National Library of Energy BETA

Sample records for decathlon design models

  1. Solar Decathlon Design Models 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon Design Models 2009 Solar Decathlon Design Models 2009 Addthis Florida International 1 of 20 Florida International Image: Energy Department Image Team New Jersey 2...

  2. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar ... Richard King Richard King Director, Solar Decathlon KEY FACTS 2015 Solar Decathlon to kick ...

  3. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon...

  4. Solar Decathlon 2015: Nation's Leading Sustainable Home Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition on the Horizon | Department of Energy Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon July 13, 2015 - 2:15pm Addthis The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction site. | Photo courtesy of New York City College of Technology. The New York City College of Technology is weatherproofing

  5. Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future

    Broader source: Energy.gov [DOE]

    See how Appalachian State University used traditional mountain life architecture to design their 2011 Solar Decathlon home.

  6. Solar Decathlon 2013: Designing the Houses of Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing the Houses of Today Solar Decathlon 2013: Designing the Houses of Today September 12, 2013 - 12:40pm Addthis The Southern California Institute of Architecture and California Institute of Technology team's 10-month design process resulted in their unique design -- a house made of two prefab modules and canopies that run on a system of rails. | Photo courtesy of SCI-Arc/Caltech. The Southern California Institute of Architecture and California Institute of Technology team's 10-month

  7. Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint

    SciTech Connect (OSTI)

    Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

    2012-04-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

  8. Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon Solar Decathlon 1 of 69 Stevens Institute of Technology won top honors at the U.S. Department of Energy Solar Decathlon on October 17, 2015 overall by designing, building, and operating the most cost-effective, energy-efficient and attractive solar powered house. University at Buffalo, The State University of New York took second place followed by California Polytechnic State University, San Luis Obispo in third place. Image: Thomas Kelsey, U.S. Department of Energy Solar

  9. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Administration and DOE EERE International Program: Solar Decathlon China 2013 16 | Building Technologies Office eere.energy.gov Project Integration, Collaboration & Market Impact ...

  10. NREL: News - Solar Decathlon Engineering Design Results Announced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Design Results Announced Thursday, October 3, 2002 Distinguished Panel Picks ... The Engineering Design panel includes engineers prominent in the field of buildings and ...

  11. Miami Students' Solar Decathlon Design Focused on Sustainability

    Broader source: Energy.gov [DOE]

    The 2011 Florida International University Team designed their home around the ability to use adjustable panels on the outside of the home -- to protect from everything from sunshine to hurricanes.

  12. NREL: News - Solar Decathlon Design Presentation and Simulation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announced Design Presentation and Simulation Results Announced Monday, September 30, 2002 Second Round Goes to Virginia Tech Washington, D.C.-Virginia Polytechnic Institute and State University took first place in the Design Presentation and Simulation Contest at the Solar Village on the National Mall in Washington, D.C. today. Carnegie Mellon University placed second and the University of Maryland placed third. With today's contest results, and results from ongoing contests, the overall

  13. VIDEO: Watch the Solar Decathlon 2013 Google+ Hangout | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Watch the Solar Decathlon 2013 Google+ Hangout VIDEO: Watch the Solar Decathlon 2013 Google+ Hangout September 19, 2013 - 2:26pm Addthis Miss the Solar Decathlon 2013 Google+ Hangout? Watch a recording of it above. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs For two years, collegiate teams from around the world have been designing and building energy-efficient solar-powered houses for the U.S. Department of Energy Solar Decathlon

  14. Solar Decathlon 2007 Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    This podcast captures an interview with Richard King, who provides an overview of Solar Decathlon 2007. King is with the U.S. Department of Energy and director of Solar Decathlon.

  15. Solar Decathlon 2013

    ScienceCinema (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard;

    2014-01-10

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  16. Solar Decathlon 2013

    SciTech Connect (OSTI)

    Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard; ,

    2013-10-22

    The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

  17. Solar Decathlon 2015 | Department of Energy

    Office of Environmental Management (EM)

    Addthis 1 of 69 Stevens Institute of Technology won top honors at the U.S. Department of Energy Solar Decathlon on October 17, 2015 overall by designing, building, and operating ...

  18. NREL: Technology Deployment - Solar Decathlon Prepares Thousands...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Decathlon 2011 High-Penetration Microgrid U.S. Department of Energy Solar ... NREL's technical experts guide the design and operation of a two-way power flow microgrid ...

  19. Team Ontario 2009 Solar Decathlon House

    Broader source: Energy.gov [DOE]

    This photograph features Team Ontario/BC's solar-powered house that glows at night during the Lighting Design contest at the U.S. Department of Energy Solar Decathlon on the National Mall. Team...

  20. Affordability Contest Adds New Dimension to Solar Decathlon 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Affordability Contest Adds New Dimension to Solar Decathlon 2011 Affordability Contest Adds New Dimension to Solar Decathlon 2011 September 27, 2011 - 10:20am Addthis Matt Hansen reviews each team’s design drawings and construction specifications to estimate the total construction cost of its house. (Credit: Alexis Power/U.S. Department of Energy Solar Decathlon) Matt Hansen reviews each team's design drawings and construction specifications to estimate the total

  1. Design, Operation, and Controlled-Island Operation of the U.S. Department of Energy Solar Decathlon 2013 Microgrid

    SciTech Connect (OSTI)

    Kurnik, C.; Butt, R. S.; Metzger, I.; Lavrova, O.; Patibandla, S.; Wagner, V.; Frankosky, M.; Wiegand, G.

    2015-04-22

    This document reports on the design and operation of a high-capacity and high-penetration-ratio microgrid, which consists of 19 photovoltaic-powered residential houses designed by collegiate teams as part of their participation in the U.S. Department of Energy Solar Decathlon 2013. The microgrid was interconnected with the local utility, and resulting net-power and power-quality events were recorded in high detail (1-minute data sampling or better). Also, a controlled-island operation test was conducted to evaluate the microgrid response to additional events such as increased loads (e.g., from electric vehicles) and bypassing of voltage regulators. This temporary ground-laid microgrid was stable under nominal and island-operation conditions; adverse weather and loads did not lead to power-quality degradation.

  2. Solar Decathlon 2015: Build it and They Will Come | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decathlon 2015: Build it and They Will Come Solar Decathlon 2015: Build it and They Will Come August 25, 2015 - 11:27am Addthis The US Department of Energy Solar Decathlon 2015 is recruiting volunteers! The award-winning educational event, October 8-18 in Irvine, California, will showcase solar efficiency houses designed and built by collegiate teams worldwide. Source: Alexis Powers The US Department of Energy Solar Decathlon 2015 is recruiting volunteers! The award-winning educational event,

  3. Solar Decathlon 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This brochure provides key information about Solar Decathlon 2009--the dates, the background of the competition and event, and where to go for more information.

  4. Webtrends Archives by Fiscal Year - Solar Decathlon | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Decathlon site by fiscal year. Solar Decathlon FY07 (2.28 MB) Solar Decathlon FY08 (2.23 MB) Solar Decathlon FY09 (2.26 MB) Solar Decathlon FY10 (2.18 MB) Solar Decathlon ...

  5. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy of the U.S. Department of Energy's Solar Decathlon Program Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program The U.S. Department of Energy (DOE) Solar Decathlon Program challenges teams of college students to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive, and then demonstrate them to the public.1 The first Solar Decathlon was held in 2002; the Solar Decathlon has occurred

  6. NREL: News - Winner of Solar Decathlon to be Announced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winner of Solar Decathlon to be Announced Friday, October 4, 2002 Washington, D.C.- The winner of the U.S. Department of Energy's first Solar Decathlon will be announced noon, Saturday, October 6 in the Solar Village on the National Mall. The Solar Decathlon is a team competition among 14 colleges and universities from across the country and Puerto Rico to design and build the most attractive and energy-efficient solar-powered homes. The winning team must blend aesthetics and modern conveniences

  7. U.S. Department of Energy Solar Decathlon 2015

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive.

  8. Energy Department Announces Dates and New Contests for Solar Decathlon 2017

    Energy Savers [EERE]

    in Denver, Colorado | Department of Energy Dates and New Contests for Solar Decathlon 2017 in Denver, Colorado Energy Department Announces Dates and New Contests for Solar Decathlon 2017 in Denver, Colorado August 24, 2016 - 10:58am Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON, DC -The U.S. Department of Energy Solar Decathlon 2017 student design competition, which challenges collegiate teams to design, build and operate solar-powered houses that are

  9. Solar Decathlon 2015 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Decathlon 2015 Solar Decathlon 2015 Addthis 1 of 68 An electric car sits parked at Clemson University during public exhibit hours of U.S. Department of Energy Solar Decathlon...

  10. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... |1.|Department of Energy Solar Decathlon Home Page http: www. solardecathl on. org |43,756|61,116| |2.|EERE: Department of Energy Solar Decathlon Home Page http: ...

  11. 2009 Solar Decathlon Winners Announced | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Solar Decathlon Winners Announced 2009 Solar Decathlon Winners Announced October 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Deputy Secretary Daniel Poneman today announced the winners of the 2009 Department of Energy Solar Competition on the National Mall in Washington, D.C. Team Germany, the student team from Darmstadt, Germany, won top honors by designing, building, and operating the most attractive and efficient solar-powered home. The University of Illinois at

  12. 2005 Solar Decathlon (Competition Program)

    SciTech Connect (OSTI)

    Not Available

    2005-10-01

    The 2005 Solar Decathlon Competition Program is distributed to Solar Decathlon visitors, media, sponsors, and the student competitors. It contains basic facts about the Solar Decathlon: what, where, when, who, and how. It is a guide for visitors to the events and workshops. It describes the 10 contests and the technologies used in the houses. It celebrates the accomplishments of the competitors and provides an opportunity for the major sponsors to describe their roles and relay their commitment to the ideals of the Solar Decathlon.

  13. A Solar Decathlon Entry for Historic Norfolk

    Broader source: Energy.gov [DOE]

    It’s a tale of two universities with a vision for one historic city. Students from both Hampton and Old Dominion universities have joined forces to compete in the upcoming Energy Department Solar Decathlon with their entry, called Unit 6 Unplugged. At Tidewater Virginia, the students will unveil their vision for the future -- an energy-efficient house that captures the “Arts and Crafts” design style of homes dotted throughout historic Norfolk, Virginia.

  14. Solar Decathlon | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Farhana Rahman of the New York City College of Technology prepare to install the last solar panel on Day 8 of the U.S. Department of Energy Solar Decathlon. Image: Thomas...

  15. Secretary Chu Congratulates Solar Decathlon Winners | Department...

    Energy Savers [EERE]

    Solar Decathlon Winners Secretary Chu Congratulates Solar Decathlon Winners October 1, 2011 - 2:48pm Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today ...

  16. Solar Decathlon Opening | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opening Solar Decathlon Opening October 6, 2005 - 12:25pm Addthis Remarks Prepared for Energy Secretary Bodman Let me begin by welcoming all of you to this Solar Decathlon. I want ...

  17. Solar Decathlon Opening | Department of Energy

    Office of Environmental Management (EM)

    Solar Decathlon Opening Solar Decathlon Opening October 6, 2005 - 12:25pm Addthis Remarks Prepared for Energy Secretary Bodman Let me begin by welcoming all of you to this Solar...

  18. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... |1.|U.S. Department of Energys Solar Decathlon Home Page http: www. solardecathl on. org |279,740|497,549| |2.|DOE Solar Decathlon: Final Results http: www. ...

