommissioning has triggered similar interest in the decommissioning of fossil-fired steam generating stations. This rising interest stems in part from the emergence of a competitive market in electric generation, which, among other things, threatens impairment of assets. Fossil decommissioning issues are not nearly as contentious as those that attend nuclear plants. Nevertheless, the magnitude of cost estimates for fossil decommissioning, when expressed as a percentage of station investment, is high enough to demand attention from accountants and regulators.

  3. Role of decommissioning plan and its progress for the PUSPATI...

    Office of Scientific and Technical Information (OSTI)

    At international level, IAEA recognizes the absence of Decommissioning Plan as one of the ... national contribution at the international level, as well as meeting the ...

  4. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N Reactor N Reactor in 2012 N Reactor in 2012 N Reactor Before Cocooning N Reactor Before Cocooning

  6. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    SciTech Connect (OSTI)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

  7. Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana

    SciTech Connect (OSTI)

    1995-12-01

    The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).

  8. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W; Elkins, Ned Z

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  9. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Hanford Site, Richland, Washington 5-394 5.2 FFTF DECOMMISSIONING ALTERNATIVES This section describes the potential long-term environmental and human health impacts associated with implementation of alternatives considered to decommission FFTF and auxiliary facilities at Hanford; to manage waste from the decommissioning process, including waste designated as remote-handled special components (RH-SCs); and to manage the disposition of the Hanford inventory of radioactively contaminated

  10. DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...

    Office of Legacy Management (LM)

    Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL LAB ...

  11. Policy on Decommissioning of Department of Energy Facilities Under the

    Energy Savers [EERE]

    Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) | Department of Energy Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Purpose This Policy establishes the approach agreed upon by the Department of Energy (DOE) and

  12. EM Sites Come Together to Share Lessons Learned on Safety

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A team from Hanford visited a waste processing facility at the Idaho site to observe equipment that may assist them in entering highly contaminated areas of the Plutonium Finishing Plant (PFP), a complex nuclear decommissioning project.

  13. Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the site’s most complex decommissioning projects.

  14. Progress Continues Post-Recovery Act Award at Hanford Site

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act work at the Hanford site continues with several projects intended to reduce the Cold War cleanup footprint, from decommissioning a plant once associated with...

  15. Rocketdyne Propulsion and Power DOE Operations annual site environmental report 1997

    SciTech Connect (OSTI)

    Robinson, K.S.

    1998-11-23

    This annual report discusses environmental monitoring at two manufacturing and test sites operated in the Los Angeles area by Rocketdyne Propulsion and Power of Boeing North American, Inc. These are identified as Area 4 of the SSFL and the De Soto site. These sites have been used for research and development (R and D), engineering, and testing in a broad range of technical fields primarily in energy research and nuclear reactor technology. The De Soto site had research and development laboratories involved with nuclear research. This work was terminated in 1995 and only D and D activities will have potential for impact on the environment. Since 1956, Area 4 has been used for work with nuclear materials, including fabricating nuclear reactor fuels, testing nuclear reactors, and dissembling used fuel elements. This work ended in 1988 and subsequent efforts have been directed toward decommissioning and decontamination of the former nuclear facilities. The primary purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies responsible for oversight. Information presented here concentrates on Area 4 at SSFL, which is the only area at SSFL where DOE operations were performed.

  16. Lessons learnt from Ignalina NPP decommissioning project

    SciTech Connect (OSTI)

    NAISSE, Jean-Claude

    2007-07-01

    The Ignalina Nuclear Power Plant (INPP) is located in Lithuania, 130 km north of Vilnius, and consists of two 1500 MWe RBMK type units, commissioned respectively in December 1983 and August 1987. On the 1. of May 2004, the Republic of Lithuania became a member of the European Union. With the protocol on the Ignalina Nuclear Power in Lithuania which is annexed to the Accession Treaty, the Contracting Parties have agreed: - On Lithuanian side, to commit closure of unit 1 of INPP before 2005 and of Unit 2 by 31 December 2009; - On European Union side, to provide adequate additional Community assistance to the efforts of Lithuania to decommission INPP. The paper is divided in two parts. The first part describes how, starting from this agreement, the project was launched and organized, what is its present status and which activities are planned to reach the final ambitious objective of a green field. To give a global picture, the content of the different projects that were defined and the licensing process will also be presented. In the second part, the paper will focus on the lessons learnt. It will explain the difficulties encountered to define the decommissioning strategy, considering both immediate or differed dismantling options and why the first option was finally selected. The paper will mention other challenges and problems that the different actors of the project faced and how they were managed and solved. The paper will be written by representatives of the Ignalina NPP and of the Project Management Unit. (author)

  17. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    SciTech Connect (OSTI)

    Bollinger, James S.; Koffman, Larry D.; Austin, William E.

    2008-01-15

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design (CAD) system and had to be imported into a GIS framework. Since the data is maintained in a different format in CAD, import into GIS involved several spatial processing steps to convert various geometric shapes present in the CAD data to self-closing polygons. The polygons represent facility footprints in plan or map view. Once these were successfully imported and converted, building identifier attributes from the CAD had to be associated with the appropriate polygons in GIS. Attributes are stored as graphical information in a CAD system and are not 'attached' to a building in a relational sense. In GIS, attributes such as building names, building area, hazards, or other descriptive information, must be associated or related to the spatial polygon representing a particular building. This spatial relationship between building polygons and the descriptive attribute information is very similar to relating tables of information in a relational database in which each table record has a unique identifier that can be used to join or relate that table to other tables of information present in the database. The CAD building identifiers were imported into the GIS and several spatial processing steps were used to associate building polygons with the correct identifiers. These spatial steps involved determining the intersection of and nearest identifiers with each building polygon in the GIS. Automating this process in GIS saved a significant amount of time. Once a current and geographically correct representation of the infrastructure data had been created in GIS, field-engineering teams collected information for each facility. This information included the building area, radiological hazards and the associated area, industrial hazards such as asbestos or mercury, structure type (e.g. hardened, industrial, nuclear), annual surveillance and monitoring cost, and other engineering data. The facility engineering data was used in a simple model to determine the rough-order-of-magnitude cost for decontaminating and demolishing each facility. Finally, the engineering and cost data was linked to the GIS model so that this data could be rapidly displayed and analyzed in its geographic context. Once the GIS representing SRS infrastructure and associated descriptive attribute information was developed, detailed maps depicting the future status of all site facilities were created. These maps display the relationship between known waste units and buildings that will be decommissioned and demolished. Cost and hazard information was also depicted illustrating areas and facilities that could present a particular demolition challenge. Although the GIS was quite helpful as an engineering and planning tool, its real power was evident in communicating the impact of the facilities disposition plan to senior management and other stakeholders.

  18. Early Regulatory Engagement for Successful Site Remediation: the UK Experience - 13173

    SciTech Connect (OSTI)

    Maitland, R.P.; Senior, D.

    2013-07-01

    The Office for Nuclear Regulation (ONR) is an independent safety, security and transport regulator of the UK nuclear industry. ONR regulates all civil nuclear reactor power stations, fuel manufacture, enrichment, spent fuel reprocessing, most defence sites and installations that store and process legacy spent fuel and radioactive waste. The responsibility for funding and strategic direction of decommissioning and radioactive waste management of state owned legacy sites has rested solely with the Nuclear Decommissioning Authority (NDA) since 2005. A key component of NDA's mandate was to encourage new strategic approaches and innovation to dealing with the UK's waste legacy and which deliver value-for-money to the UK taxpayer. ONR, as an agency of the Health and Safety Executive, is entirely independent of NDA and regulates all prescribed activities on NDA's sites. NDA's competition of site management and closure contracts has attracted significant international interest and the formation of consortia comprised of major British, US, French and Swedish organizations bidding for those contracts. The prominence of US organizations in each of those consortia reflects the scale and breadth of existing waste management and D and D projects in the US. This paper will articulate, in broad terms, the challenges faced by international organizations seeking to employ 'off-the-shelf' technology and D and D techniques, successfully employed elsewhere, into the UK regulatory context. The predominantly 'goal-setting' regulatory framework in the UK does not generally prescribe a minimum standard to which a licensee must adhere. The legal onus on licensees in the UK is to demonstrate, whatever technology is selected, that in its applications, risks are reduced 'So Far As Is Reasonably Practicable' or 'SFAIRP'. By the nature of its role, ONR adopts a conservative approach to regulation; however ONR also recognises that in the decommissioning (and ultimately the site closure) domain, it is often necessary to consider and support novel approaches to achieve the nationally desired end-state. Crucial to successful and compliant operation in this regulatory environment is early and sustained engagement of the contractor with the regulator. There must be a 'no-surprises' culture to engender regulatory confidence early in a project. The paper considers some of the challenges facing international prime and lower tier contractors when undertaking D and D contracts in the UK, and emphasizes the importance of constructive and transparent dialogue with all regulators to sustain confidence at all stages of a major decommissioning project. The paper will also articulate ONR's strategy to increase collaboration with the US Department of Energy in light of increasing UK-US synergy in the area of waste management and to benchmark respective regulatory approaches. (authors)

  19. Characterization of the Hanford 300 area burial grounds. Final report: decontamination and decommissioning

    SciTech Connect (OSTI)

    Phillips, S.J.; Ames, L.L.; Fitzner, R.E.; Gee, G.W.; Sandness, G.A.; Simmons, C.S.

    1980-01-01

    Pacific Northwest Laboratory conducted a series of investigations at the Hanford Site to develop technologies for characterizing and monitoring radioactive waste burial facilities that could be used in determining appropriate decommissioning alternatives. Specific objectives were to develop unique functional geophysics, geochemical, soil physics, numerical modeling, and biological methodologies needed to better characterize and monitor buried radioactive waste disposal sites. To meet these objectives the project was divided into four tasks: Task I, Geophysical Evaluation - Geophysical surveys were taken to locate and define the gross composition of waste materials. Task II, Geochemical Analysis - The interaction of disposed radionuclides with geologic media was analyzed through an integrated radiochemical procedure. Task III, Fluid Transport and Modeling - Computer modeling of water migration in partially saturated groundwater systems was verified with actual data collected at a field test facility used to monitor micrometeorological and geohydrological energy and mass transfer factors. Task IV, Biological Transport - Several biological organisms were evaluated for potential radionuclide uptake and transport. Along with the four tasks, the project included a review of pertinent literature and regulatory issues that might affect the alternatives selected. Surveys were taken of the surrounding area and specific sites and operations. The overall results indicated that the 300 Area Burial Grounds have been adequate in containing radioactive waste. Based on the results of the project, the alternatives identified for decommissioning these sites are exhumation and translocation, entombment, perpetual care, and abandonment. Perpetual care (currently used) appears to be the best decommissioning alternative for these burial grounds at this time. However, another alternative may be selected depending on future waste management policies, plans, or activities.

  20. Photocatalytic reactor

    DOE Patents [OSTI]

    Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

    1999-01-19

    A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

  1. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    \ ,.-c , 2 2 a. . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS SEP301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __--... -_ -._.-_- _"_-. .___.. -... .._ ..-. .-. ..--- . , ' , CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological

  2. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect (OSTI)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-08-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical and acoustic properties. The rock strength values range from 23 to 219 MPa and the Poisson's ratio from 0.1 to 0.38. Potential geologic hazards in the Diablo Canyon area were identified and described to provide an overall picture of processes that may affect tunnel construction activities.

  3. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect (OSTI)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-06-11

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical and acoustic properties. The rock strength values range from 23 to 219 MPa and the Poisson's ratio from 0.1 to 0.38. Potential geologic hazards in the Diablo Canyon area were identified and described to provide an overall picture of processes that may affect tunnel construction activities.

  4. Advantages of co-located spent fuel reprocessing, repository and underground reactor facilities

    SciTech Connect (OSTI)

    Mahar, James M.; Kunze, Jay F.; Wes Myers, Carl; Loveland, Ryan

    2007-07-01

    The purpose of this work is to extend the discussion of potential advantages of the underground nuclear park (UNP) concept by making specific concept design and cost estimate comparisons for both present Generation III types of reactors and for some of the modular Gen IV or the GNEP modular concept. For the present Gen III types, we propose co-locating reprocessing and (re)fabrication facilities along with disposal facilities in the underground park. The goal is to determine the site costs and facility construction costs of such a complex which incorporates the advantages of a closed fuel cycle, nuclear waste repository, and ultimate decommissioning activities all within the UNP. Modular power generation units are also well-suited for placement underground and have the added advantage of construction using current and future tunnel boring machine technology. (authors)

  5. Site Environmental Report for calendar year 1998, DOE operations at Rocketdyne Propulsion and Power

    SciTech Connect (OSTI)

    Rutherford, P.D.

