Powered by Deep Web Technologies
Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

89: Disposal of Decommissioned, Defueled Naval Reactor Plants 89: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington Summary This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE's Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 23, 2012

2

EIS-0259: Disposal of Decommissioned, Defueled Cruiser, Ohio Class and Los Angeles Class Naval Reactor Plants, Hanford Site, Richland (adopted from Navy)  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines.

3

EIS-0259 Final Environmental Impact Statement On The Disposal Of Decommissioned, Defueled Cruiser, Ohio Class, And Los Angeles Class Naval Reactor Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-. -. 1. PURPOSE AND NEED U.S. Navy nuclear ships are decommissioned and defieled at the end of their usefi Metime, when the cost of continued operation is not justified by their fitary capabfity, or when the ship is no longer needed. The Navy needs to disposition the reactor compartments born defieled and decommissioned ctisers, and OHIO Class and LOS ANGELES Class submarines. The number of reactor compartments under consideration by this Environmental Impact Statement is about 100. These reactor compartments are in addition to the pre-LOS ANGELES Class submarines tieady being disposed of under the Na&s 1984 Find Environmental hpact Statement (USN, 1984a). Newer types of U.S. Navy nuclear-powered stips that are not expected to be decommissioned in the next 20 years (e.g., aircraft carriers, SEAWOLF Class submarines) are not included in this fid Enviromentd Impact Statement.

4

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor defueling and disassembly. Summary status report. Volume 3  

SciTech Connect

This document summarizes information relating to the preparations for defueling the Three Mile Island Unit 2 (TMI-2) reactor and disassembly activities being performed concurrently with decontamination of the facility. Data have been collected from activity reports, reactor containment entry records, and other sources and entered in a computerized data sysem which permits extraction/manipulation of specific data which can be used in planning for recovery from a loss of coolant event similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during the period of April 23, 1979 to April 16, 1985, in the completion of activities related to preparation for reactor defueling. Support activities conducted outside of radiation areas are not included within the scope of this report. Computerized reports included in this document are: A chronological summary listing work performed for the period; and summary reports for each major task undertaken in connection with the specific scope of this report. Presented in chronological order for the referenced time period. Manually-assembled table summaries are included for: Labor and exposures by department; and labor and exposures by major activity.

Doerge, D.H.; Miller, R.L.; Scotti, K.S.

1986-05-01T23:59:59.000Z

5

EIS-0259 Final Environmental Impact Statement On The Disposal Of Decommissioned, Defueled Cruiser, Ohio Class, And Los Angeles Class Naval Reactor Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

... -. FEASIBILITY STUDY FOR LEAD REMOVAL FROM AND STRUCTURAL RESTORATION OF CRUISER, OHIO, AND LOS ANGELES CLASS REACTOR COMPARTMENT DISPOSAL PACWGES Appendix A A-i . Table of Contents E~CUT~ S~Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A.3 1. ~TRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .." . . . . . . . . . . . . . . . ..A.3 2. DESCR~TION OF S~ELD~G LEAD CONTmD ~ REACTOR commmm PAcmGEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A.4 2.1 PermanentSMeldingLead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A-4 2.2 MisceUaneousLead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A-5 2.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................"A-5 2.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................A-5 3. SHIELD~G LEAD REMOVQ

6

Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station  

SciTech Connect

For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro [Japan Atomic Energy Agency 4-33 Muramatsu, Tokaimura, Nakagun, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

7

Integrated defueling system for Three Mile Island Unit 2  

SciTech Connect

The unique clean-up requirements of Three Mile Island Unit 2 have posed first-of-a-kind challenges for the equipment, tools, and operators involved in the defueling effort. Various equipment components and specialty remote tools were designed as an integrated defueling system to provide a means of safely working above the reactor and removing core debris. The basic defueling system consists of support equipment and specialty remote tools for specific operations. This paper describes the different equipment and tools, and explains the key interfaces and features of the integrated defueling system.

Brown, D.A.; Gallagher, R.E.; Rider, R.L.

1986-01-01T23:59:59.000Z

8

DECOMMISSIONING DOCUMENTS Decommissioning Handbook The Decommissioning Handbook has  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DECOMMISSIONING DOCUMENTS DECOMMISSIONING DOCUMENTS Decommissioning Handbook The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioning Implementation Guide. Decommissioning Benchmarking Study DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine approaches to improve the decommissioning process. The study focused on quantifying productivity of decommissioning physical activities and identifying how productivity is affected by specific working conditions. The decommissioning benchmarking results are the foundation for several distinct products:

9

Decommissioning Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decommissioning Documents Decommissioning Documents More Documents & Publications Decommissioning Benchmarking Study Final Report Decommissioning Handbook dgappendices.pdf...

10

Decommissioning Handbook  

Energy.gov (U.S. Department of Energy (DOE))

The Decommissioning Handbook has been developed to incorporate examples and lessons learned, and to illustrate practices and procedures for implementing each step of the LCAM Decommissioing...

11

Decommissioning handbook  

SciTech Connect

This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

Manion, W.J.; LaGuardia, T.S.

1980-11-01T23:59:59.000Z

12

Naval Engineering A National Naval Obligation  

E-Print Network (OSTI)

As part of its national obligations, ONR must ensure US world leadership in those unique technology areas that insure naval superiority. ONR accomplishes this mission through research, recruitment and education, maintaining ...

Chryssostomidis, Chryssostomos

2000-05-16T23:59:59.000Z

13

EA-1889-FEA-FONSI-2012.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNITED STATES UNITED STATES DEPARTMENT OF THE NAVY FINAL ENVIRONMENTAL ASSESSMENT ON THE DISPOSAL OF DECOMMISSIONED, DEFUELED NAVAL REACTOR PLANTS FROM USS ENTERPRISE (CVN 65) AUGUST 2012 FINAL USS ENTERPRISE EA RESPONSIBLE AGENCIES: Lead Federal Agency: U.S. Department of the Navy Cooperating Agency: U.S. Department of Energy TITLE: Final Environmental Assessment on the Disposal of Decommissioned, Defueled, Naval Reactor Plants from USS ENTERPRISE (CVN 65) FINAL USS ENTERPRISE EA S-1 SUMMARY: The United States Navy proposes to remove the reactor compartments of USS ENTERPRISE (CVN 65), hereafter referred to as ENTERPRISE, at Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS & IMF), prepare the reactor compartments for disposal

14

Decommissioning Plan RM  

Energy.gov (U.S. Department of Energy (DOE))

The Decommissioning Plan Review (DPR) Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the decommissioning plan prior to approval of the associated CD.

15

Early American Naval Sigint  

Science Journals Connector (OSTI)

After the Battle of Midway, Laurance Safford, The primary source on early USN Comint work is the booklet US Naval Communications Intelligence Activities by Laurance Safford, J. N. Wenger and at le...

Peter Donovan; John Mack

2014-01-01T23:59:59.000Z

16

Shippingport Station Decommissioning Project decommissioning plan. Volume I  

SciTech Connect

Information is presented concerning the organization of the decommissioning project; decommissioning operations concept; safety and environmental assessment; information and guidance for the DOC; work breakdown structure; decommissioning operation schedule; decommissiong operations estimate; and training requirements.

Not Available

1983-09-01T23:59:59.000Z

17

Decommissioning Benchmarking Study Final Report  

Energy.gov (U.S. Department of Energy (DOE))

DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

18

Microsoft Word - Enterprise EA (for public)2.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enclosure to letter enclosure to letter UNITED STATES DEPARTMENT OF THE NAVY DRAFT ENVIRONMENTAL ASSESSMENT ON THE DISPOSAL OF DECOMMISSIONED, DEFUELED NAVAL REACTOR PLANTS FROM USS ENTERPRISE (CVN 65) SEPTEMBER 2011 DRAFT USS ENTERPRISE EA RESPONSIBLE AGENCIES: Lead Federal Agency: U.S. Department of the Navy Cooperating Agency: U.S. Department of Energy TITLE: Draft Environmental Assessment on the Disposal of Decommissioned, Defueled, Naval Reactor Plants from USS ENTERPRISE (CVN 65) DRAFT USS ENTERPRISE EA i TABLE OF CONTENTS 1. PURPOSE AND NEED ..................................................................................................................... 1-1 1.1 Background ................................................................................................................................. 1-2

19

Decommissioning Unit Cost Data  

SciTech Connect

The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

Sanford, P. C.; Stevens, J. L.; Brandt, R.

2002-02-26T23:59:59.000Z

20

Shippingport Station decommissioning project decommission plan  

SciTech Connect

This volume consists of the following appendices: long-lead-time activities, technical baseline, assessment of one-price removal of reactor vessel and internals by barge, final environmental impact statement (this forms the bulk of this volume), and record of the decision to decommission Shippingport. (DLC)

Not Available

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Decommissioning at AWE  

SciTech Connect

AWE (A) has been at the heart of the UK Nuclear deterrent since it was established in the early 1950's. It is a nuclear licensed site and is governed by the United Kingdoms Nuclear Installation Inspectorate (NII). AWE plc on behalf of the Ministry of Defence (MOD) manages the AWE (A) site and all undertakings including decommissioning. Therefore under NII license condition 35 'Decommissioning', AWE plc is accountable to make and implement adequate arrangements for the decommissioning of any plant or process, which may affect safety. The majority of decommissioning projects currently being undertaken are to do with Hazard category 3, 4 or 5 facilities, systems or plant that have reached the end of their operational span and have undergone Post-Operational Clean-Out (POCO). They were either built for the production of fissile components, for supporting the early reactor fuels programmes or for processing facility waste arisings. They either contain redundant contaminated gloveboxes associated process areas, process plant or systems or a combination of all. In parallel with decommissioning project AWE (A) are undertaking investigation into new technologies to aid decommissioning projects; to remove the operative from hands on operations; to develop and implement modifications to existing process and techniques used. AWE (A) is currently going thorough a sustained phase of upgrading its facilities to enhance its scientific capability, with older facilities, systems and plant being replaced, making decommissioning a growth area. It is therefore important to the company to reduce these hazards progressively and safety over the coming years, making decommissioning an important feature of the overall legacy management aspects of AWE PLC's business. This paper outlines the current undertakings and progress of Nuclear decommissioning on the AWE (A) site. (authors)

Biles, K.; Hedges, M.; Campbell, C

2008-07-01T23:59:59.000Z

22

Factors Impacting Decommissioning Costs - 13576  

SciTech Connect

The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

2013-07-01T23:59:59.000Z

23

Nuclear Decommissioning Financing Act (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Nuclear Decommissioning Financing Act calls for the establishment of a tax-exempt, tax-deductible decommissioning fund by the licensee of any nuclear power generating facility to pay for the...

24

Safely Decommission about how we  

E-Print Network (OSTI)

and make them available to low- income communities, individuals, and community non-profit organizations to information technologies among low-income and disadvantaged groups. #12; Safely Decommission Your PCs Learn more about how we can help you effectively decommission

Blanchette, Robert A.

25

Site decommissioning management plan  

SciTech Connect

The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

1993-10-01T23:59:59.000Z

26

Decontamination and decommissioning  

SciTech Connect

The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. These four phases of work were conducted in accordance with applicable regulations for D and D of research facilities and applicable regulations for packaging, transportation, and burial and storage of radioactive materials. The final result is that the Advanced Fuel Laboratories now meet requirements of ANSI 13.12 and can be released for unrestricted use. The four principal documents utilized in the D and D of the Cheswick Site were: (1) Plan for Fully Decontaminating and Decommissioning, Revision 3; (2) Environmental Assessment for Decontaminating and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pa.; (3) WARD-386, Quality Assurance Program Description for Decontaminating and Decommissioning Activities; and (4) Health Physics, Fire Control, and Site Emergency Manual. These documents are provided as Attachments 1, 2, 3 and 4.

Adams, G.A.; Bowen, W.C.; Cromer, P.M.; Cwynar, J.C.; Jacoby, W.R.; Woodsum, H.G.

1982-02-01T23:59:59.000Z

27

Fracture of aluminum naval structures  

E-Print Network (OSTI)

Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

Galanis, Konstantinos, 1970-

2007-01-01T23:59:59.000Z

28

EA-1889: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Draft Environmental Assessment 9: Draft Environmental Assessment EA-1889: Draft Environmental Assessment Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) The Department of the Navy has prepared a Draft Environmental Assessment (EA) on the Disposal of Decommissioned, Defueled, Naval Reactor Plants from the USS Enterprise. The world's first nuclear-powered naval aircraft carrier, Enterprise, is scheduled for decommissioning in 2013, following 51 consecutive years of service. Because the preferred alternative is to dispose of the Enterprise reactor plants at the Department of Energy's Hanford Site*, the Department of Energy is a cooperating agency for this EA. For additional information on the Draft Enterprise EA, please contact Mary Mascianica at (360) 476-7111.

29

Decommissioning Plan RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decommissioning Plan Review Module Decommissioning Plan Review Module March 2010 CD-0 O 0 C OFFICE OF D C CD-1 F ENVIRO Standard R Decomm Rev Critical Decisi CD-2 M ONMENTAL Review Plan missioning view Module ion (CD) Ap CD March 2010 L MANAGE n (SRP) g Plan e plicability D-3 EMENT CD-4 Post Oper ration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

30

Decommissioning Implementation Guide  

Directives, Delegations, and Requirements

The Department of Energy (DOE) faces an enormous task in the disposition of the nation's excess facilities. Many of these facilities are large and complex and contain potentially hazardous substances. As DOE facilities complete mission operations and are declared excess, they pass into a transition phase which ultimately prepares them for disposition. The disposition phase of a facility's life-cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

1999-09-02T23:59:59.000Z

31

Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...  

Office of Environmental Management (EM)

Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives...

32

Naval Petroleum Reserves | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that...

33

The Institution of Naval Architects  

Science Journals Connector (OSTI)

... THE annual spring meeting of the Institution of Naval Architects was held on Wednesday, Thursday, and Friday ... U.S. Navy."On the Method of initial Condensation and Heat Waste in Steam Engine Cylinders,"by Prof. R. H. Thurston, Sibley College, Cornell University, New ...

1895-04-11T23:59:59.000Z

34

The Institution of Naval Architects  

Science Journals Connector (OSTI)

... LAST week the Institution of Naval Architects held their annual spring meeting, under the chairmanship of Admiral Sir John Dalrymple Hay, one of the Vice ... Chief Surveyor Lloyd's Registry of Shipping; (13) "Steam pressure losses in marine engines,"by C. E. Stromeyer, Engineer Surveyor Lloyd's Registry of Shipping; (15 ...

1894-03-22T23:59:59.000Z

35

The Institution of Naval Architects  

Science Journals Connector (OSTI)

... THE annual spring meeting of the Institution of Naval Architects was held last week at the Society of ... elements of design of three imaginary battleships, propelled respectively by steam, gas, or oil engines. It is somewhat startling to find the chief engineer of one of our most ...

1907-03-28T23:59:59.000Z

36

Decontamination & decommissioning focus area  

SciTech Connect

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

37

EIS-0259: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0259: Final Environmental Impact Statement EIS-0259: Final Environmental Impact Statement EIS-0259: Final Environmental Impact Statement Disposal of Decommissioned, Defueled Cruiser, Ohio Class, Los Angeles and Class Naval Reactor Plants This Environmental Impact Statement analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines. Final Environmental Impact Statement on the Disposal of Decommissioned, Defueled Cruiser, Ohio Class, Los Angeles and Class Naval Reactor Plants, DOE/EIS-0259 (April 1996) EIS-0259-FEIS-01-1996_0.pdf EIS-0259-FEIS-02-1996_0.pdf More Documents & Publications EA-1889: Final Environmental Assessment and Finding of No Significant

38

EA-1889: Final Environmental Assessment and Finding of No Significant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Finding of No Final Environmental Assessment and Finding of No Significant Impact EA-1889: Final Environmental Assessment and Finding of No Significant Impact Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) The Department of the Navy has prepared a Final Environmental Assessment (EA) and Finding of No Significant Impact (FONSI) on the Disposal of Decommissioned, Defueled, Naval Reactor Plants from the USS Enterprise. Because the preferred alternative is to dispose of the Enterprise reactor plants at the Department of Energy's Hanford Site*, the Department of Energy is a cooperating agency for this EA. For additional information on the Enterprise EA and FONSI, please contact Mary Mascianica at (360) 476-7111. *Naval reactor compartments, reactor core barrels, reactor closure heads,

39

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

40

Status of the NRC Decommissioning Program  

SciTech Connect

On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

2003-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Demand response at the Naval Postgraduate School .  

E-Print Network (OSTI)

??The purpose of this MBA project is to assist the Naval Postgraduate School's Public Works department to assimilate into a Demand Response program that will… (more)

Stouffer, Dean

2008-01-01T23:59:59.000Z

42

About Naval Reactors | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

fleet to remain on station is further enhanced by our ability to forward-deploy repair and maintenance activities. Schools and Training Facilities The Naval Nuclear...

43

U.S. Naval war College Application | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

College Application U.S. Naval war College Application U.S. Naval War College Civilian Student Application. Naval War College Application More Documents & Publications DOE F 471.1...

44

2013 Federal Energy and Water Management Award Winner Naval Sea...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Naval Sea Systems Command 2013 Federal Energy and Water Management Award Winner Naval Sea Systems Command fewm13nswcphiladelphiahighres.pdf fewm13nswcphiladelphia.pdf More...

45

STATUS OF THE NRC'S DECOMMISSIONING PROGRAM  

SciTech Connect

On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

Orlando, D. A.; Camper, L. W.; Buckley, J.

2002-02-25T23:59:59.000Z

46

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) Decontamination & Decommissioning/ Facilities Engineering (D&D/FE) As the DOE complex sites prepare for closure, a large number of buildings and facilities must be deactivated and decommissioned. These facilities contain many complex systems (e.g. ventilation), miles of contaminated pipelines, glove boxes, and unique processing equipment that require labor intensive deactivation and decommissioning methods. Although

47

Management of Naval Reactors' Cyber Security Program, OIG-0884  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Reactors' Naval Reactors' Cyber Security Program DOE/IG-0884 April 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 12, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Naval Reactors' Cyber Security Program" INTRODUCTION AND OBJECTIVE The Naval Reactors Program (Naval Reactors), an organization within the National Nuclear Security Administration, provides the military with safe and reliable nuclear propulsion plants to power warships and submarines. Naval Reactors maintains responsibility for activities supporting the United States Naval fleet nuclear propulsion systems, including research and

48

Comparative naval architecture analysis of diesel submarines  

E-Print Network (OSTI)

Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written ...

Torkelson, Kai Oscar

2005-01-01T23:59:59.000Z

49

Decontamination, decommissioning, and vendor advertorial issue, 2005  

SciTech Connect

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major interviews, articles and reports in this issue include: Increasing momentum, by Gary Taylor, Entergy Nuclear, Inc.; An acceptable investment, by Tom Chrisopher, Areva, Inc.; Fuel recycling for the U.S. and abroad, by Philippe Knoche, Areva, France; We're bullish on nuclear power, by Dan R. Keuter, Entergy Nuclear, Inc.; Ten key actions for decommissioning, by Lawrence E. Boing, Argonne National Laboratory; Safe, efficient and cost-effective decommissioning, by Dr. Claudio Pescatore and Torsten Eng, OECD Nuclear Energy Agency (NEA), France; and, Plant profile: SONGS decommissioning.

Agnihotri, Newal (ed.)

2005-07-15T23:59:59.000Z

50

Hallam, Nebraska, Decommissioned Reactor Site Fact Sheet  

Office of Legacy Management (LM)

Program. Objectives for the reactor were fulfilled by 1966, and the Nebraska Public Power District decommissioned and dismantled the facility between 1967 and 1969. Facility...

51

EIS-0275: Disposal of the S1C Prototype Reactor Plant, Hanford Site, Richland, WA (Navy Document)  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the Office of Naval Reactors (Naval Reactors) proposed action to dismantle the defueled S1C Prototype reactor plant.

52

Rancho Seco--Decommissioning Update  

SciTech Connect

The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered.

Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

2003-02-26T23:59:59.000Z

53

STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING  

SciTech Connect

Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions.

Foss, D. L.; Stevens, J. L.; Gerdeman, F. W.

2002-02-25T23:59:59.000Z

54

Interim Storage Facility decommissioning. Final report  

SciTech Connect

Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel.

Johnson, R.P.; Speed, D.L.

1985-03-15T23:59:59.000Z

55

In-Situ Decommissioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site & Facility Restoration » Deactivation & Site & Facility Restoration » Deactivation & Decommissioning (D&D) » In-Situ Decommissioning In-Situ Decommissioning In-Situ Decommissioning (ISD) is the permanent entombment of a facility that contains residual radiological and/or chemical contamination. The ISD approach is a cost-effective alternative to both demolition and complete removal of the structure and its content (including the cost of transport and disposal). In addition, the effective use of ISD reduces human health and safety risks while helping to attain sustainability goals through the reduction of greenhouse gas (GHG) emissions, petroleum consumption and waste generation. Not all contaminated structures can be decommissioned using ISD; canditate sites must meet strict criteria.

56

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

57

Fuel Cell Power Plant Experience Naval Applications | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu20118wolak.pdf More...

58

FY 2000 Deactivation and Decommissioning Focus Area Annual Report  

SciTech Connect

This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

None

2001-03-01T23:59:59.000Z

59

2014 Annual Planning Summary for the NNSA Naval Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the NNSA Naval Reactors.

60

Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. |  

NLE Websites -- All DOE Office Websites (Extended Search)

Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. CITE: 10USC7420 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7421 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7422 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7423 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7424 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7425 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7427 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7428 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7429 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7430 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7431 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7432 CHAPTER 641--NAVAL PETROLEUM RESERVES

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Naval Academy: Lockstep Program Is Abandoned  

Science Journals Connector (OSTI)

...and the building of safe water systems and sewers...Academy adopted two fundamental changes of policy...were descriptions of boilers, pumps, and guns included...Instruction in the operation of specific naval radar...such details of the operation as aquanaut experiences...

Luther J. Carter

1965-11-19T23:59:59.000Z

62

Yangtze Patrol: American Naval Forces in China  

E-Print Network (OSTI)

Yangtze Patrol: American Naval Forces in China A Selected, Partially-Annotated Bibliography literature of the United States Navy in China. mvh #12;"Like Chimneys in Summer" The thousands of men who served on the China Station before World War II have been all but forgotten, except in the mythology

63

Sellafield Decommissioning Programme - Update and Lessons Learned  

SciTech Connect

The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

Lutwyche, P. R.; Challinor, S. F.

2003-02-24T23:59:59.000Z

64

Guides: Design/Engineering for Deactivation & Decommissioning  

Energy.gov (U.S. Department of Energy (DOE))

To ensure development of appropriate levels of engineering detail, DOE-EM’s Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for  tailoring a D...

65

Safety of Decommissioning of Nuclear Facilities  

SciTech Connect

Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

66

Confidentiality Agreement between the Nuclear Decommissioning Authority and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Communication & Engagement » International Programs » Services » Communication & Engagement » International Programs » Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy More Documents & Publications Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority Scanned_Agreement.pdf Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority Waste Management Nuclear Materials & Waste

67

Decommissioning Under CERCLA Information Sheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decommissioning Under CERCLA Information Sheet Decommissioning Under CERCLA Information Sheet Decommissioning Under CERCLA Information Sheet This Question and Answer (Q&A) Sheet discusses the use of removal authority in the conduct of decommissioning activities, consistent with the Policy on Decommissioning of Department of Energy Facilities under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (May 22, 1995), and the accompanying Decommissioning Implementation Guide . The Policy and Guide establish the approach agreed upon by the Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). It is consistent with CERCLA statutory requirements, as well as CERCLA regulatory requirements found in the National Contingency Plan (NCP), and applicable

68

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

69

Systematic Approach for Decommissioning Planning and Estimating  

SciTech Connect

Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises.

Dam, A. S.

2002-02-26T23:59:59.000Z

70

Decommissioning of the Iraq former nuclear complex  

SciTech Connect

Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of the Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)

Abbas, Mohammed [Ministry of Science and Technology (Iraq); Helou, Tuama; Ahmead, Bushra [Ministry of Environment (Iraq); Al-Atia, Mousa; Al-Mubarak, Mowaffak [Iraqi Radiation Sources Regulatory Authority (Iraq); Danneels, Jeffrey; Cochran, John; Sorenson, Ken [Sandia National Laboratories (United States); Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria)

2007-07-01T23:59:59.000Z

71

3-D Model for Deactivation & Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project & Identifier Project & Identifier Tech Stage: Deployment In-Situ Decommissioning: SR09171 SRS Area Closure Projects: PBS SR-0040 3-D models of the R reactor building and P reactor vessel were delivered to SRS Area Closure Projects Page 1 of 2 Tech Fact Sheet Savannah River Site South Carolina 3-D Model for Deactivation & Decommissioning Challenge Planning for the safe and controlled deactivation and decommissioning (D&D) of highly contaminated nuclear facilities requires that engineers and managers fully understand the work space in which personnel and equipment will operate. It also requires that they effectively communicate safety concerns and work sequences to the personnel who will perform the work. This crucial knowledge is conveyed in

72

DOE - Office of Legacy Management -- Naval Oil Shale Reserves...  

Office of Legacy Management (LM)

Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

73

13.400 Introduction to Naval Architecture, Fall 2004  

E-Print Network (OSTI)

Introduction to principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damaged stability, hull structure strength calculations and ship resistance. Projects ...

Herbein, David

74

Naval Construction Battalion Center Gulfport- Mississippi Power Partnership Success Story  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Naval Construction Battalion Center Gulfport - Mississippi Power Partnership success story given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting...