  19. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... |1.|U.S. Department of Energys Solar Decathlon Home Page http: www. solardecathl on. org |141,058|197,478| |2.|DOE Solar Decathlon: Teams http: www. solardecathl ...

  20. U.S. Department of Energy Solar Decathlon 2015 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and...

  1. Secretary Bodman Talks Solar Decathlon 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Talks Solar Decathlon 2007 Secretary Bodman Talks Solar Decathlon 2007 In this podcast, U.S. Energy Secretary Samuel Bodman discusses Solar Decathlon 2007 and the college teams participating. Audio MP3 (3.12 MB) Text-Alternative (25.5 KB) More Documents & Publications Solar Decathlon 2007 Overview Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program Solar Decathlon

  2. NREL: News - Energy Department Honors Solar Decathlon Winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Honors Solar Decathlon Winners Saturday, October 5, 2002 Energy Department Honors Solar Decathlon Winners University of Colorado at Boulder Takes First in Solar ...

  3. Solar Decathlon: How far did they travel? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decathlon Journeys Visualizing the distances that each Solar Decathlon house travelled Click competitors to toggle their journeys on and off. All routes and distances are...

  4. OSTIblog Articles in the DOE's Solar Decathlon Topic | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    DOE's Solar Decathlon Topic University of Tennessee Knoxville in DOE's .EDUconnections ... chart or developing "Living Light", a net-zero energy home for DOE's Solar Decathlon. ...

  5. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  6. New Location for Solar Decathlon 2011 Announced | Department...

    Office of Environmental Management (EM)

    Location for Solar Decathlon 2011 Announced New Location for Solar Decathlon 2011 ... check out the computer-animated video the New Jersey team submitted to walk us through ...

  7. Solar Decathlon 2013: Raising More Than Just Walls | Department...

    Office of Environmental Management (EM)

    Raising More Than Just Walls Solar Decathlon 2013: Raising More Than Just Walls September ... To celebrate the groundbreaking of their Solar Decathlon house, the team invited all of ...

  8. Solar Decathlon 2013: Let the Building Begin | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Day 7 Construction During the 7th day of construction, the Solar Decathlon village has ... The University of North Carolina at Charlotte team members assemble their Solar Decathlon ...

  9. Solar Decathlon Team Leading the Way Toward Sustainable Living...

    Broader source: Energy.gov (indexed) [DOE]

    of Illinois at Urbana-Champaign Solar Decathlon Team. The Rehouse is nearing completion. | Courtesy of the University of Illinois at Urbana-Champaign Solar Decathlon Team. ...

  10. Solar Decathlon: Appalachian State Wins People's Choice Award...

    Broader source: Energy.gov (indexed) [DOE]

    Lee, right, members of Appalachian States Solar Decathlon team. | Credit: Stefano PalteraU.S. Department of Energy Solar Decathlon On Friday, Sept. 30, 2011, U.S. ...

  11. University of Maryland's "WaterShed" Wins 2011 Solar Decathlon...

    Energy Savers [EERE]

    space that generates its energy from solar power. | Courtesy of University of Maryland Solar Decathlon Team The University of Maryland's "WaterShed" won the 2011 Solar Decathlon. ...

  12. U.S. Department of Energy Solar Decathlon Visitors Guide 2015

    SciTech Connect (OSTI)

    2015-09-03

    The U.S. Department of Energy 2015 Visitors Guide is a free, hard-copy publication distributed free to those attending the Solar Decathlon event. The publications' objectives are to serve as the primary information resource for those in attendance, and to deliver a compelling message about the Solar Decathlon's success as a proven workforce development program and its role in educating students and the public about clean energy products and design solutions. The U.S. Department of Energy 2015 Visitors Guide SD15 Visitors Guide goals are to guide attendees through the Solar Decathlon village; List and explain the 10 contests; educate attendees about the participating teams and their competition houses; provide access to more information on the Solar Decathlon website through the use of QR codes; and acknowledge the support of all event sponsors.

  13. Solar Decathlon Technology Spotlight: Structural Insulated Panels |

    Broader source: Energy.gov (indexed) [DOE]

    Energy Solar Decathlon 2011 at West Potomac Park Solar Decathlon 2011 at West Potomac Park Program Features Government Officials, Students and Foreign Dignitaries WASHINGTON, DC - A ceremony on Thursday featuring U.S. government officials, students, foreign dignitaries and event sponsors will officially open the solar village of the U.S. Department of Energy Solar Decathlon 2011 at the National Mall's West Potomac Park. WHO: Arun Majumdar, Senior Advisor to the Secretary, U.S. Department of

  14. Are You Going to the Solar Decathlon?

    Broader source: Energy.gov [DOE]

    Drew told you about the upcoming Solar Decathlon, held every other year on the National Mall in Washington, D.C.

  15. Vote for Your Favorite Solar Decathlon House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Your Favorite Solar Decathlon House Vote for Your Favorite Solar Decathlon House Vote for Your Favorite Solar Decathlon House Thank you for voting in our Solar Decathlon 2015 Favorite poll! Sort by rating (high to low) to see which teams scored best and read our blog post on the results. Also, go to SolarDecathlon.gov for full coverage of the competition, including final scores and standings, videos, photos and more! Innovators Sort by: Random | Alphabetical | Rating (High to Low) | Rating

  16. Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon

    Broader source: Energy.gov [DOE]

    Team Massachusetts is bringing a unique perspective to the Solar Decathlon this fall. You might say it is a fourth dimension because of the team’s newly constructed 4D Home. But it could also be argued that it is because the Massachusetts College of Art and Design and University of Massachusetts Lowell are collaborating for the team’s first entry into the biannual competition, and they’re both public institutions.

  17. U.S. Department of Energy Solar Decathlon

    SciTech Connect (OSTI)

    2011-12-16

    The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. In addition to showcasing the cost savings and environmental benefits of market-ready solar technologies, the event encourages participating students to think in new ways about incorporating practical, affordable clean-energy solutions into residential applications.

  18. Solar Decathlon Turns Ten | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. ...

  19. Solar Decathlon: How Do WE Do Efficiency?

    Broader source: Energy.gov [DOE]

    The weather is cooling off, the trees look gorgeous and (every other year) the National Mall turns into a beehive of activity when the Solar Decathlon comes to town.

  20. Solar Decathlon Update from Secretary Chu

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Steven Chu provides his insights on the 2009 Solar Decathlon in Washington, DC. To view each of the houses in this year's competition and vote for your favorite, visit http://www.solardecathlon.org/virtual_tours/

  1. Santa Clara University 2007 Solar Decathlon House

    Broader source: Energy.gov [DOE]

    This photograph features a 2007 Solar Decathlon competition home that includes residential photovoltaic (PV) modules from SunPower Corporation of San Jose, California, and a solar collector from...

  2. Installation on 2007 Solar Decathlon Home

    Broader source: Energy.gov [DOE]

    This photograph features a 2007 Solar Decathlon competition home that includes residential photovoltaic (PV) modules from SunPower Corporation of San Jose, California, and a solar collector from ...

  3. Roof Installation at 2009 Solar Decathlon

    Broader source: Energy.gov [DOE]

    Iowa State student Timothy Lentz, foreground, and Team Alberta student Leah Battersdy, right, work on the roofs of their houses during the U.S. Department of Energy Solar Decathlon 2009.

  4. What Do You Think About Solar Decathlon?

    Broader source: Energy.gov [DOE]

    Did you get a chance to see the Solar Decathlon houses, or did you follow the teams on Facebook or their website? Tell us what you thought of the event.

  5. Solar Decathlon 2011, (Small Program)(Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This brochure provides a high-level overview of the U.S. Department of Energy Solar Decathlon 2011. The competition's background, purpose, impact, 10 contests, 20 teams, and where to go for additional information.

  6. 2011 Solar Decathlon – The Volunteer's Perspective

    Broader source: Energy.gov [DOE]

    The Solar Village has been open to the public on the National Mall’s West Potomac Park for seven days now, which means the 2011 Solar Decathlon is fully underway. But the 19 teams of students...

  7. Solar Decathlon 2015: The Next Generation of Clean Energy Leaders...

    Broader source: Energy.gov (indexed) [DOE]

    Teams gather to hear the final results at the U.S. Department of Energy Solar Decathlon 2013. Many former Solar Decathlon participants have gone on to pursue careers in clean ...

  8. Energy Department Announces Student Teams for Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Teams for Solar Decathlon 2015 Energy Department Announces Student Teams for Solar Decathlon 2015 February 19, 2014 - 12:00am Addthis The Energy Department on February 13 ...

  9. Solar Decathlon 2013: Meet the Teams | Department of Energy

    Office of Environmental Management (EM)

    ... Ever wonder what it takes to compete in the U.S. Department of Energy Solar Decathlon? Over the next couple of weeks, we're exploring how the Solar Decathlon 2013 teams' ...

  10. Department of Energy Considers New Venue for Solar Decathlon...

    Office of Environmental Management (EM)

    Considers New Venue for Solar Decathlon 2013 Department of Energy Considers New Venue for Solar Decathlon 2013 August 1, 2011 - 3:29pm Addthis Washington, D.C. - Energy Secretary ...

  11. Checking in on Solar Decathlon 2011 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    latest updates and media-and be sure to follow Solar Decathlon on Facebook, Twitter, YouTube, and Flickr. Addthis Related Articles Countdown to Solar Decathlon: The Info You Need...

  12. Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results October 22, 2015 - 10:10am Addthis West Virginia University...

  13. Solar Decathlon 2013: Building Skills for Future Careers | Department...

    Energy Savers [EERE]

    Building Skills for Future Careers Solar Decathlon 2013: Building Skills for Future ... Solar Decathlon 2013: In our new blog series, we're going behind the scenes to show you ...

  14. Solar Decathlon 2015: Let the Competition Begin | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Let the Competition Begin Solar Decathlon 2015: Let the Competition Begin February 13, 2014 - 1:00pm Addthis The Solar Decathlon competition has provided more than 17,000 college ...

  15. Solar Decathlon Teams Working Around the Clock to Assemble Homes...

    Broader source: Energy.gov (indexed) [DOE]

    at the 2011 Solar Decathlons All-Team Meeting, immediately before the assembly stage of the competition. | Photo Credit: Carol AnnaU.S. Department of Energy Solar Decathlon. ...

  16. Solar Decathlon 2011: The Visitor’s Perspective

    Broader source: Energy.gov [DOE]

    Ride along as we visit the 2011 Solar Decathlon competition and explore the Solar Village with fellow sightseers!

  17. Podcasts: Energy Secretary Samuel Bodman Discusses the Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon 2007 Podcasts: Energy Secretary Samuel Bodman Discusses the Solar Decathlon (Text Version) Below is the text version of the podcast recorded by Secretary of Energy Samuel Bodman. Visit the Solar Decathlon Podcasts section to subscribe to the podcast or download individual audio files. INTRO: This is a special 2007 Solar Decathlon edition of Energy Buzz, the podcast series produced by the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy in

  18. Webtrends Archives by Fiscal Year — Solar Decathlon

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Solar Decathlon site by fiscal year.