    1999-09-22

    This Annual Site Environmental Report for 1998 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL) and De Soto facilities. In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned company-operated, test facility within Area IV. AI was merged into Rocketdyne in 1984 and many of the AI functions were transferred to existing Rocketdyne departments. All nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D and D) of the previously used nuclear facilities and associated site areas. Large-scale D and D activities of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 1998 continue to indicate that there are no significant releases of radioactive material from Rocketdyne sites. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, and direct radiation. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway.

  6. Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne

    SciTech Connect (OSTI)

    2000-09-01

    OAK A271 Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne. This Annual Site Environmental Report (ASER) for 1999 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. This Annual Site Environmental Report provides information showing that there are no indications of any potential impact on public health and safety due to the operations conducted at the SSFL. All measures and calculations of off-site conditions demonstrate compliance with applicable regulations, which provide for protection of human health and the environment.

  7. Mobile worksystems for decontamination and decommissioning operations. Final report

    SciTech Connect (OSTI)

    1997-02-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

  8. F Reactor Inspection | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F Reactor Inspection F Reactor Inspection Addthis Description Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor last week before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has

  9. DOE-EM'S In-Situ Decommissioning Strategy

    SciTech Connect (OSTI)

    Negin, C.A.; Urland, C.S.; Szilagyi, A.P.

    2008-07-01

    This paper addressed the current status of decommissioning projects within the Department of Energy (DOE) that have an end state of permanent entombment, referred to as in-situ decommissioning (ISD). The substance of a Department of Energy, Office of Environmental Management (DOE-EM) review of ISD and the development of a strategy are summarized. The strategy first recognizes ISD as a viable decommissioning end state; secondly addresses the integration of this approach within the external and internal regulatory regimes; subsequently identifies tools that need developing; and finally presents guidance for implementation. The overall conclusion is that ISD is a viable mode of decommissioning that can be conducted within the existing structure of rules and regulations. (author)

  10. FAQS Job Task Analyses - Deactivation and Decommissioning | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FAQS Job Task Analyses - Deactivation and Decommissioning FAQS Job Task Analyses - Deactivation and Decommissioning FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between

  11. 3-D Model for Deactivation & Decommissioning | Department of Energy

    Energy Savers [EERE]

    -D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. PDF icon 3-D Model for

  12. FAQS Qualification Card - Deactivation and Decommissioning | Department of

    Energy Savers [EERE]

    Energy Deactivation and Decommissioning FAQS Qualification Card - Deactivation and Decommissioning A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each

  13. In-Situ Decommissioning: A Strategy for Environmental Management

    Office of Environmental Management (EM)

    Situ Decommissioning A Strategy for Environmental Management Reducing the Footprint of the Cold War For over a decade, the Department of Energy has focused on reducing the footprint of 60 years of nuclear research and weapons testing and production. While these facilities are no longer needed, they exist with varying degrees of radiation contamination from years of operation. Deactivation & Decommissioning (D&D) is the process of closing down a nuclear facility and placing it in a state

  14. PROJECT MANGEMENT PLAN EXAMPLES Deactivation to Decommissioning Transition

    Office of Environmental Management (EM)

    to Decommissioning Transition Example Example 80 1.5 OPERATIONAL TRANSITION AND DEACTIVATION STRATEGY According to the U.S. Department of Energy (DOE) Order 430.1A Life Cycle Asset Management (LCAM), the life cycle of a facility makes several transitions over the course of it's existence. The typical stages or phases include operation, (standby), deactivation, S&M, decontamination and decommissioning (D&D). The life cycle phases may occur as a straight through process or with long

  15. Final EIS for Decommissioning and/or Long-Term Stewardship at the WVDP and Western New York Nuclear Service Center

    Energy Savers [EERE]

    DOE/EIS-0226 January 2010 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders The West Valley Site Availability of the Final EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Final EIS, or to request a copy of the EIS or

  16. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    SciTech Connect (OSTI)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-02-26

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

  17. NEUTRONIC REACTOR BURIAL ASSEMBLY

    DOE Patents [OSTI]

    Treshow, M.

    1961-05-01

    A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

  18. An overview of U.S. decommissioning experience -- A basic introduction

    SciTech Connect (OSTI)

    Boing, L.E.

    1998-03-09

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

  19. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    INTERNATIONAL MINERALS AND CHEMICAL CORPORATION MULBERRY, FLORIDA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects INTRODUCTION BACKGROUND CONTENTS Site Function ' Site Description Radiological History and Status ELIMINATION ANALYSIS Summary of Findings REFERENCES . Page 1 2 --.- 2 -- - : 4 7 7 ii ELIMINATION REPORT INTERNATIONAL MINERALS AND CHEMICAL CORPORATION MULBERRY, FLORIDA l INTRODUCTION

  20. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    CF INDUSTRIES, INC. ( THE FORMER INTERNATIONAL MI NERALS AND CHEMICAL CORPORATION) BARTON, FLORIDA Department of Energy Office of Nuclear Energy. Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - - .._. ..--.. . . I."__ . - INTRODUCTION CONTENTS Page BACKGROUND Site Function Site Description Radiological. History and Status ELIMINATION ANALYSIS REFERENCES Summary of Findings ii 7 8 --..I--- - ..-___-_--.___-"-- -- ' . ELIMINATION

  1. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect (OSTI)

    Vinson, Dennis

    2010-06-01

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  2. Web-Based Training on Reviewing Dose Modeling Aspects of NRC Decommissioning and License Termination Plans

    SciTech Connect (OSTI)

    LePoire, D.; Cheng, J.J.; Kamboj, S.; Arnish, J.; Richmond, P.; Chen, S.Y.; Barr, C.; McKenney, C.

    2008-01-15

    NRC licensees at decommissioning nuclear facilities submit License Termination Plans (LTP) or Decommissioning Plans (DP) to NRC for review and approval. To facilitate a uniform and consistent review of these plans, the NRC developed training for its staff. A live classroom course was first developed in 2005, which targeted specific aspects of the LTP and DP review process related to dose-based compliance demonstrations or modeling. A web-based training (WBT) course was developed in 2006 and 2007 to replace the classroom-based course. The advantage of the WBT is that it will allow for staff training or refreshers at any time, while the advantage of a classroom-based course is that it provides a forum for lively discussion and the sharing of experience of classroom participants. The objective of this course is to train NRC headquarters and regional office staff on how to review sections of a licensee's DP or LTP that pertain to dose modeling. The DP generally refers to the decommissioning of non-reactor facilities, while the LTP refers specifically to the decommissioning of reactors. This review is part of the NRC's licensing process, in which the NRC determines if a licensee has provided a suitable technical basis to support derived concentration guideline levels (DCGLs)1 or dose modeling analyses performed to demonstrate compliance with dose-based license termination rule criteria. This type of training is one component of an organizational management system. These systems 'use a range of practices to identify, create, represent, and distribute knowledge for reuse, awareness and learning'. This is especially important in an organization undergoing rapid change or staff turnover to retain organizational information and processes. NRC is committed to maintaining a dynamic program of training, development, and knowledge transfer to ensure that the NRC acquires and maintains the competencies needed to accomplish its mission. This paper discusses one specific project related to training, developing, and transferring knowledge to NRC staff on how to review dose-modeling portions of licensee-submitted DPs and LTPs. This project identified specific cases and examples, created easily updateable educational modules, represented material in an engaging format through animations, video, and graphics, and distributed information on how to perform these reviews in an accessible, web-based format. WBT promotes consistency in reviews and has the advantage of being able to be used as a resource to staff at any time. The WBT will provide reviewers with knowledge needed to perform risk-informed analyses (e.g., information related to development of realistic scenarios and use of probabilistic analysis). WBT on review of LTP or DP dose modeling will promote staff development, efficiency, and effectiveness in performing risk-informed, performance-based reviews of decommissioning activities at NRC-licensed facilities. One of the key advantages of this type of web-based training is that it can be loaded on-demand and can be reused indefinitely. In addition to the benefits of on-demand training, the modules can also be used for reference. The presentations are hosted on a web server that can be accessed by registered users at any time. Staff can return to a particular module to review the material long after they have completed the course.

  3. Summary of comments received from workshops on radiological criteria for decommissioning

    SciTech Connect (OSTI)

    Caplin, J.; Page, G.; Smith, D.; Wiblin, C.

    1994-01-01

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for site cleanup and decommissioning of NRC-licensed facilities. Open public meetings were held during 1993 in Chicago, IL, San Francisco, CA, Boston, MA, Dallas, TX, Philadelphia, PA, Atlanta, GA, and Washington, DC. Interested parties were invited to provide input on the rulemaking issues before the NRC staff develops a draft proposed rule. This report summarizes 3,635 comments categorized from transcripts of the seven workshops and 1,677 comments from 100 NRC docketed letters from individuals and organizations. No analysis or response to the comments is included. The comments reflect a broad spectrum of viewpoints on the issues related to radiological criteria for site cleanup and decommissioning. The NRC also held public meetings on the scope of the Generic Environmental Impact Statement (GEIS) during July 1993. The GEIS meetings were held in Washington, DC., San Francisco, CA, Oklahoma City, OK, and Cleveland, OH. Related comments from these meetings were reviewed and comments which differed substantially from those from the workshops are also summarized in the body of the report. A summary of the comments from the GEIS scoping meetings is included as an Appendix.

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cocooning K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations K East Reactor Cocooning

  5. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smr Small Modular Reactors The Savannah River National Laboratory (SRNL) has announced several partnerships to bring refrigerator-sized modular nuclear reactors, known as Small Modular Reactors or SMRs, to the Savannah River Site facility and jump start development of the U.S. Energy Freedom CenterTM. Currently, all large commercial power reactors in the United States and most in the rest of the world are based on "light water" designs - that is, they use uranium fuel and ordinary

  6. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  7. Statement of Intent No. 2 between DOE and the Nuclear Decommissioning

    Energy Savers [EERE]

    Authority | Department of Energy Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and Northern Ireland for exchange of information concerning management of radioactive waste. PDF icon Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority

  8. Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy

    Broader source: Energy.gov [DOE]

    Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy

  9. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  10. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011

    SciTech Connect (OSTI)

    Wade C. Adams

    2011-12-09

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  11. Evaluation of Suitability of Selected Set of Department of Defense Military Bases and Department of Energy Facilities for Siting a Small Modular Reactor

    SciTech Connect (OSTI)

    Poore III, Willis P; Belles, Randy; Mays, Gary T; Omitaomu, Olufemi A

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of US Department of Defense (DOD) military base sites and DOE sites for possible powering with an SMR; the methodology employed, including spatial modeling; and initial results for several sample sites. The objective in conducting this type of siting evaluation is demonstrate the capability to characterize specific DOD and DOE sites to identify any particular issues associated with powering the sites with an SMR using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  12. Decontamination and decommissioning of the Kerr-McGee Cimarron Plutonium Fuel Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This final report is a summary of the events that completes the decontamination and decommissioning of the Cimarron Corporation`s Mixed Oxides Fuel Plant (formally Sequoyah Fuels Corporation and formerly Kerr-McGee Nuclear Corporation - all three wholly owned subsidiaries of the Kerr-McGee Corporation). Included are details dealing with tooling and procedures for performing the unique tasks of disassembly decontamination and/or disposal. That material which could not be economically decontaminated was volume reduced by disassembly and/or compacted for disposal. The contaminated waste cleaning solutions were processed through filtration and ion exchange for release or solidified with cement for L.S.A. waste disposal. The L.S.A. waste was compacted, and stabilized as required in drums for burial in an approved burial facility. T.R.U. waste packaging and shipping was completed by the end of July 1987. This material was shipped to the Hanford, Washington site for disposal. The personnel protection and monitoring measures and procedures are discussed along with the results of exposure data of operating personnel. The shipping containers for both T.R.U. and L.S.A. waste are described. The results of the decommissioning operations are reported in six reports. The personnel protection and monitoring measures and procedures are contained and discussed along with the results of exposure data of operating personnel in this final report.

  13. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect (OSTI)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  14. Site environmental report for calendar year 2002. DOE operations at the Boeing Company, Rocketdyne Propulsion and Power

    SciTech Connect (OSTI)

    2003-09-30

    This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and, subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.