75

DOE - Office of Legacy Management -- Naval Petroleum Reserve...  

Office of Legacy Management (LM)

Naval Petroleum Reserve No. 3 is located in Natrona County, Wyoming. The site is a small oil field and covers approximately 9400 acres. Environmental remediation efforts are...

76

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

77

FAQS Qualification Card - Deactivation and Decommissioning | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deactivation and Decommissioning Deactivation and Decommissioning FAQS Qualification Card - Deactivation and Decommissioning A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-DeactivationDecommissioning.docx Description Deactivation and Decommissioning Qualification Card More Documents & Publications

78

DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Policy on Decommissioning DOE Facilities Under DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This policy ensures protection of the environment, worker health and public health, provides opportunities for stakeholder involvement, and achieves risk reduction without unnecessary delay. Consistent with the jointly issued "Guidance on Accelerating CERCLA Environmental Restoration at Federal Facilities" (August 22, 1994), this decommissioning policy encourages streamlined decision-making. This

79

Offshore decommissioning issues: Deductibility and transferability  

Science Journals Connector (OSTI)

Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international “best practices” standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions.

Virginia Parente; Doneivan Ferreira; Edmilson Moutinho dos Santos; Estanislau Luczynski

2006-01-01T23:59:59.000Z

80

University of Virginia Reactor Facility Decommissioning Results  

SciTech Connect

The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

2003-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Policy on Decommissioning of Department of Energy Facilities Under the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy on Decommissioning of Department of Energy Facilities Under Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Purpose This Policy establishes the approach agreed upon by the Department of Energy (DOE) and Environmental Protection Agency (EPA) for the conduct of decommissioning projects [1] consistent with CERCLA requirements. This Policy creates a framework for the conduct of decommissioning of DOE facilities and provides guidance to EPA Regions and DOE Operations Offices on the use of CERCLA response authority to decommission such facilities. The principal objectives of this Policy are to ensure that decommissioning

82

Naval Spent Fuel Rail Shipment Accident Exercise Objectives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAVAL SPENT FUEL RAIL SHIPMENT NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the Naval spent fuel shipping container characteristics and shipping practices * Gain understanding of how the NNPP escorts who accompany the spent fuel shipments will interact with civilian emergency services representatives g y p * Allow civilian emergency services agencies the opportunity to evaluate their response to a pp y p simulated accident * Gain understanding of how the communications links that would be activated in an accident involving a Naval spent fuel shipment would work 1 NTSF May 11 ACCIDENT EXERCISE TYPICAL TIMELINE * Conceptual/Organizational Meeting - April 6 E R T i d it t t d TYPICAL TIMELINE

83

Integrated Surface Geophysical Methods for Characterization of the Naval  

Open Energy Info (EERE)

Integrated Surface Geophysical Methods for Characterization of the Naval Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Author USGS Published Publisher Not Provided, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Citation USGS. Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey [Internet]. 2013. [updated 2013/01/03;cited 2013/11/22]. Available from: http://water.usgs.gov/ogw/bgas/toxics/NAWC-surface.html

84

NMSS handbook for decommissioning fuel cycle and materials licensees  

SciTech Connect

The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

1997-03-01T23:59:59.000Z

85

In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367  

SciTech Connect

The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international government and private industry decommissioning applications. SRS offers critical services based upon the SRS experience in decommissioning and reactor entombment technology (e.g., grout formulations for varying conditions, structural and material sciences). The SRS ISD approach follows a systems engineering framework to achieve a regulatory acceptable end state based on established protocols, attains the final end state with minimal long stewardship requirements, protects industrial workers, and protects groundwater and the environment. The ISD systems engineering framework addresses key areas of the remedial process planning, technology development and deployment, and assessment to attain the ultimate goal of natural resource stewardship and protecting the public. The development and deployment of the SRS ISD approach has established a path for ISD of other large nuclear facilities in the United States and around the globe as an acceptable remedial alternative for decommissioning nuclear facilities. (authors)

Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

86

Decommissioning of the Tokamak Fusion Test Reactor  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

2003-10-28T23:59:59.000Z

87

Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

88

DOE Awards New York Decommissioning Services Contract | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New York Decommissioning Services Contract New York Decommissioning Services Contract DOE Awards New York Decommissioning Services Contract June 29, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 William.taylor@emcbc.doe.gov West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP). The contract is a performance-based, cost-plus-award-fee, completion type contract with cost and schedule incentives. The total contract value is $333.4 million. DOE has selected a phased approach for decommissioning activities at the WVDP. Phase I is the first of a two-phase process for the final decommissioning of the western New York site in accordance with the West

89

Brookhaven Lab Completes Decommissioning of Graphite Research Reactor:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Lab Completes Decommissioning of Graphite Research Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal Brookhaven Lab Completes Decommissioning of Graphite Research Reactor: Reactor core and associated structures successfully removed; waste shipped offsite for disposal September 1, 2012 - 12:00pm Addthis The Brookhaven Graphite Research Reactor’s bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. The Brookhaven Graphite Research Reactor's bioshield, which contains the 700-ton reactor core, is shown prior to decommissioning. Pictured here is the Brookhaven Graphite Research Reactor, where major decommissioning milestones were recently reached after the remaining radioactive materials from the facility’s bioshield were shipped to a licensed offsite disposal facility.

90

In-Situ Decommissioning: A Strategy for Environmental Management |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning: A Strategy for Environmental Management In-Situ Decommissioning (ISD) is an effective decommissioning practice offering a safe and environmentally-favorable alternative to completely demolishing a facility and transporting its debris elsewhere for disposal. Regulatory approval to decommission a facility through ISD is authorized primarily by the Environmental Protection Agency under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). In addition, Federal Facility Agreements and local stakeholder agreements have a direct influence on ISD approval and oversight. The ISD approach limits radiation exposure and industrial hazards to workers to a greater extent than larger scale cleanout and demolition.

91

DOE Awards New York Decommissioning Services Contract | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New York Decommissioning Services Contract New York Decommissioning Services Contract DOE Awards New York Decommissioning Services Contract June 29, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 William.taylor@emcbc.doe.gov West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP). The contract is a performance-based, cost-plus-award-fee, completion type contract with cost and schedule incentives. The total contract value is $333.4 million. DOE has selected a phased approach for decommissioning activities at the WVDP. Phase I is the first of a two-phase process for the final decommissioning of the western New York site in accordance with the West

92

GRR/Section 20 - Plant Decommissioning Overview | Open Energy Information  

Open Energy Info (EERE)

20 - Plant Decommissioning Overview 20 - Plant Decommissioning Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20 - Plant Decommissioning Overview 20PlantDecommissioningOverview (1).pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3263.10-3263.15: Well Abandonment Geothermal Resources Operational Order No.3 Triggers None specified Click "Edit With Form" above to add content 20PlantDecommissioningOverview (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative State and federal laws have specific requirements for the decommissioning process. 20.1 to 20.2 - Will a Geothermal Well be Abandoned?

93

3-D Model for Deactivation & Decommissioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. 3-D Model for Deactivation & Decommissioning More Documents & Publications D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization D&D and Risk Assessment Tools 3-D Model for Deactivation & Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D

94

Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are directly or indirectly involved with the Fund. c. Requirements and Sources of the Fund. (1) The Energy Policy Act of 1992 (EPACT) requires DOE to establish and administer the Fund. EPACT authorizes that the

95

Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline  

Energy.gov (U.S. Department of Energy (DOE))

This Report to Congress provides a summary of the analysis supporting DOE's determination to dispose of the Naval Petroleum Reserve No. 3 through sale of all right, title, interest on the open market.

96

DOE - Office of Legacy Management -- Naval Gun Factory and Bureau...  

Office of Legacy Management (LM)

Gun Factory and Bureau of Ordnance - DC 0-01 FUSRAP Considered Sites Site: NAVAL GUN FACTORY AND BUREAU OF ORDNANCE (DC.0-01) Eliminated from consideration under FUSRAP - Referred...

97

E-Print Network 3.0 - application decommissioning models Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE KLAMATH BASIN HYDROELECTRIC... Consultant Report Economic Modeling of Relicensing and Decommissioning Options...

98

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

99

Environmental Assessments (EA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 4, 2011 November 4, 2011 EA-1905: Final Environmental Assessment Department of Energy Funding For Double Eagle Water System, Carlsbad, New Mexico (November 2011) November 1, 2011 EA-1866: Final Environmental Assessment and Finding of No Significant Impact Argonne National Laboratory Modernization Planning October 31, 2011 EA-1769: Final Environmental Assessment and Finding of No Significant Impact Houston Advanced Research Center, Battleground Energy Recovery Project, Deer Park, Harris County, Texas (October 2011) October 28, 2011 EA-1889: Draft Environmental Assessment Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) October 20, 2011 EA-1812: Draft Environmental Assessment Haxtun Wind Energy Project, Logan and Phillips Counties, Colorado

100

MCW Laboratory Decommissioning Checklist P.I.:_______________ Date: ___________ LAB DECOMMISSIONING CHECKLIST rev. 12/12/13  

E-Print Network (OSTI)

DECOMMISSIONING CHECKLIST rev. 12/12/13 Timeline Tasks Contacts Completed NA 1 month Inventory sends inventory list to appropriate contact Send email to safetyinfo@mcw.edu "Attn: Chemical, and outline appropriate path of decontamination (e.g. needs oil removed prior to disposal, requires surface

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology Requirements for In-Situ Decommissioning Workshop Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09-00269, Rev. 0 09-00269, Rev. 0 KEY WORDS: DOE-HQ In situ Decommissioning Entombment Workshop TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING (ISD) WORKSHOP REPORT Patricia L. Lee, John B. Gladden, G. Timothy Jannik, Christine A. Langton, Michael G. Serrato, SRNL Chuck Urland, Erick Reynolds, PEC June 2009 Savannah River National Laboratory Savannah River Nuclear Solutions Savannah River Site

102

A review of decommissioning considerations for new reactors  

SciTech Connect

At a time of 'nuclear renaissance' when the focus is on advanced reactor designs and construction, it is easy to overlook the decommissioning considerations because such a stage in the life of the new reactors will be some sixty years down the road. Yet, one of the lessons learned from major decommissioning projects has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Hence, the time to examine what decommissioning considerations should be taken into account is right from the design stage with regular updates of the decommissioning strategy and plans throughout the life cycle of the reactor. Designing D and D into the new reactor designs is necessary to ensure that the tail end costs of the nuclear power are manageable. Such considerations during the design stage will facilitate a more cost-effective, safe and timely decommissioning of the facility when a reactor is eventually retired. This paper examines the current regulatory and industry design guidance for the new reactors with respect to the decommissioning issues and provides a review of the design considerations that can help optimize the reactor designs for the eventual decommissioning. (authors)

Devgun, J.S.Ph.D. [Manager Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States)

2008-07-01T23:59:59.000Z

103

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

104

Ris-R-1250(EN) Decommissioning of the Nuclear  

E-Print Network (OSTI)

Risø-R-1250(EN) Decommissioning of the Nuclear Facilities at Risø National Laboratory Descriptions on request from the Minister of Research and Information Technology. It describes the nuclear facilities;Decommissioning of Risø's nuclear facilities. Descriptions and cost assessment. Risø-R-1250(EN) 3 Contents 1

105

Decontamination, decommissioning, and vendor advertorial issue, 2007  

SciTech Connect

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

Agnihotri, Newal (ed.)

2007-07-15T23:59:59.000Z

106

Technology Requirements for In-Situ Decommissioning Workshop Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM initiated an ISD Technology Needs Workshop to identify the technical barriers and technology development

107

Capturing Process Knowledge for Facility Deactivation and Decommissioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capturing Process Knowledge for Facility Deactivation and Capturing Process Knowledge for Facility Deactivation and Decommissioning Capturing Process Knowledge for Facility Deactivation and Decommissioning The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. Capturing Process Knowledge for Facility Deactivation and Decommissioning More Documents & Publications Capturing Process Knowledge for Facility Deactivation and Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

108

Technology Requirements for In-Situ Decommissioning Workshop Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Technology Requirements for In-Situ Decommissioning Workshop Report Technology Requirements for In-Situ Decommissioning Workshop Report In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, EM is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM initiated an ISD Technology Needs Workshop to identify the technical barriers and technology development

109

Audit Report - Naval Reactors Information Technology System Development Efforts, IG-0879  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Reactors Information Naval Reactors Information Technology System Development Efforts DOE/IG-0879 December 2012 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 December 21, 2012 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on the "Naval Reactors Information Technology System Development Efforts" INTRODUCTION AND OBJECTIVE The Naval Reactors Program (Naval Reactors), an organization within the National Nuclear Security Administration, was established to provide the military with safe and reliable nuclear propulsion plants to power warships and submarines. Naval Reactors maintains responsibility

110

Safety analysis for Shippingport Station Decommissioning Project. Vol. 9. Pt. 1. Rev. 1  

SciTech Connect

Information is presented concerning the safety analysis for the decommissioning project; and permitting plan.

Not Available

1983-09-01T23:59:59.000Z

111

DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY  

SciTech Connect

Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

Murray, A.; Abbott, H.

2003-02-27T23:59:59.000Z

112

DOE - Office of Legacy Management -- Norfolk Naval Station - VA 05  

NLE Websites -- All DOE Office Websites (Extended Search)

Norfolk Naval Station - VA 05 Norfolk Naval Station - VA 05 FUSRAP Considered Sites Site: NORFOLK NAVAL STATION (VA.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Norfolk , Virginia VA.05-1 Evaluation Year: 1993 VA.05-1 Site Operations: Demonstration of extinguishing a uranium fire at the Fire Fighters School for AEC contractors. VA.05-3 VA.05-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials handled VA.05-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium VA.05-2 Radiological Survey(s): Yes - Health and Safety Monitoring during operations only VA.05-2 Site Status: Eliminated from consideration under FUSRAP

113

Tag: Naval Reactors | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Reactors Naval Reactors Tag: Naval Reactors Displaying 1 - 7 of 7... Category: Employees & Retirees "Cook"ing at Y-12 for 70 years We have an enduring mission. Y-12 plays a key role in it. And a nuclear deterrent remains the ultimate insurance policy for America. More... Category: News Y-12 Knows Uranium Y-12 produces many forms of uranium. More... Category: News A Rich Resource Requires Recovery Given the value and scarcity of enriched uranium, Y-12 recycles and reuses as much of it as possible. More... Category: News Seawolf Manufacturing Challenge For decades, attack submarines were either fast or quiet - but never both. The fast subs were so loud that an enemy could hear them long before they were within striking distance. More... Category: News Reliable fuel source

114

Radiological planning and implementation for nuclear-facility decommissioning  

SciTech Connect

The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures.

Valentine, A.M.

1982-01-01T23:59:59.000Z

115

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

116

FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval  

NLE Websites -- All DOE Office Websites (Extended Search)

on Nuclear Nonproliferation and Naval on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > FY 2012 Budget Hearing Testimony on Nuclear ...

117

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

118

FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval  

National Nuclear Security Administration (NNSA)

on Nuclear Nonproliferation and Naval on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > FY 2012 Budget Hearing Testimony on Nuclear ...

119

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

National Nuclear Security Administration (NNSA)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

120

Reactor Safety Planning for Prometheus Project, for Naval Reactors Information  

SciTech Connect

The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

P. Delmolino

2005-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NPS-SCAT electrical power system ; Naval Postgraduate School Solar Cell Array Tester .  

E-Print Network (OSTI)

??The Naval Postgraduate School Solar Cell Array Tester (NPS-SCAT) seeks to expand the CubeSat knowledge base and provide learning possibilities at the Naval Postgraduate School.… (more)

Dorn, Lawrence Tyrone.

2009-01-01T23:59:59.000Z

122

FAQS Job Task Analyses - Deactivation and Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Functional Area Qualification Standard Functional Area Qualification Standard Deactivation & Decommissioning (D&D) DOE-STD-1166-2003 Step 1 Identify and evaluate tasks - Develop a comprehensive list of tasks that define the job. o A great starting point is the list of Duties and Responsibilities from the FAQS. o Give careful thought to additional tasks that could be considered. o Don't worry about deleting tasks at this point - that is a part of the process further down. - List the tasks (and their sources, e.g., Duties and Responsibilities #1) in the chart below. - Discuss each task as a group and come to a consensus pertaining to Importance and Frequency of the task (i.e., each team member can consent to the assigned value, even if they don't exactly agree with it).

123

Decontamination, decommissioning, and vendor advertorial issue, 2008  

SciTech Connect

The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

Agnihotri, Newal (ed.)

2008-07-15T23:59:59.000Z

124

EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Decontaminating and Decommissioning the General Atomics 3: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California SUMMARY This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's General Atomics' Hot Cell Facility would be transported to either a DOE owned facility, such as the Hanford site in Washington, or to a commercial facility, such as Envirocare in Utah, for treatment and/or storage and disposal. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1995 EA-1053: Finding of No Significant Impact

125

Policy Statement 3, Board Oversight of Department of Energy Decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Date: August 19, 1996 Subject Policy Statement on Board oversight of Department of Energy decommissioning activities at defense nuclear facilities. Summary This policy statement describes the decommissioning phase of a DOE defense nuclear facility and identifies the Board's safety oversight responsibilities for decommisioning activities. John T. Conway, Chairman Congress directed the Defense Nuclear Facilities Safety Board (Board) to oversee Department of Energy (DOE) practices at defense nuclear facilities that could adversely affect public health and safety during any stage in the life cycle of those facilities, from design, construction, and operation through decommissioning. The Board's objective during decommissioning is identical to its objective during any other phase of a facility's life cycle: to ensure that DOE provides adequate protection of worker and public health and safety at defense nuclear facilities. Congress specifically tasked the Board with reviewing and evaluating:

126

DOE-EM'S In-Situ Decommissioning Strategy  

SciTech Connect

This paper addressed the current status of decommissioning projects within the Department of Energy (DOE) that have an end state of permanent entombment, referred to as in-situ decommissioning (ISD). The substance of a Department of Energy, Office of Environmental Management (DOE-EM) review of ISD and the development of a strategy are summarized. The strategy first recognizes ISD as a viable decommissioning end state; secondly addresses the integration of this approach within the external and internal regulatory regimes; subsequently identifies tools that need developing; and finally presents guidance for implementation. The overall conclusion is that ISD is a viable mode of decommissioning that can be conducted within the existing structure of rules and regulations. (author)

Negin, C.A.; Urland, C.S. [Chuck, Project Enhancement Corporation, Germantown, MD (United States); Szilagyi, A.P. [Andy, U.S. Department of Energy, Germantown, MD (United States)

2008-07-01T23:59:59.000Z

127

Progress in Decommissioning the Humboldt Bay Power Plant - 13604  

SciTech Connect

Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)

Rod, Kerry [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States)] [PG and E Utility, Humboldt Bay Power Plant, 1000 King Salmon Ave. Eureka, CA 95503 (United States); Shelanskey, Steven K. [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States)] [Anata Management Solutions, 5180 South Commerce Dr,, Suite F Murray, UT 84107 (United States); Kristofzski, John [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)] [CH2MHILL, 295 Bradley Blvd. Suite 300, Richland WA 99353 (United States)

2013-07-01T23:59:59.000Z

128

362 SDSU General Catalog 2012-2013 Naval Science  

E-Print Network (OSTI)

turbine, and diesel propulsion engines receive in-depth study. Leadership topics in an engineering setting Power and Maritime Affairs (3) Sea power and maritime affairs; general concept of sea power including Merchant Marine; role of naval warfare components used to support the Navy's mission; sea power

Gallo, Linda C.

129

368 SDSU General Catalog 2013-2014 Naval Science  

E-Print Network (OSTI)

turbine, and diesel propulsion engines receive in-depth study. Leadership topics in an engineering setting Power and Maritime Affairs (3) Sea power and maritime affairs; general concept of sea power including Merchant Marine; role of naval warfare components used to support the Navy's mission; sea power

Gallo, Linda C.

130

Naval Postgraduate School Monterey, California 93943-5138  

E-Print Network (OSTI)

-related challenges of the future. To fulfill its mission, the Naval Postgraduate School strives to sustain excellence to achieve three major goals: 1) academic programs that are nationally recognized and support the current that focus on the integration of teaching and research in direct support of the four pillars of Joint Visions

131

Naval Postgraduate School Monterey, California 93943-5138  

E-Print Network (OSTI)

challenges of the future. To fulfill its mission, the Naval Postgraduate School strives to sustain excellence research programs to achieve three major goals: 1) academic programs that are nationally recognized of the four pillars of Joint Visions 2010 and 2020 and their enabling technologies; and, 3) executive

132

Naval Postgraduate School Monterey, California 93943-5138  

E-Print Network (OSTI)

related challenges of the future. To fulfill its mission, the Naval Postgraduate School strives to sustain programs to achieve three major goals: 1) academic programs that are nationally recognized and support) institutes that focus on the integration of teaching and research in direct support of the four pillars

133

Naval Postgraduate School Monterey, California 93943-5138  

E-Print Network (OSTI)

the security of the United States. To fulfill its mission, the Naval Postgraduate School strives to sustain programs to achieve three major goals: 1) academic programs that are nationally recognized and support) institutes that focus on the integration of teaching and research in direct support of the four pillars

134

Naval Postgraduate School Monterey, California 93943-5138  

E-Print Network (OSTI)

-related challenges of the future. To fulfill its mission, the Naval Postgraduate School strives to sustain excellence Postgraduate School has aligned its education and supporting research programs to achieve three major goals: 1 of teaching and research in direct support of the four pillars of Joint Visions 2010 and 2020

135

Calculation of the Naval Long and Short Waste Package Three-Dimensional Thermal Interface Temperatures  

SciTech Connect

The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.

H. Marr

2006-10-25T23:59:59.000Z

136

Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361  

SciTech Connect

The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada)] [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada); Daniska, Vladimir [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)] [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)

2013-07-01T23:59:59.000Z

137

An overview of U.S. decommissioning experience -- A basic introduction  

SciTech Connect

This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

Boing, L.E.

1998-03-09T23:59:59.000Z

138

Mobile workstation for decontamination and decommissioning operations  

SciTech Connect

This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

Whittaker, W.L.; Osborn, J.F.; Thompson, B.R. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Robotics Inst.

1993-10-01T23:59:59.000Z

139

DOE - Office of Legacy Management -- Naval Research Laboratory - DC 02  

Office of Legacy Management (LM)

Research Laboratory - DC 02 Research Laboratory - DC 02 FUSRAP Considered Sites Site: NAVAL RESEARCH LABORATORY (DC.02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.02-4 Evaluation Year: 1987 DC.02-4 Site Operations: Research and development on thermal diffusion. DC.02-4 Site Disposition: Eliminated - No Authority - AEC licensed - Military facility DC.02-4 DC.02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium DC.02-2 DC.02-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to DOD DC.02-4 Also see Documents Related to NAVAL RESEARCH LABORATORY DC.02-1 - AEC Memorandum and Source Material License No. C-3393;

140

Naval Construction Battalion Center Gulfport - Mississippi Power Partnership Success Story  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Battalion Center Construction Battalion Center Gulfport - Mississippi Power Partnership Success Story Utilities Hardening Project Joe Bosco May 5, 2009 May 5, 2009 * Naval Construction Battalion Center * Established 1942 - Gulfport * Home of Atlantic Fleet Seabees Home of Atlantic Fleet Seabees * Mission: Prepare for & support all facets of the mobilization of construction forces * Naval Construction Battalion Center * 1,100 Acres * 9+ MVA; $3M/yr in Electricity 9+ MVA; $3M/yr in Electricity * One of two Battalion Centers in U.S. * Economic Impact - $500M Mississippi Power Company * Headquartered - Gulfport * Subsidiary y of Southern Comp pany y * Serves 23 counties Southeast Mississippi * 192,000 retail customers * * Generating capacity: 3 166 192 kW Generating capacity: 3,166,192 kW

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Chernobyl NPP decommissioning: Current status and alternatives  

SciTech Connect

After the Chernobyl accident of April 26, 1986, many contradictory decisions were taken concerning the Chernobyl nuclear power plant (NPP) future. The principal source of contradictions was a deadline for a final shutdown of the Chernobyl NPP units. Alterations in a political and socioeconomic environment resulted in the latest decision of the Ukrainian Authorities about 2000 as a deadline for a beginning of the Chernobyl NPP decommissioning. The date seems a sound compromise among the parties concerned. However, in order to meet the data a lot of work should be done. First of all, a decommissioning strategy has to be established. The problem is complicated due to both site-specific aspects and an absence of proven solutions for the RBMK-type reactor decommissioning. In the paper the problem of decommissioning option selection is considered taking into account an influence of the following factors: relevant legislative and regulatory requirements; resources required to carry out decommissioning (man-power, equipment, technologies, waste management infrastructure, etc.); radiological and physical status of the plant, including structural integrity and predictable age and weather effects; impact of planned activities at the destroyed unit 4 and within the 30-km exclusion zone of the Chernobyl NPP; planed use of the site; socio-economic considerations.

Mikolaitchouk, H. [Atomaudit Ltd., Kiev (Ukraine); Steinberg, N. [Atomaudit Ltd., Kiev (Ukraine)

1996-08-01T23:59:59.000Z

142

United States Naval Surface Warfare Center | Open Energy Information  

Open Energy Info (EERE)

Naval Surface Warfare Center Naval Surface Warfare Center Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Naval Surface Warfare Center Address Carderock, 9500 MacArthur Boulevard West Place Bethesda, Maryland Zip 20817 Sector Hydro Phone number (301) 227-1574 Website http://www.dt.navy.mil/hyd/fac Coordinates 38.9782231°, -77.1973878° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9782231,"lon":-77.1973878,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Technology needs for decommissioning and decontamination  

SciTech Connect

This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

Bundy, R.D.; Kennerly, J.M.