  19. How to Win a Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Win a Solar Decathlon How to Win a Solar Decathlon October 1, 2015 - 3:01pm Addthis The finals of the U.S. Department of Energy Solar Decathlon 2015 are upon us. Not familiar with the competition? Here’s everything you need to know ahead of the big event, <a href="http://www.solardecathlon.gov/2015/visit.html">happening Oct. 8-18 in Irvine, California</a>. | Photo by Stefano Paltera, Solar Decathlon. The finals of the U.S. Department of Energy Solar Decathlon 2015

  20. Are You Attending Solar Decathlon This Year? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attending Solar Decathlon This Year? Are You Attending Solar Decathlon This Year? September 22, 2011 - 6:45am Addthis Amanda Crosby, right, and Belinda Dods of New Zealand celebrate placing the final screw on the deck of their house at Solar Decathlon 2011. Amanda Crosby, right, and Belinda Dods of New Zealand celebrate placing the final screw on the deck of their house at Solar Decathlon 2011. This Friday marks the first day of Solar Decathlon 2011, an annual event that challenges collegiate

  1. Belgium’s Ghent University Prepares their E-Cube for Solar Decathlon 2011

    Broader source: Energy.gov [DOE]

    The Ghent University 2011 Solar Decathlon Team -- aka Team Belgium -- is a unique two-story home that could very well be an international star at the competition due to the Belgium team’s innovative, ultra-efficient, passive home design.

  2. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon...

    Energy Savers [EERE]

    2005. This evaluation covers the four Solar Decathlons from 2002 through 2009. Technical Report (4.42 MB) More Documents & Publications Solar Decathlon Webtrends Archives by ...

  3. Energy, Interior Departments Announce New Location for Solar Decathlon 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy, Interior Departments Announce New Location for Solar Decathlon 2011 Energy, Interior Departments Announce New Location for Solar Decathlon 2011 February 23, 2011 - 12:00am Addthis WASHINGTON -- The Department of Energy and the Department of the Interior today announced that the U.S. Department of Energy Solar Decathlon 2011 will be held at the National Mall's West Potomac Park, on the banks of the Potomac River along the path between the Lincoln and Jefferson

  4. Energy Department Announces Student Teams, New Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 | Department of Energy Student Teams, New Location for Solar Decathlon 2013 Energy Department Announces Student Teams, New Location for Solar Decathlon 2013 January 26, 2012 - 10:56am Addthis WASHINGTON, DC - At an event today in Albuquerque, New Mexico, U.S. Department of Energy Secretary Steven Chu announced the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2013 and unveiled the competition's location, the Orange County Great Park in Irvine,

  5. Construction Begins for Solar Decathlon 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins for Solar Decathlon 2011 Construction Begins for Solar Decathlon 2011 September 13, 2011 - 11:13am Addthis Location of U.S. Department of Energy's 2011 Solar Decathlon at the National Mall's West Potomac Park in Washington, D.C. Location of U.S. Department of Energy's 2011 Solar Decathlon at the National Mall's West Potomac Park in Washington, D.C. WASHINGTON, D.C. - Collegiate teams featuring over 4,000 students from around the world are arriving at the National Mall's West

  6. October 14, 2005: 2005 Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 14, 2005 Secretary Bodman announces that the University of Colorado takes overall honors in the 2005 Solar Decathlon on the National Mall. Cornell University places second, ...

  7. 2007 Solar Decathlon: Powered by the Sun (Competition Program)

    SciTech Connect (OSTI)

    Not Available

    2007-09-01

    The 2007 Solar Decathlon Competition Program is distributed to Solar Decathlon visitors, media, sponsors, and the student competitors. It contains basic facts about the Solar Decathlon: what, where, when, who, and how. It is a guide for visitors to the events and workshops. It describes the 10 contests and the technologies used in the houses. It celebrates the accomplishments of the competitors and provides an opportunity for the major sponsors to describe their roles and relay their commitment to the ideals of the Solar Decathlon.

  8. Solar Decathlon 2013: New Teams! New Location! | Department of...

    Energy Savers [EERE]

    in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Orange County Great Park in Irvine, California -- venue for ...

  9. Secretary Chu Visits the 2011 Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Solar Decathlon Secretary Chu Visits the 2011 Solar Decathlon September 30, 2011 - 6:27pm Addthis Secretary Chu toured the Solar Village at the 2011 Solar Decathlon on the National Mall's West Potomac Park on September 30, 2011. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier today, student Decathletes at the 2011 Solar Decathlon got to show off their homes - and the hard work they've done for the last two years -- to Secretary of Energy Steven

  10. Technische Universität Darmstadt 2007 Solar Decathlon House

    Broader source: Energy.gov [DOE]

    This photograph features the winning home from the 2007 Solar Decathlon competition. It has wooden louvers that provide shading and privacy, and simultaneously generates electricity through...

  11. DOE Solar Decathlon Coming to National Mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon Coming to National Mall DOE Solar Decathlon Coming to National Mall October 1, 2009 - 12:00am Addthis WASHINGTON, DC - Early this morning, twenty university-led teams descended on the National Mall along with high-tech, high-efficiency solar-powered homes they have built for the 2009 U.S. Department of Energy Solar Decathlon. Over 800 student competitors from the United States, Canada, Spain and Germany will compete in the 2009 Solar Decathlon. The international competition takes

  12. 2007 Solar Decathlon Closing Ceremony and Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Solar Decathlon Closing Ceremony and Awards 2007 Solar Decathlon Closing Ceremony and Awards October 19, 2007 - 3:21pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Andy. I want to thank you once again for your leadership in making the Solar Decathlon such a success. The Solar Decathlon is now a permanent part of America. I also want to thank everyone sponsors, DOE employees, Members of Congress, any parents and faculty who might be with us and anyone else who came out this week

  13. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. ... They found their inspiration in nature: the golden poppy, California's state flower. Learn ...

  14. Solar Decathlon Homes-- They’re Not Just for Show

    Broader source: Energy.gov [DOE]

    Have you ever wondered what happens to Solar Decathlon Houses after the competition? We explore where some of the houses are now.

  15. University of Colorado Wins 2005 Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado Wins 2005 Solar Decathlon University of Colorado Wins 2005 Solar Decathlon October 14, 2005 - 11:56am Addthis Solar Village to Remain Open to Public through Oct. 16 WASHINGTON, D.C. - U.S. Secretary of Energy Samuel W. Bodman today announced that the University of Colorado took overall honors in the 2005 Solar Decathlon on the National Mall. Cornell University placed second, and California Polytechnic State University finished third. The houses will remain open to the public from 9 a.m.

  16. 2017 Solar Decathlon Announces Dates | Department of Energy

    Energy Savers [EERE]

    7 Solar Decathlon Announces Dates 2017 Solar Decathlon Announces Dates Addthis Description Below is the text version for the "2017 Solar Decathlon Announces Dates" video. Eric Escudero, EERE Digital Team: Hi everybody, I'm Eric Escudero with the EERE digital team. We're in Denver, Colorado, near the new commuter line that connects the airport to downtown. The video shows a shot of the Denver light rail system In just over a year from now, this place will be packed with people and

  17. Energy Department Announces Student Teams for Solar Decathlon 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Student Teams for Solar Decathlon 2015 Energy Department Announces Student Teams for Solar Decathlon 2015 February 19, 2014 - 12:00am Addthis The Energy Department on February 13 announced the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2015 and unveiled the competition's location - €the Orange County Great Park, located between Los Angeles and San Diego, in Irvine, California. Orange County Great Park was the site of Solar

  18. Energy Department Announces Denver as Next Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition in 2017 | Department of Energy Denver as Next Location for Solar Decathlon Competition in 2017 Energy Department Announces Denver as Next Location for Solar Decathlon Competition in 2017 March 11, 2016 - 12:01pm Addthis Under Secretary for Science and Energy Dr. Franklin Orr announces Denver as the host city for the 2017 U.S. Department of Energy Solar Decathlon. | Photo courtesy of Ellen Jaskol Under Secretary for Science and Energy Dr. Franklin Orr announces Denver as the host

  19. Housing Innovation Awards at the Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing Innovation Awards at the Solar Decathlon Housing Innovation Awards at the Solar Decathlon Housing Innovation Awards at the Solar Decathlon, U.S. Department of Energy, Breakfast presented by BASF, Friday, October 4, 2013 8:30-10:30 a.m. Historic Hanger 244 Orange County Great Park in Irvine, CA. ch_hia_breakfast100413.pdf (9.43 MB) More Documents & Publications ZERH Webinar: Successful Strategies for the Housing Innovation Awards Zero Energy Ready Home Training Presentation DOE ZERH

  20. Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results |...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy 2015 culminates with crowning of Stevens Institute of Technology as champions. We asked you to vote for your favorite Solar Decathlon house on Energy.gov, ...

  1. Solar Decathlon 2015: Meet the Teams | Department of Energy

    Energy Savers [EERE]

    From storm-resistant shelters to breezy dwellings that open like a flower, the solar-powered houses in the U.S. Department of Energy Solar Decathlon 2015 are as diverse and ...

  2. Smart Meters Help Balance Energy Consumption at Solar Decathlon

    Broader source: Energy.gov [DOE]

    Clouds, rain, thunderstorms… at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

  3. Solar Decathlon 2013: Life After the Competition | Department...

    Office of Environmental Management (EM)

    ... But then what happens to these energy-efficient, solar-powered houses after the competition? While some Solar Decathlon houses are sold to recover competition costs or raise money ...

  4. Solar Decathlon 2013 Infographic: The Path to a Brighter Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar...

  5. Solar Decathlon 2013: Building Skills for Future Careers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Skills for Future Careers Solar Decathlon 2013: Building Skills for Future Careers September 16, 2013 - 3:03pm Addthis It took six months and nearly 60 students to build...

  6. Virgina Tech 2009 Solar Decathlon House at Night

    Broader source: Energy.gov [DOE]

    This photograph features the energy-efficient lighting that illuminates the solar-powered Virginia Tech house during the U.S. Department of Energy Solar Decathlon 2009 on the National Mall. The...

  7. Vote for Your Favorite Solar Decathlon House | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    their 2015 Solar Decathlon entry, dubbed "Indigo Pine." Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  8. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor Vergata entry in the 2015 Solar Decathlon, during team dinners that...

  9. Solar Decathlon 2011 Opens To Media This Week | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Location of U.S. Department of Energy's 2011 Solar Decathlon at the National Mall's West Potomac Park in Washington, D.C. Location of U.S. Department of Energy's 2011 Solar ...

  10. Solar Decathlon 2013 Infographic: The Path to a Brighter Future...

    Energy Savers [EERE]

    Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar ...

  11. Solar Decathlon: Rain and Shine | Department of Energy

    Energy Savers [EERE]

    Solar Decathlon: Rain and Shine October 20, 2009 - 7:00am Addthis Drew Bittner WriterEditor, Office of Energy Efficiency and Renewable Energy Friday marked the end of the Solar ...

  12. DOE's Solar Decathlon to Highlight Innovation, Future Green Jobs...

    Energy Savers [EERE]

    DOE's Solar Decathlon to Highlight Innovation, Future Green Jobs June 9, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy today announced this year's ...

  13. NREL: News - Solar Decathlon Graphics and Communication Results Announced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphics and Communication Results Announced Tuesday, October 1, 2002 First Place Goes to University of Colorado Washington, D.C.-The University of Colorado at Boulder took first place in the Graphics and Communication results announced today at the U. S. Department of Energy's Solar Decathlon competition on the National Mall in Washington, DC. Auburn University placed second and Crowder College placed third. The Solar Decathlon runs through Oct. 5. With today's third round contest results, and

  14. Solar Decathlon 2013: Going the Distance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Solar Decathletes Inspire Today's Green Builders and Tomorrow's Innovations Richard King Richard King Director, Solar Decathlon An energetic group of university students from New Zealand to North Carolina are a huge draw at this year's International Builders' Show in Orlando, Florida. The students are preparing for the U.S. Department of Energy Solar Decathlon - a competition that challenges 20 collegiate teams to construct and operate solar-powered homes that

  15. Solar Decathlon at Home in the D.C. Community | Department of...

    Office of Environmental Management (EM)

    at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community December 4, ... were add by DC Habitat after the Solar Decathlon demonstration home was moved to Deanwood. ...