  15. Grand Junction, Colorado, Site Fact Sheet

    Office of Legacy Management (LM)

    D D&D Page 1 of 3 Fact Sheet Grand Junction, Colorado, Site This fact sheet provides information about the Grand Junction, Colorado, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Defense Decontamination and Decommissioning (D&D) Program. Location of the Grand Junction, Colorado, Site Site Description and History The Grand Junction site is located in the city of Grand Junction, in west-central Colorado about 26 miles from the Utah

  16. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  17. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  18. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  19. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  20. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  1. Recent Trends in the Adequacy of Nuclear Plant Decommissioning Funding

    SciTech Connect (OSTI)

    Williams, D. G.

    2002-02-26

    Concerned about the potential cost and sufficiency of funds to decommission the nation's nuclear power plants, the Congress asked the U.S. General Accounting Office (GAO) to assess the adequacy, as of December 31, 1997, of electric utilities'; funds to eventually decommission their plants. GAO's report (GAO/RCED-99-75) on this issue addressed three alternative assumption scenarios--baseline (most likely), optimistic, and pessimistic; and was issued in May 1999. This paper updates GAO's baseline assessment of fund adequacy in 1997, and extends the analysis through 2000. In 2000, we estimate that the present value cost to decommission the nation's nuclear plants is about $35 billion; utility fund balances are about $29 billion. Both our two measures of funding adequacy for utilities are on average not only much above ideal levels, but also overall have greatly improved since 1997. However, certain utilities still show less than ideal fund balances and annual contributions. We suggest that the range of these results among the individual utilities is a more important policy measure to assess the adequacy of decommissioning funding than is the funding adequacy for the industry as a whole.

  2. FOEU-iERLY UTILIZED SITES REKEDIAL ACTION PROG%AM ELIMINATION REPORT

    Office of Legacy Management (LM)

    y ((-' q ' c - ,' .* FOEU-iERLY UTILIZED SITES REKEDIAL ACTION PROG%AM ELIMINATION REPORT FORMERERATOOLAND ENGINEERING COMPANY 4555 UEST ADDISON STREET CHICAGO, ILLINOIS NOVEMBER 14, 1989 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Facility and Site Decommissioning . . CONTENTS Page INTRODU~ION......................... 1 BAcI(GROuND.......................... 1 Site Function. ...................... 1 Site Description ..................... 2

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K West Basin Moving Reactor Fuel From River Area Moving Reactor Fuel From River Area

  4. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    C-B TOOL PRODUCTS COMPANY 965 EAST 58TH STREET CHICAGO, ILLINOIS JANUARY 31, 1990 U.S. Department of Energy Office of Environmental Restoration and Waste Management Office of Environmental Restoration Decontamination and Decommissioning Division . CONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 BACKGROUND........................... 1 Site Function ............................................ Site Description i Radiological History and Status .............. 2

  5. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  6. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors

  7. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  8. Site Environmental Report for Calendar Year 2003 DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Samuels, Sandy; Lee, Majelle

    2004-09-30

    This Annual Site Environmental Report (ASER) for 2003 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing Rocketdynes Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2003 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  9. Rocketdyne Propulsion and Power. DOE Operations Annual Site Environmental Report, 1997

    SciTech Connect (OSTI)

    Robinson, K. S.

    1998-11-23

    This .Annual Site Environmental Report for 1997 concentrates on the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory) (SSFL) and De Soto facilities. In the past. these operations included development. fabrication. and disassembly of nuclear reactors, reactor fuel and other radioactive materials, under the Atomics International Division (AI). Other activities included the operation of large scale liquid metal facilities for the testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC). a government owned company operated, test facility within Area IV. .AI was merged into Rocketdyne in 1981 and many of the AI functions were transferred to existing Rocketdyne departments. All nuclear work was terminated in 1988, and subsequently. all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large scale D&D activities of the sodium test facilities began in 1996.

  10. Rocketdyne Propulsion and Power DOE operations annual site environmental report 1996

    SciTech Connect (OSTI)

    Tuttle, R.J.

    1997-11-10

    Rocketdyne currently operates several facilities in the San Fernando Valley/Simi Valley area, for manufacturing, testing, and research and development (R and D). These operations include manufacturing liquid-fueled rocket engines, such as the Space Shuttle Main Engine (SSME) and engines used for expendable launch vehicles used to place artificial satellites into orbit. This work includes fabrication and testing of rocket engines, lasers, and heat-transfer systems; and R and D in a wide range of high-technology fields, such as the electrical power system for the Space Station. Previously, this work also included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the Atomics International Division (AI). AI was merged into Rocketdyne in 1984 and many of the AI functions were transferred to existing Rocketdyne departments. This nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D and D) of the previously used nuclear facilities and associated site areas. The majority of this work is done for the Department of Energy (DOE). This Annual Site Environmental Report for 1996 concentrates on the environmental conditions related to DOE operations at Area IV of SSFL and at De Soto.

  11. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect (OSTI)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  12. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect (OSTI)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  13. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  14. Draft principles, policy, and acceptance criteria for decommissioning of U.S. Department of Energy contaminated surplus facilities and summary of international decommissioning programs

    SciTech Connect (OSTI)

    Singh, B.K.; Gillette, J.; Jackson, J.

    1994-12-01

    Decommissioning activities enable the DOE to reuse all or part of a facility for future activities and reduce hazards to the general public and any future work force. The DOE Office of Environment, Health and Safety has prepared this document, which consists of decommissioning principles and acceptance criteria, in an attempt to establish a policy that is in agreement with the NRC policy. The purpose of this document is to assist individuals involved with decommissioning activities in determining their specific responsibilities as identified in Draft DOE Order 5820.DDD, ``Decommissioning of US Department of Energy Contaminated Surplus Facilities`` (Appendix A). This document is not intended to provide specific decommissioning methodology. The policies and principles of several international decommissioning programs are also summarized. These programs are from the IAEA, the NRC, and several foreign countries expecting to decommission nuclear facilities. They are included here to demonstrate the different policies that are to be followed throughout the world and to allow the reader to become familiar with the state of the art for environment, safety, and health (ES and H) aspects of nuclear decommissioning.

  15. A Strategy for Skills to meet the demands of Nuclear Decommissioning and Clean-up in the UK

    SciTech Connect (OSTI)

    Brownridge, M.; Ensor, B.

    2008-07-01

    The NDA remit as set out within the Energy Act includes - 'to ensure the availability of skills required to deliver the overall decommissioning and nuclear clean-up mission'. The NDA approach to meeting their statutory obligation is by: - finding the best ways of re-training, re-skilling or re-deploying people in a way that encourages a more flexible workforce; - identifying and communicating the skills and workforce requirements to deliver the mission; and - developing the infrastructure and capability initiatives in line with long term needs, for example, a National Skills Academy for Nuclear, Nuclear Institute, National Graduate Scheme, and - developing locally specific provision. Firstly, NDA has set the requirement for nuclear sites to write down within the Life Time Plans (LTP), at a high level, their Site Skills Strategies; furthermore, a National Skills Working Group has been established to develop tactical cross sector solutions to support the NDA's Skills Strategy. In support of the short, medium and long term needs to meet demands of the NDA sites and the nuclear decommissioning sector, as well as being aware of the broader nuclear sector, investments have been made in infrastructure and skills programmes such as: - A National Skills Academy for Nuclear - including UK wide representation of the whole nuclear sector; - A Nuclear Institute in partnership with the University of Manchester focussing on world class research and skills in Radiation Sciences and Decommissioning Engineering; - Post Graduate sponsorship for decommissioning related projects; - A National Graduate Scheme partnership with nuclear related employers; - Vocational qualifications and Apprenticeship Schemes - Engaging 14-19 year old students to encourage the take up of Science related subjects; and - A sector wide 'Skills Passport'. In conclusion: The skills challenge has many dimensions but requires addressing due to the clear link to improved business performance and the availability of key resources in a diminishing and competitive environment. The diminishing skill base is due to reasons such as demographics and competition from other industries such as the oil industry. Getting the balance between meeting regional and national requirements will prove critical to success. The lack of clarity on the long term needs will also drive the strategy. NDA recognises that the work to date is the beginning of a long term approach and programme. We have developed a skills strategy that is consistent across all 20 sites and examples of key developments in infrastructure are in progress. Looking forward NDA will seek benchmarking opportunities and ways to make tangible links between skills and performance. (authors)

  16. Progress Update: P&R Reactor Stacks Demolition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    October 2010 progress update of the Recovery Act at work at the Savannah River Site. The demolition of nuclear reactor stacks and filling the reactors with grout to reduce the site footprint.

  17. Issues in UK cleanup and decommissioning; a strategic R and D programme

    SciTech Connect (OSTI)

    Tinsley, T.P.; Ashley, V.B.; Morgan, H.G.; Fairhall, G.A.

    2008-07-01

    Nexia Solutions is contracted to manage and carry out research on behalf of the Nuclear Decommissioning Authority (NDA). This paper will describe the nuclear research ongoing and how it fits in with the UK cleanup and decommissioning strategy. The aim of the strategic R and D programme is to assist the NDA in maintaining a technical portfolio which will:- - identify and address challenges and clean-up problems that do not have an existing solution; - resolve potential inconsistencies between sites in the technical bases for certain strategic decisions and their implementation; - maintain options while developing strategy (emerging risks); - save costs by developing multi-site solutions; - provide technology, skills and facilities on the timescale required. The strategy for the R and D programme has been developed from a top-level approach by understanding the challenges which need to be addressed and prioritising these according to the objectives of the programme. The programme has demonstrated that a technical portfolio comprising six areas, each containing a number of key themes, is appropriate to address the technical challenges which the NDA faces and aligns with the NDA's technical issues register. An important aspect of the R and D programme is that it should create opportunities for undertaking the NDA mission more effectively. This arises from the emphasis given in those technical programmes which define the challenge more precisely and thus provide a platform from which to produce innovative solutions. The paper will present an overview of the strategic R and D programme along with the key technical programme areas. Examples will be provided of the technical work ongoing, and the results obtained so far. (author)

  18. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) _ WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK SEP 301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ----- ----_l_.._- .._. _- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION

  19. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    itI.2 -2 FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __I__,_-. - ---.. ____- .- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Pa e -5 2 2 2 4 4 4 ii ELIMINATION REPORT THE FORMER BRUSH

  20. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    fi.q 2, I: * FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 4 iii ELIMINATION REPORT

  1. Session 31B - Panel: Opportunities in the UK with the Nuclear Decommissioning Authority (NDA)

    SciTech Connect (OSTI)

    Benda, Gary; Hayes, David; Gorham, Ron; Wareing, Mark; Simper, Adrian; Selby, Terry

    2006-07-01

    The NDA participated in a panel session 31B on Wednesday afternoon starting at 3:15. The NDA is a non-departmental public body, set up in April 2005 under the Energy Act 2004 to take strategic responsibility for the UK's nuclear legacy. Details of their organization and history are located on their web site at www.nda.gov.uk. Also copies of their Power Point presentations made at WM'06 are available on their web site. Their core objective is to ensure that the 20 civil public sector nuclear sites under our ownership are decommissioned and cleaned up safely, securely, cost effectively and in ways that protect the environment for this and future generations. They lead the development of a unified and coherent decommissioning strategy, working in partnership with regulators and site licensees to achieve best value, optimum impact on local communities, and the highest environmental standards. The NDA's main task is the decommissioning and clean up of civil nuclear sites. If the Government decides it is necessary, however, the Energy Act 2004 allows the NDA to take responsibility for sites currently operated by, or on behalf of, the Ministry of Defence (MoD). Resources will then be transferred from the MoD to meet the costs of clean up. The NDA made a number of presentations to allow conference delegates the opportunity to understand some of the major aspects of their work and to interact with NDA staff. These included the following topics and gave opportunity for audience discussion: - A brief presentation to update on progress by the NDA; - Outline of low level waste management and the prioritisation process; - Discussion of the competition schedule related to low level waste management and the Drigg site. The following presentations and handout were delivered in various sessions of the conference as noted below and are available on their web page including the WM'06 Plenary Session presentation by Sir Anthony Cleaver, Chairman of the NDA. During Session 31B, the following Power Point presentations were made. NDA Overview by David Hayes, Director of Special Projects National M and O Contractor Work Prioritisation Process by Mark Wareing, including topics on: - Need for prioritisation; - Development of the process; - Using the process as a measure of progress. Competition by Ron Gorham, Head of Procurement, including topics on: - The current model; - What NDA are actually competing; - The acquisition process; - NDA aspirations for competition; - NDA aspirations from the market. Low Level Waste Contracting in the UK by Adrian Simper, Expenditure and Programme Strategy Manager, including topics on: - Low Level Waste: NDA responsibilities, Definitions, Arisings; - Proposed NDA Procurement for LLW Management: Scope, Contracting approach, Timetable. The NDA responded to questions from the audience and also announced that the NDA will be holding a special Industry Day for potential contractors interested in the first NDA competition - the Low Level Waste Repository near Drigg in Cumbria. The event is scheduled on the 25-26 April 2006 with more details on their web site at www.nda.gov.uk. (authors)

  2. UK Delegation Focuses on EM's Reactor 'Cocooning' Expertise During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulation; Tony Handley, Magnox Ltd.; Anna Clark, Nuclear Decommissioning Authority; ... Regulation; Tony Handley, Magnox Ltd.; Anna Clark, Nuclear Decommissioning Authority; ...