1993-12-01T23:59:59.000Z

144

Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy  

Energy.gov (U.S. Department of Energy (DOE))

Confidentiality Agreement between the Nuclear Decommissioning Authority in UK and US Department of Energy

145

Idaho Site Closes Out Decontamination and Decommissioning Project about  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Closes Out Decontamination and Decommissioning Project Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost Idaho Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost November 8, 2012 - 12:00pm Addthis Workers demolish the Test Area North Hot Shop Complex, shown here. Workers demolish the Test Area North Hot Shop Complex, shown here. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown here removed, loaded and ready for transport to the on-site landfill. The Engineering Test Reactor vessel is shown here removed, loaded and ready

146

PROJECT MANGEMENT PLAN EXAMPLES Deactivation to Decommissioning Transition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Decommissioning Transition to Decommissioning Transition Example Example 80 1.5 OPERATIONAL TRANSITION AND DEACTIVATION STRATEGY According to the U.S. Department of Energy (DOE) Order 430.1A Life Cycle Asset Management (LCAM), the life cycle of a facility makes several transitions over the course of it's existence. The typical stages or phases include operation, (standby), deactivation, S&M, decontamination and decommissioning (D&D). The life cycle phases may occur as a straight through process or with long interim periods. In Fig. 1.4, "Facility Disposition Scenarios and Associated Hazard Profiles" (Ref. DOE-STD-1120-98), Scenario 2 demonstrates the life cycle phasing that most closely represents that of the 9206 Complex. Since the ultimate disposition of Building 9206 (and associated buildings and operations) is not known, a decision was made to

147

DOE Awards Contract for Decontamination & Decommissioning Project for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Awards Contract for Decontamination & Decommissioning Project DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park April 29, 2011 - 12:00pm Addthis Media Contact Mike Koentop (865) 576-0885 www.oakridge.doe.gov Oak Ridge, Tenn. - As part of its ongoing commitment to cleaning up the legacy of the Cold War at sites across the weapons complex, the U.S. Department of Energy has awarded a contract for the remaining environmental cleanup at the East Tennessee Technology Park (ETTP) to URS | CH2M Oak Ridge, LLC. The $2.2 billion contract will complete cleanup and provide support functions at ETTP, while supporting local jobs and area small businesses. "Today's contract announcement means that we can continue to meet our

148

DOE Awards Contract for Decontamination & Decommissioning Project for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decontamination & Decommissioning Project Decontamination & Decommissioning Project for the East Tennessee Technology Park DOE Awards Contract for Decontamination & Decommissioning Project for the East Tennessee Technology Park April 29, 2011 - 12:00pm Addthis Media Contact Mike Koentop (865) 576-0885 www.oakridge.doe.gov Oak Ridge, Tenn. - As part of its ongoing commitment to cleaning up the legacy of the Cold War at sites across the weapons complex, the U.S. Department of Energy has awarded a contract for the remaining environmental cleanup at the East Tennessee Technology Park (ETTP) to URS | CH2M Oak Ridge, LLC. The $2.2 billion contract will complete cleanup and provide support functions at ETTP, while supporting local jobs and area small businesses. "Today's contract announcement means that we can continue to meet our

149

In-Situ Decommissioning: A Strategy for Environmental Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Situ Decommissioning In-Situ Decommissioning A Strategy for Environmental Management Reducing the Footprint of the Cold War For over a decade, the Department of Energy has focused on reducing the footprint of 60 years of nuclear research and weapons testing and production. While these facilities are no longer needed, they exist with varying degrees of radiation contamination from years of operation. Deactivation & Decommissioning (D&D) is the process of closing down a nuclear facility and placing it in a state that reduces or eliminates risk to the pub lic and the environment. This generally includes demolition and transport of the debris to a disposal facility. Another alternative is to dispose of the facility in place (i.e., in-situ). The concept of In-Situ Decommis-

150

Guides: Design/Engineering for Deactivation & Decommissioning | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guides: Design/Engineering for Deactivation & Guides: Design/Engineering for Deactivation & Decommissioning Guides: Design/Engineering for Deactivation & Decommissioning To ensure development of appropriate levels of engineering detail, DOE-EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for tailoring a D&D project's engineering/design to meet the objectives of the CD milestones. The enhanced rigor in planning and systematic, forward looking approach to engineering/design recommended in this guidance is intended to ensure that the level of detail in technical planning and technical development, integrated with other project aspects such as safety basis modifications, leads to a high confidence that the engineered system as a whole will function as designed. As the level of

151

Completion of decommissioning: Monitoring for site release and license termination  

SciTech Connect

To request termination of a license upon completion of dismantling or decommissioning activities, documenting any residual radioactivity to show that the levels are environmentally acceptable will be necessary. When the regulators approve the decommissioning plan, they establish what the release criteria for the decommissioned site will be at the time of the site release and license termination. The criteria are numeric guidelines for direct radiation in soils and on surfaces. If the regulatory body finds that the measured on-site values are below the guidelines, the site will be acceptable for unrestricted release (no radiological controls or future use). If areas are found above those values, more decontamination or cleanup of these areas may be required unless the regulatory body grants an exemption.

Boing, L.E.

1997-08-01T23:59:59.000Z

152

A critical review of nuclear power plant decommissioning planning studies  

Science Journals Connector (OSTI)

During the past decade there have been at least ten major efforts to perform comprehensive, analytical studies of the complex issues associated with decommissioning civilian nuclear power plants. These planning efforts are reviewed, using the standard framework of technology assessment. In particular, each study is analysed to determine the degree to which formal methods of decision analysis have been employed to evaluate options and make recommendations and the degree to which formal methods of consensus have been employed to engage citizen involvement and promote public acceptance. Not unexpectedly, we find that the greatest strides in decommissioning analyses have been made in forecasting the economic costs of decommissioning to licensees. Comparatively few improvements have been made in the processes used to compare the impacts of alternative technologies more broadly, or to address the legitimate concerns of interested parties more widely.

W.Timothy Lough; K.Preston White Jr.

1990-01-01T23:59:59.000Z

153

DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS  

SciTech Connect

From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

Bollinger, J; William Austin, W; Larry Koffman, L

2007-09-17T23:59:59.000Z

154

Plan for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

Spampinato, P.T.; Walton, G.R. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Commander, J.C. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1993-01-01T23:59:59.000Z

155

Plan for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D&D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D&D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D&D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D&D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

Spampinato, P.T.; Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Commander, J.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-12-31T23:59:59.000Z

156

Capturing Process Knowledge for Facility Deactivation and Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Assistance Tech Assistance Savannah River National Laboratory- Assess Adequacy of Process Knowledge for D&D Guidance for Determining Adequacy of Process Knowledge Page 1 of 2 Savannah River National Laboratory South Carolina Capturing Process Knowledge for Facility Deactivation and Decommissioning Challenge The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. When such excess facilities are scheduled for deactivation and decommissioning (D&D), among the tasks the responsible project team is faced with include the evaluation and planning for the removal, characterization, and disposition of all legacy

157

Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities  

SciTech Connect

Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires that contaminated components either be: (1) decontaminated to restricted or unrestricted release levels or (2) packaged and shipped to an authorized disposal site. This study considers unrestricted release only. The new decommissioning criteria of July 1997 are too recent for this study to include a cost analysis of the restricted release option, which is now allowed under these new criteria. The costs of decommissioning facility components are generally estimated to be in the range of $140 to $27,000, depending on the type of component, the type and amount of radioactive contamination, the remediation options chosen, and the quantity of radioactive waste generated from decommissioning operations. Estimated costs for decommissioning the example laboratories range from $130,000 to $205,000, assuming aggressive low-level waste (LLW) volume reduction. If only minimal LLW volume reduction is employed, decommissioning costs range from $150,000 to $270,000 for these laboratories. On the basis of estimated decommissioning costs for facility components, the costs of decommissioning typical non-fuel-cycle laboratory facilities are estimated to range from about $25,000 for the decommissioning of a small room containing one or two fume hoods to more than $1 million for the decommissioning of an industrial plant containing several laboratories in which radiochemicals and sealed radioactive sources are prepared. For the reference sites of this study, the basic decommissioning alternatives are: (1) site stabilization followed by long-term care and (2) removal of the waste or contaminated soil to an authorized disposal site. Cost estimates made for decommissioning three reference sites range from about $130,000 for the removal of a contaminated drain line and hold-up tank to more than $23 million for the removal of a tailings pile that contains radioactive residue from ore-processing operations in which tin slag is processed for the recovery of rare metals. Total occupational radiation doses generally range from 0.00007 person-rem to 13 person-rem for

MC Bierschbach; DR Haffner; KJ Schneider; SM Short

2002-12-01T23:59:59.000Z

158

TMI defueling project fuel debris removal system  

SciTech Connect

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-01-01T23:59:59.000Z

159

TMI defueling project fuel debris removal system  

SciTech Connect

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-08-01T23:59:59.000Z

160

E-Print Network 3.0 - andreyev bay naval Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

at the exact location (inside the bay) where the naval operations take place... . Armstrong, 2004. Prediction of instantaneous currents in San Diego ... Source: Chu, Peter C. -...

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Board of Advisors to the Presidents of the Naval Postgraduate School and the Naval War College Annual Joint Meeting of the Subcommittees: Board of Advisors to the President, Naval Postgraduate  

E-Print Network (OSTI)

as the NPS sub-committee board members reviewed SECNAVINST 1524.2B. During the lunch (Advanced Education Review Board). The AERB was originally put in placeBoard of Advisors to the Presidents of the Naval Postgraduate School

162

Engineering and planning for decommissioning of nuclear power plants  

SciTech Connect

With the publication of NUREG-0586, ''Draft Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities'' in January, 1981 the Nuclear Regulatory Commission staff has put the industry on notice that the termination of operating licenses and the final disposal of physical facilities will require the early consideration of several options and approaches and the preparation of comprehensive engineering and planning documents for the selected option at the end of useful life. This paper opens with a discussion of the options available and the principal aspects of decommissioning. The major emphasis of the composition is the nature of documents, the general approach to be followed, and special considerations to be taken into account when performing the detailed engineering and planning for decommissioning, as the end of life approaches and actual physical disposal is imminent. The author's main point of reference is on-going work by Burns and Roe, with Nuclear Energy Services, under contract to the Department of Energy's Richland Office, to perform the engineering and planning for the decommissioning of the Shippingport Atomic Power Station in Pennsylvania.

Gans, G.M. Jr.

1982-01-01T23:59:59.000Z

163

SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVII  

SciTech Connect

The results of 3362 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1970 mean relative positions and range in separation from 0.''78 to 72.''17, with a mean separation of 14.''76. This is the 17th in this series of papers and covers the period 2010 January 6 through December 20. Also presented are 10 pairs that are resolved for the first time.

Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L., E-mail: bdm@usno.navy.mil, E-mail: wih@usno.navy.mil [U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

2011-08-15T23:59:59.000Z

164

SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XV  

SciTech Connect

Results of 2433 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1013 mean relative positions and range in separation from 0.''96 to 58.''05, with a mean separation of 13.''50. This paper is the 15th in the series of papers and covers the period 2008 January 3 through 2008 December 21.

Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L., E-mail: bdm@usno.navy.mi, E-mail: wih@usno.navy.mi, E-mail: glw@usno.navy.mi [U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

2010-08-15T23:59:59.000Z

165

Fallon Naval Air Station Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fallon Naval Air Station Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fallon Naval Air Station Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.38,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Coastal Inundation due to Tide, Surge, Waves, and Sea Level Rise at Naval Station Norfolk  

E-Print Network (OSTI)

Coastal Inundation due to Tide, Surge, Waves, and Sea Level Rise at Naval Station Norfolk Honghai of future sea level rise (SLR) scenarios and to evaluate the potential coastal inundation at Naval Station and sea level rise threats to coastal residents and coastal military facilities, the US Strategic

US Army Corps of Engineers

167

EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31: Proposed Natural Gas Protection Program for Naval Oil 31: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado SUMMARY This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that would encompass a total of 200 wells in Garfield County, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 1991 EA-0531: Final Environmental Assessment Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 August 9, 1991 EA-0531: Finding of No Significant Impact

168

Laser in situ keratomileusis in United States Naval aviators  

Science Journals Connector (OSTI)

Purpose To evaluate the safety and efficacy of femtosecond-assisted wavefront-guided laser in situ keratomileusis (LASIK) as well as higher-order aberrometric changes in a population of active-duty United States Naval aviators. Setting Navy Refractive Surgery Centers, San Diego, California, and Portsmouth, Virginia, USA. Design Prospective noncomparative 2-site study. Methods In this study of femtosecond-assisted wavefront-guided LASIK, 3 groups were differentiated according to the refractive status: myopia, mixed astigmatism, and hyperopia. Uncorrected (UDVA) and corrected (CDVA) distance visual acuities, refraction, mesopic low-contrast CDVA, higher-order aberrations (HOAs), and patient satisfaction were evaluated during a 3-month follow-up. Results The study enrolled, treated, and included for analysis 548 eyes with myopia, 60 eyes with mixed astigmatism, and 25 eyes with hyperopia. The UDVA was 20/20 or better in 98.3% of eyes with myopia and mixed astigmatism at all postoperative visits and in 95.7% of hyperopic eyes 3 months postoperatively. The gain in CDVA was 1 or more lines in 39.2%, 41.1%, and 30.4% of myopic, mixed astigmatic and hyperopic eyes, respectively. Loss of 2 lines of CDVA after surgery occurred in 2 myopic eyes (0.4%). At 3 months, a mean change of +0.03 ?m ± 0.10 (SD) and +0.05 ± 0.08 ?m was observed in higher-order root mean square and primary spherical aberration, respectively. Of the patients, 95.9% said they believed that LASIK had helped their effectiveness as Naval aviators and 99.6% would recommend the same treatment to others. Conclusion Femtosecond-assisted wavefront-guided LASIK was an efficacious and safe option for refractive correction in Naval aviators, enabling a quick return to flight status. Financial Disclosure Drs. Tanzer and Schallhorn are consultants to Abbott Medical Optics, Inc. No author has a financial or proprietary interest in any material or method mentioned.

David J. Tanzer; Tyson Brunstetter; Richard Zeber; Elizabeth Hofmeister; Sandor Kaupp; Neil Kelly; Myah Mirzaoff; William Sray; Mitch Brown; Steven Schallhorn

2013-01-01T23:59:59.000Z

169

Deactivation & Decommissioning (D&D) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deactivation & Deactivation & Decommissioning (D&D) Deactivation & Decommissioning (D&D) American Recovery and Reinvestment Act workers at the Savannah River Site imploded the 455-foot-tall K Reactor Cooling Tower in May 2010. The project was completed safely and contributed 36.5 square miles to the site's total footprint reduction. On August 3, 2013, contractors and the Oak Ridge Office of Environmental Management successfully completed the explosive demolition of the K-1206-F Fire Water Tower, which for 54 years had been used for fire water supply at the East Tennessee Technology Park in Oak Ridge Tennessee. The 382 foot tall, 400,000-gallon water tower tank was drained and isolated from the fire water system prior to the estimated 100-ton steel structure being

170

Decontamination and Decommissioning activities photobriefing book FY 1997  

SciTech Connect

The Decontamination and Decommissioning (D and D) Program at Argonne National Laboratory-East (ANL-E) is dedicated to the safe and cost effective D{ampersand}D of surplus nuclear facilities. There is currently a backlog of more than 7,000 contaminated US Department of Energy facilities nationwide. Added to this are 110 licensed commercial nuclear power reactors operated by utilities learning to cope with deregulation and an aging infrastructure that supports the commercial nuclear power industry, as well as medical and other uses of radioactive materials. With this volume it becomes easy to understand the importance of addressing the unique issues and objectives associated with the D{ampersand}D of surplus nuclear facilities. This photobriefing book summarizes the decontamination and decommissioning projects and activities either completed or continuing at the ANL-E site during the year.

NONE

1998-04-01T23:59:59.000Z

171

Decontamination and decommissioning surveillance and maintenance report for FY 1991  

SciTech Connect

The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

172

Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26  

Office of Legacy Management (LM)

.J>?j 1.2 1990 .J>?j 1.2 1990 Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26 Code N 9 E Norfolk, Virginia 23511-6002 Dear Ms. Barnett: I enjoyed speaking with you on the phone. The Department of Energy (DOE) has established its Formerly Utilized Sites Remedial Action Program (FUSRAP) to identify sites formerly utilized by its predecessor agencies in the early days of the nation's atomic energy program and to determine the potential for these sites to contain radiological contamination, related to DOE's past activities, which may require remedial action. When necessary, radiological surveys of individual sites are performed to provide the data necessary to make this necessary determination. As we discussed, in July 1956, the Atomic Energy Commission (a DOE

173

SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XIX  

SciTech Connect

The results of 2916 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 1584 mean relative positions and range in separation from 0.''54 to 98.''09, with a median separation of 11.''73. This is the 19th in this series of papers and covers the period 2012 January 5 through 2012 December 18. Also presented are 10 pairs that are reported for the first time, 17 pairs that appear to be lost, linear elements for 18 pairs, and orbital elements for 2 additional pairs.

Mason, Brian D.; Hartkopf, William I.; Hurowitz, Haley M., E-mail: bdm@usno.navy.mil, E-mail: wih@usno.navy.mil, E-mail: hurowitz@mit.edu [U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

2013-09-15T23:59:59.000Z

174

SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVIII  

SciTech Connect

The results of 2490 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1462 mean relative positions and range in separation from 0.''56 to 71.''80, with a mean separation of 14.''81. This is the 18th in this series of papers and covers the period 2011 January 3 through 2011 December 18. Also presented are four pairs which are resolved for the first time, thirteen other pairs which appear to be lost, and linear elements for four additional pairs.

Mason, Brian D.; Hartkopf, William I.; Friedman, Elizabeth A., E-mail: bdm@usno.navy.mil, E-mail: wih@usno.navy.mil, E-mail: efriedman09@ucla.edu [U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

2012-05-15T23:59:59.000Z

175

Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003  

SciTech Connect

The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy.

None

2003-12-31T23:59:59.000Z

176

Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982  

SciTech Connect

Legislation authorizing production from two Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents an assessment of the trade-offs of extending production or returning to a shut-in status. Strategic, economic, and energy factors at the national, regional, and local levels are considered. The results of the study indicate that the only major local impact of shut-in will be on small refineries near NPR-1. At the national level, shut-in increases the size of the national petroleum reserve system. However, economic losses as measured by changes in the present value of real GNP also occur. The estimate of the increase in the size of the national petroleum reserve with shut-in of the NPRs was found to be most sensitive to the assumed length of future import interruptions.

Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

1981-08-01T23:59:59.000Z

177

A New Life Adaptive Reuse and Redevelopment of Decommissioned Commercial Nuclear Power Plants.  

E-Print Network (OSTI)

??My study analyzed the challenges and opportunities faced in the historic preservation and adaptive reuse of decommissioned commercial nuclear power plants. While operating, these plants… (more)

Farrow, Elizabeth

2008-01-01T23:59:59.000Z

178

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

179

Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority  

Energy.gov (U.S. Department of Energy (DOE))

Statement of Intent between the US Department of Energy and UK Nuclear Decommissioning Authority for exchange of information concerning management of radioactive waste.

180

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

182

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

SciTech Connect

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

183

EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

236: Preparation for Transfer of Ownership of Naval Petroleum 236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY SUMMARY This EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation. Proposed activities would include accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the development of the Rocky Mountain Oilfield Testing Center (RMOTC).

184

Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Naval Air Station Area (Sabin, Et Al., 2010) Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) Exploration Activity Details Location Fallon Naval Air Station Area Exploration Technique Development Wells Activity Date Usefulness not indicated DOE-funding Unknown Notes As was mentioned previously, the Navy signed a development contract with Ormat in 2005 to produce power from a potential resource on the SE corner of the main side portion of NAS Fallon. Additionally the GPO began additional exploration activities on the Bombing Range 16 in collaboration with the Great Basin Center for Geothermal Energy. The introduction of $9.1M of Recovery Act funds in early 2009 led to a broadening as well as an

185

Sale of the Elk Hills Naval Petroleum Reserve | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Hills Naval Petroleum Reserve Sale of the Elk Hills Naval Petroleum Reserve Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. On February 5, 1998, the Department of Energy and Occidental Petroleum Corporation concluded the largest divestiture of federal property in the history of the U.S. government.

186

EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

187

EIS-0158: Sale of the Naval Petroleum Reserve No. 1 at Elk Hills, California (1997)  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to assess the potential environmental impacts of the continued operation of the Naval Petroleum Reserve No. 1 at the Maximum Efficient Rate authorized by Public Law 94-258.

188

Carl Vinson and pre-war naval legislation 1932-1940  

E-Print Network (OSTI)

in Congress who feared America would be drawn into another European war. Vinson also had to persuade fiscal conservatives opposed to increasing the budget deficit that funding naval construction was in the nation's best interests. Additionally, Vinson...

Svonavec, Stephen Charles

2012-06-07T23:59:59.000Z

189

Modular machinery arrangement and its impact in early-stage naval electric ship design  

E-Print Network (OSTI)

Electrical power demands for naval surface combatants are projected to rise with the development of increasingly complex and power intensive combat systems. This trend also coincides with the need of achieving maximum fuel ...

Jurkiewicz, David J. (David James)

2012-01-01T23:59:59.000Z

190

Design and analysis of a permanent magnet generator for naval applications  

E-Print Network (OSTI)

This paper discusses the electrical and magnetic design and analysis of a permanent magnet generation module for naval applications. Numerous design issues are addressed and several issues are raised about the potential ...

Rucker, Jonathan E. (Jonathan Estill)

2005-01-01T23:59:59.000Z

191

Analysis of harmonic distortion in an Integrated Power System for naval applications  

E-Print Network (OSTI)

This research quantifies the voltage distortion over the broad range of operating conditions experienced by a Naval warship. A steady state model of an Integrated Power System (IPS) was developed in a commercially available ...

West, Edward G., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

192

EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

193

DOE Environmental Management Strategy and Experience for In-Situ Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy and Experience Strategy and Experience for In Situ Decommissioning Prepared By U.S. Department of Energy Office of Environmental Management Office of Engineering and Technology, EM-20 September 2009 This page is deliberately blank. DOE EM Strategy and Experience for In Situ Decommissioning i Contents Acknowledgements......................................................................................................................................iv Acronyms...................................................................................................................................................... v 1. Introduction......................................................................................................................................

194

Is Entombment an Acceptable Option for Decommissioning? An International Perspective - 13488  

SciTech Connect

Selection of a decommissioning strategy is one of the key steps in the preparation for decommissioning of nuclear facilities and other facilities using radioactive material. Approaches being implemented or considered by Member States include immediate dismantling, deferred dismantling and entombment. Other options or slight modifications of these strategies are also possible. Entombment has been identified in the current International Atomic Energy Agency (IAEA) Safety Standards as one of the three basic decommissioning strategies and has been defined as a decommissioning strategy by which radioactive contaminants are encased in a structurally long lived material until radioactivity decays to a level permitting the unrestricted release of the facility, or release with restrictions imposed by the regulatory body. Although all three strategies have been considered, in principle, applicable to all facilities, their application to some facilities may not be appropriate owing to political concerns, safety or environmental requirements, technical considerations, local conditions or financial considerations. The IAEA is currently revising the decommissioning Safety Standards and one of the issues widely discussed has been the applicability of entombment in the context of decommissioning and its general objective to enable removal of regulatory control from the decommissioned facility. The IAEA recently established a consultancy to collect and discuss experience and lessons learned from entombment projects, to identify regulatory requirements and expectations for applying entombment as a decommissioning option strategy, in compliance with the internationally agreed standards. (authors)

Belencan, Helen [US Department of Energy (United States)] [US Department of Energy (United States); Nys, Vincent [Federal Agency for Nuclear Control (Belgium)] [Federal Agency for Nuclear Control (Belgium); Guskov, Andrey [Scientific and Engineering Centre on Safety in Nuclear Energy (United States)] [Scientific and Engineering Centre on Safety in Nuclear Energy (United States); Francois, Patrice [Institut de radioprotection et de surete nucleaire (France)] [Institut de radioprotection et de surete nucleaire (France); Watson, Bruce [US Nuclear Regulatory Commission (United States)] [US Nuclear Regulatory Commission (United States); Ljubenov, Vladan [International Atomic Energy Agency (Austria)] [International Atomic Energy Agency (Austria)

2013-07-01T23:59:59.000Z

195

EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

196

EIS-0080: Decommissioning of the Shipping port Atomic Power Station, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

197

Decommissioning Cost Estimating Factors And Earned Value Integration  

SciTech Connect

The Rocky Flats 771 Project progressed from the planning stage of decommissioning a plutonium facility, through the strip-out of highly-contaminated equipment, removal of utilities and structural decontamination, and building demolition. Actual cost data was collected from the strip-out activities and compared to original estimates, allowing the development of cost by equipment groupings and types and over time. Separate data was developed from the project control earned value reporting and compared with the equipment data. The paper discusses the analysis to develop the detailed factors for the different equipment types, and the items that need to be considered during characterization of a similar facility when preparing an estimate. The factors are presented based on direct labor requirements by equipment type. The paper also includes actual support costs, and examples of fixed or one-time start-up costs. The integration of the estimate and the earned value system used for the 771 Project is also discussed. The paper covers the development of the earned value system as well as its application to a facility to be decommissioned and an existing work breakdown structure. Lessons learned are provided, including integration with scheduling and craft supervision, measurement approaches, and verification of scope completion. In summary: The work of decommissioning the Rocky Flats 771 Project process equipment was completed in 2003. Early in the planning process, we had difficulty in identifying credible data and implementing processes for estimating and controlling this work. As the project progressed, we were able to collect actual data on the costs of removing plutonium contaminated equipment from various areas over the life of this work and associate those costs with individual pieces of equipment. We also were able to develop and test out a system for measuring the earned value of a decommissioning project based on an evolving estimate. These were elements that would have been useful to us in our early planning process, and we would expect that they would find application elsewhere as the DOE weapons complex and some commercial nuclear facilities move towards closure. (authors)

Sanford, P.C.; Cimmarron, E. [Englewood, CO, B. Skokan, Office of Project Management Oversight, EM-53, United States Department of Energy, Washington, DC (United States)

2008-07-01T23:59:59.000Z

198

Deactivation & Decommissioning Knowledge Management Information Tool (D&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site & Facility Restoration » Deactivation & Site & Facility Restoration » Deactivation & Decommissioning (D&D) » Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) The Deactivation and Decommissioning Knowledge Management Information Tool (D&D KM-IT) serves as a centralized repository providing a common interface for all D&D related activities. It assists users in gathering, analyzing, storing and sharing knowledge and information within the D&D community. This approach assists in reducing the need to rediscover the knowledge of the past while capturing the new knowledge and experiences gained during

199

DOE EM Project Experience & Lessons Learned for In Situ Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Project Experience & Lessons Learned for In Situ EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013) DOE EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013) The purpose of the "DOE EM Project Experience & Lessons Learned for In Situ Decommissioning" report is to capture the considerable technical experience gained to date for implementation of In Situ Decommissioning (ISD) projects at DOE facilities. As current and projected budgets for the EM program indicate reduced and flat funding profiles for the foreseeable future, the potential exists for this institutional knowledge to be lost as the ramp-down of project staffing commences with the cessation of ARRA. EM's Office of Deactivation & Decommissioning and Facility Engineering

200

SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVI  

SciTech Connect

The results of 1031 speckle-interferometric observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each speckle-interferometric observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 457 mean relative positions and range in separation from 0.''15 to 16.''94, with a median separation of 3.''03. The range in V-band magnitudes for the primary (secondary) of observed targets is 3.1-12.9 (3.2-13.3). This is the sixteenth in a series of papers presenting measurements obtained with this system and covers the period 2009 January 12 through 2009 December 17. Included in these data are 12 older measurements whose positions were previously deemed possibly aberrant, but are no longer classified this way following a confirming observation. Also, 10 pairs with a single observation are herein confirmed. This paper also includes the first data obtained using a new ICCD with fiber optic cables.

Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L., E-mail: bdm@usno.navy.mil, E-mail: wih@usno.navy.mil [U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

2011-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Renewable Energy Optimization Report for Naval Station Newport  

SciTech Connect

In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

Robichaud, R.; Mosey, G.; Olis, D.

2012-02-01T23:59:59.000Z

202

Distributed energy resources at naval base ventura county building 1512  

SciTech Connect

This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year.

Bailey, Owen C.; Marnay, Chris

2004-10-01T23:59:59.000Z

203

Decommissioning of the TA-42 plutonium contaminated incinerator facility  

SciTech Connect

During 1978, a plutonium (/sup 239/Pu) contaminated incinerator facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned. The project involved dismantling the facility and burying the debris at an on-site radioactive solid waste disposal/storage area. Contaminated soil from the 5000 m/sup 2/ area was also buried. The facility was constructed in 1951 to incinerate /sup 239/Pu contaminated wastes. It was later used as a decontamination facility. The major features included a 185-m/sup 2/ floor area control building, incinerator, cyclone dust collector, spray cooler, venturi scrubber, air filter bank, ash separator, and two 140 000-liter ash storage tanks. Six-hundred cubic meters of debris and 1200 m/sup 3/ of soil contaminated with less than 10 nCi /sup 239/Pu per gram of soil were buried at the Laboratory disposal area. Five cubic meters of /sup 239/Pu contaminated ash residues containing more than 10 nCi /sup 239/Pu per gram of waste were packaged and stored to meet the Department of Energy's 20-year retrievable storage criteria. The operation consumed 80 work days and 5800 manhours at a cost of $150 000. This report presents the details concerning decommissioning procedures, the health physics, the waste management, the environmental surveillance results, and a cost breakdown for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

204

Resource book: Decommissioning of contaminated facilities at Hanford  

SciTech Connect

In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

205

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

206

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 26, 1997 February 26, 1997 EIS-0189: Record of Decision Tank Waste Remediation System, Hanford Site, Richland, WA December 1, 1996 EA-1111: Final Environmental Assessment K Pool Fish Rearing, Hanford Site, Richland, Washington October 21, 1996 EA-1177: Final Environmental Assessment Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants August 1, 1996 EIS-0189: Final Environmental Impact Statement Tank Waste Remediation System, Hanford Site, Richland, Washington May 1, 1996 EIS-0244: Final Environmental Impact Statement Plutonium Finishing Plant Stabilization April 1, 1996 EIS-0259: Final Environmental Impact Statement Disposal of Decommissioned, Defueled Cruiser, Ohio Class, Los Angeles and Class Naval Reactor Plants April 1, 1996 EIS-0259: Final Environmental Impact Statement

207

Findings of No Significant Impact (FONSI) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 28, 2012 August 28, 2012 EA-1909: Finding of No Significant Impact South Table Wind Project, Kimball County, NE August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 August 23, 2012 EA-1889: Final Environmental Assessment and Finding of No Significant Impact Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) August 15, 2012 EA-1917: Finding of No Significant Impact Wave Energy Test Facility Project, Newport, OR August 7, 2012 EA-1845: Finding of No Significant Impact Sabine Pass Liquefaction, LLC Regarding Order Granting Long-Term Authorization to Export Liquefied Natural Gas from Sabine Pass LNG Terminal to Non-Free Trade Agreement Nations, Cameron Parish, LA

208

Latest Documents and Notices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2012 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 August 24, 2012 EA-1929: Final Environmental Assessment NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 August 23, 2012 EA-1889: Final Environmental Assessment and Finding of No Significant Impact Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) August 21, 2012 EA-1886: Draft Environmental Assessment Big Sky Regional Carbon Sequestration Partnership - Phase III: Kevin Dome Carbon Storage Project, Shelby, Toole County, MT August 17, 2012 EIS-0414: Record of Decision Energia Sierra Juarez Transmission Project August 15, 2012

209

New case for naval arms control. Interim report, September-December 1992  

SciTech Connect

This paper opens with an examination of existing legal restraints on naval forces and arms control agreements and concludes that the U.S. is already heavily engaged in naval arms control. Given the new international security environment and the new U.S. regionally-oriented national security and military strategies, the author then recommends a series of additional naval arms control measures that should be taken: exchanges of data, transparency, INCSEA, cooperative measures, an agreement on the laws of submarine warfare, abolishing NCND, no first tactical nuclear use at sea, NWFZs, advanced notification of operational-level exercises, environmental protection measures, controls over maritime technologies, armed escorts of nuclear shipments, new Roes, PALs, the resolution of outstanding political issues at sea, deep cuts in nuclear forces, CFE follow-on, limits on specific types of naval forces, geographic limits, expanded standing naval forces, and a re negotiation of the ABM Treaty. The paper then addresses verification and compliance issues. Author concludes that since the U.S. Navy has already managed to avoid major arms control while balanced on the precarious slippery slope, there is no reason to continue its stonewalling policies.

Tritten, J.J.

1992-12-04T23:59:59.000Z

210

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

211

September 10, 2003, Board Public Meeting - Naval Reactors Approach to Oversight  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 25 22 As I previously mentioned this morning, we will receive testimony from experienced representatives from other organizations. First, I would like to welcome representatives from the U.S. Naval Sea Systems Command, Mr. Thomas Beckett and Mr. Storm Kauffman. If you would be kind enough to give your names and titles so the stenographer can identify you for the record. MR. BECKETT: Thank you, Mr. Chairman. Thomas H. Beckett. I ' m the Deputy Director for Naval Reactors, a joint Department of the Navy/Department of Energy Program. MR. KAUFFMAN: Storm Kauffman. I ' m the Director of Reactor Safety and Analysis for the Naval Reactors Program CHAIRMAN CONWAY: Mr. Beckett. MR. BECKETT: Thank you, Mr. Chairman, and let me thank you and the other Board Members f

212

DOE - Office of Legacy Management -- Naval Ordnance Test Station - CA 06  

NLE Websites -- All DOE Office Websites (Extended Search)

Ordnance Test Station - CA 06 Ordnance Test Station - CA 06 FUSRAP Considered Sites Site: NAVAL ORDNANCE TEST STATION (CA.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: China Lake Naval Weapons Center Salt Wells Pilot Plant CA.06-1 Location: Inyokern , California CA.06-1 Evaluation Year: 1987 CA.06-1 Site Operations: Naval facility; experimental development work on shape charges and quality castings on a pilot plant scale. CA.06-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at the site CA.06-1 Radioactive Materials Handled: None Indicated CA.06-1 Primary Radioactive Materials Handled: None CA.06-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see

213

EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26: Decommissioning and/or Long-Term Stewardship at the West 26: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center EIS-0226: Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center SUMMARY This EIS evaluates the potential environmental impacts of the range of reasonable alternatives to decommission and/or maintain long-term stewardship at WNYNSC. The alternatives analyzed in the EIS include the Sitewide Removal Alternative, the Sitewide Close-In-Place Alternative, the Phased Decisionmaking Alternative (Preferred Alternative), and the No Action Alternative. The analysis and information contained in the EIS are intended to assist DOE and NYSERDA with the consideration of environmental

214

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes  

SciTech Connect

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

215

Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant  

SciTech Connect

Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

Elder, H. K.

1981-10-01T23:59:59.000Z

216

Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority  

Energy.gov (U.S. Department of Energy (DOE))

Statement of Intent No. 2 between DOE and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and Northern Ireland for exchange of information concerning management of...

217

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning  

Energy.gov (U.S. Department of Energy (DOE))

American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Savannah River Site this month after they safely removed its...

218

Statement of Intent NO. 2 between the US Department of Energy and UK Nuclear Decommissioning Authority  

Energy.gov (U.S. Department of Energy (DOE))

Statement of Intent NO. 2 between the Department of Energy of the United States and the Nuclear Decommissioning Authority in the United Kingdom of Great Britain and northern Ireland for exchange of...

219

Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

220

Updated 1-12 Mr. John C. Goodhart became the Vice Commander and senior civilian of the Naval Supply  

E-Print Network (OSTI)

is responsible for quality-of-life issues for our naval forces, including food service, postal services, Navy Executive Service since July 2002. NAVSUP's primary mission is to provide U.S. naval forces with quality supplies and services. The organization oversees logistics programs in the areas of supply operations

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada  

SciTech Connect

Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred thousand hours worked, on schedule and under budget despite some significant changes throughout the decommissioning phases. The actual cost to decommission this building will come in under 9 million dollars vs. an estimated 14.5 million dollars. This paper will cover some of the unique aspects of dismantling a radioactive building that has seen pretty much every element of the periodic table pass through it with the client requirement focused on minimization of radioactive waste volumes.

Kenny, Stephen [Acting Director of Waste Management and Decommissioning Operations, AECL, Chalk River Labs, Chalk River, Ont. (Canada)

2008-01-15T23:59:59.000Z

222

Development of a Remote Monitoring Sensor Network for In-Situ Decommissioned Structures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10-01666, Revision 0 10-01666, Revision 0 Key Words: in situ decommissioning sensor remote monitoring end state Retention: Permanent DEVELOPMENT OF A REMOTE MONITORING SENSOR NETWORK FOR IN SITU DECOMMISSIONED STRUCTURES Panel Report November 2010 Savannah River National Laboratory Savannah River Nuclear Solutions Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470 Development of a Remote Monitoring Sensor Network Page 2 of 34

223

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

224

Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex  

SciTech Connect

Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

A. B. Culp

2006-10-01T23:59:59.000Z

225

An analysis of decommissioning costs for the AFRRI TRIGA reactor facility  

SciTech Connect

A decommissioning cost analysis for the AFRRI TRIGA Reactor Facility was made. AFRRI is not at this time suggesting that the AFRRI TRIGA Reactor Facility be decommissioned. This report was prepared to be in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations which requires the assurance of availability of future decommissioning funding. The planned method of decommissioning is the immediate decontamination of the AFRRI TRIGA Reactor site to allow for restoration of the site to full public access - this is called DECON. The cost of DECON for the AFRRI TRIGA Reactor Facility in 1990 dollars is estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment is an additional $600,000. Thus the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for this cost estimate is a study of the decommissioning costs of a similar reactor facility that was performed by Battelle Pacific Northwest Laboratory (PNL) as provided in USNRC publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA. (author)

Forsbacka, Matt [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States)

1990-07-01T23:59:59.000Z

226

Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548  

SciTech Connect

The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

Kim, HakSoo; Chung, SungHwan; Maeng, SungJun [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)] [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2013-07-01T23:59:59.000Z

227

Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.  

E-Print Network (OSTI)

Modeling of Coastal Inundation, Storm Surge, and Relative Sea- Level Rise at Naval Station Norfolk. Modeling of coastal inundation, storm surge, and relative sea-level rise at Naval Station Norfolk, Norfolk, and relative sea-level-rise (RSLR) scenarios were examined at the U.S. Naval Station, Norfolk, Virginia

US Army Corps of Engineers

228

Cost Savings through Innovation in Decontamination, Decommissioning, and Dismantlement  

SciTech Connect

The United States Department of Energy (DOE) continually seeks safer and more cost effective technologies for the decontamination and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsored large-scale demonstration and deployment projects (LSDDPs) to help bring new technologies into the D&D programs. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of needs defining specific problems where improved technologies could be incorporated into ongoing D&D tasks. The needs fell into 5 major categories--characterization, dismantlement, safety, material dispositioning, and decontamination. Technologies were carefully selected that provide a large benefit for a small investment. The technologies must provide significant improvements in cost, safety, radiation exposure, waste volume reduction, or schedule savings and widely applicable throughout the DOE complex. The LSDDP project provided training for the new technologies and worked with technology suppliers to resolve any questions that arose. Since 1998, 26 technologies have been demonstrated or deployed through the LSDDP for the D&D program at the INEEL. Of the 26 demonstrated and deployed technologies, 14 were in characterization, 3 were in decontamination, 4 were in dismantlement, 3 were in safety, and 2 were in material dispositioning. To promote the use of these technologies at other sites within the DOE complex, the LSDDP team published fact sheets, videos, technology summary reports, articles in INEEL star newspaper, posters, and maintained an internet home page on the project. As a result, additional deployments have taken place at the Hanford, Mound, Fernald, Oak Ridge, Ashtabula, and West Valley. Eight of the 26 technologies evaluated were developed in foreign countries. The technologies demonstrated have been shown to be faster, less expensive, and/or safer. The technologies evaluated through the LSDDP have provided improvements in the following D&D areas: robotic underwater characterization of fuel storage pools, characterization of scrap metal for recycle, PCB and RCRA metals analysis in soil, water, paint, or sludge, subsurface characterization, personnel safety, waste disposal, scaffolding use, and remote radiation characterization of buildings and soil. It is estimated that the technologies demonstrated and deployed through this program will save more than $50 million dollars over the next 10 years at the INEEL alone. Of the $50 million estimated dollars saved, about 75% of the savings will come from characterization technologies, 11% from technologies associated with material dispositioning, 10% are associated with dismantlement technologies and the balance split between safety and decontamination.

Neal A. Yancey

2003-02-27T23:59:59.000Z

229

Naval Research Laboratory Memorandum Report, 2003 Perceptual and Ergonomic Issues in  

E-Print Network (OSTI)

Naval Research Laboratory Memorandum Report, 2003 1 Perceptual and Ergonomic Issues in Mobile paradigm, the field needs a much better understanding of the fundamental perceptual and ergonomic issues aimed at both understanding the fundamental perceptual and ergonomic issues in AR display

Swan II, J. Edward

230

Karen Swider-Lyons, Peter Bouwman, Norma Ugarte Naval Research Laboratory  

E-Print Network (OSTI)

metal oxides for PEMFC cathodes Low-platinum hydrous metal oxides for PEMFC cathodes #12;Naval Research-NbPOx compounds Receive LANL test results for Pt-FePOx catalyst performance in a PEMFC - poor performance Acquire on lowering Pt in fuel cell cathode · Cathode has most Pt because slow oxygen reduction kinetics poor Pt

231

Naval Station Norfolk, VA- Energy Conservation Program UESC Partnership Success Story  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers the basis for success of a U.S. Navy utility energy service contract (UESC) project at a Naval Station in Norfolk, Virginia, including the project phases and why the utility partnership works.

232

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Energy.gov (U.S. Department of Energy (DOE))

Case study details Naval Air Station Oceana findings that its heating needs could be met more efficiently by replacing its central plant with a combination of distributed boilers and ground source heat pumps. The results saved more than 1 million MBtu in energy and 19,574 Kgal of water annually.

233

Don AtwoodNaval Postgraduate School Workshop 9 August 1 Monitoring Marine Ecosystems  

E-Print Network (OSTI)

School Workshop ­ 9 August 9 NRT Support Walrus Tracking U.S. Fish and Wildlife Service USGS Alaska Environment U.S. Fish and Wildlife Service USGS Alaska Science Center #12;Don AtwoodNaval Postgraduate School Interactions Hurricane Ivan What does SAR see? · surface roughness of the water Fortunately, wind, atmospheric

234

Symposium on Naval Hydrodynamics Gothenburg, Sweden, 26-31 August 2012  

E-Print Network (OSTI)

29th Symposium on Naval Hydrodynamics Gothenburg, Sweden, 26-31 August 2012 High will be dramatically different from current mainstream supercomputers in terms of computing power and parallel are demonstrated for plunging breaking waves behind a bump using 2.2 billion grid points running on thousands

Yang, Jianming

235

Low Energy Nuclear Reaction Research at the Naval Research Laboratory D.A. Kidwell1  

E-Print Network (OSTI)

Low Energy Nuclear Reaction Research at the Naval Research Laboratory D.A. Kidwell1 , D have explored the field of Low Energy Nuclear Reactions (LENR) for about eight years focusing energy (as heat) is produced ­ neither nuclear products nor transmutations have been firmly established

Noble, James S.

236

Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543  

SciTech Connect

Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)] [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

2013-07-01T23:59:59.000Z

237

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

238

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-12-15T23:59:59.000Z

239

LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL  

SciTech Connect

5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-10-22T23:59:59.000Z

240

Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part A, Decontamination and Decommissioning  

SciTech Connect

This report documents activities of decontamination and decommissioning at ORNL. Topics discussed include general problems, waste types, containment, robotics automation and decontamination processes.

Not Available

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Assessment of strippable coatings for decontamination and decommissioning  

SciTech Connect

Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

Ebadian, M.A.

1998-01-01T23:59:59.000Z

242

The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474  

SciTech Connect

The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

2012-07-01T23:59:59.000Z

243

Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216  

SciTech Connect

Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

2013-07-01T23:59:59.000Z

244

Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396  

SciTech Connect

Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-li

Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States); Laraia, Michele [private consultant, formerly from IAEA, Kolonitzgasse 10/2, 1030, Vienna (Austria); Pescatore, Claudio [OECD, Nuclear Energy Agency, Issy-les-Moulineaux, Paris (France); Dinner, Paul [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria)

2012-07-01T23:59:59.000Z

245

DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE  

SciTech Connect

VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

U. Helwig, W. Boessert

2003-02-27T23:59:59.000Z

246

Decommissioning and PIE of the MEGAPIE spallation target  

SciTech Connect

A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly. The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by ?-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from ?-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and ?-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.

Latge, C.; Henry, J. [CEA-Cadarache, DEN-DTN, 13108 Saint-Paul-les-Durance (France); Wohlmuther, M.; Dai, Y.; Gavillet, D.; Hammer, B.; Heinitz, S.; Neuhausen, J.; Schumann, D.; Thomsen, K.; Tuerler, A.; Wagner, W. [PSI, Villigen (Switzerland); Gessi, A. [ENEA, Brasimone (Italy); Guertin, A. [CNRS, Subatech, Nantes (France); Konstantinovic, M. [SCK-CEN, Mol (Belgium); Lindau, R. [KIT, Karlsruhe (Germany); Maloy, S. [DOE-LANL, Los Alamos (United States); Saito, S. [JAEA, Tokai (Japan)

2013-07-01T23:59:59.000Z

247

Mobile worksystems for decontamination and decommissioning operations. Final report  

SciTech Connect

This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

NONE

1997-02-01T23:59:59.000Z

248

DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION  

SciTech Connect

As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU-HCET to evaluate a technology integration--shot blasting technology and an ultrasonic rangefinder, which are decontamination and sensor technology, respectively.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

249

"The Fourth Dimension of Naval Tactics": The U.S. Navy and Public Relations, 1919-1939  

E-Print Network (OSTI)

Prior to 1917, the United States Navy only utilized public relations techniques during times of war or to attract recruits into naval service. Following World I, the Navy confronted several daunting problems, including the postwar demobilization...

Wadle, Ryan David

2012-07-16T23:59:59.000Z

250

Deactivation & Decommissioning (D&D) Program Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » Deactivation & Decommissioning (D&D) Program Map Deactivation & Decommissioning (D&D) Program Map Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. The "D&D Program Map" presents an integrated overview of DOE's complex-wide D&D project locations, scope, and issues and includes information on: * The affects of the AMERICAN Recovery and Reinvestment Act of 2009

251

Deactivation & Decommissioning (D&D) Program Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » Deactivation & Decommissioning (D&D) Program Map Deactivation & Decommissioning (D&D) Program Map Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition. The "D&D Program Map" presents an integrated overview of DOE's complex-wide D&D project locations, scope, and issues and includes information on: * The affects of the AMERICAN Recovery and Reinvestment Act of 2009

252

Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities  

E-Print Network (OSTI)

1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

253

DOE - Office of Legacy Management -- Naval Ordnance Plant - MI 0-03  

Office of Legacy Management (LM)

Plant - MI 0-03 Plant - MI 0-03 FUSRAP Considered Sites Site: NAVAL ORDNANCE PLANT (MI.0-03) Eliminated from further consideration under FUSRAP - Referred to DoD for action Designated Name: Not Designated Alternate Name: None Location: Centerline , Michigan MI.0-03-1 Evaluation Year: 1987 MI.0-03-1 Site Operations: Assembled bomb components. MI.0-03-1 Site Disposition: Eliminated - No Authority - Referred to DoD MI.0-03-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DoD for action MI.0-03-1 Also see Documents Related to NAVAL ORDNANCE PLANT MI.0-03-1 - DOE Letter; J.Fiore to C.Shafer; Subject: Information on

254

DOE - Office of Legacy Management -- Naval Proving Ground - VA 0-01  

NLE Websites -- All DOE Office Websites (Extended Search)

Proving Ground - VA 0-01 Proving Ground - VA 0-01 FUSRAP Considered Sites Site: NAVAL PROVING GROUND (VA.0-01 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Dahlgren , Virginia VA.0-01-1 Evaluation Year: 1987 VA.0-01-1 Site Operations: Site operations were not specified; this site was identified on the 1954 Accountable Station Lists. VA.0-01-1 VA.0-01-2 Site Disposition: Eliminated - Referred to DOD VA.0-01-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD VA.0-01-1 Also see Documents Related to NAVAL PROVING GROUND VA.0-01-1 - DOE Letter; Fiore to Schafer; Referral of DOD or Former

255

DOE - Office of Legacy Management -- Naval Ordnance Laboratory - MD 0-03  

Office of Legacy Management (LM)

Ordnance Laboratory - MD 0-03 Ordnance Laboratory - MD 0-03 FUSRAP Considered Sites Site: NAVAL ORDNANCE LABORATORY (MD.0-03 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: Naval Ordnance Laboratory - White Oak Location: White Oak Area , Silver Spring , Maryland MD.0-03-1 MD.0-03-2 Evaluation Year: 1987 MD.0-03-2 Site Operations: Research and development - may have involved radioactive materials because the site was identified on a 1955 Accountability Station List. MD.0-03-1 Site Disposition: Eliminated - NRC licensed MD.0-03-2 Radioactive Materials Handled: None Specifically Identified Primary Radioactive Materials Handled: None specifically indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD MD.0-03-2

256

Success Story: Naval Medical Center San Diego Co-Generation Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Success Story Success Story Success Story Naval Medical Center San Diego Naval Medical Center San Diego Co-Generation Project Co-Generation Project Karen Jackson, SDG&E Karen Jackson, SDG&E Project Manager Project Manager Edward Thibodo, NAVFAC SW Edward Thibodo, NAVFAC SW Energy Team Contract Energy Team Contract ' ' s Lead s Lead NAVFAC Contractor NAVFAC Contractor ' ' s Guide: s Guide:   Partnering Philosophy Partnering Philosophy - - " " We W are partners e are partners in every contract we award. Partnering is in every contract we award. Partnering is an attitude that we both work hard to an attitude that we both work hard to develop, an it requires both of us to take develop, an it requires both of us to take some extra risk and trust one another. some extra risk and trust one another.