  16. Grid Modernization Highlighted in Washington DC in September with the Solar Decathlon

    Broader source: Energy.gov [DOE]

    Smart Grid is on display at the U.S. Department of Energy 2011 Solar Decathlon, held September 23 through October 2 on the National Mall, West Potomac Park, Washington, DC. The decathlon...

  17. Hangout with Solar Decathlon 2013 Teams on Sept. 18 at 2 pm ET...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Decathlon 2013: The Path to a Brighter Future on Wednesday, Sept. 18, at 2 pm ET. | ... Mark your calendars for a Google+ Hangout on Solar Decathlon 2013: The Path to a Brighter ...

  18. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program

    SciTech Connect (OSTI)

    Barnes, Harley

    2012-12-01

    This report includes the methodology and findings in evaluating DOE’s Solar Decathlon event. The primary purpose of this evaluation is to learn how effectively the Solar Decathlon event is in meeting its objectives.

  19. U.S. Department of Energy Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings U.S. Department of Energy Solar Decathlon U.S. Department of Energy Solar Decathlon Photo of the Solar Village from 2013 The U.S. Department of Energy ...

  20. Come for Solar Decathlon, Stay for the Clean Energy XPO | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Come for Solar Decathlon, Stay for the Clean Energy XPO Come for Solar Decathlon, Stay for the Clean Energy XPO September 27, 2013 - 9:49am Addthis In early January 2013, Solar Decathlon teams gathered at the competition site in Irvine, California. | Photo courtesy of Stefano Paltera, Energy Department. In early January 2013, Solar Decathlon teams gathered at the competition site in Irvine, California. | Photo courtesy of Stefano Paltera, Energy Department. Richard King Richard King

  1. U.S. and Spain to Develop Solar Decathlon Europe | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spain to Develop Solar Decathlon Europe U.S. and Spain to Develop Solar Decathlon Europe October 18, 2007 - 3:21pm Addthis WASHINGTON, DC - Today U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Spain's Undersecretary of Housing Fernando Magro Fernández signed a Memorandum of Understanding (MOU) to collaborate in the development of a Solar Decathlon Europe competition in 2010. The Solar Decathlon is a competition launched by

  2. Solar Decathlon 2013: Meet the Teams | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Day 7 Construction 1 of 22 Day 7 Construction During the 7th day of construction, the Solar Decathlon village has started to take shape. The houses open to the public on October 3, 2013 at 11 am. Image: Stefano Paltera, Energy Department Day 7 Construction 2 of 22 Day 7 Construction The University of North Carolina at Charlotte team members assemble their Solar Decathlon entry. Image: Eric Grigorian, Energy Department Day 7 Construction 3 of 22 Day 7 Construction Kevin Davis, of West Virginia

  3. Solar Decathlon Participants Bring Innovation to D.C.'s Ward 7

    Broader source: Energy.gov [DOE]

    Read about the "Empowerhouse Collaborative" -- a 2011 Solar Decathlon Team partnering with Habitat for Humanity building their home for a family in Washington, D.C.

  4. University of Maryland Solar Decathlon Team Celebrates with a "Shed Raising"

    Broader source: Energy.gov [DOE]

    The University of Maryland 2011 Solar Decathlon Team is using one element -- water -- as a major component of their home. Here's how.

  5. Purdue's "INhome" Rallies for the Solar Decathlon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purdue's "INhome" Rallies for the Solar Decathlon Purdue's "INhome" Rallies for the Solar Decathlon May 5, 2011 - 3:13pm Addthis Purdue's INhome team at their recent "Topping Out" party (note the little tree on the roof of the house). | Photo Courtesy of the Purdue INhome Solar Decathlon team Purdue's INhome team at their recent "Topping Out" party (note the little tree on the roof of the house). | Photo Courtesy of the Purdue INhome Solar Decathlon team

  6. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    SciTech Connect (OSTI)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  7. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Decathlon 2015 Solar Decathlon 2015 Addthis 1 of 69 Stevens Institute of Technology won top honors at the U.S. Department of Energy Solar Decathlon on October 17, 2015 overall by designing, building, and operating the most cost-effective, energy-efficient and attractive solar powered house. University at Buffalo, The State University of New York took second place followed by California Polytechnic State University, San Luis Obispo in third place. Image: Thomas Kelsey, U.S. Department of

  8. Solar Decathlon Visitors Guide 2011, National Mall, West Potomac Park, Washington, D.C., September 23 - October 2, 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Guide to the student-designed houses, ten contests, exhibits, and workshops of the U.S. Department of Energy 2011 Solar Decathlon, held in Washington, D.C., from September 23 through October 2, 2011. Teams of college students designed and built the solar-powered houses on display here. They represent 13 U.S. states, five countries, and four continents. Now the teams are rising to the challenge by competing in 10 contests over nine days, with the championship trophy on the line. This is their time to shine. The 2011 teams may share a common goal - to design and build the best energy-efficient house powered by the sun - but their strategies are different. One house is made of precast concrete, while another 'dances' in response to its environment. Another house is meant to sit atop a building, proving the sky's the limit for energy innovation. Whatever your idea of sustainable living may be, you are bound to find it at the Solar Decathlon.

  9. Energy Department Selects Student Teams to Compete in 2009 Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Student Teams to Compete in 2009 Solar Decathlon Energy Department Selects Student Teams to Compete in 2009 Solar Decathlon January 24, 2008 - 10:53am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the 20 university-led teams selected to compete in the Department's fourth Solar Decathlon, which will be held on the National Mall in Washington, DC, in the fall of 2009. This year's teams have been selected from universities in the United

  10. Four Minority Serving Institutions Selected to Compete in the 2013 Solar Decathlon

    Broader source: Energy.gov [DOE]

    Of the elite twenty teams that have been selected from across the country and around the world to compete in the 2013 Solar Decathlon, four are Minority Serving Institutions (MSIs), showcasing the...

  11. Team Canada Returns to the Solar Decathlon with First Nation Values in Mind

    Office of Energy Efficiency and Renewable Energy (EERE)

    Team Canada’s 2011 Solar Decathlon house -- which is known as TRTL (Technological Residence that respects Traditional Living) -- addresses critical housing issues in Alberta, Canada’s Aboriginal communities.

  12. Solar Decathlon Team Leading the Way Toward Sustainable Living, Even in the Wake of Disasters

    Broader source: Energy.gov [DOE]

    For this year’s Solar Decathlon, the University of Illinois at Urbana-Champaign is returning to the National Mall with the Re_home, which offers a more sustainable housing solution for communities following a natural disaster.

  13. Where are They Now? In Search of Former Solar Decathlon Houses

    Broader source: Energy.gov [DOE]

    The US Department of Energy Solar Decathlon continues to educate on solar efficiency and sustainability through the solar houses that have competed since 2002, now residing all over the world.

  14. Impact Evaluation of the U.S. Department of Energys Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... that prepares them to enter the nation's employment in ... Solar Decathlon on the job search of Former Decathletes who ... with school schedules. Mid-terms are held in October at many ...

  15. Solar Decathlon 2015: Vote for Your Favorite Solar-Powered House...

    Office of Environmental Management (EM)

    Vote for Your Favorite Solar-Powered House Solar Decathlon 2015: Vote for Your Favorite Solar-Powered House October 8, 2015 - 4:02pm Addthis Go to

  16. Solar Decathlon 2011, The National Mall, Washington, D.C., Fall 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This brochure provides a high-level overview of the U.S. Department of Energy Solar Decathlon 2011-the competition's background, purpose, impact, 10 contests, 20 teams, and where to go for additional information.

  17. Stevens Institute of Technology Wins Both Architecture and Communications Contests at U.S. Department of Energy Solar Decathlon

    Broader source: Energy.gov [DOE]

    Stevens Institute of Technology took first place in the Architecture and Communications Contests at the U.S. Department of Energy Solar Decathlon 2015.

  18. Supporting Diversity at the Solar Decathlon

    Broader source: Energy.gov [DOE]

    It's an honor and a privilege to be selected for grueling hours of hard work, including planning, modeling,  energy research, and construction - at least, it is when it comes to the Department of...

  19. Solar Panel Design Ideas for Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Panel Design Ideas for Your Home Solar Panel Design Ideas for Your Home June 8, 2016 - 5:08pm Addthis These examples of building integrated photovoltaic panels are like solar eye candy. All images from U.S. Department of Energy Solar Decathlon These examples of building integrated photovoltaic panels are like solar eye candy. All images from U.S. Department of Energy Solar Decathlon Alexis Powers Communications Specialist at the National Renewable Energy Laboratory Solar is not just for

  20. Solar Decathlon 2013: Designing the Houses of Today | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in the teams hometown of Middlebury, Vermont. The result: The team created a Solar Path -- a walkway under the free-standing solar panels to the front of the house. |...

  1. U.S. and Colombia to Collaborate on First Solar Decathlon in Latin America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Colombia to Collaborate on First Solar Decathlon in Latin America U.S. and Colombia to Collaborate on First Solar Decathlon in Latin America March 11, 2014 - 8:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - This week, U.S. Deputy Secretary of Energy Daniel Poneman, Colombia's Minister of Energy and Mines Amylkar Acosta, Mayor of Santiago de Calí Rodrigo Guerrero, and Director of Planning of Colombia Tatyana Orozco signed a Memorandum of Understanding

  2. Here Comes the Sun: Solar Decathlon Opens To Public Today | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Here Comes the Sun: Solar Decathlon Opens To Public Today Here Comes the Sun: Solar Decathlon Opens To Public Today September 23, 2011 - 12:53pm Addthis At the National Mall's West Potomac Park in Washington, D.C., a new type of neighborhood has taken shape. The solar village is on full display with highly-efficient, solar-powered homes on every block. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs How can I participate? The Solar

  3. Team New Jersey’s Beach House Approaches Sustainable Design from a Different Angle

    Broader source: Energy.gov [DOE]

    Team New Jersey's 2011 Solar Decathlon house is incorporating the age-old technology of concrete into their beach house design. How is this energy efficient? Read more to find out!

  4. Countdown to Solar Decathlon: The Info You Need Before You Go

    Broader source: Energy.gov [DOE]

    The Solar Decathlon, if you haven't heard about it, is an event put on once every two years by the U.S. Department of Energy. Essentially, 20 university teams are challenged to construct a house that is 100% powered by solar energy.

  5. University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon

    Broader source: Energy.gov [DOE]

    Solar Decathlon officials announced the results of their 6th contest -- architecture -- today, awarding the University of Maryland 96 out of 100 points and bumping their house, "WaterShed," into first place in this ten-day, ten-contest competition.

  6. OSTIblog Articles in the DOE's Solar Decathlon Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information DOE's Solar Decathlon Topic University of Tennessee Knoxville in DOE's .EDUconnections Spotlight by Kathy Chambers 04 Sep, 2012 in Science Communications 4266 EDU_UT.jpg University of Tennessee Knoxville in DOE's .EDUconnections Spotlight Read more about 4266 Science is always in the spotlight at the University of Tennessee Knoxville, a land-grant institution and the state's flagship research campus. Recent research might include

  7. Effectiveness of energy rating systems in evaluating Solar Decathlon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, Medford, MA 2 National Renewable Energy Laboratory, Golden, CO Introduction ... Vienna University of Technology Team Austria VUT Design of Energy Rating Systems: * ...