  3. Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    Office of Environmental Management (EM)

    Volume 3 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center DOE/EIS-0226 January 2010 The West Valley Site Comment Response Document Final Environmental Impact Statement for AVAILABILITY OF THE FINAL EIS FOR DECOMMISSIONING AND/OR LONG- TERM STEWARDSHIP AT THE WEST VALLEY DEMONSTRATION PROJECT AND WESTERN NEW YORK NUCLEAR SERVICE CENTER For further information on this Final

  4. Progress Update: P-Reactor Grout

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update, the Recovery Act at work at the Savannah River Site. The new phase of work on the permanent closure of two cold war nuclear reactors.

  5. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  6. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect (OSTI)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  7. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    SciTech Connect (OSTI)

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  8. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect (OSTI)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  9. Development of a Remote Monitoring Sensor Network for In-Situ Decommissioned Structures

    Office of Environmental Management (EM)

    10-01666, Revision 0 Key Words: in situ decommissioning sensor remote monitoring end state Retention: Permanent DEVELOPMENT OF A REMOTE MONITORING SENSOR NETWORK FOR IN SITU DECOMMISSIONED STRUCTURES Panel Report November 2010 Savannah River National Laboratory Savannah River Nuclear Solutions Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470 Development of a Remote Monitoring Sensor Network Page 2 of 34 for In Situ Decommissioned Structures

  10. Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – Department of Energy (DOE) contractor, Washington Closure Hanford, recently cleaned up 77 waste sites at Hanford to meet two Tri-Party Agreement (TPA) milestones before the end of 2011.

  11. Annual Site Environmental Report, Department of Energy Operations at the Energy Technology Engineering Center – Area IV, Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Frazee, Brad; Hay, Scott; Wondolleck, John; Sorrels, Earl; Rutherford, Phil; Dassler, David; Jones, John

    2015-05-01

    This Annual Site Environmental Report (ASER) for 2014 describes the environmental conditions related to work performed for the DOE at Area IV of the Santa Susana Field Laboratory (SSFL). The ETEC, a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  12. Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority

    Broader source: Energy.gov [DOE]

    Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority for exchange of information concerning management of radioactive waste.

  13. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  14. A Plutonium Finishing Plant Model for the Cercla Removal Action and Decommissioning Construction Final Report

    SciTech Connect (OSTI)

    Hopkins, A. [Fluor Hanford, Inc, Richland, WA (United States)

    2008-07-01

    The joint policy between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) for decommissioning buildings at DOE facilities documents an agreement between the agencies to perform decommissioning activities including demolition under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The use of removal actions for decommissioning integrates EPA oversight authority, DOE lead agency responsibility, and state authority for decommissioning activities. Once removal actions have been performed under CERCLA, a construction completion report is required to document the completion of the required action. Additionally, a decommissioning report is required under DOE guidance. No direct guidance was found for documenting completion of decommissioning activities and preparing a final report that satisfies the CERCLA requirements and the DOE requirements for decommissioning. Additional guidance was needed for the documentation of construction completion under CERCLA for D and D projects undertaken under the joint policy that addresses the requirements of both agencies. A model for the construction completion report was developed to document construction completion for CERCLA D and D activities performed under the joint EPA/DOE policy at the Plutonium Finishing Plant (PFP). The model documentation report developed at PFP integrates the DOE requirements for establishing decommissioning end-points, documenting end-point completion and preparing a final decommissioning report with the CERCLA requirements to document completion of the action identified in the Action Memorandum (AM). The model includes the required information on health and safety, data management, cost and schedule and end-points completion. (authors)

  15. Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning

    Broader source: Energy.gov [DOE]

    The decommissioning of Gaseous Diffusion Plant facilities requires accurate, non-destructive assay (NDA) of residual enriched uranium in facility components for safeguards and nuclear criticality...

  16. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2014 January 28, 2014 FACT SHEET: Hanford Site Cleanup Progress This fact sheet has been updated with statistics on Hanford Site cleanup progress through the end of December 2013. January 22, 2014 Massive Hanford Test Reactor Removed Plutonium Recycle Test Reactor removed from Hanford's 300 Area

  17. International Collaboration with the Shutdown of the BN-350 Reactor

    SciTech Connect (OSTI)

    J. A. Michelbacher; P.B. Wells; N. Organ; D. Wells

    2005-08-01

    Representatives from the United States and the United Kingdom discussed areas where collaboration on the shutdown of the BN-350 Reactor in Aktau, Kazakhstan would benefit not only Kazakhstan, but would also help to assure the successful shutdown of the reactor. A fundamental understanding of the basis for collaboration has been for each side to add value to each of the project areas, rather than simply substitute for each others experience. This approach has brought distinct technical and management benefits to the decommissioning activities in Kazakhstan.

  18. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    SciTech Connect (OSTI)

    Segall, P.

    1998-04-13

    Hanford`s missions are to safely clean up and manage the site`s legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford`s environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford`s science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford`s original mission, the production of nuclear materials for the nation`s defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford`s operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues.

  19. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Visit to Hazardous Burial Ground Media Visit to Hazardous Burial Ground Mission Support Alliance Mission Support Alliance Mobile Arm Retrieval System (MARS) Mobile Arm Retrieval System (MARS) Moving Sludge off the River Moving Sludge off the River MSA Earns VPP Star Status MSA Earns VPP Star Status N Reactor Cocooning N Reactor Cocooning N Reactor Demolition N Reactor Demolition N Reactor Media Event N Reactor Media Event N Reactor River Structures Removed N Reactor River Structures

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chromium Treating contaminated soil for disposal Treating contaminated soil for disposal Chromium removal near D, DR Reactors Chromium removal near D, DR Reactors Vegetation planted near B, C Reactors Vegetation planted near B, C Reactors Chromium removal Chromium removal Backfilling near D Reactors with clean soil Backfilling near D Reactors with clean soil Excavating soil near B, C Reactors Excavating soil near B, C Reactors Draining pipes containing chromium Draining pipes containing chromium

  2. UPDATE HANFORD SITE D & D PROGRAMS ACCELERATE EXPAND

    SciTech Connect (OSTI)

    GERBER, M.S.

    2004-04-22

    A large, new decontamination and decommissioning organization targeted toward rapid, focused work on aging and highly contaminated structures was formed at the DOE's Hanford Site in southeast Washington state in autumn 2003. Managed by prime contractor Fluor Hanford, the new organization has made significant progress during its first six months. Under the direction of Mike Lackey, who recently joined Fluor from the Portland General Electric Trojan Plant, the Fluor Hanford D&D organization is tackling the Plutonium Finishing Plant (PFP) complex and the Fast Flux Test Facility (FFTF), and is nearly finished demolishing the 233-S Plutonium Concentration Facility. In addition, the D&D organization is progressing through the development and public comment phases of its required environmental permitting, planning work and procurement services to D&D three other Hanford facilities: 224-T and 224-B Plutonium Concentration Facilities, and the U Plant radiochemical processing facility. It is also planning and beginning to D&D the spent fuel handling areas of the Site's 100-K Reactor Area. The 586-square mile Hanford Site, the oldest plutonium production center in the world, served as the ''workhorse'' of the American nuclear defense arsenal from 1944 through 1989. Hanford produced the special nuclear material for the plutonium cores of the Trinity (test) and Nagasaki explosions, and then went on to produce more than half of the weapons plutonium ever manufactured by the United States, and about one-fourth of that manufactured worldwide. As a result, Hanford, the top-secret ''Paul Bunyan'' in the desert, is one of the most contaminated areas in the world. Its cleanup agreement with state and federal regulators, known as the ''Tri-Party Agreement,'' celebrates its 15th anniversary this spring, at a time when operations dealing with unstable plutonium leftovers, corroded spent fuel, and liquids wastes in single-shelled tanks conclude. As these crucial jobs are coming to an end, D&D has gained traction as a central Site mission.

  3. CONVECTION REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  4. Soil Segregation technology: reducing uncertainty and increasing efficiency during radiological decommissioning - a case study

    SciTech Connect (OSTI)

    Lombardo, A.J.; Orthen, R.F.; Shonka, J.J.; Scott, L.M.

    2007-07-01

    The regulatory release of sites and facilities (property) for restricted or unrestricted use has evolved beyond prescribed levels to model-derived dose and risk based limits. Dose models for deriving corresponding soil radionuclide concentration guidelines are necessarily simplified representations of complex processes. It is not practical to obtain data to fully or accurately characterize transport and exposure pathway processes. Similarly, it is not possible to predict future conditions with certainty absent durable land use restrictions. To compensate for the shortage of comprehensive characterization data and site specific inputs to describe the projected 'as-left' contaminated zone, conservative default values are used to derive acceptance criteria. The result is overly conservative criteria. Furthermore, implementation of a remediation plan and subsequent final surveys to show compliance with the conservative criteria often result in excessive remediation due to the large uncertainty. During a recent decommissioning project of a site contaminated with thorium, a unique approach to dose modeling and remedial action design was implemented to effectively manage end-point uncertainty. The approach used a dynamic feedback dose model and soil segregation technology to characterize impacted material with precision and accuracy not possible with static control approaches. Utilizing the remedial action goal 'over excavation' and subsequent auto-segregation of excavated material for refill, the end-state (as-left conditions of the refilled excavation) RESRAD input parameters were re-entered to assess the final dose. The segregation process produced separate below and above criteria material stockpiles whose volumes were optimized for maximum refill and minimum waste. The below criteria material was returned to the excavation without further analysis, while the above criteria material was packaged for offsite disposal. Using the activity concentration data recorded by the segregation system and the as-left configuration of the refilled excavation, the end state model of the site was prepared with substantially reduced uncertainty. The major projected benefits of this approach are reviewed as well as the performance of the segregation system and lessons learned including: 1) Total, first-attempt data discovery brought about by simultaneously conducted characterization and final status surveys, 2) Lowered project costs stemming from efficient analysis and abstraction of impacted material and reduced offsite waste disposal volume, 3) Lowered project costs due to increased remediation/construction efficiency and decreased survey and radio-analytical expenses, and 4) Improving the decommissioning experience with new regulatory guidance. (authors)

  5. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.