257

DOE - Office of Legacy Management -- Naval Office at the University of New  

NLE Websites -- All DOE Office Websites (Extended Search)

Office at the University of Office at the University of New Mexico - NM 0-03 FUSRAP Considered Sites Site: NAVAL OFFICE AT THE UNIVERSITY OF NEW MEXICO (NM.0-03) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Albuquerque , New Mexico NM.0-03-1 Evaluation Year: 1987 NM.0-03-1 Site Operations: Site was a transshipment station for equipment to the Los Alamos site. NM.0-03-1 Site Disposition: Eliminated - Referred to DOD NM.0-03-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None NM.0-03-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD NM.0-03-1 Also see Documents Related to NAVAL OFFICE AT THE UNIVERSITY OF NEW MEXICO

258

Decommissioning of TA-21-153, a /sup 227/Ac contaminated old filter building  

SciTech Connect

An exhaust air filter building contaminated with /sup 227/Ac was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1978. The building was constructed in the late 1940s to clean exhaust air from several buildings at TA-21, DP Site. It was in service until March 1970. The project involved preliminary decontamination, dismantling the building, and burying the debris at an on-site waste disposal/storage area. This report presents the details on the decommissioning procedures, health physics, waste management, environmental surveillance, and costs for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

259

Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project  

SciTech Connect

This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

S. L. Reno

2006-10-26T23:59:59.000Z

260

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. [Bechtel National, Inc., San Francisco, CA (United States); Schafer, J.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. (Bechtel National, Inc., San Francisco, CA (United States)); Schafer, J.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-05-01T23:59:59.000Z

262

Decontamination and decommissioning of building 889 at Rocky Flats Environmental Technology Site  

SciTech Connect

At the Rocky Flats site, the building 889 decommissioning project was the first large-scale decommissioning project of a radiologically contaminated facility at Rocky Flats. The scope consisted of removal of all equipment and utility systems from the interior of the building, decontamination of interior building surfaces, and the demolition of the facility to ground level. Details of the project management plan, including schedule, engineering, cost, characterization methodologies, decontamination techniques, radiological control requirements, and demolition methods, are provided in this article. 1 fig., 3 tabs.

Dorr, K.A. [Kaiser-Hill Co., Golden, CO (United States); Hickman, M.E.; Henderson, B.J. [Rocky Mountain Remediation Services, Golden, CO (United States); Sexton, R.J. [Scientific Ecology Group, Golden, CO (United States)

1997-09-01T23:59:59.000Z

263

Criticality safety aspects of decontamination and decommissioning at defense nuclear facilities  

SciTech Connect

Defense nuclear facilities have operated for forty years with a well-defined mission to produce weapons components for the nation. With the end of the cold war, the facilities` missions have changed to one of decontamination and decommissioning. Off-normal operations and use of new procedures, such as will exist during these activities, have often been among the causal factors in previous criticality accidents at process facilities. This paper explores the similarities in causal factors in previous criticality accidents to the conditions existing in current defense nuclear facilities undergoing the transition to decontamination and decommissioning. Practices to reduce the risk to workers, the public, and the environment are recommended.

Croucher, D.W.

1994-02-01T23:59:59.000Z

264

U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995  

SciTech Connect

The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

NONE

1997-03-01T23:59:59.000Z

265

Impact of Lack of Consistent Free Release Standards on Decommissioning Projects and Costs  

SciTech Connect

While the Nuclear Regulatory Commission has had specific and dose-based standards for the release of liquids and gases for a long time, there are no regulatory mechanisms in place for the release of solid bulk materials from a nuclear power plant. Even though free releases of small quantities of solid materials continue under existing guidelines from the operating plants, the regulatory void creates major difficulties for the bulk materials that result from the decommissioning of a nuclear site. Decommissioning of a commercial nuclear power plant generates large quantities of solid bulk materials such as concrete, metal, and demolition debris. Disposition of such materials has a large impact on the overall decommissioning cost. Yet, there are no clear and cost-effective alternatives for the disposal of these materials from a regulatory perspective. This paper discusses the methodologies for clearance of solid materials1, their applicability to the disposition of bulk materials, and the impact of lack of consistent free release standards on the decommissioning projects and costs.

Devgun, J. S.

2002-02-26T23:59:59.000Z

266

Conceptual Decontamination and Decommissioning Plan for the Waste Isolation Pilot Plant  

SciTech Connect

The Conceptual Decontamination and Decommissioning Plan (D&D) was developed as a concept for progressing from the final actions of the Disposal Phase, through the Decontamination and Decommissioning Phase, and into the initiation of the Long-Term Monitoring Phase. This plan was written in a manner that coincides with many of the requirements specified in DOE Order 5820.2A. Radioactive Waste Management; ASTM El 167 87, Standard Guide for Radiation Protection Program for Decommissioning Operations; and other documents listed in Attachment 3 of the D&D Plan. However, this conceptual plan does not meet all of the requirements necessary for a Decontamination and Decommissioning plan necessary for submission to the U.S. Congress in accordance with the Land Withdrawal Act (P.L. 102-579). A complete D&D plan that will meet the requirements of all of these documents and of the Land Withdrawal Act will be prepared and submitted to Congress by October 1997.

Westinghouse Electric Corporation Waste Isolation Division, now Washington TRU Solutions LLC

1995-01-30T23:59:59.000Z

267

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE  

E-Print Network (OSTI)

ECONOMIC MODELING OF RE-LICENSING AND DECOMMISSIONING OPTIONS FOR THE KLAMATH BASIN HYDROELECTRIC, and steelhead trout on the West Coast of the United States. PacifiCorp's 169-megawatt Klamath Hydroelectric Hydroelectric Project is the only thorough, objective and transparent assessment tool that analyzes the cost

268

EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

269

An evaluation of the dismantling technologies for decommissioning of nuclear power plants  

Science Journals Connector (OSTI)

Abstract This paper is to suggest an evaluation method on the dismantling technologies for decommissioning of nuclear power plants. The parameters of evaluation are performance impacts, site-specific impacts, safety impacts, and cost impacts. The evaluation model was provided and applied for dismantling of a steam generator.

KwanSeong Jeong; ByungSeon Choi; Jeikwon Moon; Dongjun Hyun; JongHwan Lee; IkJune Kim; GeunHo Kim; JaeSeok Seo

2014-01-01T23:59:59.000Z

270

Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site  

SciTech Connect

As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

1983-09-01T23:59:59.000Z

271

The TMI defueling project fuel debris removal system  

SciTech Connect

The Three Mile Island (TMI) unit 2 pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems. A plethora of techniques, systems, and tools have been employed for the recovery and packaging of the postaccident configuration of the reactor core. Of particular difficulty was the removal of the fuel debris located beneath the lower core support structure. Fuel debris located beneath the lower core support structure was the result of rapid cooling of the previously molten UO{sub 2} and ZrO{sub 2}, causing formation of a ceramic like rubble. Approximately 19,100 kg of this rubble settled beneath the lower core support structure and onto the lower head of the reactor containment vessel. The development and implementation of a debris collection system based on the air lift principle proved to be an effective method for gathering the fuel debris from beneath the lower core support structure.

Burge, B. (EG and G Idaho, Inc., Idaho Falls (United States))

1992-01-01T23:59:59.000Z

272

EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)  

Energy.gov (U.S. Department of Energy (DOE))

This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

273

Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316  

SciTech Connect

The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been used to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The Northern Dimension Environmental Partnership (NDEP) approved an internationally funded project to identify and prioritise nuclear and environmental hazards in NW Russia. Within this project the Lepse was recognised as being one of the highest nuclear hazards in NW Russia. Removal of SNF, SRW and LRW from Lepse requires innovative design and development of bespoke equipment. The main drivers of the NDEP Donors are first to safely transport Lepse in 2012 from her current berth close to the local population in Murmansk to the nominated dismantling shipyard, and secondly to raise Lepse from the water in 2013 onto the slip-way at the dismantling shipyard. A description is provided of the approach and progress towards preparing the Lepse for the removal of SFAs and other radioactive waste, to decontaminate and then dismantle the vessel under international donor funding. (authors)

Field, D.; Mizen, K. [Nuvia Limited (United Kingdom)] [Nuvia Limited (United Kingdom)

2013-07-01T23:59:59.000Z

274

Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant  

SciTech Connect

ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

Sullivan T.

2014-06-09T23:59:59.000Z

275

Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993  

SciTech Connect

During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

Not Available

1993-12-31T23:59:59.000Z

276

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

RMOTC RMOTC The Rocky Mountain Oilfield Testing Center (RMOTC), is an operating oil field focusing on environmentally-balanced energy technologies and alternatives, and is the premiere energy testing and demonstration field in the nation. 3 3 * the opportunity to explore environmentally- balanced solutions to the nation's energy issues * opportunities to develop, demonstrate, and evaluate a variety of energy related technologies * a chance to collaborate with top professionals in the energy, environmental technology, and engineering fields * shared industry knowledge through technology transfer via reports, journal articles, and presentations Located within the Naval Petroleum Reserve No. 3 (NPR-3) near Casper, Wyoming, RMOTC offers: RMOTC Offers Solutions 4 4 The Administration and Engineering

277

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program  

SciTech Connect

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

278

Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141  

SciTech Connect

The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Michal, V. [IAEA, Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna (Austria); Vargovcik, L. [ZTS VVU Kosice, Inc., Juzna Trieda 95, 041 24 Kosice (Slovakia)

2012-07-01T23:59:59.000Z

279

Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory … East Argonne, Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1483 DOE/EA-1483 Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois March 2004 U.S. Department of Energy Chicago Operations Office Argonne Area Office Argonne, Illinois Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois Table of Contents Acronyms....................................................................................................................................... iii 1.0 Background ..........................................................................................................................1 1.1 Facility History ........................................................................................................1

280

Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project  

SciTech Connect

ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

Sullivan T.

2014-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

naval reactors  

National Nuclear Security Administration (NNSA)

After operating for 34 years and training over 14,000 sailors, the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut, was returned to "green field"...

282

Reconnaissance of geothermal resources near US naval facilities in the San Diego area, California  

SciTech Connect

A reconnaissance study has found little evidence of potential geothermal resources useful at naval facilities in the greater San Diego metropolitan area. However, there is a zone of modest elevated water well temperatures and slightly elevated thermal gradients that may include the eastern portion of the Imperial Beach Naval Air Station south of San Diego Bay. An increase of 0.3/sup 0/ to 0.4/sup 0/F/100 ft over the regional thermal gradient of 1.56/sup 0/F/100 ft was conservatively calculated for this zone. The thermal gradient can be used to predict 150/sup 0/F temperatures at a depth of approximately 4000 ft. This zone of greatest potential for a viable geothermal resource lies within a negative gravity anomaly thought to be caused by a tensionally developed graben, approximately centered over the San Diego Bay. Water well production in this zone is good to high, with 300 gpm often quoted as common for wells in this area. The concentration of total dissolved solids (TDS) in the deeper wells in this zone is relatively high due to intrusion of sea water. Productive geothermal wells may have to be drilled to depths economically infeasible for development of the resource in the area of discussion.

Youngs, L.G.

1984-01-01T23:59:59.000Z

283

Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial Statement Audit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial Statement Audit OAS-FS-13-02 October 2012 September 7, 2012 Mr. Gregory Friedman Inspector General U.S. Department of Energy 1000 Independence Avenue, S.W. Room 5D-039 Washington, DC 20585 Dear Mr. Friedman: We have audited the financial statements of the Department of Energy's (the Department) Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) as of and for the year ended September 30, 2011, and have issued our report thereon dated September 7, 2012. In planning and performing our audit of the consolidated financial statements, in accordance with auditing standards generally accepted in the United States of America, we considered the Department's internal control

284

Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

A. M Smith; G. E. Matthern; R. H. Meservey

1998-11-01T23:59:59.000Z

285

Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana  

SciTech Connect

The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).

NONE

1995-12-01T23:59:59.000Z

286

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

SciTech Connect

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

287

Decommissioning and Demolition of a Redundant UK Research Facility at AWE Aldermaston - 12453  

SciTech Connect

The redundant two-storey brick built research facility on the AWE Site at Aldermaston, UK is in the closing stages of decommissioning and demolition. The facility was used for a variety of purposes up to 1995 predominately involving the use of alpha-emitting isotopes. The two main areas of alpha-based contamination have been decommissioned with the removal of hot -boxes and fume cupboards on the ground floor and HEPA filter units and ventilation equipment on the first floor. Many of these activities were undertaken using both airline fed suits, (supplied via a free standing mobile unit), and full face respirators. Asbestos materials were located and cleared from the first floor by specialist contractor. All sections of active drain running from the building to the site active effluent disposal system were removed early in the program using established techniques with specialist monitoring equipment used to provide confidence in the data required for disposal of the decommissioning debris. In particular a dedicated High Resolution Gamma Spectrometer (radioactive materials scanning unit) was utilized to categorise waste drums and wrapped packages. The building has been decommissioned and the monitoring and sampling of the structure was completed in November 2011 - the results demonstrating that the building was clear of contamination in accordance with UK clearance and exemption requirements. The demolition plan was developed and implemented in December with site excavation of foundations and site clearance currently ongoing in preparation for final site backfill activities and project close. A number of useful lessons have been learnt during the operations and are set out at the rear of the main text. (authors)

Pritchard, Paul [Atomic Weapons Establishment, Aldermaston (United Kingdom)

2012-07-01T23:59:59.000Z

288

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12  

SciTech Connect

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

289

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program  

SciTech Connect

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

290

Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program  

SciTech Connect

The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

291

ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND  

SciTech Connect

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

Farfan, E.

2009-09-30T23:59:59.000Z

292

Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond  

SciTech Connect

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

2009-11-09T23:59:59.000Z

293

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

294

Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant  

SciTech Connect

The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

NONE

1997-12-01T23:59:59.000Z

295

EIS-0158-S2: Supplemental Environmental Impact Statement Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement, the supplement to DOE/EIS-0158, to analyze the environmental and socioeconomic impacts of the sale of Naval Petroleum Reserve No. 1 in Kern County, California to Occidental Petroleum Corporation.

296

Multi-star multi-phase winding for a high power naval propulsion machine with low ripple torques  

E-Print Network (OSTI)

Permanent Magnet (SMPM) Machine designed for naval propulsion is proposed. The design objective of this high if the magnetic couplings between the stars is weak. The 4-star 3-phase winding proposed in this paper is designed star being magnetically shifted by an angle of 15 degrees. This 4-star 3-phase configuration allows

Boyer, Edmond

297

COMPUTER SIMULATION OF THE UMER ELECTRON GUN* I. Haber, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375  

E-Print Network (OSTI)

COMPUTER SIMULATION OF THE UMER ELECTRON GUN* I. Haber, Plasma Physics Division, Naval Research conducted with the aim of understanding the space-charge-dominated physics in the gun and injector transport is on simulating the beam propagation in the gun region between the cathode grid and the anode grid for comparison

Valfells, Ágúst

298

The Immortal Fausto: The Life, Works, and Ships of the Venetian Humanist and Naval Architect Vettor Fausto (1490-1546)  

E-Print Network (OSTI)

At the beginning of the sixteenth century, the maritime power of the Republic of Venice was seriously threatened by the Ottoman Sultan Suleiman I in the East, and by the Holy Roman Emperor Charles V in the West. In order to regain its naval power...

Campana, Lilia

2014-06-11T23:59:59.000Z

299

FEMP ESPC Success Story - U.S. Naval Station, Guantanamo Bay, Cuba  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a m a m ESPC Success Stories Environmental Stewardship and Cost Savings These photographs chronicle the installation of the wind turbines at John Paul Jones Hill, Guantanamo Bay. The four wind turbine towers are about 185 feet high. The blade lengths are 90 feet. The top of the blades are about 275 feet off the g round. The blades rotate at a maximum of 22 RPM, or a rotation every three seconds. This translates to a blade tip speed of 140 mph. During construction there were as many as 20 workers on the project. However, operating the wind turbines will only take one part-time staff-person who will check on them daily. Photos courtesy of: Jeffrey M. Johnston, Public Works Officer, Guantanamo Bay; Paul DelSignore, NFESC; Daniel Ingold, NORESCO. U.S. NAVAL STATION

300

DOE - Office of Legacy Management -- Naval Supply Depot AEC Warehouse - NY  

Office of Legacy Management (LM)

Supply Depot AEC Warehouse - Supply Depot AEC Warehouse - NY 36 FUSRAP Considered Sites Site: NAVAL SUPPLY DEPOT, AEC WAREHOUSE (NY.36) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Building 546 , Scotia , New York NY.36-1 Evaluation Year: 1987 NY.36-1 Site Operations: This facility served as a storage and transshipment point for feed materials between the Hanford and commercial metal fabricators in the northeastern states. NY.36-1 NY.36-2 NY.36-3 Site Disposition: Eliminated - Referred to DOD NY.36-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium Metals NY.36-1 NY.36-2 NY.36-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD NY.36-1

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

& Renewable Energy Scoping Meeting & Renewable Energy Scoping Meeting March 26, 2004 2 2 RMOTC The Rocky Mountain Oilfield Testing Center (RMOTC), is an operating oil field focusing on environmentally-balanced energy technologies and alternatives, and is the premiere energy testing and demonstration field in the nation. 3 3 * the opportunity to explore environmentally- balanced solutions to the nation's energy issues * opportunities to develop, demonstrate, and evaluate a variety of energy related technologies * a chance to collaborate with top professionals in the energy, environmental technology, and engineering fields * shared industry knowledge through technology transfer via reports, journal articles, and presentations Located within the Naval Petroleum Reserve No. 3 (NPR-3) near Casper, Wyoming, RMOTC offers:

302

Department of Energy, Office of Naval Petroleum & Oil Shale Reserves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Records Disposition Authority Leave Blank (NARA Use Only) (See Instructions on reverse) Job Number I / {£. 0- _~ To. National Archives and Records Administration (NIR) NI-'-r 3 7- 6 6 J Washington, DC 20408 Date Received 1 From (Agencyor establishment) Department of Energy Notification to Agency 2 MajorSubdivrsion In accordance with the provisions of 44 Assistant Secretary for Fossil Energy USC 3303a. the disposition request. In- cluding amendments. ISapproved except for 3 Minorsubcrvrsron Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5 Telephone (Includearea code) [ Pamela Gentel 301-903-1856 6 Agency Certification

303

Major General Harold Holesinger The Adjutant General Illinois Kilitary and Naval Dept.  

Office of Legacy Management (LM)

General Harold Holesinger General Harold Holesinger The Adjutant General Illinois Kilitary and Naval Dept. 1301 North MacArthur Boulevard Springfield, Illinois 62702-2399 Dear General Holesinger: I am enclosing a copy of the radiological survey report for the National Guard Armory, Chicago, Illinois. Although the data ncted in the report indicate levels of radioactivity in excess of current guidelines, the radioactive residues presently there do not pose a health hazard provided they were not disturbed in the past and will not be disturbed in the future; i.e., no excavation, building, or construction that would disturb the areas in which contamination was found. Based on these data and on an authority record review, the National Guard Armory property is being authorized for remedial action and will be

304

Environmental Survey preliminary report, Naval Petroleum Reserves in California (NPRC), Tupman, California  

SciTech Connect

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Naval Petroleum Reserves 1 (NPR-1) and 2 (NPR-2) in California (NPRC), conducted May 9--20, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPRC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involved the review of existing site environmental data, observations of the operations carried on at NPRC, and interviews with site personnel. 120 refs., 28 figs., 40 tabs.

Not Available

1989-02-01T23:59:59.000Z

305

Vertical Drop of the Naval SNF Long Waste Package On Unyielding Surface  

SciTech Connect

The purpose of this calculation is to determine the structural response of a Naval SNF (Spent Nuclear Fuel) Long Waste Package (WP) subjected to 2 m-vertical drop on unyielding surface (US). The scope of this document is limited to reporting the calculation results in terms of maximum stress intensities. This calculation is associated with the waste package design; calculation is performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element calculation is performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The result of this calculation is provided in terms of maximum stress intensities.

S. Mastilovic

2006-07-21T23:59:59.000Z

306

Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982. Analysis and supporting data  

SciTech Connect

Legislation authorizing production from two of the Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents analyses and supporting data concerning the trade-offs of extending production or returning to a shut-in status in order to provide the Department of Energy with information needed to formulate a recommendation. The primary objective of the study is to evaluate a range of possible futures (through 1990) to determine technical, economic, energy, strategic and political trade-offs between the two options. A secondary objective is to develop a data base for use by DOE to respond to questions and issues raised by interested parties during executive branch and Congressional reviews.

Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

1981-06-01T23:59:59.000Z

307

Rocky Mountain Oilfield Testing Center RMOTC at the Naval Petroleum Reserve No. 3  

NLE Websites -- All DOE Office Websites (Extended Search)

OILFIELD TESTING OILFIELD TESTING OILFIELD TESTING CENTER CENTER 2 2 HISTORY OF TEAPOT DOME Mark Milliken 3 3 TEAPOT DOME LOCATION 4 4 Salt Creek 670 MMBBLS 722 BCF Teapot Dome 27 MMBBLS 57 BCF N P R - 3 Cumulative Production 5 5 The Great White Fleet December 1907 - February 1909 6 6 THE END OF COAL-FIRED SHIPS * 2-week cruising time. * Labor and time intensive cleaning and reloading. * At the mercy of foreign countries for coal supply. * 1912: All battleships will be oil-powered. Great White Fleet 7 7 NAVAL PETROLEUM RESERVES ARE BORN * 1908: Dr. Otis Smith, USGS Director, recommends DOI retain oil lands for fuel reserve for Navy. * 1909: Taft withdraws 3,000,000 acres in Wyoming and California. * 1910: Concern over the President's authority to withdraw lands, so Congress passed the Pickett Act. * 1910: Taft issues a 2nd land withdrawal executive

308

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management  

SciTech Connect

This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

Not Available

1994-06-01T23:59:59.000Z

309

Allowable residual-contamination levels for decommissioning facilities in the 100 areas of the Hanford Site  

SciTech Connect

This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for five generic categories of facilities in the 100 Areas of the Hanford Site. The purpose of this study is to provide ARCL data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use provided by this report is intended to permit a full consideration of decommissioning alternatives. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm/sup 2/), and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are presented in an appendix for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste.

Kennedy, W.E. Jr.; Napier, B.A.

1983-07-01T23:59:59.000Z

310

Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994  

SciTech Connect

The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

NONE

1996-02-21T23:59:59.000Z

311

Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory … East Argonne, Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact Proposed Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois AGENCY: U. S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has prepared an Environmental Assessment (EA), DOE/EA-1483, evaluating the decontamination and decommissioning of the Juggernaut Reactor at Argonne National Laboratory-East (ANL-E), in Argonne, Illinois. The decontamination and decommissioning of the reactor is needed to ensure the protection of the health and safety of the public, DOE and contractor employees, and the environment, consistent with DOE Order 5400.5, Radiation Protection of the Public and the Environment. Based on the analysis in the EA, DOE has determined that the proposed action does not

312

Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities  

SciTech Connect

The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

Erickson, T.A.

1998-11-01T23:59:59.000Z

313

FROM CONCEPT TO REALITY, IN-SITU DECOMMISSIONING OF THE P AND R REACTORS AT THE SAVANNAH RIVER SITE  

SciTech Connect

SRS recently completed an approximately three year effort to decommission two SRS reactors: P-Reactor (Building 105-P) and R-Reactor (Building 105-R). Completed in December 2011, the concurrent decommissionings marked the completion of two relatively complex and difficult facility disposition projects at the SRS. Buildings 105-P and 105-R began operating as production reactors in the early 1950s with the mission of producing weapons material (e.g., tritium and plutonium-239). The 'P' Reactor and was shutdown in 1991 while the 'R' Reactor and was shutdown in 1964. In the intervening period between shutdown and deactivation & decommissioning (D&D), Buildings 105-P and 105-R saw limited use (e.g., storage of excess heavy water and depleted uranium oxide). For Building 105-P, deactivation was initiated in April 2007 and was essentially complete by June 2010. For Building 105-R, deactivation was initiated in August 2008 and was essentially complete by September 2010. For both buildings, the primary objective of deactivation was to remove/mitigate hazards associated with the remaining hazardous materials, and thus prepare the buildings for in-situ decommissioning. Deactivation removed the following hazardous materials to the extent practical: combustibles/flammables, residual heavy water, acids, friable asbestos (as needed to protect workers performing deactivation and decommissioning), miscellaneous chemicals, lead/brass components, Freon(reg sign), oils, mercury/PCB containing components, mold and some radiologically-contaminated equipment. In addition to the removal of hazardous materials, deactivation included the removal of hazardous energy, exterior metallic components (representing an immediate fall hazard), and historical artifacts along with the evaporation of water from the two Disassembly Basins. Finally, so as to facilitate occupancy during the subsequent in-situ decommissioning, deactivation implemented repairs to the buildings and provided temporary power.

Musall, J.; Blankenship, J.; Griffin, W.

2012-01-09T23:59:59.000Z

314

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

315

Superfund record of decision (EOA Region 1): Newport Naval Education/Training Center, Newport, RI, September 1993  

SciTech Connect

The U.S. Naval Education and Training Center (NETC) Newport is a National Priorities List (NPL) site. There are currently four areas of contamination (AOC) and six study areas (SAs) within NETC Newport that are under investigation. This Record of Decision (ROD) relates to the presence of the existing landfill area at McAllister Point as a source of contamination. McAllister Point Landfill was the site of a sanitary landfill which operated over a 20-year period. From 1955 until the mid-1970's, the site accepted all wastes generated at the Naval complex. The landfill received waste from all operational areas (machine shops, ship repair, etc.), Navy housing areas (domestic refuse), and from the 55 ships homeported at Newport prior to 1973 (approximately fourteen 40-cubic yard containers each day). The materials disposed of at the site reportedly included spent acids, paints, solvents, waste oils (diesel, lube and fuel), and polychlorinated biphenyl (PCB)-contaminated transformer oil.