  8. Solar Decathlon at Home in the D.C. Community

    Broader source: Energy.gov [DOE]

    Right from the very beginning of the competition, the Empowerhouse team -- composed of students from Parsons The New School for Design and Stevens Institute of Technology -- decided on a community...

  9. See you Friday at the Solar Decathlon? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A 10-year roadmap for achieving control system cyber security in the energy industry has been hailed as a model for other industries. Here's a look at progress to date. Security is Not an Option (2.95 MB) More Documents & Publications Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop DOE National SCADA Test Bed Program Multi-Year Plan National SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009

  10. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    SciTech Connect (OSTI)

    Hamm, Julia; Taylor, Mike

    2008-12-31

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companies?? qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university team??s home.

  11. Evaluation of Generic EBS Design Concepts and Process Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design...

  12. Models Move Vehicle Design Forward

    Broader source: Energy.gov [DOE]

    These days, modeling software is as important to building a car as welding equipment. The Energy Department’s Vehicle Technologies Office is working to make these models as useful and accurate as possible so that manufacturers can build the next-generation of fuel efficient and advanced technology vehicles.

  13. Solar Decathlon Design Places People and the Outdoors at its Heart |

    Energy Savers [EERE]

    Collaboration, Round 2 Now Open | Department of Energy Business Vouchers Pilot: 33 Businesses Selected for Lab Collaboration, Round 2 Now Open Small Business Vouchers Pilot: 33 Businesses Selected for Lab Collaboration, Round 2 Now Open March 16, 2016 - 11:05am Addthis Small Business Vouchers Pilot: 33 Businesses Selected for Lab Collaboration, Round 2 Now Open From left: Deputy Secretary of Energy Elizabeth Sherwood-Randall stands with Dan Koleske, from Sandia National Laboratories;

  14. Minority Utility Rate Design Assessment Model

    Energy Science and Technology Software Center (OSTI)

    2003-01-20

    Econometric model simulates consumer demand response to various user-supplied, two-part tariff electricity rate designs and assesses their economic welfare impact on black, hispanic, poor and majority households.

  15. Panoramic imaging perimeter sensor design and modeling

    SciTech Connect (OSTI)

    Pritchard, D.A.

    1993-12-31

    This paper describes the conceptual design and preliminary performance modeling of a 360-degree imaging sensor. This sensor combines automatic perimeter intrusion detection with immediate visual assessment and is intended to be used for fast deployment around fixed or temporary high-value assets. The sensor requirements, compiled from various government agencies, are summarized. The conceptual design includes longwave infrared and visible linear array technology. An auxiliary millimeter-wave sensing technology is also considered for use during periods of infrared and visible obscuration. The infrared detectors proposed for the sensor design are similar to the Standard Advanced Dewar Assembly Types Three A and B (SADA-IIIA/B). An overview of the sensor and processor is highlighted. The infrared performance of this sensor design has been predicted using existing thermal imaging system models and is described in the paper. Future plans for developing a prototype are also presented.

  16. Design, Modeling, and Validation of a Flame Reformer for LNT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration ...

  17. Model for Sustainable Urban Design With Expanded Sections on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Sustainable Urban Design With Expanded Sections on Distributed Energy Resources, February 2004 Model for Sustainable Urban Design With Expanded Sections on Distributed ...

  18. Viscous throughflow modeling for multistage compressor design

    SciTech Connect (OSTI)

    Howard, M.A.; Gallimore, S.J. )

    1993-04-01

    An existing throughflow method for axial compressors, which accounts for the effects of spanwise mixing using a turbulent diffusion model, has been extended to include the viscous shear force on the endwall. The use of a shear force, consistent with a no-slip condition, on the annulus walls in the throughflow calculations allows realistic predictions of the velocity and flow angle profiles near the endwalls. The annulus wall boundary layers are therefore incorporated directly into the throughflow prediction. This eliminates the need for empirical blockage factors or independent annulus boundary layer calculations. The axisymmetric prediction can be further refined by specifying realistic spanwise variations of loss coefficient and deviation to model the three-dimensional endwall effects. The resulting throughflow calculation gives realistic predictions of flow properties across the whole span of a compressor. This is confirmed by comparison with measured data from both low and high-speed multistage machines. The viscous throughflow method has been incorporated into an axial compressor design system. The method predicts the meridional velocity defects in the endwall region and consequently blading can be designed that allows for the increased incidence, and low dynamic head, near the annulus walls.

  19. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  20. Turbine Aeration Physical Modeling and Software Design | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design Turbine Aeration Physical Modeling and Software Design 74a_gulliver_sotiropoulos_arndt-u_of_mn.ppt (1.51 MB) More Documents & Publications Real World Demonstration of a New American Low-Head Hydropower Unit Laboratory Demonstration of a New American Low-Head Hydropower Turbine Curators of the University of Missouri - Missouri S&T (TRL 1 2 3 Component)

  1. NREL: Education Center - A Model of Energy-Efficient Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Model of Energy-Efficient Design Photo of the Education Center trombe wall. The ... Passive solar energy features, energy-efficient lighting, an energy management system and ...

  2. Wind Turbine Design Cost and Scaling Model

    SciTech Connect (OSTI)

    Fingersh, L.; Hand, M.; Laxson, A.

    2006-12-01

    This model intends to provide projections of the impact on cost from changes in economic indicators such as the Gross Domestic Product and Producer Price Index.

  3. Designing user models in a virtual cave environment

    SciTech Connect (OSTI)

    Brown-VanHoozer, S.; Hudson, R.; Gokhale, N.

    1995-12-31

    In this paper, the results of a first study into the use of virtual reality for human factor studies and design of simple and complex models of control systems, components, and processes are described. The objective was to design a model in a virtual environment that would reflect more characteristics of the user`s mental model of a system and fewer of the designer`s. The technology of a CAVE{trademark} virtual environment and the methodology of Neuro Linguistic Programming were employed in this study.

  4. Model assessment of protective barrier designs

    SciTech Connect (OSTI)

    Fayer, M.J.; Conbere, W.; Heller, P.R.; Gee, G.W.

    1985-11-01

    A protective barrier is being considered for use at the Hanford site to enhance the isolation of previously disposed radioactive wastes from infiltrating water, and plant and animal intrusion. This study is part of a research and development effort to design barriers and evaluate their performance in preventing drainage. A fine-textured soil (the Composite) was located on the Hanford site in sufficient quantity for use as the top layer of the protective barrier. A number of simulations were performed by Pacific Northwest Laboratory to analyze different designs of the barrier using the Composite soil as well as the finer-textured Ritzville silt loam and a slightly coarser soil (Coarse). Design variations included two rainfall rates (16.0 and 30.1 cm/y), the presence of plants, gravel mixed into the surface of the topsoil, an impermeable boundary under the topsoil, and moving the waste form from 10 to 20 m from the barrier edge. The final decision to use barriers for enhanced isolation of previously disposed wastes will be subject to decisions resulting from the completion of the Hanford Defense Waste Environmental Impact Statement, which addresses disposal of Hanford defense high-level and transuranic wastes. The one-dimensional simulation results indicate that each of the three soils, when used as the top layer of the protective barrier, can prevent drainage provided plants are present. Gravel amendments to the upper 30 cm of soil (without plants) reduced evaporation and allowed more water to drain.

  5. Mesoscale Modeling Framework Design: Subcontract Report (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Mesoscale Modeling Framework Design: Subcontract Report Citation Details In-Document Search Title: Mesoscale Modeling Framework Design: Subcontract Report Authors: Chen, L Q ; Tang, M ; Heo, T W ; Wood, B C Publication Date: 2014-01-09 OSTI Identifier: 1116973 Report Number(s): LLNL-SR-648484 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of

  6. Use Computational Model to Design and Optimize Welding Conditions to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suppress Helium Cracking during Welding | Department of Energy Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld technology must be

  7. An analytical model of axial compressor off-design performance

    SciTech Connect (OSTI)

    Camp, T.R.; Horlock, J.H. . Whittle Lab.)

    1994-07-01

    An analysis is presented of the off-design performance of multistage axial-flow compressors. It is based on an analytical solution, valid for small perturbations in operating conditions from the design point, and provides an insight into the effects of choices made during the compressor design process on performance and off-design stage matching. It is shown that the mean design value of stage loading coefficient ([psi] = [Delta]h[sub 0]/U[sup 2]) has a dominant effect on off-design performance, whereas the stage-wise distribution of stage loading coefficient and the design value of flow coefficient have little influence. The powerful effects of variable stator vanes on stage-matching are also demonstrated and these results are shown to agree well with previous work. The slope of the working line of a gas turbine engine, overlaid on overall compressor characteristics, is shown to have a strong effect on the off-design stage-matching through the compressor. The model is also used to analyze design changes to the compressor geometry and to show how errors in estimates of annulus blockage, decided during the design process, have less effect on compressor performance than has previously been thought.

  8. Design of Experiments, Model Calibration and Data Assimilation

    SciTech Connect (OSTI)

    Williams, Brian J.

    2014-07-30

    This presentation provides an overview of emulation, calibration and experiment design for computer experiments. Emulation refers to building a statistical surrogate from a carefully selected and limited set of model runs to predict unsampled outputs. The standard kriging approach to emulation of complex computer models is presented. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Markov chain Monte Carlo (MCMC) algorithms are often used to sample the calibrated parameter distribution. Several MCMC algorithms commonly employed in practice are presented, along with a popular diagnostic for evaluating chain behavior. Space-filling approaches to experiment design for selecting model runs to build effective emulators are discussed, including Latin Hypercube Design and extensions based on orthogonal array skeleton designs and imposed symmetry requirements. Optimization criteria that further enforce space-filling, possibly in projections of the input space, are mentioned. Designs to screen for important input variations are summarized and used for variable selection in a nuclear fuels performance application. This is followed by illustration of sequential experiment design strategies for optimization, global prediction, and rare event inference.

  9. PHARAO laser source flight model: Design and performances

    SciTech Connect (OSTI)

    Lévèque, T. Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P.; Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S.; Laurent, Ph.

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  10. Solar Decathlon Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Weekends ToursWorkshops ToursWorkshops ToursWorkshops ToursWorkshops ToursWorkshops ToursWorkshops Tours and Workshops Awards Reception PM Sept 30 Rest Day Scoring Ends 1 PM ...

  11. Marcel Filoche Seminar: Modeling and Designing Micro-Optoelectronic Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Real World: The Role of Disorder | Center for Energy Efficient Materials Marcel Filoche Seminar: Modeling and Designing Micro-Optoelectronic Devices in the Real World: The Role of Disorder Apr 15, 2014 | 4:00 PM - 5:00 PM Marcel Filoche Researcher at CNRS, Assistant Laboratory Director CNRS France Modeling and Designing Micro-Optoelectronic Devices in the Real World: The Role of Disorder April 15, 2014 | 4:00pm | ESB 1001 Faculty host: Jim Speck >>>Video and slides available

  12. Catalysis by Design - Theoretical and Experimental Studies of Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Lean NOx Treatment | Department of Energy Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx Treatment Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx Treatment Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_narula.pdf (277.05 KB) More Documents & Publications Lean NOx Traps

  13. Electricity Market Manipulation: How Behavioral Modeling Can Help Market Design

    SciTech Connect (OSTI)

    Gallo, Giulia

    2015-12-18

    The question of how to best design electricity markets to integrate variable and uncertain renewable energy resources is becoming increasingly important as more renewable energy is added to electric power systems. Current markets were designed based on a set of assumptions that are not always valid in scenarios of high penetrations of renewables. In a future where renewables might have a larger impact on market mechanisms as well as financial outcomes, there is a need for modeling tools and power system modeling software that can provide policy makers and industry actors with more realistic representations of wholesale markets. One option includes using agent-based modeling frameworks. This paper discusses how key elements of current and future wholesale power markets can be modeled using an agent-based approach and how this approach may become a useful paradigm that researchers can employ when studying and planning for power systems of the future.