  6. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeings Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  7. Site Environmental Report for Calendar Year 2004. DOE Operations at The Boeing Company Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Lee, Majelle

    2005-09-01

    This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeings Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  8. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM - ELIMINATION REPORT FOR

    Office of Legacy Management (LM)

    - ELIMINATION REPORT FOR . UNIVERSITY OF NEVADA MACKAY SCHOOL OF MINES RENO, NEVADA s,d k I",, ici ;3J(, i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 , Page . 1 2 2 2' 3 3 iii The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action

  9. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    - ELIMINATION REPORT FOR USS AGRI-CHEMICALS (THE FORMER ARMOUR FERTILIZER ' WORKS) BARTOW, FLORIDA NOv 26 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects -.. ." __.-__.._ ..- --- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Page 4 _ 5 _-_".-. .-.. ELIMINATION REPORT USS AGRI-CHEMICALS (THE FORMER

  10. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    NATIONAL BUREAU OF STANDARDS BUILDINGS VAN NESS STREET WASHINGTON, D.C. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - __-~---- -._.. .._ .-. .- INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status CONTENTS ELIMINATION ANALYSIS REFERENCES ii Paqe 1 4 INiRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste

  11. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ..- .-- ---- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Page 1 L 2 2 3 3 5 5 - --__( -_..... _ .._ ELIMINATION REPORT THE FORMER SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK L -rc c INTRODUCTION

  12. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects -- --- .- _- --__ CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii - ,. -- Page 1 4 4 ..I___ - ~-___- ELIMINATION REPORT UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA INTRODUCTION The Department

  13. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    THE FORMER WESTINGHOUSE ELECTRIC CORPORATION _ BUILDING 7 BLOOMFIELD, NEW JERSEY SW 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ---- - - _-. CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page . 1 2 2 2 3 4 4 iii _ -... __. --. ..-__ 1. . -1 ELIMINATION REPORT THE FORMER WESTINGHOUSE ELECTRIC CORPORATION

  14. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT,

    Office of Legacy Management (LM)

    REPORT, FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET, NEW YORK, AND DUNKIRK, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste.Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES * 1 2 2 2 3 4 4 . . . 111 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION

  15. Remaining Sites Verification Package for 132-DR-1, 1608-DR Effluent Pumping Station, Waste Site Reclassification Form 2005-035

    SciTech Connect (OSTI)

    R. A. Carlson

    2005-09-22

    Radiological characterization, decommissioning and demolition of the 132-DR-1 site, 1608-DR Effluent Pumping Station was performed in 1987. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

  16. Is Entombment an Acceptable Option for Decommissioning? An International Perspective - 13488

    SciTech Connect (OSTI)

    Belencan, Helen; Nys, Vincent; Guskov, Andrey; Francois, Patrice; Watson, Bruce; Ljubenov, Vladan

    2013-07-01

    Selection of a decommissioning strategy is one of the key steps in the preparation for decommissioning of nuclear facilities and other facilities using radioactive material. Approaches being implemented or considered by Member States include immediate dismantling, deferred dismantling and entombment. Other options or slight modifications of these strategies are also possible. Entombment has been identified in the current International Atomic Energy Agency (IAEA) Safety Standards as one of the three basic decommissioning strategies and has been defined as a decommissioning strategy by which radioactive contaminants are encased in a structurally long lived material until radioactivity decays to a level permitting the unrestricted release of the facility, or release with restrictions imposed by the regulatory body. Although all three strategies have been considered, in principle, applicable to all facilities, their application to some facilities may not be appropriate owing to political concerns, safety or environmental requirements, technical considerations, local conditions or financial considerations. The IAEA is currently revising the decommissioning Safety Standards and one of the issues widely discussed has been the applicability of entombment in the context of decommissioning and its general objective to enable removal of regulatory control from the decommissioned facility. The IAEA recently established a consultancy to collect and discuss experience and lessons learned from entombment projects, to identify regulatory requirements and expectations for applying entombment as a decommissioning option strategy, in compliance with the internationally agreed standards. (authors)

  17. EM Delegation Tours UK Cleanup Program’s Sellafield Site

    Broader source: Energy.gov [DOE]

    A senior-level EM delegation led by Associate Principal Deputy Assistant Secretary Alice Williams visited the United Kingdom’s Sellafield nuclear site to gain insight into the cleanup projects and facilities under the jurisdiction of the UK’s Nuclear Decommissioning Authority (NDA).

  18. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    REVERE COPPER AND BRASS CORPORATION 5851 WEST JEFFERSON STREET DETROIT, MICHIGAN MARCH 30, 1990 U.S. Department of Energy Office of Environmental Restoration and Waste Management Office of Environmental Restoration Decontamination and Decommissioning Division /I I_. ,I - CONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Site Function

  19. X-10 Graphite Reactor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    X-10 Graphite Reactor X-10 Graphite Reactor X-10 Graphite Reactor When President Roosevelt in December 1942 authorized the Manhattan Project, the Oak Ridge site in eastern Tennessee had already been obtained and plans laid for an air-cooled experimental pile, a pilot chemical separation plant, and support facilities. The X-10 Graphite Reactor, designed and built in ten months, went into operation on November 4, 1943. The X-10 used neutrons emitted in the fission of uranium-235 to convert

  20. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  1. Decommissioning Cost Estimating Factors And Earned Value Integration

    SciTech Connect (OSTI)

    Sanford, P.C.; Cimmarron, E.

    2008-07-01

    The Rocky Flats 771 Project progressed from the planning stage of decommissioning a plutonium facility, through the strip-out of highly-contaminated equipment, removal of utilities and structural decontamination, and building demolition. Actual cost data was collected from the strip-out activities and compared to original estimates, allowing the development of cost by equipment groupings and types and over time. Separate data was developed from the project control earned value reporting and compared with the equipment data. The paper discusses the analysis to develop the detailed factors for the different equipment types, and the items that need to be considered during characterization of a similar facility when preparing an estimate. The factors are presented based on direct labor requirements by equipment type. The paper also includes actual support costs, and examples of fixed or one-time start-up costs. The integration of the estimate and the earned value system used for the 771 Project is also discussed. The paper covers the development of the earned value system as well as its application to a facility to be decommissioned and an existing work breakdown structure. Lessons learned are provided, including integration with scheduling and craft supervision, measurement approaches, and verification of scope completion. In summary: The work of decommissioning the Rocky Flats 771 Project process equipment was completed in 2003. Early in the planning process, we had difficulty in identifying credible data and implementing processes for estimating and controlling this work. As the project progressed, we were able to collect actual data on the costs of removing plutonium contaminated equipment from various areas over the life of this work and associate those costs with individual pieces of equipment. We also were able to develop and test out a system for measuring the earned value of a decommissioning project based on an evolving estimate. These were elements that would have been useful to us in our early planning process, and we would expect that they would find application elsewhere as the DOE weapons complex and some commercial nuclear facilities move towards closure. (authors)

  2. ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD

    Office of Environmental Management (EM)

    Washington, D.C. 20585 April 25, 2013 2 Environmental Management Site-Specific Advisory Board - April 25, 2013 Meeting Minutes LIST OF ACRONYMS AB - Advisory Board ANL - Argonne National Laboratory ARP - Accelerator Retrieval Project BNL - Brookhaven National Laboratory BRC - Blue Ribbon Commission CAB - Citizens Advisory Board D&D - Decontamination & Decommissioning DDFO - Deputy Designated Federal Officer DOE - Department of Energy DUF6 - Depleted Uranium Hexafluoride DWPF - Defense

  3. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  4. HANFORD DECOMMISSIONING UPDATE 09/2007

    SciTech Connect (OSTI)

    GERBER, M.S.

    2007-08-20

    Fluor Hanford's K Basins Closure (KBC) Project tallied three major accomplishments at the U.S. Department of Energy's (DOE's) Hanford Site in Southeastern Washington State this past summer. The Project finished emptying the aging K East Basin of both sludge and the last pieces of scrap spent nuclear fuel. It also Completed vacuuming the bulk of the sludge in the K West Basin into underwater containers. The 54-year-old concrete basins once held more than four million pounds of spent nuclear fuel and sit less than 400 yards from the Columbia River. Each basin holds more than a million gallons of radioactive water. In 2004, Fluor finished removing all the spent nuclear fuel from the K Basins. Nearly 50 cubic meters of sludge remained--a combination of dirt, sand, small pieces of corroded uranium fuel and fuel cladding, corrosion products from racks and canisters, ion-exchange resin beads, polychlorinated biphenyls, and fission products that had formed during the decades that the spent nuclear fuel was stored underwater. Capturing the sludge into underwater containers in the K East Basin took more than two years, and vacuuming the much smaller volume of sludge into containers in the K West Basin required seven months. Workers stood on grating above the basin water and vacuumed the sludge through long, heavy hoses. The work was complicated by murky water and contaminated solid waste (debris). Pumping was paused several times to safely remove and package debris that totaled more than 370 tons. In October 2006, Fluor Hanford workers began pumping the sludge captured in the K East Basin containers out through a specially designed pipeline to underwater containers in the K West Basin, about a half mile away. They used a heavy but flexible, double-walled ''hose-in-hose'' system. Pumping work progressed slowly at first, but ramped up in spring 2007 and was completed on May 31. Just a week before sludge transfers finished, the KBC Project removed the last few small pieces of irradiated fuel (about 19 pounds) found as the last remnants of sludge were vacuumed up. The fuel was loaded into a cask that sat underwater. The cask was hoisted out of the water, decontaminated, and transported to the K West Basin, where it is now being stored underwater until it can be dried and taken to storage in central Hanford. Removing the sludge and fuel from the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream. Fluor's priority at the K East Basin quickly turned to final preparations for demolishing the structure. Final activities to sort debris are progressing, along with plans to de-water the basin and turn it to rubble in the next two years. At the K West Basin, after the bulk sludge was removed July 3, workers began preparing to load out the last of the ''found'' nuclear fuel and to complete final pass sludge collection this coming year.

  5. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  6. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  7. Remaining Sites Verification Package for 132-D-3, 1608-D Effluent Pumping Station, Waste Site Reclassification Form 2005-033

    SciTech Connect (OSTI)

    R. A. Carlson

    2006-05-09

    Decommissioning and demolition of the 132-D-3 site, 1608-D Effluent Pumping Station was performed in 1986. Decommissioning included removal of equipment, water, and sludge for disposal as radioactive waste. The at- and below-grade structure was demolished to at least 1 m below grade and the resulting rubble buried in situ. The area was backfilled to grade with at least 1 m of clean fill and contoured to the surrounding terrain. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

  8. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

  9. Radiological characterization of a vitrification facility for decommissioning

    SciTech Connect (OSTI)

    Asou, M. [CEA/DEN/VALRHO/UMODD, 30207 Bagnols-sur-Ceze Cedex (France); Le Goaller, C. [CEA/DEN/VALRHO/DDCO, 30207 Bagnols-sur-Ceze Cedex (France); Martin, F. [AREVA NC DAP/MOP (France)

    2007-07-01

    Cleanup operations in the Marcoule Vitrification Facility (AVM) will start in 2007. This plant includes 20 highly irradiating storage tanks for high-level liquid waste before vitrification. The objective of the cleanup phase is to significantly decrease the amount of highly radioactive waste resulting from dismantling. A comprehensive radiological survey of the plant was initiated in 2000. Most of the tanks were characterized using advanced technologies: gamma imaging, CdZnTe gamma spectroscopy, dose rate measurements and 3D calculations codes. At the same time, inspections were conducted to develop 3D geometrical models of the tanks. The techniques used and the main results obtained are described as well as lessons learned from these operations. The rinsing program was defined in 2006. Decontamination operations are expected to begin in 2007, and radiological surveys will be followed up to monitor the efficiency of the decontamination process. Specific rinsing of all tanks and equipment will be carried out from 2007 to 2009. Concentrated liquid solutions will be vitrified between 2008 and 2010; the decommissioning of AVM will be delayed until the end of 2010. This strategy aims at producing less than 5% 'B' type (long-lived intermediate-level) waste from the decommissioning operations, as well as reducing the dose rate and risks by simplified remote dismantling. The paper reviews the main options selected for decontamination, as well as the radiological characterization strategy. Some cost-related aspects will also be analyzed. (authors)

  10. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

  11. Assessment, evaluation, and testing of technologies for environmental restoration, decontamination, and decommissioning and high level waste management. Progress report

    SciTech Connect (OSTI)

    Uzochukwu, G.A.

    1997-12-31

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  12. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  13. Energy Department Announces Small Modular Reactor Technology Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Savannah River Site | Department of Energy Small Modular Reactor Technology Partnerships at Savannah River Site Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site March 2, 2012 - 10:27am Addthis WASHINGTON, D.C. -- The U.S. Energy Department and its Savannah River Site (SRS) announced today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South

  14. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect (OSTI)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  15. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  16. Environmental Regulation of the Nuclear Industry in England and Wales in an era of Restructuring and Accelerated Decommissioning

    SciTech Connect (OSTI)

    Parker, I.W.; Weedon, C. J.