Not Available

1993-09-01T23:59:59.000Z

316

Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves  

SciTech Connect

The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

Not Available

1994-08-01T23:59:59.000Z

317

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

SciTech Connect

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

318

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

319

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

320

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

SciTech Connect

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Final sitewide environmental assessment for continued development of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming  

SciTech Connect

The Secretary of Energy is required by law to explore, prospect, conserve, develop, use, and operate the Naval Petroleum and Oil Shale Reserves. The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258), requires that the Naval Petroleum Reserves be produced at their maximum efficient rate (MER), consistent with sound engineering practices, for a period of six years. To fulfill this mission, DOE is proposing continued development activities which would include the drilling of approximately 250 oil production and injection (gas, water, and steam) wells, the construction of between 25 and 30 miles of associated gas, water, and steam pipelines, the installation of several production and support facilities, and the construction of between 15 and 20 miles of access roads. These drilling and construction estimates include any necessary activities related to the operation of the Rocky Mountain Oilfield Testing Center (RMOTC). The purpose of RMOTC will be to provide facilities and necessary support to government and private industry for testing and evaluating new oilfield and environmental technologies, and to transfer these results to the petroleum industry through seminars and publications. Continued development activities either have no potential to result in adverse environmental impacts or would only result in adverse impacts that could be readily mitigated. The small amounts of disturbed surface area will be reclaimed to its original natural state when production operations terminate. The preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI). 73 refs.

NONE

1995-07-01T23:59:59.000Z

322

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report  

SciTech Connect

The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

1996-07-01T23:59:59.000Z

323

Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3  

SciTech Connect

The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities.

Not Available

1982-01-01T23:59:59.000Z

324

Recent Sodium Technology Development for the Decommissioning of the Rapsodie and Superphenix Reactors and the Management of Sodium Wastes  

SciTech Connect

The Commissariat a l'Energie Atomique (CEA) has recently developed and/or conducted experiments on several processes in support of the decommissioning of two French liquid-metal fast reactors (LMFRs), Rapsodie and Superphenix, as well as on the treatment of CEA sodium wastes. CEA has demonstrated that it is possible to define appropriate and efficient processes to meet the different situations encountered in decommissioning LMFRs. Mechanical techniques derived from standard technologies have been successfully applied to fast reactor decommissioning to complete primary vessel draining from sodium. In addition, specific chemical processes have been developed to deal safely with metallic sodium reactivity. Sodium-contaminated equipment has been successfully cleaned by reacting sodium with water mist in an atmosphere with carbon dioxide to form inert sodium carbonate. Bulk sodium has been successfully converted into aqueous caustic soda by injection of liquid-metallic sodium into sodium hydroxide solution. Several processes were also defined to deal with specific sodium wastes. In all cases the principle is based on a sodium/water chemical reaction where the released hydrogen and heat are controlled. With the development of a wide variety of processes, all steps in the decommissioning of LMFRs are assumed to be now properly mastered.

Rodriguez, G.; Gastaldi, O.; Baque, F. [Commissariat a l'Energie Atomique Cadarache (France)

2005-04-15T23:59:59.000Z

325

Decision to reorganise or reorganising decisions? A First-Hand Account of the Decommissioning of the Phnix Nuclear Power Plant  

E-Print Network (OSTI)

of the Decommissioning of the Phénix Nuclear Power Plant Melchior Pelleterat de Borde, MINES ParisTech, Christophe Martin looks at the effect of ongoing organisational changes taking place in a nuclear power plant being campaigns, the Phénix nuclear power plant was taken out of service at the end of 2009. The plant has two

Paris-Sud XI, Université de

326

Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning  

SciTech Connect

DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

JACKSON, M.W.

2002-05-01T23:59:59.000Z

327

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

328

Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95  

SciTech Connect

In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.

NONE

1996-04-01T23:59:59.000Z

329

Human health risk assessment for off-shore media at Portsmouth Naval Shipyard  

SciTech Connect

A human health risk assessment for off-shore media was performed at the Portsmouth Naval Shipyard, Kittery, Maine. The purpose was to determine whether any potential human health risks could be posed by exposures to the estuary. Included in the study were the evaluations of potential risks existing from human exposures to surface water and sediment, as well as potential risks posed by ingestion of various species of fish and shellfish which are caught commercially and recreationally in the estuary. Three species were chosen for study. They were lobsters, mussels, and flounder. The USEPA prescribed protocols for performing human health risk assessments under CERCLA and RCRA were followed to estimate risks associated with ingestion of these species caught in the lower estuary, in the vicinity of the Shipyard. USEPA required the evaluation of two potential seafood ingestion scenarios recreational fishermen and subsistence fishermen. The results indicated that the USEPA risk target of 10{sup {minus}6} for carcinogens or the hazard index of one was exceeded in at least one species for the subsistence ingestion scenario for some inorganics and organic compounds. Based on these results, it was necessary to propose Media Protection Standards in the biota, which would represent the USEPA target risk level for carcinogens and noncarcinogens, as potential cleanup targets. In performing this task, a review of regional background levels for these chemicals found in biota throughout the Great Bay Estuarine System, at locations removed from the Shipyard, was performed. Also examined were regional Maine data from the NOAA Mussel Watch Program. Biota concentrations near the Shipyard were found to be within the range of biota concentrations for most of these chemicals throughout the region, suggesting possible multiple, non-point sources for the contaminants found in seafood throughout the region.

Mahoney, E. [Eileen Mahoney Associates, Inc., Philadelphia, PA (United States)

1995-12-31T23:59:59.000Z

330

Use of microbes for paraffin cleanup at Naval Petroleum Reserve No. 3  

SciTech Connect

Naval Petroleum Reserve No. 3 (NPR-3), also known as Teapot Dome, is a government-owned oil field in Natrona County, Wyoming. It is an asymmetrical anticline located on the western edge of the Powder River Basin, just south of the Salt Creek Anticline. Production started in 1922, and today the field is a marginally economic stripper field with average production of less than 3 BOPD (0.5 m{sup 3}/D) per well. Total field production is about 1,800 BOPD (286 m{sup 3}/D). The Second Wall Creek Formation was waterflooded from 1979 until June 1992 with poor results due to the extensive natural fracture system in this sandstone unit. Since water injection ceased, reservoir pressure has declined to very low levels. Liquids extraction and reinjection of the gas produced from high-GOR wells along the gas-oil contact continues, but the average gas cap pressure has fallen to approximately 150 psi (1.03 MPa) from an original pressure of 1,120 psi (7.72 MPa). Since the oil is highly paraffinic, wax deposition in the hydraulic fractures and the perforations has become a serious production problem. Microbial treatment was considered as a possible low-cost solution. Four wells were selected in the Second Wall Creek Reservoir with severe paraffin problems and production rates high enough to economically justify the treatment. Problems were experienced with the production of thick oil after approximately three months. This was interpreted to be a result of previously immobile paraffin being cleaned up. A slight decrease in the decline rate was seen in the wells, although some external factors cloud the interpretation. Microbial treatments were discontinued because of marginal economics. Three of the four wells produced additional oil and had a positive incremental cash flow. Oil viscosity tests did indicate that some positive microbial thinning was occurring, and changes to the treatment procedure may potentially yield more economic results in the future.

Giangiacomo, L.; Khatib, A.

1995-12-31T23:59:59.000Z

331

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites December 2008 U.S. Department of Energy Office of Civilian Radioactive Waste Management Washington, D.C. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel The picture on the cover is the Connecticut Yankee Independent Spent Fuel Storage Installation site in Haddam, Connecticut, with 43 dry storage NRC-licensed dual-purpose (storage and transport) casks. ii Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel EXECUTIVE SUMMARY The House Appropriations Committee Print that accompanied the Consolidated Appropriations Act, 2008, requests that the U.S. Department of Energy (the Department):

332

DOE-STD-1166-2003; Deactivation and Decommissioning Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-STD-1166-2003 September 2003 DOE STANDARD DEACTIVATION AND DECOMMISSIONING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1166-2003 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

333

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network (OSTI)

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

A. Petraglia; C. Sabbarese; M. De Cesare; N. De Cesare; F. Quinto; F. Terrasi; A. D'Onofrio; P. Steier; L. K. Fifield; A. M. Esposito

2012-07-17T23:59:59.000Z

334

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network (OSTI)

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

Petraglia, A; De Cesare, M; De Cesare, N; Quinto, F; Terrasi, F; D'Onofrio, A; Steier, P; Fifield, L K; Esposito, A M; 10.1051/radiopro/2012010

2012-01-01T23:59:59.000Z

335

Final report of the decontamination and decommissioning of the BORAX-V facility turbine building  

SciTech Connect

The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

Arave, A.E.; Rodman, G.R.

1992-12-01T23:59:59.000Z

336

Final report of the decontamination and decommissioning of the BORAX-V facility turbine building  

SciTech Connect

The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

Arave, A.E.; Rodman, G.R.

1992-12-01T23:59:59.000Z

337

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

338

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Recovery and Reinvestment American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Sa- vannah River Site this month after they safely re- moved its rusty, orange, 75-foot-tall dome. With the help of a 660-ton crane and lifting lugs, the work- ers pulled the 174,000-pound dome off the Heavy Water Components Test Reactor, capping more than 16 months of preparations. Workers will cut the dome into smaller pieces for disposal. Removal of the dome allows workers to access the 219,000-pound reactor vessel and two steam generators so they can remove and permanently dispose them onsite. Re- maining equipment will be moved to the cavity vacated by the vessel, and below-grade portions of the reactor will be

339

Source term characterization program for the decommissioning waste from a CANDU reactor  

Science Journals Connector (OSTI)

An automatic source term characterization program was developed, and its structure, logic, and function are explained here in detail. Called the CANDU Activated Source Term Evaluator (CASE), the developed program is equipped with a convenient graphical user interface; it uses MCNP for the neutron transport calculation and ORIGEN2 for activation analysis. CASE can prepare the MCNP input and run MCNP to obtain the neutron flux and the cross section. It can also prepare the ORIGEN2 input for the activation analysis of the region of interest, process the ORIGEN2 output, and compare the estimated specific activity of activated waste with the waste classification standard. CASE is expected to be very useful for reducing the engineering time, minimizing human error, and enhancing the reliability of source term evaluations of decommissioning waste from CANDU reactors.

Dong-Keun Cho; Jeong-Hun Cha; Dong-Hak Kook; Jong-Youl Lee; Heui-Joo Choi; Jongwon Choi; Won-il Ko; Jeong-Ho Park

2012-01-01T23:59:59.000Z

340

Issues in UK cleanup and decommissioning; a strategic R and D programme  

SciTech Connect

Nexia Solutions is contracted to manage and carry out research on behalf of the Nuclear Decommissioning Authority (NDA). This paper will describe the nuclear research ongoing and how it fits in with the UK cleanup and decommissioning strategy. The aim of the strategic R and D programme is to assist the NDA in maintaining a technical portfolio which will:- - identify and address challenges and clean-up problems that do not have an existing solution; - resolve potential inconsistencies between sites in the technical bases for certain strategic decisions and their implementation; - maintain options while developing strategy (emerging risks); - save costs by developing multi-site solutions; - provide technology, skills and facilities on the timescale required. The strategy for the R and D programme has been developed from a top-level approach by understanding the challenges which need to be addressed and prioritising these according to the objectives of the programme. The programme has demonstrated that a technical portfolio comprising six areas, each containing a number of key themes, is appropriate to address the technical challenges which the NDA faces and aligns with the NDA's technical issues register. An important aspect of the R and D programme is that it should create opportunities for undertaking the NDA mission more effectively. This arises from the emphasis given in those technical programmes which define the challenge more precisely and thus provide a platform from which to produce innovative solutions. The paper will present an overview of the strategic R and D programme along with the key technical programme areas. Examples will be provided of the technical work ongoing, and the results obtained so far. (author)

Tinsley, T.P.; Ashley, V.B.; Morgan, H.G.; Fairhall, G.A. [Nexia Solutions, British Technology Centre, Sellafield, Seascale, Cumbria (United Kingdom)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Station Newport Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Naval Station Newport

342

Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074  

SciTech Connect

Whiteshell Laboratories (WL) is a nuclear research site in Canada that was commissioned in 1964 by Atomic Energy of Canada Limited. It covers a total area of approximately 4,375 hectares (10,800 acres) and includes the main campus site, the Waste Management Area (WMA) and outer areas of land identified as not used for or impacted by nuclear development or operations. The WL site employed up to 1100 staff. Site activities included the successful operation of a 60 MW organic liquid-cooled research reactor from 1965 to 1985, and various research programs including reactor safety research, small reactor development, fuel development, biophysics and radiation applications, as well as work under the Canadian Nuclear Fuel Waste Management Program. In 1997, AECL made a business decision to discontinue research programs and operations at WL, and obtained government concurrence in 1998. The Nuclear Legacy Liabilities Program (NLLP) was established in 2006 by the Canadian Government to remediate nuclear legacy liabilities in a safe and cost effective manner, including the WL site. The NLLP is being implemented by AECL under the governance of a Natural Resources Canada (NRCan)/AECL Joint Oversight Committee (JOC). Significant progress has since been made, and the WL site currently holds the only Canadian Nuclear Safety Commission (CNSC) nuclear research site decommissioning license in Canada. The current decommissioning license is in place until the end of 2018. The present schedule planned for main campus decommissioning is 30 years (to 2037), followed by institutional control of the WMA until a National plan is implemented for the long-term management of nuclear waste. There is an impetus to advance work and complete decommissioning sooner. To accomplish this, AECL has added significant resources, reorganized and moved to a projectized environment. This presentation outlines changes made to the organization, the tools implemented to foster projectization, and the benefits and positive impacts on schedule and delivery. A revised organizational structure was implemented in two phases, starting 2011 April 1, to align WL staff with the common goal of decommissioning the site through the direction of the WL Decommissioning Project General Manager. On 2011 September 1, the second phase of the reorganization was implemented and WL Decommissioning staff was organized under five Divisions: Programs and Regulatory Compliance, General Site Services, Decommissioning Strategic Planning, Nuclear Facilities and Project Delivery. A new Mission, Vision and Objectives were developed for the project, and several productivity enhancements are being implemented. These include the use of an integrated and fully re-sourced Site Wide Schedule that is updated and reviewed at Plan-of-the-Week meetings, improved work distribution throughout the year, eliminating scheduling 'push' mentality, project scoreboards, work planning implementation, lean practices and various process improvement initiatives. A revised Strategic Plan is under development that reflects the improved project delivery capabilities. As a result of these initiatives, and a culture change towards a projectized approach, the decommissioning schedule will be advanced by approximately 10 years. (authors)

Wilcox, Brian; Mellor, Russ; Michaluk, Craig [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba (Canada)

2013-07-01T23:59:59.000Z

343

Estimating boiling water reactor decommissioning costs. A user`s manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment  

SciTech Connect

With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

Bierschbach, M.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-01T23:59:59.000Z

344

Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

Hillesheim, M.; Mosey, G.

2014-11-01T23:59:59.000Z

345

Naval Petroleum Reserve No. 3 (NPR-3), Teapot Dome Field, Wyoming: Case history of the in situ combustion pilot operation  

SciTech Connect

Naval Petroleum Reserve No. 3 (NPR-3) is a federally owned oil field that has been in operation since 1922 and has produced more than 15 million barrels of oil since full production began in 1976. The Shannon sandstone is the shallowest and most productive of nine producing formations at NPR-3. Since only 5% of the Shannon`s estimated 144 million bbl of original oil in place (OOIP) was estimated to be recoverable by primary means, studies were undertaken in 1978 to determine the most suitable enhanced oil recovery (EOR) method which would merit a pilot test and could ultimately lead to a fieldwide application.

Sarathi, P.S.; Olsen, D.K.; Williams, C.R.

1995-02-01T23:59:59.000Z

346

Naval Research Laboratory`s programs in advanced indium phosphide solar cell development  

SciTech Connect

The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AMO, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials.

Summers, G.P.

1995-10-01T23:59:59.000Z

347

EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Naval Petroleum and Oil Shale Reserves developed this supplemental statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Navel Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California. This SEIS is a supplement to DOE/EIS-0020, Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California.

348

Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites  

SciTech Connect

This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases.

Meyer, Philip D.; Gee, Glendon W.; Nicholson, Thomas J.

2000-02-28T23:59:59.000Z

349

Finding of no significant impact, decontamination and decommissioning of Battelle Columbus Laboratories in Columbus and West Jefferson, Ohio  

SciTech Connect

This Environmental Assessment has been developed by the Department of Energy in accordance with the requirements of the National Environmental Policy Act of 1969 for the proposed decommissioning of contaminated areas at the Battelle Memorial Institute, Columbus, Ohio. The discussions in Section 1.0 provide general background information on the proposed action. Section 2.0 describes the existing radiological and non-radiological condition of the Battelle Columbus Laboratories. Section 3.0 identifies the alternatives considered for the proposed action and describes in detail the proposed decommissioning project. Section 4.0 evaluates the potential risks the project poses to human health and the environment. Section 5.0 presents the Department of Energy's proposed action. As a result of nuclear research and development activities conducted over a period of approximately 43 years performed for the Department of Energy, its predecessor agencies, and under commercial contracts, the 15 buildings became contaminated with varying amounts of radioactive material. The Department of Energy no longer has a need to utilize the facilities and is contractually obligate to remove that contamination such that they can be used by their owners without radiological restrictions. This Environmental Assessment for the Battelle Columbus Laboratories Decommissioning Project is consistent with the direction from the Secretary of Energy that public awareness and participation be considered in sensitive projects and is an appropriate document to determine action necessary to satisfy the requirements of the National Environmental Policy Act. 30 refs., 6 figs., 9 tabs.

Not Available

1990-01-01T23:59:59.000Z

350

Allowable residual contamination levels for decommissioning the 115-F and 117-F facilities at the Hanford Site  

SciTech Connect

This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for the 115-F and 117-F facilities at the Hanford Site. The purpose of this study is to provide data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. Information on restricted and controlled use is provided to permit a full consideration of decommissioning alternatives. Procedures are presented for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations and to determine instrument responses for various mixtures of radionuclides. Finally, a comparison is made between existing decommissioning guidance and the ARCL values calculated for unrestricted release of the 115-F and 117-F facilities. The comparison shows a good agreement.

Kennedy, W.E. Jr.; Napier, B.A.

1983-07-01T23:59:59.000Z

351

Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project  

SciTech Connect

The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

Stevens, J. L.; Titus, R.; Sanford, P. C.

2002-02-26T23:59:59.000Z

352

Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2  

SciTech Connect

This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400

Poderis, Reed J. [NSTec] [NSTec; King, Rebecca A. [NSTec] [NSTec

2013-09-30T23:59:59.000Z

353

Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning  

SciTech Connect

This paper summarizes a regulatory guide that the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, is currently developing for use in implementing Title 10, Section 20.1406, of the Code of Federal Regulations (10 CFR 20.1406), 'Minimization of Contamination'. The intent of the regulation is to diminish the occurrence and severity of 'legacy sites' by taking measures to reduce and control contamination and facilitate eventual decommissioning. The thrust of the regulatory guide is to encourage applicants to use technically sound engineering judgment and a practical risk-informed approach to achieve the objectives of 10 CFR 20.1406. In particular, such an approach should consider the materials and processes involved (e.g., solids, liquids, gases), and focus on (1) the relative significance of potential contamination, (2) areas that are most susceptible to leaks, and (3) the appropriate level of consideration that should be incorporated in facility design and operational procedures to prevent and control contamination. (authors)

O'Donnell, E.; Ott, W.R. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC (United States)

2008-07-01T23:59:59.000Z

354

Technical program plan for the transitioning, decommissioning, and final disposition focus area  

SciTech Connect

Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

Not Available

1994-01-01T23:59:59.000Z

355

Testing, expanding and implementing pollution prevention tools for environmental restoration and decontamination and decommissioning  

SciTech Connect

Pollution Prevention (P2) programs and projects within the DOE Environmental Restoration (ER) and Decontamination and Decommissioning (D and D) Programs have been independently developed and implemented at various sites. As a result, unique, innovative solutions used at one site may not be known to other sites, and other sites may continue to duplicate efforts to develop and implement similar solutions. Several DOE Program offices have funded the development of tools to assist ER/D and D P2 projects. To realize the full value of these tools, they need to be evaluated and publicized to field sites. To address these needs and concerns, Sandia National Laboratory (SNL/NM), Los Alamos National Laboratory (LANL), and the Oak Ridge Field Office (DOE-OR) have teamed to pilot test DOE training and tracking tools; transfer common P2 analyses between sites, and evaluate and expand P2 tools and methodologies. The project is supported by FY 98 DOE Pollution Prevention Complex-Wide Project Funds. This paper presents the preliminary results for each of the following project modules: Training, Waste Tracking Pilot, Information Exchange, Evaluate P2 Tools for ER/D and D, Field Test of P2 Tools; and DOE Information Exchange.

Roybal, J.A. [Sandia National Lab., Albuquerque, NM (United States); McInroy, D. [Los Alamos National Lab., NM (United States); Watson, J. [GTS Duratek, Albuquerque, NM (United States); Mizner, J. [ICF Kaiser, Albuquerque, NM (United States)

1998-06-01T23:59:59.000Z

356

Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory  

SciTech Connect

The Final Report for the Decontamination and Decommissioning (D&D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D&D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D&D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D&D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a {open_quotes}Radiologically Controlled Area,{close_quotes} noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion).

Fellhauer, C.R.; Boing, L.E. [Argonne National Lab., IL (United States); Aldana, J. [NES, Inc., Danbury, CT (United States)

1997-03-01T23:59:59.000Z

357

Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA  

SciTech Connect

Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

Dean, L.N. [Advanced Sciences, Inc., (United States)

1994-02-01T23:59:59.000Z

358

EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

Draft Site-Wide EA: Public Comment Period Ends 04/14/2014DOE is preparing an EA to assess potential environmental impacts of the proposed discontinuation of DOE operations at, and the proposed divestiture of, the Rocky Mountain Oilfield Testing Center (RMOTC) and Naval Petroleum Reserve Number 3 (NPR-3).

359

Captain Erik Stohlmann graduated from high school in Fort Worth, TX before attending the United States Naval Academy. He was commissioned in 1992 after earning a Bachelor of  

E-Print Network (OSTI)

Science. Following the Naval Academy, he was assigned to NAS Pensacola, FL for Flight Training. After flown during OPERATION IRAQI FREEDOM as well as numerous contingency operations in the CENTCOM AOR. He was selected for redesignation as a Navy Foreign Area Officer. Captain Stohlmann' s staff assignments include

360

Draft Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel EIS-0251  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID 51 Document ID 51 Commenter: Daniel Nix - Western Interstate Energy Board, Colorado Response to Comment: A. The Navy extended the comment period from 45 to 60 days (ending July 18, 1996) in response to requests from the state of Nevada. A further extension could not be provided because of the need to complete the EIS to support actions required under a court agreement among the Department of Energy, Navy, and State of Idaho covering spent fuel management at the Idaho National Engineering Laboratory. B.&D. The Board's comment is correct that the EIS is limited to naval spent nuclear fuel and Navy- generated special case waste. The Board's comment is incorrect in the implication that transportation to Yucca Mountain is supported by the EIS. The proposed action of this EIS

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453  

SciTech Connect

The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

362

Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.  

SciTech Connect

The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

LaFreniere, L. M. (Environmental Science Division)

2012-06-29T23:59:59.000Z

363

Preliminary standard review guide for Environmental Restoration/Decontamination and Decommissioning safety analyses  

SciTech Connect

The review guide is based on the shared experiences, approaches, and philosophies of the Environmental Restoration/Decontamination and Decommissioning (ER/D&D) subgroup members. It is presented in the form of a review guide to maximize the benefit to both the safety analyses practitioner and reviewer. The guide focuses on those challenges that tend to be unique to ER/D&D cleanup activities. Some of these experiences, approaches, and philosophies may find application or be beneficial to a broader spectrum of activities such as terminal cleanout or even new operations. Challenges unique to ER/D&D activities include (1) consent agreements requiring activity startup on designated dates; (2) the increased uncertainty of specific hazards; and (3) the highly variable activities covered under the broad category of ER/D&D. These unique challenges are in addition to the challenges encountered in all activities; e.g., new and changing requirements and multiple interpretations. The experiences in approaches, methods, and solutions to the challenges are documented from the practitioner and reviewer`s perspective, thereby providing the viewpoints on why a direction was taken and the concerns expressed. Site cleanup consent agreements with predetermined dates for restoration activity startup add the dimension of imposed punitive actions for failure to meet the date. Approval of the safety analysis is a prerequisite to startup. Actions that increase expediency are (1) assuring activity safety; (2) documenting that assurance; and (3) acquiring the necessary approvals. These actions increase the timeliness of startup and decrease the potential for punitive action. Improvement in expediency has been achieved by using safety analysis techniques to provide input to the line management decision process rather than as a review of line management decisions. Expediency is also improved by sharing the safety input and resultant decisions with reviewers and regulators.

Ellingson, D.R.

1993-06-01T23:59:59.000Z

364

Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation  

SciTech Connect

During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

NONE

1994-09-01T23:59:59.000Z

365

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

366

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

367

Vettor Fausto (1490-1546), Professor of Greek and a Naval Architect: A New Light on the 16th-century Manuscript Misure di vascelli etc. di…proto dell’Arsenale di Venetia  

E-Print Network (OSTI)

century in Venetian naval architecture. Early in the 16th century, the maritime power of Venice was seriously threatened by the Ottoman Sultan Suleiman II in the East and by the Holy Roman Emperor Charles V in the West. In order to regain its naval... power in the Mediterranean, the Republic of Venice strongly encouraged Venetian shipwrights to submit new designs for war galleys. The undisputed founder and champion of this naval program was not a skilled shipwright but a young professor of Greek...