  14. Simulation models and designs for advanced Fischer-Tropsch technology

    SciTech Connect (OSTI)

    Choi, G.N.; Kramer, S.J.; Tam, S.S.

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  15. NREL Wind Integrated System Design and Engineering Model

    Energy Science and Technology Software Center (OSTI)

    2013-09-30

    NREL_WISDEM is an integrated model for wind turbines and plants developed In python based on the open source software OpenMDAO. NREL_WISDEM is a set of wrappers for various wind turbine and models that integrate pre-existing models together into OpenMDAO. It is organized into groups each with their own repositories including Plant_CostSE. Plant_EnergySE, Turbine_CostSE and TurbineSE. The wrappers are designed for licensed and non-licensed models though in both cases, one has to have access to andmore » install the individual models themselves before using them in the overall software platform.« less

  16. Heteropolymer freezing and design: Towards physical models of protein folding

    SciTech Connect (OSTI)

    Pande, Vijay S. [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States)] [Chemistry Department, Stanford University, Stanford, California 94305-5080 (United States); Grosberg, Alexander Yu. [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States)] [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Tanaka, Toyoichi [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2000-01-01

    Protein folding has become one of the most actively studied problems in modern molecular biophysics. Approaches to the problem combine ideas from the physics of disordered systems, polymer physics, and molecular biology. Much can be learned from the statistical properties of model heteropolymers, the chain molecules having different monomers in irregular sequences. Even in highly evolved proteins, there is a strong random element in the sequences, which gives rise to a statistical ensemble of sequences for a given folded shape. Simple analytic models give rise to phase transitions between random, glassy, and folded states, depending on the temperature T and the design temperature T{sup des} of the ensemble of sequences. Besides considering the analytic results obtainable in a random-energy model and in the Flory mean-field model of polymers, the article reports on confirming numerical simulations. (c) 2000 The American Physical Society.

  17. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  18. Sandia develops autoignition model designed for efficient, accurate engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulations develops autoignition model designed for efficient, accurate engine simulations - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  19. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    SciTech Connect (OSTI)

    Mian, Muhammad Umer Khir, M. H. Md.; Tang, T. B.; Dennis, John Ojur; Riaz, Kashif; Iqbal, Abid; Bazaz, Shafaat A.

    2015-07-22

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.

  20. Model for Sustainable Urban Design With Expanded Sections on Distributed Energy Resources, February 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document describing a model design for urban development and redevelopment that will reduce urban energy consumption

  1. Design theoretic analysis of three system modeling frameworks.

    SciTech Connect (OSTI)

    McDonald, Michael James

    2007-05-01

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  2. Software design and operational model for the WCEDS prototype

    SciTech Connect (OSTI)

    Beiriger, J.I.; Moore, S.G.; Young, C.J.; Trujillo, J.R.

    1997-08-01

    To explore the potential of waveform correlation for CTBT, the Waveform Correlation Event Detection System (WCEDS) prototype was developed. The WCEDS software design followed the Object Modeling Technique process of analysis, system design, and detailed design and implementation. Several related executable programs are managed through a Graphical User Interface (GUI). The WCEDS prototype operates in an IDC/NDC-compatible environment. It employs a CSS 3.0 database as its primary input/output interface, reading in raw waveforms at the start, and storing origins, events, arrivals, and associations at the finish. Additional output includes correlation results and data for specified testcase origins, and correlation timelines for specified locations. During the software design process, the more general seismic monitoring functionality was extracted from WCEDS-specific requirements and developed into C++ object-oriented libraries. These include the master image, grid, basic seismic, and extended seismic libraries. Existing NDC and commercial libraries were incorporated into the prototype where appropriate, to focus development activities on new capability. The WCEDS-specific application code was built in a separate layer on top of the general seismic libraries. The general seismic libraries developed for the WCEDS prototype can provide a base for other algorithm development projects.

  3. Reference Model 2: %22Rev 0%22 Rotor Design.

    SciTech Connect (OSTI)

    Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  4. CHIP House Takes Design to Different Heights (Literally)

    Broader source: Energy.gov [DOE]

    Check out the SCI-Arc/Caltech 2011 Solar Decathlon team's house to find out more about their net-zero energy use home -- the CHIP House.

  5. UC Davis Models: Geospatial Station Network Design Tool and Hydrogen Infrastructure Rollout Economic Analysis Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UC Davis Models Geospatial Station Network Design Tool & Hydrogen Infrastructure Rollout Economic Analysis Model (University of California-Davis) Objectives Analyze regional strategies for early rollout of hydrogen infrastructure in support of fuel cell vehicle commercialization. Estimate how many hydrogen fueling stations would be needed and how much it will cost to develop cost competitive hydrogen supply. Compare the cost of hydrogen from different types and sizes of hydrogen stations

  6. Adiabatic model and design of a translating field reversed configuration

    SciTech Connect (OSTI)

    Intrator, T. P.; Siemon, R. E.; Sieck, P. E.

    2008-04-15

    We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it must be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.

  7. Computational Human Performance Modeling For Alarm System Design

    SciTech Connect (OSTI)

    Jacques Hugo

    2012-07-01

    The introduction of new technologies like adaptive automation systems and advanced alarms processing and presentation techniques in nuclear power plants is already having an impact on the safety and effectiveness of plant operations and also the role of the control room operator. This impact is expected to escalate dramatically as more and more nuclear power utilities embark on upgrade projects in order to extend the lifetime of their plants. One of the most visible impacts in control rooms will be the need to replace aging alarm systems. Because most of these alarm systems use obsolete technologies, the methods, techniques and tools that were used to design the previous generation of alarm system designs are no longer effective and need to be updated. The same applies to the need to analyze and redefine operators alarm handling tasks. In the past, methods for analyzing human tasks and workload have relied on crude, paper-based methods that often lacked traceability. New approaches are needed to allow analysts to model and represent the new concepts of alarm operation and human-system interaction. State-of-the-art task simulation tools are now available that offer a cost-effective and efficient method for examining the effect of operator performance in different conditions and operational scenarios. A discrete event simulation system was used by human factors researchers at the Idaho National Laboratory to develop a generic alarm handling model to examine the effect of operator performance with simulated modern alarm system. It allowed analysts to evaluate alarm generation patterns as well as critical task times and human workload predicted by the system.

  8. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses progress on thermal comfort modeling and detailed design, fabrication, and component/system-level testing of TE architecture

  9. Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint

    SciTech Connect (OSTI)

    Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

    2011-03-01

    The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

  10. Design and modeling of small scale multiple fracturing experiments

    SciTech Connect (OSTI)

    Cuderman, J F

    1981-12-01

    Recent experiments at the Nevada Test Site (NTS) have demonstrated the existence of three distinct fracture regimes. Depending on the pressure rise time in a borehole, one can obtain hydraulic, multiple, or explosive fracturing behavior. The use of propellants rather than explosives in tamped boreholes permits tailoring of the pressure risetime over a wide range since propellants having a wide range of burn rates are available. This technique of using the combustion gases from a full bore propellant charge to produce controlled borehole pressurization is termed High Energy Gas Fracturing (HEGF). Several series of HEGF, in 0.15 m and 0.2 m diameter boreholes at 12 m depths, have been completed in a tunnel complex at NTS where mineback permitted direct observation of fracturing obtained. Because such large experiments are costly and time consuming, smaller scale experiments are desirable, provided results from small experiments can be used to predict fracture behavior in larger boreholes. In order to design small scale gas fracture experiments, the available data from previous HEGF experiments were carefully reviewed, analytical elastic wave modeling was initiated, and semi-empirical modeling was conducted which combined predictions for statically pressurized boreholes with experimental data. The results of these efforts include (1) the definition of what constitutes small scale experiments for emplacement in a tunnel complex at the Nevada Test Site, (2) prediction of average crack radius, in ash fall tuff, as a function of borehole size and energy input per unit length, (3) definition of multiple-hydraulic and multiple-explosive fracture boundaries as a function of boreholes size and surface wave velocity, (4) semi-empirical criteria for estimating stress and acceleration, and (5) a proposal that multiple fracture orientations may be governed by in situ stresses.

  11. Exascale Co-design for Modeling Materials in Extreme Environments

    SciTech Connect (OSTI)

    Germann, Timothy C.

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  12. EERE Success Story-Autonomie Modeling Tool Improves Vehicle Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    licenses for non-profit organizations and universities. ... experience designing and building next generation cars. ... the positive impact of its work with businesses, industry ...

  13. Web-based DOE/ORNL Heat Pump Design Model Released

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE/Oak Ridge National Laboratory's (ORNL) Heat Pump Design Model (HPDM), a hardware-based vapor-compression system research and design tool originally developed in the mid-1970s, remains cutting edge through continuous evolution.

  14. SSC dipole log manget model cryostat design and initial production experience

    SciTech Connect (OSTI)

    Niemann, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Nicol, T.H.

    1986-06-01

    The SSC dipole magnet development program includes the design and construction of full length magnet models for heat leak and magnetic measurements and for the evaluation of the performance of strings of magnets. The design of the model magnet cryostat is presented and the production experiences for the initial long magnet model, a heat leak measurement device, are related.

  15. EERE Success Story-Autonomie Modeling Tool Improves Vehicle Design and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Informs New Fuel Economy Standards | Department of Energy Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards EERE Success Story-Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards December 21, 2015 - 9:45am Addthis Autonomie, an advanced vehicle modeling and design software package created by Argonne National laboratory with EERE support, is helping U.S. auto manufacturers develop the next

  16. Multi-Scale Multi-Dimensional Model for Better Cell Design and Management (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2008-09-01

    Describes NREL's R&D to develop a multi-scale model to assist in designing better, more reliable lithium-ion battery cells for advanced vehicles.

  17. Design and Modeling of Pulsed Power Accelerators Via Circuit Analysis

    Energy Science and Technology Software Center (OSTI)

    1996-12-05

    SCREAMER simulates electrical circuits which may contain elements of variable resistance, capacitance and inductance. The user may add variable circuit elements in a simulation by choosing from a library of models or by writing a subroutine describing the element. Transmission lines, magnetically insulated transmission lines (MITLs) and arbitrary voltage and current sources may also be included. Transmission lines are modeled using pi-sections connected in series. Many models of switches and loads are included.