    2006-07-01

    In 2005 a large part of the UK Nuclear Industry was restructured with a new national body, the Nuclear Decommissioning Authority (NDA), being responsible for all the assets and liabilities of the nationally owned reactors and fuel cycle facilities. The former owners are now operating and in many cases decommissioning the facilities under contract to the NDA. As the body responsible for enforcing most environmental legislation in England and Wales, the Environment Agency has reviewed its regulatory approach to the Industry. This is to ensure that our responsibility to protect and enhance the environment is met whilst considering appropriately other key drivers impacting on all sectors of environmental regulation. Factors influencing this review include: - Greater public interest and concern over nuclear issues; - Greater transparency of strategies, plans and decisions in the nuclear industry; - The need to ensure that sustainable protection of the environment remains a constant feature of environmental regulation; - The need for a proportionate approach to regulation in the non-prescriptive UK legislative system; - Being effective and efficient in a period when all types of regulation are under Government and public scrutiny; - The aim of the NDA to achieve safe, secure, cost-effective, accelerated and environmentally responsible decommissioning and clean up in part by competing the management of the facilities. This has involved - Constructive liaison with the NDA both before and after its commencement to ensure we are both aware of each other's concerns; - Taking a strong influencing role at strategic and operational levels; - Putting in position arrangements for our involvement in the competitive process; - Liaison at an early stage with the industry's plans for future work; - Establishing greater clarity in our strategy and plans, notably with re-examination of the requirements of our authorisations and permits; - Establishing a new assessment resource (the Nuclear Waste Assessment Team, NWAT) to enable us to examine proposals for waste management while awaiting the establishment of a national strategy; - Seeking the modernising of legislation and exerting pressure on UK government for relevant legislative/policy changes; - Improved links to safety and security regulators; - Developing our own Environmental Assessment Principles to assist regulators and the industry on the issues to be addressed; - Speeding up, where possible, our processes for determination of applications and transfers of authorisations, to allow industry restructuring. The position is dynamic and we continue to work with Industry, the NDA and other regulators to ensure we meet our respective goals. (authors)

  17. Portsmouth DOE & Site Contractors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As DOE Decontamination & Decommissioning (D&D) contractor, Fluor-BWXT Portsmouth (FBP) is ... Contractors DECONTAMINATION & DECOMMISSIONING Fluor-BWXT Portsmouth INFRASTRUCTURE Wastren ...

  18. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2012 September 19, 2012 PHOTO GALLERY: F Reactor Media Event Pictures of the F Reactor Area and the Media Availability held on September 19, 2012. September 19, 2012 F Reactor Area Cleanup Complete First at Hanford to Finish Buildings, Waste Sites, and Cocooning September 17, 2012 VIDEO: C-104 Retrieval Completion September 17, 2012 Retrieval of the Tenth Single-Shell Tank Complete at Hanford Washington River Protection Solutions (WRPS) has advised the U.S. Department of Energy (DOE)

  19. Deactivation & Decommissioning Knowledge Management Information Tool (D&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KM-IT) | Department of Energy Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) The Deactivation and Decommissioning Knowledge Management Information Tool (D&D KM-IT) serves as a centralized repository providing a common interface for all D&D related activities. It assists users in gathering, analyzing,

  20. Development And Implementation Of A Strategic Technical Baseline Approach For Nuclear Decommissioning And Clean Up Programmes In The UK

    SciTech Connect (OSTI)

    Brownridge, M.; Ensor, B.

    2008-07-01

    The NDA mission as set out within the Energy Act 2004 and stated in the NDA strategy is clear: - 'to deliver a world class programme of safe, cost-effective, accelerated and environmentally responsible decommissioning of the UK's civil nuclear legacy in an open and transparent manner and with due regard to the socio-economic impacts on our communities. Critical to achieving the NDA main objective and overall mission is to accelerate and deliver clean-up programmes through the application of appropriate and innovative technology. The NDA remit also requires us to secure good practice by contractors and carry out and promote research into matters relating to the decommissioning and clean up of nuclear installations and sites. NDA have defined a strategic approach for the underpinning of operational and decommissioning activities where each nuclear site is required to write within the Life Time Plans (LTP) the proposed technical baseline for those activities. This enables the robustness of the activities to be assessed, the gaps and opportunities and accompanying Research and Developments (R and D) requirements to be highlighted and investment to be targeted at key technical issues. NDA also supports the development of a commercial framework where innovation is encouraged and improvements can be demonstrated against the technical baseline. In this paper we will present NDA's overall strategic approach, the benefits already realised and highlight the areas for continued development. In conclusion: The development and implementation of a strategic approach to robustly underpin the technical components of the lifetime plans for operational and decommissioning activities on NDA sites has been extremely successful. As well as showing how mature technology assumptions are and where the key gaps and risks are it has also provided a method for highlighting opportunities to improve on that baseline. The use of a common template across all NDA LTPs has enabled direct comparison of issues, identification of inter-site dependencies and scheduling hold points and a platform for sharing success and good practice. This deployment of TRLs and TBURDs across all 20 UK NDA sites is unique. The strategic approach is linked into wider areas in NDA's mission including NDA skills strategy and NDA's Direct Research Portfolio. NDA plan to ensure the strategic approach continues to evolve by the following activities: - Benchmarking the success of the TBURD and consistency of TRL evaluation to develop to a world class model; - Development of quantitative as well as qualitative methods of measuring the benefits realised; - Further support the development of technical interest groups where good practice is rewarded, shared, deployed and the benefit realised is measured; - Seek to reward innovation through the technical baselines and continue to develop the commercial framework. The progress described to date has summarised the work to develop the approach and indicated how it has been embedded and applied within three LTP cycles. NDA will further develop the TBURD through international benchmarking to create a process that is world class and clearly linked to delivery and innovation in order to reduce cost and schedule. (authors)

  1. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  2. Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.

    SciTech Connect (OSTI)

    LaFreniere, L. M.

    2012-06-29

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

  3. Dismantling Structures and Equipment of the MR Reactor and its Loop Facilities at the National Research Center 'Kurchatov Institute' - 12051

    SciTech Connect (OSTI)

    Volkov, V.G.; Danilovich, A.S.; Zverkov, Yu. A.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Muzrukova, V.D.; Pavlenko, V.I.; Semenov, S.G.; Fadin, S.Yu.; Shisha, A.D.; Chesnokov, A.V.

    2012-07-01

    In 2008 a design of decommissioning of research reactors MR and RFT has been developed in the National research Center 'Kurchatov institute'. The design has been approved by Russian State Authority in July 2009 year and has received the positive conclusion of ecological expertise. In 2009-2010 a preparation for decommissioning of reactors MR and RFT was spent. Within the frames of a preparation a characterization, sorting and removal of radioactive objects, including the irradiated fuel, from reactor storage facilities and pool have been executed. During carrying out of a preparation on removal of radioactive objects from reactor sluice pool water treating has been spent. For these purposes modular installation for clearing and processing of a liquid radioactive waste 'Aqua - Express' was used. As a result of works it was possible to lower volume activity of water on three orders in magnitude that has allowed improving essentially of radiating conditions in a reactor hall. Auxiliary systems of ventilation, energy and heat supplies, monitoring systems of radiating conditions of premises of the reactor and its loop-back installations are reconstructed. In 2011 the license for a decommissioning of the specified reactors has been received and there are begun dismantling works. Within the frames of works under the design the armature and pipelines are dismantled in a under floor space of a reactor hall where a moving and taking away pipelines of loop facilities and the first contour of the MR reactor were replaced. A dismantle of the main equipment of loop facility with the gas coolant has been spent. Technologies which were used on dismantle of the radioactive contaminated equipment are presented, the basic works on reconstruction of systems of maintenance of on the decommissioning works are described, the sequence of works on the decommissioning of reactors MR and RFT is shown. Dismantling works were carried out with application of means of a dust suppression that, in aggregate with standard means at such works of individual protection of the personnel and devices of radiating control, has allowed to lower risk of action of radiation on the personnel, the population and environment at the expense of reduction of volume activity of radioactive aerosols in air. (authors)

  4. CPP-603 Chloride Removal System Decontamination and Decommissioning. Final report

    SciTech Connect (OSTI)

    Moser, C.L.

    1993-02-01

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D&D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis`, and D&D plans` were prepared in 1991. Physical D&D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D&D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred.

  5. Sorption (Kd) measurements in support of dose assessments for Zion Nuclear Station Decommissioning

    SciTech Connect (OSTI)

    Yim S. P.; Sullivan T.; Milian, L.

    2012-12-12

    The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with clean concrete demolition debris from the above grade parts of the facility. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) was performed to provide site-specific data for performance assessment calculations to support the request to terminate the NRC license and allow unrestricted use of the facility. Specifically, this study measured the distribution coefficient for five radionuclides of concern using site-specific soils and groundwater. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the soil or concrete that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides of concern are Fe-55, Co-60, Ni-63, Sr-90, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90. Site-specific soils included disturbed sand (sand removed during construction and used as backfill), native sand, silt/clay and silt. In addition, concrete cores from the Unit-1 Containment Building and the Crib House were broken into particles less than 2 mm in size and tested to obtain distribution coefficients for the five nuclides.

  6. Site & Facility Restoration

    Broader source: Energy.gov [DOE]

    EM provides integration, planning and analysis for all soil and groundwater remediation, deactivation and decommissioning (D&D) and facility engineering. This work includes sustainability...

  7. U.S. Department of Energy Provides Report to Congress on the Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites | Department of Energy Provides Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites U.S. Department of Energy Provides Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites December 9, 2008 - 8:51am Addthis Washington D.C. - The U.S.

  8. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Standard review plan and acceptance criteria. NUREG - 1537, Part 2

    SciTech Connect (OSTI)

    1996-02-01

    NUREG - 1537, Part 2 gives guidance on the conduct of licensing action reviews to NRC staff who review non-power reactor licensing applications. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination.

  9. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Format and Content. NUREG-1537, Part 1

    SciTech Connect (OSTI)

    1996-02-01

    NUREG - 1537, Part 1 gives guidance to non-power reactor licensees and applicants on the format and content of applications to the Nuclear Regulatory Commission for licensing actions. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination.

  10. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  11. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  12. REACTOR SHIELD

    DOE Patents [OSTI]

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  13. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  14. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  15. Reactor apparatus

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA)

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  16. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  17. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  18. Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning

    SciTech Connect (OSTI)

    O'Donnell, E.; Ott, W.R.

    2008-07-01

    This paper summarizes a regulatory guide that the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, is currently developing for use in implementing Title 10, Section 20.1406, of the Code of Federal Regulations (10 CFR 20.1406), 'Minimization of Contamination'. The intent of the regulation is to diminish the occurrence and severity of 'legacy sites' by taking measures to reduce and control contamination and facilitate eventual decommissioning. The thrust of the regulatory guide is to encourage applicants to use technically sound engineering judgment and a practical risk-informed approach to achieve the objectives of 10 CFR 20.1406. In particular, such an approach should consider the materials and processes involved (e.g., solids, liquids, gases), and focus on (1) the relative significance of potential contamination, (2) areas that are most susceptible to leaks, and (3) the appropriate level of consideration that should be incorporated in facility design and operational procedures to prevent and control contamination. (authors)

  19. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  20. Summary of events and geotechnical factors leading to decommissioning of the Strategic Petroleum Reserve (SPR) facility at Weeks Island, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.

    1996-10-01

    A sinkhole discovered over the edge of the Strategic Petroleum Reserve storage facility at Weeks Island salt dome, Louisiana, led to decommissioning the site during 1995--1998, following extensive diagnostics in 1994. The sinkhole resulted from mine-induced fractures in the salt which took may years to develop, eventually causing fresh water to leak into the storage chamber and dissolve the overlying salt, thus causing overburden collapse into the void. Prior to initiating the oil removal, a freeze wall was constructed at depth around the sinkhole in 1995 to prevent water inflow; a freeze plug will remain in place until the mine is backfilled with brine in 1997--8, and stability is reached. Residual oil will be removed; environmental monitoring has been initiated and will continue until the facility is completely plugged and abandoned, and environmental surety is achieved.

  1. DOE Environmental Management Strategy and Experience for In-Situ Decommissioning

    Broader source: Energy.gov [DOE]

    In situ decommissioning (ISD) is the permanent entombment of a contaminated facility. At present, ISD is not recognized or addressed in the Department of Energy (DOE) and Office of Environmental...

  2. EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's...

  3. DOE EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013)

    Broader source: Energy.gov [DOE]

    The purpose of the "DOE EM Project Experience & Lessons Learned for In Situ Decommissioning" report is to capture the considerable technical experience gained to date for implementation of In...

  4. Annual summary report of the Decontamination and Decommissioning Surveillance and Maintenance Program at Oak Ridge National Laboratory for period ending September 30, 1994

    SciTech Connect (OSTI)

    Anderson, L.A.; Burwinkle, T.W.; Ford, M.K.; Gaddis, H.R.; Holder, L. Jr.; Mandry, G.J.; Nelson, T.R.; Patton, B.D.