Campana, Lilia 1975-

2010-12-06T23:59:59.000Z

368

Decommissioning samples from the Ft. Lewis, WA, solvent refined coal pilot plant: chemical analysis and biological testing  

SciTech Connect

This report presents the results from chemical analyses and limited biological assays of three sets of samples from the Ft. Lewis, WA solvent refined coal (SRC) pilot plant. The samples were collected during the process of decommissioning this facility. Chemical composition was determined for chemical class fractions of the samples by using high-resolution gas chromatography (GC), high-resolution GC/mass spectrometry (MS) and high-resolution MS. Biological activity was measuring using both the histidine reversion microbial mutagenicity assay with Salmonella typhimurium, TA98 and an initiation/promotion mouse-skin tumorigenicity assay. 19 refs., 7 figs., 27 tabs.

Weimer, W.C.; Wright, C.W.

1985-10-01T23:59:59.000Z

369

Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram  

SciTech Connect

The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

NONE

1994-09-01T23:59:59.000Z

370

Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4: Volume 2, Technology Logic Diagram  

SciTech Connect

The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D&D) problems at 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak K-25 Site technology Logic Diagram, and Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D&D and waste management activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between the cost and risk. The TLD consists of three volumes. Volume 1 presents an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among the environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets.

NONE

1994-09-01T23:59:59.000Z

371

Decontamination and decommissioning of the Chemical Process Cell (CPC): Topical report for the period January 1985-March 1987  

SciTech Connect

To support interim storage of vitrified High-Level Waste (HLW) at the West Valley Demonstration Project, the shielded, remotely operated Chemical Process Cell (CPC) was decommissioned and decontaminated. All equipment was removed, packaged and stored for future size reduction and decontamination. Floor debris was sampled, characterized, and vacuumed into remotely handled containers. The cell walls, ceiling, and floor were decontaminated. Three 20 Mg (22.5 ton) concrete neutron absorber cores were cut with a high-pressure water/abrasive jet cutting system and packaged for disposal. All operations were performed remotely using two overhead bridge cranes which included two 1.8 Mg (2 ton) hoists, one 14.5 Mg (16 ton) hoist, and an electromechanical manipulator or an industrial robot mounted on a mobile platform. Initial general area dose rates in the cell ranged from 1 to 50 R/h. Target levels of less than 10 mR/h general area readings were established before decontamination and decommissioning was initiated; general area dose rates between 200 mR/h and 1200 mR/h were obtained at the completion of the decontamination work. 4 refs., 11 figs., 8 tabs.

Meigs, R. A.

1987-07-01T23:59:59.000Z

372

The Navy seeks to identify responsible sources and obtain information in regard to purchasing renewable power for Naval Air Station (NAS) Fallon, located in Fallon, NV  

NLE Websites -- All DOE Office Websites (Extended Search)

REQUEST FOR INFORMATION (RFI) for Renewable Generation REQUEST FOR INFORMATION (RFI) for Renewable Generation Opportunities at NAWS China Lake, NAS Fallon, MCAGCC 29 Palms, and MCAS Yuma The Department of Navy (DoN) intends to issue a Request for Proposal (RFP) in early 2009 for renewable energy generation opportunities at Naval Air Weapons Station (NAWS) China Lake, California; Naval Air Station (NAS) Fallon, Nevada; Marine Corps Air Ground Combat Center (MCAGCC) Twentynine Palms, California, and Marine Corps Air Station (MCAS) Yuma, Arizona. The DoN will consider opportunities for the purchase of renewable power, developer wholesale generation, distributed generation, and the combination of those opportunities. Specifically, the Navy will provide Government land on these installations for large

373

Accident Investigation of the June 17, 2012, Construction Accident- Structural Steel Collapse at The Over pack Storage Expansion #2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the Naval Reactors investigation into the collapse ofa partially-erected spent fuel storage building, Overpack Storage Expansion #2 (OSE2), at the Naval Reactors Facility. The Accident Investigation Board inspected the scene, collected physical and photographic evidence, interviewed involved personnel, and reviewed relevant documents to determine the key causes of the accident. Based on the information gathered during the investigation, the Board identified several engineering and safety deficiencies that need to be addressed to prevent recurrence.

374

A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP  

SciTech Connect

The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

Milchikov, A.; Hund, G.; Davidko, M.

1999-10-20T23:59:59.000Z

375

Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado  

SciTech Connect

As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

376

Analysis of the potential for enhanced oil recovery in the Shannon Formation at Naval Petroleum Reserve Number 3. Master's thesis  

SciTech Connect

Three EOR processes were evaluated for potential application in the Shannon reservoir at Naval Petroleum Reserve No. 3, in the Teapot Dome Oilfield near Casper, Wyoming. This reservoir is estimated to have originally held 180 million barrels of oil, of which only 8 million barrels are recoverable by primary means. Simplified computer models were used to predict the performance of in-situ combustion, polymer flooding, and steam flooding. Economic analyses were done on the results of these predictions and sensitivity studies were performed for various physical and economic parameters. This report provides a foundation of information, offers a template for economic decisions, and makes preliminary recommendations based on performance predictions. Before field-wide application of any project is undertaken, a better characterization of the reservoir must be accomplished and pilot projects evaluated. However, this analysis suggest that the most favorable application in the Shannon Sandstone is polymer flooding operated on 2.5-acre spacing. This technique is predicted to give a net present value of $5.43 million per 10-acre unit with a present value ration of 9.4 for its four year economic life.

Chappelle, H.H.

1985-05-01T23:59:59.000Z

377

Novel Problems Associated with Accounting and Control of Nuclear Material from Decontamination and Decommissioning and in Waste  

SciTech Connect

Abstract The reduction in nuclear arms and the production facilities that supported the weapons programs have produced some unique problems for nuclear material control and accountability (MC&A). Many of these problems are not limited to the weapons complex, but have the potential to appear in many legacy facilities as they undergo dismantlement and disposal. Closing facilities find that what was previously defined as product has become a waste stream bringing regulatory, human, and technological conflict. The sometimes unique compositions of these materials produce both storage and measurement problems. The nuclear material accounting and control programs have had to become very adaptive and preemptive to ensure control and protection is maintained. This paper examines some of the challenges to Safeguards generated by deinventory, decontamination decommissioning, dismantlement, demolition, and waste site remediation from predictable sources and some from unpredictable sources. 1.0 Introduction The United States is eliminating many facilities that support the nuclear weapons program. With the changing political conditions around the world and changes in military capabilities, the decreased emphasis on nuclear weapons has eliminated the need for many of the aging facilities. Additionally, the recovery of plutonium from dismantled weapons and reuse of components has eliminated the need to produce more plutonium for the near future. Because the nuclear weapons program and commercial applications generally do not mix in the United States, the facilities in the DOE complex that no longer have a weapon mission are being deinventoried, decontaminated, decommissioned, and dismantled/demolished. The materials from these activities are then disposed of in various ways but usually in select waste burial sites. Additionally, the waste in many historical burial sites associated with the weapons complex are being recovered, repackaged if necessary, and disposed of in either geological sites or low-level waste sites. The type of waste from the decontamination and decommissioning (D&D) activities varies from uncontaminated construction materials to nuclear weapon components. This variety of forms, types, and composition of nuclear material presents many challenges to MC&A. It requires the creative application of regulations, but current regulations are adequate to ensure the security and control of the nuclear material. This paper examines some of the approaches used to meet regulatory requirements and problems that occurred during D&D. Experiences are drawn for the Hanford site and elsewhere in the DOE complex.

Schlegel, Steven C.

2007-07-10T23:59:59.000Z

378

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

SciTech Connect

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

379

Rosie - mobile robot worksystem for decommissioning and dismantling operations. Final report, April 1, 1996--January 31, 1997  

SciTech Connect

RedZone Robotics, Inc. has undertaken development of an advanced remote worksystem - Rosie - specifically designed to meet the challenges of performing a wide range of decontamination and dismantlement (D&D) operations in nuclear environments. The Rosie worksystem includes a locomotor, heavy manipulator, operator console, and control system for remote operations. The locomotor is a highly mobile platform with tether management and hydraulic power onboard. The heavy manipulator is a high-payload, long-reach boom used to deploy a wide variety of tools and/or sensors into the work area. Rosie`s advanced control system, broad work capabilities, and hardening/reliability for hazardous duty make it a new and unique capability that facilitates completion of significant cleanup projects throughout the Department of Energy (DOE) and private sector. Endurance testing of the first Rosie system from September 1995 to March 1996 has proven its capabilities and appropriateness for D&D applications. Design enhancements were incorporated into the second Rosie system to improve and add features necessary for deployment at a DOE facility decommissioning. This second Rosie unit was deployed to the Argonne National Laboratory`s CP-5 reactor facility in early December 1996, and it is currently being used in the decommissioning of the reactor there. This report will overview this second Rosie system and the design enhancements made to it based on the lessons learned during the design, fabrication, and testing of the first Rosie system. The Rosie system has been designed to be a versatile and adaptable tool that can be used in many different applications in D&D work at nuclear facilities. It can carry a wide variety of tooling, sensors, and other robotic equipment at the tip of its heavy manipulator, and it can deploy those items to many different hazardous work areas. Rosie`s capabilities and system design address the need for durability and reliability in these environments.

NONE

1998-12-31T23:59:59.000Z

380

Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California  

SciTech Connect

The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

NONE

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Statement of Intent by The United States Department of Energy and Atomic Energy of Canada Limited in the Field of Used Fuel and Radioactive Waste Management, Decommissioning and Environmental Restoration  

Energy.gov (U.S. Department of Energy (DOE))

Statement of Intent by The United States Department of Energy and Atomic Energy of Canada Limited in the Field of Used Fuel and Radioactive Waste Management, Decommissioning and Environmental Restoration.

382

Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders DOE/EIS-0226-D (Revised) November 2008 The West Valley Site Availability of the Revised Draft EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Draft EIS, or to request a copy please contact: Cathern Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov Printed with soy ink on recycled paper

383

Final EIS for Decommissioning and/or Long-Term Stewardship at the WVDP and Western New York Nuclear Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS-0226 DOE/EIS-0226 January 2010 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center A Summary and Guide for Stakeholders The West Valley Site Availability of the Final EIS for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center For further information on this Final EIS, or to request a copy of the EIS or references, please contact: Catherine Bohan, EIS Document Manager West Valley Demonstration Project U.S. Department of Energy Ashford Office Complex 9030 Route 219 West Valley, NY 14171 Telephone: 716-942-4159 Fax: 716-942-4703 E-mail: catherine.m.bohan@wv.doe.gov

384

Implementation of 10 CFR 20.1406, Regarding Minimizing Contamination and the Generation of Waste, and Facilitating Decommissioning through the Design of Facilities and Operating Procedures  

SciTech Connect

In the very near future (perhaps as soon as the fall of 2007), the U.S. Nuclear Regulatory Commission (NRC) anticipates receiving one or more license applications for new nuclear power plants. An important consideration for new facilities is that they be designed and operated to minimize contamination, to minimize the generation of waste, and to facilitate decommissioning. A relatively recent regulation, 10 CFR 20.1406, mandates these requirements. The regulation states, 'Applicants for licenses, other than renewals, after August 20, 1997, shall describe in the application how facility design and procedures for operation will minimize, to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize, to the extent practicable, the generation of radioactive waste'. This paper summarizes various initiatives taken by the NRC and industry to develop guidance for implementing 10 CFR 20.1406 before submission of license applications. (authors)

O'Donnell, E.; Ott, W.R. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC (United States)

2007-07-01T23:59:59.000Z

385

Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Main report, draft report for comment. Volume 1  

SciTech Connect

On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

1994-09-01T23:59:59.000Z

386

Tag: Naval Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

9/all en "Cook"ing at Y-12 for 70 9/all en "Cook"ing at Y-12 for 70 years http://www.y12.doe.gov/employees-retirees/y-12-times/cooking-y-12-70-years

We have an enduring mission. Y-12 plays a key role in it. And a nuclear deterrent remains the ultimate insurance policy for America.

Naval electrochemical corrosion reducer  

DOE Patents (OSTI)

A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

Clark, Howard L. (Ballston Lake, NY)

1991-10-01T23:59:59.000Z

388

Institution of Naval Architects  

Science Journals Connector (OSTI)

... H. C. Anstey for papers, respectively, on the resistance of thin plates and models in a current of water, and on the application of internal-combustion ... in a current of water, and on the application of internal-combustion engines for marine propulsion. Thirteen papers in all were presented at the meetings, abstracts from ...

1910-03-24T23:59:59.000Z

389

Annual Report: 2010-2011 Storm Season Sampling For NON-DRY DOCK STORMWATER MONITORING FOR PUGET SOUND NAVAL SHIPYARD, BREMERTON, WA  

SciTech Connect

This interim report summarizes the stormwater monitoring conducted for non-dry dock outfalls in both the confined industrial area and the residential areas of Naval Base Kitsap within the Puget Sound Naval Shipyard (referred to as the Shipyard). This includes the collection, analyses, and descriptive statistics for stormwater sampling conducted from November 2010 through April 2011. Seven stormwater basins within the Shipyard were sampled during at least three storm events to characterize non-dry dock stormwater discharges at selected stormwater drains located within the facility. This serves as the Phase I component of the project and Phase II is planned for the 2011-2012 storm season. These data will assist the Navy, USEPA, Ecology and other stakeholders in understanding the nature and condition of stormwater discharges from the Shipyard and inform the permitting process for new outfall discharges. The data from Phase I was compiled with current stormwater data available from the Shipyard, Sinclair/Dyes Inlet watershed, and Puget Sound in order to support technical investigations for the Draft NPDES permit. The permit would require storm event sampling at selected stormwater drains located within the Shipyard. However, the data must be considered on multiple scales to truly understand potential impairments to beneficial uses within Sinclair and Dyes Inlets.

Brandenberger, Jill M.; Metallo, David; Johnston, Robert K.; Gebhardt, Christine; Hsu, Larry

2012-09-01T23:59:59.000Z

390

DOE/EA-1583: Final Site-wide Environmental Assessment and Finding of No Significant Impact for Rocky Mountain Oilfield Testing Center/Naval Petroleum Reserve No. 3 (October 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ROCKY MOUNTAIN OILFIELD TESTING CENTER / ROCKY MOUNTAIN OILFIELD TESTING CENTER / NAVAL PETROLEUM RESERVE NO. 3 FINAL Site-wide Environmental Assessment and Finding of No Significant Impact October 2008 U.S. Department of Energy Rocky Mountain Oilfield Testing Center 907 N. Poplar Street, Suite 150 Casper WY 82601 DOE/EA-1583 Rocky Mountain Oilfield Testing Center / Naval Petroleum Reserve No.3 Final Site-Wide Environmental Assessment i TABLE OF CONTENTS Section Page ABBREVIATIONS AND ACRONYMS.................................................................................................vii SUMMARY ................................................................................................................................................ix 1.0 INTRODUCTION .........................................................................................................................1

391

Promoter Decommissioning by the NuRD Chromatin Remodeling Complex Triggers Synaptic Connectivity in the Mammalian Brain  

Science Journals Connector (OSTI)

Summary Precise control of gene expression plays fundamental roles in brain development, but the roles of chromatin regulators in neuronal connectivity have remained poorly understood. We report that depletion of the NuRD complex by in vivo \\{RNAi\\} and conditional knockout of the core NuRD subunit Chd4 profoundly impairs the establishment of granule neuron parallel fiber/Purkinje cell synapses in the rodent cerebellar cortex in vivo. By interfacing genome-wide sequencing of transcripts and ChIP-seq analyses, we uncover a network of repressed genes and distinct histone modifications at target gene promoters that are developmentally regulated by the NuRD complex in the cerebellum in vivo. Finally, in a targeted in vivo \\{RNAi\\} screen of NuRD target genes, we identify a program of NuRD-repressed genes that operate as critical regulators of presynaptic differentiation in the cerebellar cortex. Our findings define NuRD-dependent promoter decommissioning as a developmentally regulated programming mechanism that drives synaptic connectivity in the mammalian brain.

Tomoko Yamada; Yue Yang; Martin Hemberg; Toshimi Yoshida; Ha Young Cho; J. Patrick Murphy; Diasynou Fioravante; Wade G. Regehr; Steven P. Gygi; Katia Georgopoulos; Azad Bonni

2014-01-01T23:59:59.000Z

392

Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana  

SciTech Connect

In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC) of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.

Not Available

1989-07-01T23:59:59.000Z

393

Department of Energy`s Uranium Enrichment Decontamination and Decommissioning Fund fiscal year 1997 financial statement audit  

SciTech Connect

This report presents the results of the independent certified public accountants` audit of the Department of Energy`s Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) financial statements as of September 30, 1997. The auditors have expressed an unqualified opinion on the 1997 statement of financial position and the related statements of operations and changes in net position and cash flows. The 1997 financial statement audit was made under provisions of the Inspector General Act (5 U.S.C. App.) as amended, the Government Management Reform Act (31 U.S.C. 3515), and Office of Management and Budget implementing guidance. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill our audit responsibilities, we contracted with the independent public accounting firm of KPMG Peat Marwick LLP (KPMG) to conduct the audit for us, subject to our review. The auditors` report on the D&D Fund`s internal control structure disclosed no reportable conditions. The auditors` report on compliance with laws and regulations disclosed one instance of noncompliance. This instance of noncompliance relates to the shortfall in Government appropriations. Since this instance was addressed in a previous audit, no further recommendation is made at this time. During the course of the audit, KPMG also identified other matters that, although not material to the financial statements, nevertheless, warrant management`s attention. These items are fully discussed in a separate letter to management.

NONE

1998-08-21T23:59:59.000Z

394

A manual for applying the allowable residual contamination level method for decommissioning facilities on the Hanford Site  

SciTech Connect

This report describes the modifications that have been made to enhance the original Allowable Residual Contamination Level (ARCL) method to make it more applicable to site-specific analyses. This version considers the mixture of radionuclides present at the time of site characterization, the elapsed time after decommissioning when exposure to people could occur, and includes a calculation of the upper confidence limit of the potential dose based on sampling statistics that are developed during the site characterization efforts. The upper confidence limit of potential exposure can now be used for comparison against applicable radiation dose limits (i.e., 25 mrem/yr at Hanford). The level of confidence can be selected by the user. A wide range of exposure scenarios were evaluated; the rationale used to select the most limiting scenarios is explained. The radiation dose factors used for the inhalation and ingestion pathways were also updated to correspond with the radiation dosimetry methods utilized in the International Commission of Radiological Protection Publications 26 and 30 (ICRP 1977; 1979a,b, 1980, 1981, 1982a,b). This simplifies the calculations, since ''effective whole body'' doses are now calculated, and also brings the dosimetry methods used in the ARCL method in conformance with the rationale used by DOE in developing the 25 mrem/yr limit at Hanford. 46 refs., 21 figs., 15 tabs.

Napier, B.A.; Piepel, G.F.; Kennedy, W.E. Jr.; Schreckhise, R.G.

1988-08-01T23:59:59.000Z

395

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground Environmental Surveillance Programs  

SciTech Connect

This Addendum supplements, and to some extent replaces, the preliminary description of environmental radiological surveillance programs for low-level waste burial grounds (LLWBG) used in the parent document, 11 Technology, Safety and Costs of DecolliTlissioning a Reference Low-Level Waste Burial Ground, 11 NUREG/ CR-0570. The Addendum provides additional detail and rationale for the environmental radiological surveillance programs for the two referenced sites and inventories described in NUREG/CR-0570. The rationale and performance criteria herein are expected to be useful in providing guidance for determining the acceptability of environmental surveillance programs for other inventories and other LLWBG sites. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are reference facilities considered in this Addendum, and as described in the parent document (NUREG/CR-0570). The two sites are assumed to have the same capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology, and hydrology of the two reference sites are typical of existing western and eastern sites, altnough a single population distribution was chosen for both. Each reference burial ground occupies about 70 hectares and includes 180 trenches filled with a total of 1.5 x 10{sup 6} m{sup 3} of radioactive waste. In acldition, there are 10 slit trenches containing about 1.5 x 10{sup 3} m{sup 3} of high beta-gamma activity waste. In this Addendum environmental surveillance programs are described for the several periods in the life of a LLWBG: preoperational (prior to nuclear waste receipt); operational (including interim trench closures); post-operational (after all nuclear waste is received), for both short-term {up to three years) and long-term (up to 100 years) storage and custodial care; and decommissioning (only for the special case of waste removal). The specific environmental monitoring requirements for final site characterization and certification surveys are beyond the scope of this Addendum. Data collection associated with site reconnaissance and preselection is not specifically addressed, but it is recognized that such data may be useful in designing the preoperational program. Predisposal control measures, quality assurance, and record-keeping (other than inventory records) associated with waste disposal operations are also not addressed. The primary intent of routine environmental surveillance at a LLWBG is to help ensure that site activities do not cause significant transport of radioactivity from the site, resulting in an unacceptable health hazard to people. Preoperational environmental surveillance serves to determine for later comparison the background radioactivity levels, either naturally occurring or the result of man's activities (e.g. world-wide fallout or an adjacent nuclear facility), in and around the proposed burial ground site. The operational environmental surveillance program is used to estimate radiological conditions, both onsite and offsite as a possible result of burial ground activities, including trench closure(s). These data help to determine LLWBG compliance with regulatory requirements. During the post-operational period environmental surveillance should normally be an extension of the program carried out during operations, with appropriate deletions (or modifications) to account for the differences between operational and post-operational activities at the site. During the long-term storage and custodial care period, environmental surveillance serves to verify the radionuclide confinement capability of the burial ground and to identify problem situations requiring remedial action. For waste removal (exhumation), the environmental surveillance program is again modified to account for the greatly increased potential for direct radiation and contamination spread. At the time of decommissioning, "environmental surveillance" takes on a new meaning, from that of an ongoing prog

Denham, D. H.; Eddy, P. A.; Hawley, K. A.; Jaquish, R. E.; Corley, J. P.

1981-07-01T23:59:59.000Z

396

Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration  

SciTech Connect

The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

NONE

1995-08-01T23:59:59.000Z

397

Determination of naval medium speed diesel engine air exhaust emissions and validation of a proposed estimation model. Master`s thesis  

SciTech Connect

Steady state marine diesel engine exhaust emissions are being reviewed by the Environmental Protection Agency for possible regulation. In anticipation of future regulation, the United States Navy is developing appropriate emissions models for naval vessels. A procedure for collecting this data from an U. S. Navy ship with medium speed main propulsion diesels is presented. It is based on similar testing conducted by the U.S. Coast Guard for measuring patrol boat diesel engine emissions and International Standards Organization methodology. The primary challenge of the experiment design was to minimize interference with the engineering plant as the assigned ship was concurrently tasked for other operations. Data gathered allowed calculation of engine rpm, engine load, exhaust gas flow rate, and determination of pollutant amounts. The tests were conducted at a series of predetermined speeds to reflect an 11-Mode duty cycle developed previously for the LSD 41 Class propulsion diesel engines.

Mayeaux, A.M.

1995-05-01T23:59:59.000Z

398

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2  

SciTech Connect

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

Weiss, A. J. [comp.

1988-02-01T23:59:59.000Z

399

ANL CP-5 decontamination and decommissioning project necessary and sufficient pilot. Report of the standards identification team on the selection of the necessary and sufficient standards set  

SciTech Connect

The CP-5 reactor was a heavy-water moderated and cooled, highly-enriched uranium-fueled thermal reactor designed for supplying neutrons for research. The reactor was operated almost continuously for 25 years until its final shutdown in 1979. It is situated on approximately three acres in the southwestern section of Argonne National Laboratory. In 1980, all nuclear fuel and the heavy water that could be drained from the process systems were shipped off-site, and the CP-5 facility was placed into lay-up pending funding for decommissioning. It was maintained in the lay-up condition with a minimum of maintenance until 1990, when the decontamination and decommissioning (D and D) project began. This D and D project provides for the disassembly and removal of all radioactive components, equipment, and structures that are associated with the CP-5 facility. The experimental area around the CP-5 reactor has been prepared for D and D, and the area outside the facility has been remediated. The reactor primary coolant and support systems have been removed and packaged as waste. The significant remaining tasks are (1) removal of the reactor internals and the biological shield structure; (2) decontamination of the rod storage area; (3) decontamination of the various radioactive material storage and handling facilities, including the fuel pool; and (4) decontamination and dismantlement of the building. This report describes the scope of the project, identification of standards for various aspects of the project, the lessons learned, and consideration for implementation.