  18. Discussion: the design and analysis of the Gaussian process model

    SciTech Connect (OSTI)

    Williams, Brian J; Loeppky, Jason L

    2008-01-01

    The investigation of complex physical systems utilizing sophisticated computer models has become commonplace with the advent of modern computational facilities. In many applications, experimental data on the physical systems of interest is extremely expensive to obtain and hence is available in limited quantities. The mathematical systems implemented by the computer models often include parameters having uncertain values. This article provides an overview of statistical methodology for calibrating uncertain parameters to experimental data. This approach assumes that prior knowledge about such parameters is represented as a probability distribution, and the experimental data is used to refine our knowledge about these parameters, expressed as a posterior distribution. Uncertainty quantification for computer model predictions of the physical system are based fundamentally on this posterior distribution. Computer models are generally not perfect representations of reality for a variety of reasons, such as inadequacies in the physical modeling of some processes in the dynamic system. The statistical model includes components that identify and adjust for such discrepancies. A standard approach to statistical modeling of computer model output for unsampled inputs is introduced for the common situation where limited computer model runs are available. Extensions of the statistical methods to functional outputs are available and discussed briefly.

  19. Re-designing the PhEDEx Security Model

    SciTech Connect (OSTI)

    Huang, C.-H.; Wildish, T.; Zhang, X.

    2014-01-01

    PhEDEx, the data-placement tool used by the CMS experiment at the LHC, was conceived in a more trusting time. The security model provided a safe environment for site agents and operators, but offerred little more protection than that. Data was not sufficiently protected against loss caused by operator error or software bugs or by deliberate manipulation of the database. Operators were given high levels of access to the database, beyond what was actually needed to accomplish their tasks. This exposed them to the risk of suspicion should an incident occur. Multiple implementations of the security model led to difficulties maintaining code, which can lead to degredation of security over time. In order to meet the simultaneous goals of protecting CMS data, protecting the operators from undue exposure to risk, increasing monitoring capabilities and improving maintainability of the security model, the PhEDEx security model was redesigned and re-implemented. Security was moved from the application layer into the database itself, fine-grained access roles were established, and tools and procedures created to control the evolution of the security model over time. In this paper we describe this work, we describe the deployment of the new security model, and we show how these enhancements improve security on several fronts simultaneously.

  20. An annotated summary of the Information Model Design Procedure (IMDP)

    SciTech Connect (OSTI)

    Becker, S.D.

    1994-05-01

    This presentation documents the essential elements of the IMDP as applied at Sandia National Laboratories/New Mexico. The IMDP is an adaptation of the Natural-Language Information Analysis Methodology (NIAM) of G. M. Nijssen. The underlying purpose of both of these methodologies is to provide a formal, reproducible, and verifiable approach to specifying the information requirements of an information system. The IMDP spans the specification process from initial scoping; through verbalization of problem-domain facts, specification of constraints, and subtype analysis; and finally to application of a formal algorithm for developing a fifth-normal-form relational database design.

  1. NREL: Technology Deployment - Solar Decathlon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Infrastructure During the event, NREL experts work on-site with utility partners to install a fully-functional microgrid in about one week's time. This infrastructure, ...

  2. Solar Decathlon | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Buildings Integration Project for the 2013 Building Technologies Office's ... More Documents & Publications Building America System Research Residential Buildings ...

  3. Electro-Thermal Modeling to Improve Battery Design: Preprint

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Kim, G.; Vlahinos, A.

    2005-09-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid electric vehicles (HEVs). Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. This study describes an electro-thermal finite element approach that predicts the thermal performance of a battery cell or module with realistic geometry.

  4. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Kim, G.-H.; Duong, T.

    2005-08-01

    Temperature greatly affects the performance and life of batteries in electric and hybrid vehicles under real driving conditions, so increased attention is being paid to battery thermal management. Sophisticated electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry, material properties, loads, and boundary conditions.

  5. Conceptual design of an integrated technology model for carbon policy assessment.

    SciTech Connect (OSTI)

    Backus, George A.; Dimotakes, Paul E.

    2011-01-01

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  6. Virginia Tech Shines Light on Home Efficiency

    Broader source: Energy.gov [DOE]

    Collegiate teams from around the world came to Madrid this month to present their solar-powered houses in the first biennial Solar Decathlon Europe, a competition modeled after the Energy Department's Solar Decathlon in Washington, D.C.

  7. Team Florida Takes "Sunshine State" Moniker Seriously | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Florida Takes "Sunshine State" Moniker Seriously Team Florida Takes "Sunshine State" Moniker Seriously July 7, 2011 - 5:47pm Addthis Team Florida's design model of the FLeX House | Courtesy of the Solar Decathlon's Flickr photostream Team Florida's design model of the FLeX House | Courtesy of the Solar Decathlon's Flickr photostream April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What are the key facts? The FleX House combines

  8. Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards

    Broader source: Energy.gov [DOE]

    Autonomie, an advanced vehicle modeling and design software package created by Argonne National laboratory with EERE support, is helping U.S. auto manufacturers develop the next generation of hybrid and electric vehicles.

  9. Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

    2008-11-01

    To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

  10. SUSTAINABLE MANUFACTURING VIA MULTI-SCALE PHYSICS-BASED PROCESS MODELING AND MANUFACTURING-INFORMED DESIGN

    Broader source: Energy.gov [DOE]

    Micro-structural modeling tools for metals are being developed and used to demonstrate a design framework to improve the understanding of dynamic response and statistical variability. This project will enable design engineers to evaluate the effects of design changes and material selection; anticipate quality and cost prior to implementation on the factory floor; and enable low-waste, low-cost manufacturing. Third Wave Systems, Inc. - Minneapolis, MN

  11. Design, Modeling, and Validation of a Flame Reformer for LNT External

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Regeneration | Department of Energy Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_midlam-mohler.pdf (432.95 KB) More Documents & Publications Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines Diesel Reformers for On-board Hydrogen Applications

  12. Model-Based Design and Integration of Large Li-ion Battery Systems

    SciTech Connect (OSTI)

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  13. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  14. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    SciTech Connect (OSTI)

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  15. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    SciTech Connect (OSTI)

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

  16. APT Blanket System Model Based on Initial Conceptual Design - Integrated 1D TRAC System Model

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07

    This report documents the approaches taken in establishing a 1-dimensional integrated blanket system model using the TRAC code, developed by Los Alamos National Laboratory.

  17. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6). Simulation Design and Preliminary Results

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; Boucher, Olivier; English, J.; Irvine, Peter; Jones, Andrew; Lawrence, M. G.; Maccracken, Michael C.; Muri, Helene O.; Moore, John; Niemeier, Ulrike; Phipps, Steven; Sillmann, Jana; Storelvmo, Trude; Wang, Hailong; Watanabe, Shingo

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  18. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    SciTech Connect (OSTI)

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  19. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore » tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  20. Design change documentation for the National Coal Model. [Mathematical model modifications

    SciTech Connect (OSTI)

    Not Available

    1980-05-14

    Several modifications are to be made to the National Coal Model (NCM) under contract number DE-AC01-79EI-10578. The model will be expanded to include two additional demand regions (increasing the total number of demand regions to 41) and one additional supply region (increasing the total number of supply regions to 31). Implementing this change in the NCM will be very simple. The relevant tables and lists will be expanded to include the new regions, and the dimensionality of all relevant arrays will be increased to 31 or 41, as required. A more difficult task will be to appropriately modify the various input data files to reflect the new regions. This task will be the responsibility of the Coal and Electric Power Analysis Division staff. The model will be modified to use externally-specified transportation rates for each origin/destination pair, rather than the linear transportation cost equations (based on mileage) that are used presently. Thus, an input file of transportation rates (prepared externally to the NCM, as are the coal supply curves) will be used directly to provide transportation rates ($/ton) for each coal type/origin/destination activity (i.e., column) generated in the transportation portion of the matrix generator. Other modifications under consideration relate to model output reports, an industrial boiler fuel model, and price-sensitive non-utility demand.

  1. Managing Model Data Introduced Uncertainties in Simulator Predictions for Generation IV Systems via Optimum Experimental Design

    SciTech Connect (OSTI)

    Turinsky, Paul J; Abdel-Khalik, Hany S; Stover, Tracy E

    2011-03-31

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept’s core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment

  2. Energy Department Assistant Secretary Danielson Honors Stevens Institute of Technology as Winner of U.S. Department of Energy Solar Decathlon

    Broader source: Energy.gov [DOE]

    Stevens Institute of Technology wins top honors overall by designing, building, and operating the most cost-effective, energy-efficient and attractive solar powered house.

  3. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  4. Multi-Scale Multi-Dimensional Li-Ion Battery Model for Better Design and Management (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2008-10-01

    The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

  5. Modeling of the Reactor Core Isolation Cooling Response to Beyond Design Basis Operations - Interim Report

    SciTech Connect (OSTI)

    Ross, Kyle; Cardoni, Jeffrey N.; Wilson, Chisom Shawn; Morrow, Charles; Osborn, Douglas; Gauntt, Randall O.

    2015-12-01

    Efforts are being pursued to develop and qualify a system-level model of a reactor core isolation (RCIC) steam-turbine-driven pump. The model is being developed with the intent of employing it to inform the design of experimental configurations for full-scale RCIC testing. The model is expected to be especially valuable in sizing equipment needed in the testing. An additional intent is to use the model in understanding more fully how RCIC apparently managed to operate far removed from its design envelope in the Fukushima Daiichi Unit 2 accident. RCIC modeling is proceeding along two avenues that are expected to complement each other well. The first avenue is the continued development of the system-level RCIC model that will serve in simulating a full reactor system or full experimental configuration of which a RCIC system is part. The model reasonably represents a RCIC system today, especially given design operating conditions, but lacks specifics that are likely important in representing the off-design conditions a RCIC system might experience in an emergency situation such as a loss of all electrical power. A known specific lacking in the system model, for example, is the efficiency at which a flashing slug of water (as opposed to a concentrated jet of steam) could propel the rotating drive wheel of a RCIC turbine. To address this specific, the second avenue is being pursued wherein computational fluid dynamics (CFD) analyses of such a jet are being carried out. The results of the CFD analyses will thus complement and inform the system modeling. The system modeling will, in turn, complement the CFD analysis by providing the system information needed to impose appropriate boundary conditions on the CFD simulations. The system model will be used to inform the selection of configurations and equipment best suitable of supporting planned RCIC experimental testing. Preliminary investigations with the RCIC model indicate that liquid water ingestion by the turbine

  6. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    SciTech Connect (OSTI)

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  7. Thermal Hydraulic Modeling: Cross-Verification, Validation and Co-design |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility computed on Intrepid with Nek5000 Velocity magnitude distribution in a flow through the 25-pin swirl-vane spacer grid of Matis benchmark. Computed on Intrepid with Nek5000 and visualized on Eureka with VisIt at the ALCF. Aleks Obabko, Paul Fischer, and Tim Tautges, Argonne National Laboratory Thermal Hydraulic Modeling: Cross-Verification, Validation and Co-design PI Name: Paul F. Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National

  8. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    SciTech Connect (OSTI)

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  9. Durability-Based Design Guide for an Automotive Structural Composite: Part 2. Background Data and Models

    SciTech Connect (OSTI)

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Weitsman, Y.J.; Yahr, G.T.

    1998-02-01

    This background report is a companion to the document entitled ''Durability-Based Design Criteria for an Automotive Structural Composite: Part 1. Design Rules'' (ORNL-6930). The rules and the supporting material characterization and modeling efforts described here are the result of a U.S. Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures.'' The overall goal of the project is to develop experimentally based, durability-driven design guidelines for automotive structural composites. The project is closely coordinated with the Automotive Composites Consortium (ACC). The initial reference material addressed by the rules and this background report was chosen and supplied by ACC. The material is a structural reaction injection-molded isocyanurate (urethane), reinforced with continuous-strand, swirl-mat, E-glass fibers. This report consists of 16 position papers, each summarizing the observations and results of a key area of investigation carried out to provide the basis for the durability-based design guide. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluids, vibrations, and low-energy impacts (e.g., tool drops and roadway kickups) on deformation, strength, and stiffness. The position papers cover these durability issues. Topics include (1) tensile, compressive, shear, and flexural properties; (2) creep and creep rupture; (3) cyclic fatigue; (4) the effects of temperature, environment, and prior loadings; (5) a multiaxial strength criterion; (6) impact damage and damage tolerance design; (7) stress concentrations; (8) a damage-based predictive model for time-dependent deformations; (9) confirmatory subscale component tests; and (10) damage development and growth observations.