    1995-03-01

    The Surplus Facilities Management Program (SFMP) was established at Oak Ridge National Laboratory (ORNL) in 1976 to provide collective management of all surplus sites under ORNL`s control on the Oak Ridge Reservation. Presently, over 50 facilities, grouped into projects, are currently managed by the Decontamination and Decommissioning Program, the successor program to the SFMP. Support includes (1) surveillance and maintenance planning; (2) routine surveillance and maintenance; and (3) special maintenance projects. This report documents routine surveillance and maintenance, special projects, and special maintenance performed on these facilities for the period of October 1993 through September 1994.

  5. Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial Statement Audit

    Energy Savers [EERE]

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial Statement Audit OAS-FS-13-02 October 2012 September 7, 2012 Mr. Gregory Friedman Inspector General U.S. Department of Energy 1000 Independence Avenue, S.W. Room 5D-039 Washington, DC 20585 Dear Mr. Friedman: We have audited the financial statements of the Department of Energy's (the Department) Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) as of and for the year ended September

  6. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    SciTech Connect (OSTI)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-15

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample-taking to characterize solvent contained in one tank of Petrus installation (NLF 57, building 18) for radiological and chemical analysis needed to prepare the treatment and the evacuation of these wastes : internal authorization ; realised in june 2005. It was possible to plan the whole decommissioning process on the Nuclear Licensed Facilities of Fontenay-aux-Roses's Center (CEA/FAR) taking into account the French new regulation and to plan a coherent and continue program activity for the dismantling process. For the program not to be interrupted during the administrative process (2003-2006), specific authorisations have been delivered by the French Nuclear Safety Authority or by the General Executive Director (GED) on the CEA Fontenay-aux- Roses's Center (internal authorization). The time schedule to complete the entire program is until 2017 for NLF 'Procede' (NLF no 165) and until 2018 for NLF 'Support' (NLF no 166). Since 1999, an annual press meeting has been organised by the Fontenay-aux-Roses's Center Head Executive Manager.

  7. DOE - Office of Legacy Management -- Bonus

    Office of Legacy Management (LM)

    Puerto Rico Boiling Nuclear Superheater (BONUS), Puerto Rico, Decommissioned Reactor Site Key Documents and Links All documents are Adobe Acrobat files. pdficon Key Documents Fact...

  8. EIS-0119: Amended Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Amended Record of Decision EIS-0119: Amended Record of Decision Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington DOE has decided to...

  9. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    SciTech Connect (OSTI)

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

  10. Site Feeds - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Feeds Site Feeds Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Hanford RSS Feeds Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size RSS Feed Links Site News RSS Did You Know RSS What's New RSS Event Calendar RSS Recent Videos RSS Press Releases RSS What is a feed? A feed is a document that contains summaries of web content with web links to the original versions. It may be viewed with a feed reader or news aggregator. If you

  11. UK Delegation Focuses on EM's Reactor 'Cocooning' Expertise During

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Site Tour | Department of Energy UK Delegation Focuses on EM's Reactor 'Cocooning' Expertise During Hanford Site Tour UK Delegation Focuses on EM's Reactor 'Cocooning' Expertise During Hanford Site Tour December 29, 2015 - 12:35pm Addthis The UK delegation gathers at the front of the H Reactor core. Left to right: Amanda Anderson, DOE Office of the Chief of Nuclear Safety; Paul Lonsdale, Magnox Ltd.; Steve Kirchhoff, DOE Office of Environment, Health, Safety and Security; Mina

  12. Small Reactor for Deep Space Exploration

    ScienceCinema (OSTI)

    none,

    2014-05-30

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  13. Small Reactor for Deep Space Exploration

    SciTech Connect (OSTI)

    none,

    2012-11-29

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  14. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  15. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  16. POWER REACTOR

    DOE Patents [OSTI]

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  17. REACTOR CONTROL

    DOE Patents [OSTI]

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  18. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    SciTech Connect (OSTI)

    Boucau, Joseph; Mirabella, C.; Nilsson, Lennart; Kreitman, Paul J.; Obert, Estelle

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Center for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)

  19. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  20. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  1. Special Analysis: Naval Reactor Waste Disposal Pad

    SciTech Connect (OSTI)

    Cook, J.R.

    2003-03-31

    This report presents the results of a special study of the Naval Reactor Waste Disposal Pad located within the boundary of the E-Area Low-Level Waste Facility at the Savannah River Site.

  2. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  3. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  4. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  5. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Reactor B Reactor Designated Historic Landmark 8/25/2008 Search Search Search Filter: B Reactor All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater Treatment Facility Construction 200 West Groundwater Treatment LEED Facility 200W Pump and Treat Event 2010 Fire Season 2013 Safety EXPO 209-E Critical Mass Laboratory Demolition 284 West Boiler Demolition 284 West Explosive Demolition 300 Area

  7. Small Modular Reactors (SMRs)

    Broader source: Energy.gov [DOE]

    Information on Small Modular Reactors, and the Department of Energy Small Modular Reactor Licensing Technical Support (SMR-LTS) Program

  8. River Corridor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Reactor 300 Area 324 Building 618-10 and 618-11 Burial Grounds C Reactor D and DR Reactors F Reactor H Reactor N Reactor Environmental Restoration Disposal Facility K East and...

  9. Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation

    Energy Savers [EERE]

    Project | Department of Energy Proposed Plan for the Site-wide Waste Disposition Evaluation Project Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of the buildings at the Portsmouth Site. Three remedial alternatives for management of anticipated Portsmouth waste were developed for consideration. This Proposed Plan describes the required no-action

  10. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINFA;RIOflH;EPORT

    Office of Legacy Management (LM)

    ELIMINFA;RIOflH;EPORT FORMER ELECTRO METALLURGICAL COMPANY NIAGARA FALLS, NEW YORK U.S. DEPARTMENT OF ENERGY OFFICE OF NUCLEAR ENERGY OFFICE OF REMEDIAL ACTION AND WASTE TECHNOLOGY DIVISION OF FACILITY AND SITE DECOMMISSIONING PROJECTS CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS SUMMARY OF FINDINGS REFERENCES Page 1 : 3 5 7 8 ELIMINATION REPORT FORMER ELECTRO METALLURGICAL COMPANY NIAGARA FALLS, NEW YORK INTRODUCTION From

  11. WCH Removes Massive Test Reactor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WCH Removes Massive Test Reactor WCH Removes Massive Test Reactor Addthis Description Hanford's River Corridor contractor, Washington Closure Hanford, has met a significant cleanup challenge on the U.S. Department of Energy's (DOE) Hanford Site by removing a 1,082-ton nuclear test reactor from the 300 Area.

  12. R- AND P- REACTOR BUILDING IN-SITU DECOMISSIONING VISUALIZATION

    SciTech Connect (OSTI)

    Bobbitt, J.; Vrettos, N.; Howard, M.

    2010-06-15

    During the early 1950s, five production reactor facilities were built at the Savannah River Site. These facilities were built to produce materials to support the building of the nation's nuclear weapons stockpile in response to the Cold War. R-Reactor and P-Reactor were the first two facilities completed in 1953 and 1954.

  13. STATE OF THE HANFORD SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATE OF THE HANFORD SITE The Hanford Site sits on 586-square-miles of shrub-steppe desert in southeastern Washington state. The site was created in 1943 as part of the Manhattan Project to produce plutonium for nuclear weapons. Between 1943 and 1963, nine nuclear reactors were built along the banks of the Columbia River. By 1988, all nine reactors were shut down. The weapons material production mission ended in the late 1980s and Hanford's mission shifted from nuclear material production to

  14. EM’s Top Official Visits West Valley Site, Seneca Nation of Indians

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – Senior Advisor for Environmental Management David Huizenga commended employees at the West Valley Demonstration Project (WVDP) for safely and successfully managing the decommissioning of the only commercial spent nuclear fuel reprocessing facility that had operated in the United States during his recent visit to the site.

  15. EM Hosts Successful Visit from Canadian Nuclear Laboratories at Hanford Site

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Office of D&D and Facility Engineering (D&D/FE) hosted decommissioning professionals from Canadian Nuclear Laboratories (CNL) — Canada's premier nuclear technology and engineering organization — for two days at EM’s Hanford site in November this year. CNL was formerly known as Atomic Energy Canada Ltd.

  16. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  17. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  18. REACTOR MONITORING

    DOE Patents [OSTI]

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  19. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  20. Neutronic reactor

    DOE Patents [OSTI]

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  1. Update; Sodium advanced fast reactor (SAFR) concept

    SciTech Connect (OSTI)

    Oldenkamp, R.D.; Brunings, J.E. ); Guenther, E. ); Hren, R. )

    1988-01-01

    This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

  2. REACTOR CONTROL

    DOE Patents [OSTI]

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  3. ORISE: Multi-Agency Radiation Survey and Site Investigation Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MARSSIM) Site Investigation Manual (MARSSIM) As greater attention is being directed toward the decontamination and decommissioning (D&D) of nuclear facilities, the need for a standardized approach for implementing the necessary radiological surveys has become increasingly important. A multi-agency committee representing the U.S. Department of Defense (DOD), U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and U.S. Nuclear Regulatory Commission (NRC) has

  4. Decommissioning and PIE of the MEGAPIE spallation target

    SciTech Connect (OSTI)

    Latge, C.; Henry, J.; Wohlmuther, M.; Dai, Y.; Gavillet, D.; Hammer, B.; Heinitz, S.; Neuhausen, J.; Schumann, D.; Thomsen, K.; Tuerler, A.; Wagner, W.; Gessi, A.; Guertin, A.; Konstantinovic, M.; Lindau, R.; Maloy, S.; Saito, S.

    2013-07-01

    A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly. The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by ?-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from ?-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and ?-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.

  5. F Reactor Area Cleanup Complete | Department of Energy

    Office of Environmental Management (EM)

    F Reactor Area Cleanup Complete F Reactor Area Cleanup Complete September 19, 2012 - 12:00pm Addthis Media Contact Cameron Hardy, DOE Cameron.Hardy@rl.doe.gov 509-376-5365 RICHLAND, Wash. - U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated. While six of Hanford's nine plutonium production reactors have been sealed up, or cocooned, the F Reactor Area is the first to

  6. MITR-III: Upgrade and relicensing studies for the MIT Research Reactor. Second annual report

    SciTech Connect (OSTI)

    Trosman, H.G.; Lanning, D.D.; Harling, O.K.

    1994-08-01

    The current operating license of the MIT research reactor will expire on May 7, 1996 or possibly a few years later if the US Nuclear Regulatory Commission agrees that the license period can start with the date of initial reactor operation. Driven by the imminent expiration of the operating license, a team of nuclear engineering staff and students have begun a study of the future options for the MIT Research Reactor. These options have included the range from a major rebuilding of the reactor to its decommissioning. This document reports the results of a two year intensive activity which has been supported by a $148,000 grant from the USDOE contract Number DEFG0293ER75859, approximately $100,000 of internal MIT funds and Nuclear Engineering Department graduate student fellowships as well as assistance from international visiting scientists and engineers.

  7. Benefits of Small Modular Reactors (SMRs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Small Modular Reactors (SMRs) Benefits of Small Modular Reactors (SMRs) Small modular reactors offer a lower initial capital investment, greater scalability, and siting flexibility for locations unable to accommodate more traditional larger reactors. They also have the potential for enhanced safety and security compared to earlier designs. Modularity: The term "modular" in the context of SMRs refers to the ability to fabricate major components of the nuclear steam supply

  8. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2013 February 27, 2013 PHOTO GALLERY: 300 Area North Cleaned Up 98 Facilities Demolished, 58 Waste Sites Remediated February 27, 2013 300 Area North Section Cleaned Up 98 Facilities Demolished; 58 Waste Sites Remediated February 26, 2013 B Reactor Tour Registration Opens March 2 Families with children above the age of 12, along with middle schools and high schools, are invited to sign up for the coveted tour slots. February 25, 2013 Registration Starts Soon for 2013 Hanford Site Public

  9. Environmental assessment of decommissioning radioisotope thermoelectric generators (RTG) in northwest Russia

    SciTech Connect (OSTI)

    Hosseini, A.; Standring, W.J.F.; Brown, J.E.; Dowdall, M.; Amundsen, I.B.