NONE

1996-05-01T23:59:59.000Z

400

Groundwater Monitoring and Control Before Decommissioning of the Research Reactor VVR-S from Magurele-Bucharest  

SciTech Connect

The research reactor type VVR-S (tank type, water is cooler, moderator and reflector, thermal power- 2 MW, thermal energy- 9. 52 GW d) was put into service in July 1957 and, in December 1997 was shout down. In 2002, Romanian Government decided to put the research reactor in the permanent shut-down in order to start the decommissioning. This nuclear facility was used in nuclear research and radioisotope production for 40 years, without events, incidents or accidents. Within the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: Radioactive Waste Treatment Plant, Tandem Van der Graaf heavy ions accelerator, Cyclotron, Industrial Irradiator, Radioisotope Production Center. The objectives of this work were dedicated on the water underground analyses described in the following context: - presentation of the approaches in planning the number of drillings, vertical soil profiles (characteristics, analyses, direction of the flow of underground water, uncertainties in measurements); - presentation of the instrumentation used in analyses of water, soil and vegetation samples - analyses and final conclusions on results of the measurements; - comparison of the results of measurements on underground water from drillings with the measurements results on samples from the town and the system of drinking water - supplied from the second level of underground water. According to the analysis, in general, no values higher than the Minimum Detectable Activity were detected in water samples (MDA) for Pb{sup 212}, Bi{sup 214}, Pb{sup 214}, Ac{sup 228}, but situated under values foreseen in drinking water. Distribution of Uranium As results of the Uranium determination, values higher than 0,004 mg/l (4 ppb) were detected, values that represent the average contents in the underground water. The higher values, 2-3 times higher than background, were detected in the water from the drillings F15, F12, F5, F13, drillings located between RWTP (Radioactive Waste Treatment Plant) - the 300 m{sup 3} tanks and the Spent Filters Storage (SFS). At south of this area, on the leaking direction of the underground water layer, in the drillings F1, F2, F3, F18 and at east, in F6, F7, the natural Uranium values are within the background for the underground-water. Distribution of Radon For the Radon determination with RAD 7 equipment, water samples were taken from the same piezo-metrical drilling, 2 or 4 times during of six months period, and then, the average contents were calculated, which varied between 0,35 - 2,1 Bq/l. The values higher than 1,1 -1,2 Bq/l were detected in the water taken from the drillings located in the northern part (F10, F11) and in the eastern part (F6, F8) of the Institute fences (around of the radioactive waste storage facilities). The concentrations of 0,3 - 0,5 Bq/l are in the underground-water layer 'intercepted' by the piezo-metrical drillings (F1, F2, F3) located near the Nuclear Reactor. Concentration of heavy metals: 0.04-0.08 mg/l Pb in F5, F14, F7, F8 exceeding MCA-Maximum Admissible Concentration (0.01 mg/l) for Pb, and for Zn in F5, F7, F8, F14 are 0.2-0.5 mg/l situated under MCA , and 0.18 mg/l in F18, in accordance with tendency of decreasing of concentration of contaminants. After 50 years of deploying nuclear activities on the site the underground water quality is in very good condition. Taking into consideration the direction of the underground water flow, it results that, only in the area of underground pipe, around of the research reactor and radioactive waste treatment plant, the quality of water is influenced, and remediation actions are not necessary. Based on measurements executed in F18, the water quality is the same with any other part of the region. During the decommissioning of the Research Reactor, the samples from 18 drillings will be analysed monthly, and the contents of the heavy metals, Pb and Zn, will be monitored carefully, together with all the factors: air, soil, vegetation, subsoil, water surface and underground water. A great attention will be paid t

Dragusin, Mitica [National Institute of Physics and Nuclear Engineering-Horia Hulubei - IFIN-HH, Bucharest-Magurele, Romania, POBox MG-6, 077125, Ilfov (Romania)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Naval Petroleum and Oil Shale Reserve. Hearing before the Subcommittee on Preparedness of the Committee on Armed Services, United States Senate, Ninety-Eighth Congress, First Session on S. 1810, September 29, 1983  

SciTech Connect

Captain Myron E. Smith, Jr., Director of the DOE Office of Naval Petroleum and Oil Shale Reserves, testified at a hearing on S. 1810, which authorizes funds relating to the petroleum and oil shale reserves. Smith reviewed revenues and expenditures since legislation was passed in 1976, noting that production at Elk Hills and Teapot Dome are at peak levels, in his justification of the budget request of $266.1 million. Questions from the committee and Smith's responses follow his formal testimony.

Not Available

1984-01-01T23:59:59.000Z

402

Decommissioning of Nuclear Plants  

Science Journals Connector (OSTI)

All wastes from dismantling or operations will be sent ... proceed according to the chosen strategy shipping the waste to a long-term centralized storage center, if available, or may be...

Maurizio Cumo

2010-01-01T23:59:59.000Z

403

FLUOR HANFORD DECOMMISSIONING UPDATE  

SciTech Connect

Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield workers to a safe level from the residual radioactivity. Workers then continued preparations for demolishing the structure. Currently, they are isolating utilities, removing asbestos, draining oils, and removing other items not allowed to be disposed in Hanford's Environmental Restoration Disposal Facility (ERDF). The basin's superstructure will be demolished using a heavy industrial excavator equipped with a shear. This portion of the work is expected to be completed in September, with removal of the basin substructure to follow in 2009. D&D of the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream.

GERBER MS

2008-04-21T23:59:59.000Z

404

Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report  

SciTech Connect

The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

NONE

1996-12-01T23:59:59.000Z

405

Naval Petroleum and Oil Shale Reserves Combined Financial Statements September 30, 1994 and 1993 and Management Overview and Supplemental Financial and Management Information  

SciTech Connect

This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on the 1994 statements. Their reports on the NPOSR internal control structure and on compliance with laws and regulations, and management letter on addressing needed improvements are also provided. NPOSR consists of petroleum reserves in California and Wyoming, and oil shale reserves in Colorado and Utah. The Government`s interests in NPOSR are managed by the Department through its headquarters office in Washington, D.C. In addition, the Department has site offices in both California and Wyoming that are responsible for contractor oversight functions. Daily operations are conducted under contract by two management and operating contractors. By law, NPOSR was authorized to produce crude oil at the maximum efficient rate for six years. The law allowed production to be extended for three year periods, provided that the President of the United States certified that continued maximum production was in the best interest of the nation. The current three year period ends on April 5, 1997. Additional information about NPOSR is provided in the overview and notes to the financial statements.

NONE

1994-12-31T23:59:59.000Z

406

DOE/EA-1295: Environmental Assessment for the Proposed Decontamination and Decommissioning of Building 301 Hot Cell Facility at Argonne National Laboratory (09/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

95 95 ENVIRONMENTAL ASSESSMENT PROPOSED DECONTAMINATION AND DECOMMISSIONING OF BUILDING 301 HOT CELL FACILITY AT ARGONNE NATIONAL LABORATORY U. S. Department Of Energy Chicago Operations Office September, 2000 ii TABLE OF CONTENTS LIST OF TABLES iv LIST OF FIGURES iv ACRONYMS v 1.0 BACKGROUND 1 1.1 Facility Description and History 1 1.2 Current Status 7 2.0 PURPOSE AND NEED 7 3.0 DESCRIPTION OF PROPOSED ACTION AND NO ACTION ALTERNATIVE 8 3.1 The Proposed Action 8 3.2 No Action Alternative 10 4.0 THE AFFECTED ENVIRONMENT 11 4.1 Site Description 11 4.2 Cultural Resources 11 4.2.1 Archaeological Sites 11 4.2.2 Historical Structures and Objects 11 4.3 Air Quality 11 5.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION 12 5.1 Environmental Impacts of Decontamination and Demolition 12 5.1.1 Sensitive Resources

407

Record of Decision, Shutdown of the River Water System at the Savannah River Site, Savannah River Operations Office, Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Federal Register / Vol. 63, No. 18 / Wednesday, January 28, 1998 / Notices have to be addressed during dismantlement. The no action alternative would involve keeping the defueled S3G and D1G Prototype reactor plants in protective storage indefinitely. Since there is some residual radioactivity with long half-lives, such as nickel-59, in the defueled reactor plant, this alternative would leave some radioactivity at the Kesselring Site indefinitely. The Naval Reactors Program distributed the Draft Environmental Impact Statement on the Disposal of the S3G and D1G Prototype Reactor Plants in July 1997. Comments from 14 individuals and agencies were received in either oral or written statements at a public hearing or in comment letters. Approximately one-third of the commenters expressed a preference for

408

Results of analyses of fur samples from the San Joaquin Kit Fox and associated soil and water samples from the Naval Petroleum Reserve No. 1, Tupman, California  

SciTech Connect

The purpose of this study was to determine whether analysis of the elemental content of fur from San Joaquin kit foxes (Vulpes macrotis mutica) and of water and soil from kit fox habitats could be used to make inferences concerning the cause of an observed decline in the kit fox population on Naval Petroleum Reserve No. 1 (NPR-1). Fur samples that had been collected previously from NPR-1, another oil field (NPR-2), and two sites with no oil development were subjected to neutron activation analysis. In addition, soil samples were collected from the home ranges of individual foxes from undisturbed portions of major soil types on NPR-1 and from wastewater samples were collected from tanks and sumps and subjected to neutron activation analysis. Most elemental concentrations in fur were highest at Camp Roberts and lowest on the undeveloped portions of NPR-I. Fur concentrations were intermediate on the developed oil fields but were correlated with percent disturbance and with number of wells on NPR-1 and NPR-2. The fact that most elements covaried across the range of sites suggests that some pervasive source such as soil was responsible. However, fur concentrations were not correlated with soft concentrations. The kit foxes on the developed portion of NPR-1 did not have concentrations of elements in fur relative to other sites that would account for the population decline in the early 1980s. The oil-related elements As, Ba, and V were elevated in fox fur from oil fields, but only As was sufficiently elevated to suggest a risk of toxicity in individual foxes. However, arsenic concentrations suggestive of sublethal toxicity were found in only 0.56% of foxes from developed oil fields, too few to account for a population decline.

Suter, G.W. II; Rosen, A.E.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Tupman, CA (United States)

1992-12-01T23:59:59.000Z

409

Final sitewide environmental assessment for preparation for transfer of ownership of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming  

SciTech Connect

The Secretary of Energy is authorized to produce the Naval Petroleum Reserves No. 3 (NPR-3) at its maximum efficient rate (MER) consistent with sound engineering practices, for a period extending to April 5, 2000 subject to extension. Production at NPR-3 peaked in 1981 and has declined since until it has become a mature stripper field, with the average well yielding less than 2 barrels per day. The Department of Energy (DOE) has decided to discontinue Federal operation of NPR-3 at the end of its life as an economically viable oilfield currently estimated to be 2003. Although changes in oil and gas markets or shifts in national policy could alter the economic limit of NPR-3, it productive life will be determined largely by a small and declining reserve base. DOE is proposing certain activities over the next six years in anticipation of the possible transfer of NPR-3 out of Federal operation. These activities would include the accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the continued development of the Rocky Mountain Oilfield Testing Center (RMOTC). DOE has prepared this environmental assessment that analyzes the proposed plugging and abandonment of wells, field restoration and development of RMOTC. Based on the analysis in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). The preparation of an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1998-04-01T23:59:59.000Z

410

Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center (3/13/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Federal Register / Vol. 68, No. 49 / Thursday, March 13, 2003 / Notices Dated: March 6, 2003. Gerald A. Reynolds, Assistant Secretary for Civil Rights. [FR Doc. 03-5999 Filed 3-12-03; 8:45 am] BILLING CODE 4000-01-M DEPARTMENT OF ENERGY Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center AGENCY: Department of Energy. ACTION: Notice of Intent. SUMMARY: The U.S. Department of Energy (DOE) and the New York State Energy Research and Development Authority (NYSERDA) are announcing their intent to prepare an Environmental Impact Statement (EIS) for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project (WVDP) and

411

EA-0813; Environmental Assessment and (FONSI) The Tokamak Fusion Test Reactor Decontamination and Decommissioning Project and The Tokamak Physics Experiment at the PPPL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13; Environmental Assessment and (FONSI) The Tokamak Fusion 13; Environmental Assessment and (FONSI) The Tokamak Fusion Test Reactor Decontamination and Decommissioning Project and The Tokamak Physics Experiment at the PPPL Table of Contents EXECUTIVE SUMMARY ACRONYMS Glossary of Radiological Terms SCIENTIFIC NOTATION 1.0 PURPOSE AND NEED FOR THE PROPOSED ACTIONS 1.1 TFTR D&D Project 1.2 TPX Project 1.3 Scope of Document 1.4 Local Community Relations Program 1.5 References 2.0 DESCRIPTION OF THE PROPOSED ACTIONS AND ALTERNATIVES 2.1 TFTR D&D Project 2.2 TPX Project 2.3 Environmental Monitoring 2.4 References 3.0 DESCRIPTION OF THE AFFECTED ENVIRONMENT 3.1 PPPL Proposed Site 3.2 ORR Alternative Site 3.3 References 4.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTIONS AND ALTERNATIVES 4.1 TFTR D&D Project 4.1.1 Impacts of Normal D&D Operations

412

Environmental assessment for the decommissioning and decontamination of contaminated facilities at the Laboratory for Energy-Related Health Research University of California, Davis  

SciTech Connect

The Laboratory for Energy-Related Health Research (LEHR) was established in 1958 at its present location by the Atomic Energy Commission. Research at LEHR originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 and radium 226, using beagles to simulate radiation effects on humans. In 1988, pursuant to a memorandum of agreement between the US Department of Energy (DOE) and the University of California, DOE`s Office of Energy Research decided to close out the research program, shut down LEHR, and turn the facilities and site over to the University of California, Davis (UCD) after remediation. The decontamination and decommissioning (D&D) of LEHR will be managed by the San Francisco Operations Office (SF) under DOE`s Environmental Restoration Program. This environmental assessment (EA) addresses the D&D of four site buildings and a tank trailer, and the removal of the on-site cobalt 60 (Co-60) source. Future activities at the site will include D&D of the Imhoff building and the outdoor dog pens, and may include remediation of underground tanks, and the landfill and radioactive disposal trenches. The remaining buildings on the LEHR site are not contaminated. The environmental impacts of the future activities cannot be determined at this time because the extent of contamination has not yet been ascertained. The impacts of these future activities (including the cumulative impacts of the future activities and those addressed in this EA) will be addressed in future National Environmental Policy Act (NEPA) documentation.

Not Available

1992-09-01T23:59:59.000Z

413

RESULTS OF IONSIV® IE-95 STUDIES FOR THE REMOVAL OF RADIOACTIVE CESIUM FROM K-EAST BASIN SPENT NUCLEAR FUEL POOL DURING DECOMMISSIONING ACTIVITIES  

SciTech Connect

This report delineates the results obtained from laboratory testing of IONISIV{reg_sign} IE-95 to determine the efficacy of the zeolite for the removal of radioactive cesium from the KE Basin water prior to transport to the Effluent Treatment Facility, as described in RPP-PLAN-36158, IONSIV{reg_sign} IE-95 Studies for the removal of Radioactive Cesium from KE Basin Spent Nuclear Fuel Pool during Decommissioning Activities. The spent nuclear fuel was removed from KE Basin and the remaining sludge was layered with a grout mixture consisting of 26% Lehigh Type I/II portland cement and 74% Boral Mohave type F fly ash with a water-to-cement ratio of 0.43. The first grout pour was added to the basin floor to a depth of approximately 14 in. covering an area of 12,000 square feet. A grout layer was also added to the sludge containers located in the attached Weasel and Technical View pits.

DUNCAN JB; BURKE SP

2008-07-07T23:59:59.000Z

414

Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station  

SciTech Connect

For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)

2013-07-01T23:59:59.000Z

415

Innovative Integration of Decommissioning and Deactivation Program with Soil-Groundwater Clean Up Program Has Positive Results on Budget and Schedule: A Case Study  

SciTech Connect

An innovative approach to integrate the activities of a decommissioning and deactivation program (D&D) with a soil-groundwater clean up program has had significant positive results saving both money and time at the Department of Energy's Savannah River Site. The accomplishments that have been achieved by the combining the two programs have been remarkable including significant cost savings, economies of scale for sampling and document generation, and alignment of common objectives. Because of the coordination of both activities area-wide ''end states'' can be formulated and be consistent with the customers' cleanup goals and federal regulations. This coordinates and aligns both the environmental clean up and D&D objectives because each must be addressed simultaneously and comprehensively. In this respect, resources from both organizations can be pooled to take advantage of the strengths of each. The new approach allows more efficient use of lean financial resources and optimizes workforce activities to attain the common objectives while being more cost effective, more protective of the environment, and optimizing the use existing resources.

Schappell, B; Rucker, G

2007-07-25T23:59:59.000Z

416

NAVAL POSTGRADUATE SCHOOL Monterey, California  

E-Print Network (OSTI)

-dimensional ship model images and real images derived from video of an AN/AAS-44V Forward Looking Infrared (FLIR

Rowe, Neil C.

417

The Institution of Naval Architects  

Science Journals Connector (OSTI)

... shown that more heat is absorbed in the fire-box with flaming material than with flameless coke. It is well known that a luminous flame radiates more heat than one ...

1890-04-03T23:59:59.000Z

418

NAVAL POSTGRADUATE SCHOOL Monterey, California  

E-Print Network (OSTI)

, Monterey, CA 93943 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views Generation (MM5) as the atmospheric component was developed for the east Asian marginal seas (EAMS verified against surface wind data from the National Centers for Environmental Prediction (NCEP) and sea

Chu, Peter C.

419

The Institution of Naval Architects  

Science Journals Connector (OSTI)

... Henderson on the elasticity of ships as deduced from experiments on the vibration of dynamical models. A dynamical ... . A dynamical model of the ship is constructed out of a bar of steel of uniform thickness and ...

1909-04-08T23:59:59.000Z

420

The Institution of Naval Architects  

Science Journals Connector (OSTI)

... , a similar ship in all respects, excepting that she has ordinary crank and cylinder engines. As is well known, the steam turbine is less "flexible,"to use an ... is less "flexible,"to use an expression that has come into use, than the reciprocating ...

1905-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Institution of Naval Architects  

Science Journals Connector (OSTI)

... to arrange for holding regular autumnal sessions at the principal outports, in addition to the spring sessions in London. The papers read were chiefly "papers of information,"having a ... well received. His recent paper tf On the Theoretical Duty of Heat in the Steam-Engine"was probably understood by only a few of his hearers; and Prof. Cotterill, ...

W. H. W.

1885-04-09T23:59:59.000Z

422

Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044  

SciTech Connect

This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 ? steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple radionuclides may be selected by the operator and will be identified if present. In scanning operation the unit scans a designated region and superimposes over a video image the distribution of measured radioactivity. For the total scanned area or object RadSearch determines the total activity of operator selected radionuclides present and the gamma dose-rate measured at the detector head. Results of hold-up measurements made in a nuclear facility are presented, as are test measurements of point sources distributed arbitrarily on surfaces. These latter results are compared with the results of benchmarked MCNP Monte Carlo calculations. The use of the device for hold-up and decommissioning measurements is validated. (authors)

Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N. [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom)] [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom); Creed, Richard; Pancake, Daniel [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-07-01T23:59:59.000Z

423

Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009  

SciTech Connect

From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

Moore, T.E.; Smith, J.M.

1994-04-01T23:59:59.000Z

424

Opportunity, risk, and success recognizing, addressing, and balancing multiple factors crucial to the success of a project management system deployed to support multi-lateral decommissioning programs  

SciTech Connect

This paper addresses the factors involved in effectively implementing a world-class program/project management information system funded by multiple nations. Along with many other benefits, investing in and utilizing such systems improves delivery and drive accountability for major expenditures. However, there are an equally large number of impediments to developing and using such systems. To be successful, the process requires a dynamic combining of elements and strategic sequencing of initiatives. While program/project-management systems involve information technologies, software and hardware, they represent only one element of the overall system.. Technology, process, people and knowledge must all be integrated and working in concert with one another to assure a fully capable system. Major system implementations occur infrequently, and frequently miss established targets in relatively small organizations (with the risk increasing with greater complexity). The European Bank of Reconstruction (EBRD) is midway through just such an implementation. The EBRD is using funds from numerous donor countries to sponsor development of an overarching program management system. The system will provide the Russian Federation with the tools to effectively manage prioritizing, planning, and physically decommissioning assets{sub i}n northwest Russia to mitigate risks associated the Soviet era nuclear submarine program. Project-management delivery using world-class techniques supported by aligned systems has been proven to increase the probability of delivering on-time and on-budget, assuring those funding such programs optimum value for money. However, systems deployed to manage multi-laterally funded projects must be developed with appropriate levels of consideration given to unique aspects such as: accommodation of existing project management methods, consideration for differences is management structures and organizational behaviors, incorporation of unique strengths, and subtle adjustment to compensate weaknesses. This paper addresses the architecture and sequencing of implementation. (authors)

Funk, Greg; Longsworth, Paul [Fluor Cumbria, Unit 8, Galemire Court, Westlakes Science Park, Moor Row, CA24 3HY (United Kingdom)

2007-07-01T23:59:59.000Z

425

Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3  

SciTech Connect

The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

NONE

1997-05-01T23:59:59.000Z

426

Shippingport Station Decommissioning Project decommissioning plan. Volume II  

SciTech Connect

This volume appendix on activity specifications is divided into the following: site preparation; barge loading facility; facility closeout and restoration; preparation for removal of reactor pressure vessel, internals, and neutron shield tank package; heavy lifting and hauling; barge transportation; and Hanford transportation. (DLC)

Not Available

1983-01-01T23:59:59.000Z

427

Shippingport Station Decommissioning Project decommissioning plan. Volume 3  

SciTech Connect

Information is presented concerning the removal of both contaminated and non-contaminated piping and equipment from the Shippingport reactor.

Not Available

1983-08-01T23:59:59.000Z

428

Shippingport Station Decommissioning Project decommissioning plan. Part 2. Volume 11  

SciTech Connect

Information is presented concerning the cost-benefit analysis for decontamination of the Shippingport reactor and radiation-contamination survey data.

Not Available

1983-01-01T23:59:59.000Z

429

Shippingport Station Decommissioning Project decommissioning plan. Volume XI, Part I  

SciTech Connect

This document is divided into the following parts: radioactive waste processing, salvage/scrap value estimate, and radionuclide inventory of primary systems. (DLC)

Not Available

1983-07-01T23:59:59.000Z

430

Shippingport Station Decommissioning Project decommissioning plan. Part 2. Volume 6  

SciTech Connect

Information is presented concerning resource leveled logic report; report of remaining area work; activity specification schedules; and DOC activities.

Not Available

1983-01-01T23:59:59.000Z

431

Shippingport Station Decommissioning Project decommissioning plan. Part 2. Volume 9  

SciTech Connect

Appendices are included with information concerning DOE order 5480.1A on environmental protection and health protection; 29 CFR 1910.1001 and 40CFR61 concerning asbestos; Corps of Engineers permit information; Pennsylvania air standards; Pennsylvania water standards; Pennsylvania solid waste management; erosion control regulations; explosives regulations; and NPDES permit.

Not Available

1983-01-01T23:59:59.000Z

432

Shippingport Station Decommissioning Project decommissioning plan. Volume VI, Part II  

SciTech Connect

This document comprises the following: report of remaining contractor work, predecessor/successor logic report, contractor interface report (incoming and outgoing interfaces), and activity specification Barchart plot. (DLC)

Not Available

1984-01-01T23:59:59.000Z

433

Shippingport station decommissioning project: decommissioning plan. Volume No. 5  

SciTech Connect

The activity specifications for solid waste management, decontamination, sludge removal, decontamination of reactor coolant purification system, and systems operation support are given, together with supplementary requirements for welding and work breakdown structure dictionary. (DLC)

Not Available

1983-08-01T23:59:59.000Z

434

Shipppingport Station Decommissioning Project decommissioning plan. Volume 10  

SciTech Connect

Appendices are presented concerning activation analysis; reactor and intervals removal; reactor vessel removal; escalation effects; removal of contaminated concrete; and removal of contaminated chanbers.

Not Available

1983-01-01T23:59:59.000Z

435

REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198  

SciTech Connect

Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

Lowry, N.

2010-11-05T23:59:59.000Z

436

H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect

This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

NONE

1995-12-31T23:59:59.000Z

437

Master's programme in Naval Architecture Programme outline  

E-Print Network (OSTI)

of conception, design, implementation and operation of boats, ships and other marine installations. In addition, manoeuvring, propulsion, and hull structural design.The multi-disciplinary character of the subject through new ship designs,new propulsion systems,and the application of new lighter structural materials

Haviland, David

438

Naval Postgraduate School Monterey, California 939435138  

E-Print Network (OSTI)

strives to sustain excellence in the quality of its instructional programs, to be responsive and supporting research programs to achieve three major goals: 1) academic programs that are nationally of the four pillars of Joint Visions 2010 and 2020 and their enabling technologies; and, 3) executive

439

Naval Research Laboratory Stennis Space Center  

E-Print Network (OSTI)

to the Navy is the need to monitor and predict the ocean. Currents, surface waves, temperature structure of ocean features involve global circulation to currents in estuaries and rivers. NRL research leads.nrlssc.navy.mil). Global ocean systems provide currents and temperature throughout the world (http://www7320.nrlssc

440

E-Print Network Topics: N  

NLE Websites -- All DOE Office Websites (Extended Search)

base naval nuclear propulsion naval observatory ccd naval observatory vlbi naval oil shale reserves naval oil shale naval ordnance laboratory naval ordnance test naval petroleum...

Note: This page contains sample records for the topic "decommissioned defueled naval" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Final joint environmental assessment for the construction and routine operation of a 12-kilovolt (KV) overhead powerline right-of-way, and formal authorization for a 10-inch and 8-inch fresh water pipeline right-of-way, Naval Petroleum Reserve No. 1, Kern County, California  

SciTech Connect

The purpose and need of the proposed action, which is the installation of an overhead powerline extension from an Naval Petroleum Reserve No. 1 (NPR-1) power source to the WKWD Station A, is to significantly reduce NPR-1`s overall utility costs. While the proposed action is independently justified on its own merits and is not tied to the proposed NPR-1 Cogeneration Facility, the proposed action would enable DOE to tie the NPR-1 fresh water pumps at Station A into the existing NPR-1 electrical distribution system. With the completion of the cogeneration facility in late 1994 or early 1995, the proposed action would save additional utility costs. This report deals with the environmental impacts of the construction of the powerline and the water pipeline. In addition, information is given about pr