    2007-07-01

    This article presents some results from assessment work conducted as part of a joint Norwegian-Russian project to decommission radioisotope thermoelectric generators (RTG) in Northwest Russia. Potential worst case accident scenarios, based on the decommissioning procedures for RTGs, were assessed to study possible radiation effects to the environment. Close contact with exposed RTG sources will result in detrimental health effects. However, doses to marine biota from ingestion of radioactivity under the worst-case marine scenario studied were lower than threshold limits given in IAEA literature. (authors)

  10. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  11. Deactivation & Decommissioning (D&D) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CH2M) are finding creative ways to manage resources and accelerate Hanford Site cleanup. ... in Cleanup of Nation's Plutonium Production RICHLAND, Wash. - The Columbia River ...

  12. Nuclear reactor

    DOE Patents [OSTI]

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  13. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2011 April 28, 2011 PRESS RELEASE: Construction completed on water treatment building for Hanford Waste Treatment Plant Crews finished construction on an essential building that will house equipment to filter and treat water once the plant is operational. April 26, 2011 PHOTO GALLERY: See photos of N Reactor being sealed up as part of the cocooning process. Workers put a roof on the N Reactor's main building and perform waste site remediation close to the Columbia River. April 08, 2011

  14. Hanford Railcars Make Final Stop at B Reactor: Move Enhances Visitor Experience at Historic Reactor

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – Two locomotives that hauled irradiated fuel around the Hanford Site for a half-century will reach their final stop this week when they are delivered to the Historic B Reactor for preservation and public display.

  15. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  16. Sacandaga Site

    Office of Legacy Management (LM)

    Naval Reactors Office By: Knolls Atomic Power Laboratory Schenectady, New York CONTENTS ... 1993, at the former Sacandaga Atomic Power Laboratory property, located at 823 ...

  17. Cold Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities Cold Test Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  18. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

  19. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    SciTech Connect (OSTI)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  20. INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continued on page 8 INSIDE: ITER Site Progress View from DOE US Systems Update Engaging Industry, Universities and Labs Upcoming Events Disruption Mitigation Researchers Investigate Design Options ITER, the world's first reactor-scale fusion machine, will have a plasma volume more than 10 times that of the next largest tokamak, JET. Plasma disruptions that can occur in a tokamak when the plasma becomes unstable can potentially damage plasma-facing surfaces of the machine. To lessen the impact of

  1. Overview and History of DOE's Hanford Site - 12502

    SciTech Connect (OSTI)

    Flynn, Karen; McCormick, Matt [US DOE (United States)

    2012-07-01

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level, and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses

  2. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    SciTech Connect (OSTI)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  3. Summary of Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-03-01

    This is a summary booklet of the main report: Hanford Site Groundwater Monitoring for Fiscal Year 2005. It is the summary section of the main report with a CD of the entire report included. The main report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energys Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  4. Evaluation of Proposed Hampton Roads Area Sites for Using Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals Identification of Selected Areas to Support ...

  5. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  6. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CH2M HILL Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System K East Reactor Cocooning Preparations K East Reactor Cocooning Preparations

  8. Role of the statistician in the decommissioning of the New Brunswick Laboratory and other nuclear facilities

    SciTech Connect (OSTI)

    Gilbert, R.O.

    1980-12-01

    This report examines what the statistician can contribute to decommissioning operations, with particular emphasis on the New Brunswick Laboratory (NBL) currently scheduled for decommissioning beginning in FY81. In the opinion of the author, a professional statistician should be a full member of the planning team directing decommissioning operations at the New Brunswick Laboratory. This opinion is based in part on the familiarity with the valuable contributions made by statisticians toward the cleanup of transuranics in soil on the Enewetak Atoll. More generally, however, the professional statistician can help plan the decommissioning effort to help ensure that representative data are obtained, analyzed and, interpreted in appropriate ways so that RA decisions can be made with the required confidence. The statistician's contributions at the NBL could include providing guidance on the number and location of samples and in-situ measurements, analyzing and interpreting these data, designing a data management and documentation system, interfacing with the certification contractor's statistician, and assisting in writing documentation and final reports. In all cases, the statistician should work closely with the professional health physicist and others on the planning team in a closely coordinated effort of planning and data analysis.

  9. Portsmouth Site | Department of Energy

    Office of Environmental Management (EM)

    Decontamination and Decommissioning Evaluation Project | Department of Energy RI/FS Report for the Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project Portsmouth RI/FS Report for the Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project This remedial investigation/feasibility study (RI/FS), the Remedial Investigation and Feasibility Study Report for the Process Buildings and Complex Facilities

  10. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  11. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.

    1957-09-17

    A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.

  12. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  13. Web-based training related to NRC staff review of dose modeling aspects of license termination and decommissioning plans

    SciTech Connect (OSTI)

    LePoire, D.; Arnish, J.; Cheng, J.J.; Kamboj, S.; Richmond, P.; Chen, S.Y.; Barr, C.; McKenney, C.

    2007-07-01

    NRC licensees at decommissioning nuclear facilities submit License Termination Plans (LTP) or Decommissioning Plans (DP) to NRC for review and approval. To facilitate a uniform and consistent review of these plans, the NRC developed training for its staff. A live classroom course was first developed in 2005, which targeted specific aspects of the LTP and DP review process related to dose-based compliance demonstrations or modeling. A web-based training (WBT) course is being developed in 2006 to replace the classroom-based course. The advantage of the WBT is that it will allow for staff training or refreshers at any time, while the advantage of a classroom-based course is that it provides a forum for lively discussion and the sharing of experience of classroom participants. The training course consists of the core and advanced modules tailored to specific NRC job functions. Topics for individual modules include identifying the characteristics of simple and complex sites, identifying when outside expertise or consultation is needed, demonstrating how to conduct acceptance and technical reviews of dose modeling, and providing details regarding the level of justification needed for realistic scenarios for both dose modeling and derivation of DCGLs. Various methods of applying probabilistic uncertainty analysis to demonstrate compliance with dose-based requirements are presented. These approaches include 1) modeling the pathways of radiological exposure and estimating doses to receptors from a combination of contaminated media and radionuclides, and 2) using probabilistic analysis to determine an appropriate set of input parameters to develop derived concentration guideline limits or DCGLs (DCGLs are media- and nuclide-specific concentration limits that will meet dose-based, license termination rule criteria found in 10 CFR Part 20, Subpart E). Calculation of operational (field) DCGL's from media- and nuclide-specific DCGLs and use of operational DCGLs in conducting final status surveys are addressed in the WBT. Realistic case examples are presented and analyzed including the abstraction of a realistic site into a conceptual model and computer model. A case history is also used to demonstrate development of NRC review documents such as requests for additional information (RAIs). To enhance the web-based training experience, audio, animations, linked documents, quizzes, and scripts are being integrated with a commercial web-based training package that supports simple navigation. The course is also being integrated into both existing and state-of-the-art learning management systems. A testing group is being utilized to identify and help resolve training issues prior to deployment of the course. When completed, the course can be accessed for credited training with required modules dependent on the job category of the training participant. The modules will also be accessible to NRC staff for review or refresher following initial course completion. WBT promotes consistency in reviews and has the advantage of being able to be used as a resource to staff at any time. The WBT will provide reviewers with knowledge needed to perform risk-informed analyses (e.g., information related to development of realistic scenarios and use of probabilistic analysis). WBT on review of LTP or DP dose modeling will promote staff development, efficiency, and effectiveness in performing risk-informed, performance-based reviews of decommissioning activities at NRC-licensed facilities. (authors)

  14. Web-based training related to NRC staff review of dose modeling aspects of license termination and decommissioning plans.

    SciTech Connect (OSTI)

    LePoire, D.; Arnish, J.; Cheng, J. J.; Kamboj, S.; Richmond, P.; Chen, S. Y.; Barr, C.; McKenney, C.; Environmental Science Division; NRC

    2007-01-01

    NRC licensees at decommissioning nuclear facilities submit License Termination Plans (LTP) or Decommissioning Plans (DP) to NRC for review and approval. To facilitate a uniform and consistent review of these plans, the NRC developed training for its staff. A live classroom course was first developed in 2005, which targeted specific aspects of the LTP and DP review process related to dose-based compliance demonstrations or modeling. A web-based training (WBT) course is being developed in 2006 to replace the classroom-based course. The advantage of the WBT is that it will allow for staff training or refreshers at any time, while the advantage of a classroom-based course is that it provides a forum for lively discussion and the sharing of experience of classroom participants. The training course consists of the core and advanced modules tailored to specific NRC job functions. Topics for individual modules include identifying the characteristics of simple and complex sites, identifying when outside expertise or consultation is needed, demonstrating how to conduct acceptance and technical reviews of dose modeling, and providing details regarding the level of justification needed for realistic scenarios for both dose modeling and derivation of DCGLs. Various methods of applying probabilistic uncertainty analysis to demonstrate compliance with dose-based requirements are presented. These approaches include: (1) modeling the pathways of radiological exposure and estimating doses to receptors from a combination of contaminated media and radionuclides, and (2) using probabilistic analysis to determine an appropriate set of input parameters to develop derived concentration guideline limits or DCGLs (DCGLs are media- and nuclide-specific concentration limits that will meet dose-based, license termination rule criteria found in 10 CFR Part 20, Subpart E). Calculation of operational (field) DCGL's from media- and nuclide-specific DCGLs and use of operational DCGLs in conducting final status surveys are addressed in the WBT. Realistic case examples are presented and analyzed including the abstraction of a realistic site into a conceptual model and computer model. A case history is also used to demonstrate development of NRC review documents such as requests for additional information (RAIs). To enhance the web-based training experience, audio, animations, linked documents, quizzes, and scripts are being integrated with a commercial web-based training package that supports simple navigation. The course is also being integrated into both existing and state-of-the-art learning management systems. A testing group is being utilized to identify and help resolve training issues prior to deployment of the course. When completed, the course can be accessed for credited training with required modules dependent on the job category of the training participant. The modules will also be accessible to NRC staff for review or refresher following initial course completion. WBT promotes consistency in reviews and has the advantage of being able to be used as a resource to staff at any time. The WBT provides reviewers with knowledge needed to perform risk-informed analyses (e.g., information related to development of realistic scenarios and use of probabilistic analysis). WBT on review of LTP or DP dose modeling promotes staff development, efficiency, and effectiveness in performing risk-informed, performance-based reviews of decommissioning activities at NRC-licensed facilities.

  15. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  16. Capturing Process Knowledge for Facility Deactivation and Decommissioning

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission...

  17. Sixteen Years of International Co-operation. The OECD/NEA Co-operative Programme on Decommissioning

    SciTech Connect (OSTI)

    Menon, S.; Valencia, L.

    2002-02-25

    The Co-operative Programme on Decommissioning under the administration of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency (NEA) has recently completed sixteen years of operation. The Programme, which is essentially an information exchange programme between decommissioning projects, came into being in 1985. It has grown from an initial 10 decommissioning projects from 7 countries to 39 projects from 14 countries today. From purely information exchange to start with, the Programme has, in later years, been functioning as a voice for the collective expression of views of the implementers of nuclear decommissioning. During the first sixteen years of the operation of the Co-operative Programme, nuclear decommissioning has grown from local specialist activities within projects to a competitive commercial industry. By the dismantling and release from regulatory control of over a dozen diverse nuclear facilities, the Programme has been able to demonstrate in practice, that nuclear decommissioning can be performed safely both for the workers and the public, and that this can be done at reasonable costs in an environmentally friendly fashion. During the recent years, discussions and work within the Co-operative Programme, specially within some of the Task Groups, have had/are having effects and repercussions not just in the field of nuclear decommissioning, but can possibly affect activities and regulations in other industries. This paper describes how the Programme and its activities and procedures have evolved over the years and indicate the directions of developments in the organization and execution of decommissioning projects. Finally, it gives a brief overview of the achievements of the Cooperative Programme and visualizes future developments in the field of nuclear decommissioning.

  18. DOE - Office of Legacy Management -- Hallam

    Office of Legacy Management (LM)

    Nebraska Hallam, Nebraska, Decommissioned Reactor Site Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2015 Annual Inspection and Status Report for the Hallam, Nebraska, Decommissioned Reactor Site Data Validation Package-June 2014 Groundwater Sampling Long-Term Surveillance Plan for the Decommissioned Hallam Nuclear Power Facility Hallam, Nebraska Please be green. Do not print these documents unless absolutely necessary. Submit a FOIA Request for

  19. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    SciTech Connect (OSTI)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  20. New Brunswick, New Jersey, Site Fact Sheet

    Office of Legacy Management (LM)

    The U.S. government used the laboratory for nuclear reactor and weapons programs from 1948 to 1977. The site included a main laboratory building, a plutonium laboratory complex, ...