  10. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    SciTech Connect (OSTI)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as canonical,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  11. Advanced product realization through model-based design and virtual prototyping

    SciTech Connect (OSTI)

    Andreas, R.D.

    1995-03-01

    Several government agencies and industrial sectors have recognized the need for, and payoff of, investing in the methodologies and associated technologies for improving the product realization process. Within the defense community as well as commercial industry, there are three major needs. First, they must reduce the cost of military products, of related manufacturing processes, and of the enterprises that have to be maintained. Second, they must reduce the time required to realize products while still applying the latest technologies. Finally, they must improve the predictability of process attributes, product performance, cost, schedule and quality. They must continue to advance technology, quickly incorporate their innovations in new products and in processes to produce them, and they need to capitalize on the raw computational power and communications bandwidth that continues to become available at decreasing cost. Sandia National Laboratories initiative is pursuing several interrelated, key concepts and technologies in order to enable such product realization process improvements: model-based design; intelligent manufacturing processes; rapid virtual and physical prototyping; and agile people/enterprises. While progress in each of these areas is necessary, this paper only addresses a portion of the overall initiative. First a vision of a desired future capability in model-based design and virtual prototyping is presented. This is followed by a discussion of two specific activities parametric design analysis of Synthetic Aperture Radars (SARs) and virtual prototyping of miniaturized high-density electronics -- that exemplify the vision as well as provide a status report on relevant work in progress.

  12. Magnetic design calculation and FRC formation modeling for the field reversed experiment liner

    SciTech Connect (OSTI)

    Dorf, L. A.; Intrator, T. P.; Renneke, R.; Hsu, S. C.; Wurden, G. A.; Awe, T.; Siemon, R.; Semenov, V. E.

    2008-10-01

    Integrated magnetic modeling and design are important to meet the requirements for (1) formation, (2) translation, and (3) compression of a field reversed configuration (FRC) for magnetized target fusion. Off-the-shelf solutions do not exist for many generic design issues. A predictive capability for time-dependent magnetic diffusion in realistically complicated geometry is essential in designing the experiment. An eddy-current code was developed and used to compute the mutual inductances between driven magnetic coils and passive magnetic shields (flux excluder plates) to calculate the self-consistent axisymmetric magnetic fields during the first two stages. The plasma in the formation stage was modeled as an immobile solid cylinder with selectable constant resistivity and magnetic flux that was free to readjust itself. It was concluded that (1) use of experimentally obtained anomalously large plasma resistivity in magnetic diffusion simulations is sufficient to predict magnetic reconnection and FRC formation, (2) comparison of predicted and experimentally observed timescales for FRC Ohmic decay shows good agreement, and (3) for the typical range of resistivities, the magnetic null radius decay rate scales linearly with resistivity. The last result can be used to predict the rate of change in magnetic flux outside of the separatrix (equal to the back-emf loop voltage), and thus estimate a minimum {theta}-coil loop voltage required to form an FRC.

  13. In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    SciTech Connect (OSTI)

    G. R. Odette; G. E. Lucas

    2005-11-15

    This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.

  14. A Multi-Objective, Hub-and-Spoke Supply Chain Design Model for Densified Biomass

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Md. S. Roni; Kara G. Cafferty; Sandra D. Eksioglu

    2014-06-01

    In this paper we propose a model to design the supply chain for densified biomass. Rail is typically used for longhaul, high-volume shipment of densified biomass. This is the reason why a hub-and-spoke network structure is used to model this supply chain. The model is formulated as a multi-objective, mixed-integer programing problem under economic, environmental, and social criteria. The goal is to identify the feasibility of meeting the Renewable Fuel Standard (RFS) by using biomass for production of cellulosic ethanol. The focus is not just on the costs associated with meeting these standards, but also exploring the social and environmental benefits that biomass production and processing offers by creating new jobs and reducing greenhouse gas (GHG) emissions. We develop an augmented ?-constraint method to find the exact Pareto solution to this optimization problem. We develop a case study using data from the Mid-West. The model identifies the number, capacity and location of biorefineries needed to make use of the biomass available in the region. The model estimates the delivery cost of cellulosic ethanol under different scenario, the number new jobs created and the GHG emission reductions in the supply chain.

  15. A Multi-Objective, Hub-and-Spoke Supply Chain Design Model For Densified Biomass

    SciTech Connect (OSTI)

    Md S. Roni; Sandra Eksioglu; Kara G. Cafferty

    2014-06-01

    In this paper we propose a model to design the supply chain for densified biomass. Rail is typically used for long-haul, high-volume shipment of densified biomass. This is the reason why a hub-and-spoke network structure is used to model this supply chain. The model is formulated as a multi-objective, mixed-integer programing problem under economic, environmental, and social criteria. The goal is to identify the feasibility of meeting the Renewable Fuel Standard (RFS) by using biomass for production of cellulosic ethanol. The focus in not just on the costs associated with meeting these standards, but also exploring the social and environmental benefits that biomass production and processing offers by creating new jobs and reducing greenhouse gas (GHG) emissions. We develop an augmented ?-constraint method to find the exact Pareto solution to this optimization problem. We develop a case study using data from the Mid-West. The model identifies the number, capacity and location of biorefineries needed to make use of the biomass available in the region. The model estimates the delivery cost of cellulosic ethanol under different scenario, the number new jobs created and the GHG emission reductions in the supply chain.

  16. Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12

    SciTech Connect (OSTI)

    Deng, Yueying; Kruger, Albert A.

    2013-12-16

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.

  17. Thermal Hydraulic Modeling: Cross-Verification, Validation, and Co-Design |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Velocity magnitude distribution in a flow through the 25-pin swirl-vane spacer grid of Matis benchmark Velocity magnitude distribution in a flow through the 25-pin swirl-vane spacer grid of Matis benchmark. Computed on Intrepid with Nek5000 and visualized on Eureka with VisIt at the ALCF. Aleks Obabko, Paul Fischer, and Tim Tautges, Argonne National Laboratory Thermal Hydraulic Modeling: Cross-Verification, Validation, and Co-Design PI Name: Paul Fischer

  18. Magnetic and Structural Design of a 15 T $Nb_3Sn$ Accelerator Depole Model

    SciTech Connect (OSTI)

    Kashikhin, V. V.; Andreev, N.; Barzi, E.; Novitski, I.; Zlobin, A. V.

    2015-01-01

    Hadron Colliders (HC) are the most powerful discovery tools in modern high energy physics. A 100 TeV scale HC with a nominal operation field of at least 15 T is being considered for the post-LHC era. The choice of a 15 T nominal field requires using the Nb3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance. The experience gained during the 11-T dipole R&D campaign is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T $Nb_3Sn$ dipole and the steps towards the demonstration model.

  19. Improvement of Stent Retriever Design and Efficacy of Mechanical Thrombectomy in a Flow Model

    SciTech Connect (OSTI)

    Wenger, Katharina; Nagl, Frank; Wagner, Marlies Berkefeld, Joachim

    2013-02-15

    In vitro experiments were performed to evaluate the efficacy of mechanical intracranial thrombectomy comparing the newly developed Aperio stent retriever and standard devices for stroke treatment. The Aperio (A), with an increased working length of 4 cm and a special cell design for capturing and withholding clots, was compared to three benchmark devices: the Solitaire retrievable stent (B), the Merci X6 (C), and the Merci L5 retriever (D). In a vascular glass model with pulsatile flow, reminiscent of the M1 segment of the middle cerebral artery, we repeatedly induced occlusion by generating thrombi via a modified Chandler loop system. The numbers of recanalization attempts, peripheral embolizations, and recanalizations at the site of occlusion were recorded during 10 retrieval experiments with each device. Eleven devices were able to remove the blood clots from the occluded branch. In 34 of 40 experiments, restoration of flow was obtained in 1-3 attempts. The main differences between the study devices were observed in terms of clot withholding and fragmentation during retrieval. Although there was only one fragmentation recorded for device A, disengagement of the whole clot or peripheral embolization of fragments occurred more frequently (5-7 times) with devices B, C, and D. In a vascular model, the design of device A was best at capturing and withholding thrombi during retrieval. Further study will be necessary to see whether this holds true in clinical applications.

  20. Structure Based Drug Design for HIM Protease: From Molecular Modeling to Cheminformatics

    SciTech Connect (OSTI)

    Volarath, Patra; Weber, Irene T.; Harrison, Robert W.

    2008-06-06

    Significant progress over the past decade in virtual representations of molecules and their physicochemical properties has produced new drugs from virtual screening of the structures of single protein molecules by conventional modeling methods. The development of clinical antiviral drugs from structural data for HIV protease has been a major success in structure based drug design. Techniques for virtual screening involve the ranking of the affinity of potential ligands for the target site on a protein. Two main alternatives have been developed: modeling of the target protein with a series of related ligand molecules, and docking molecules from a database to the target protein site. The computational speed and prediction accuracy will depend on the representation of the molecular structure and chemistry, the search or simulation algorithm, and the scoring function to rank the ligands. Moreover, the general challenges in modern computational drug design arise from the profusion of data, including whole genomes of DNA, protein structures, chemical libraries, affinity and pharmacological data. Therefore, software tools are being developed to manage and integrate diverse data, and extract and visualize meaningful relationships. Current areas of research include the development of searchable chemical databases, which requires new algorithms to represent molecules and search for structurally or chemically similar molecules, and the incorporation of machine learning techniques for data mining to improve the accuracy of predictions. Examples will be presented for the virtual screening of drugs that target HIV protease.

  1. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    SciTech Connect (OSTI)

    Hughes, Patrick; Im, Piljae

    2012-04-01

    ) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation

  2. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    SciTech Connect (OSTI)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  3. Superior model for fault tolerance computation in designing nano-sized circuit systems

    SciTech Connect (OSTI)

    Singh, N. S. S. Muthuvalu, M. S.; Asirvadam, V. S.

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  4. A computational model for thermal fluid design analysis of nuclear thermal rockets

    SciTech Connect (OSTI)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated.

  5. Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

    SciTech Connect (OSTI)

    Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.; Munoz-Ramos, Karina

    2016-01-01

    Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There are two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie

  6. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    SciTech Connect (OSTI)

    Saragi, Elfrida; Setiadji, Moch

    2013-09-09

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 C at one end and about 40 C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier.

  7. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  8. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a

  9. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  10. Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System

    SciTech Connect (OSTI)

    Moody, A T; Bronevetsky, G; Mohror, K M; de Supinski, B R

    2010-04-09

    High-performance computing (HPC) systems are growing more powerful by utilizing more hardware components. As the system mean-time-before-failure correspondingly drops, applications must checkpoint more frequently to make progress. However, as the system memory sizes grow faster than the bandwidth to the parallel file system, the cost of checkpointing begins to dominate application run times. A potential solution to this problem is to use multi-level checkpointing, which employs multiple types of checkpoints with different costs and different levels of resiliency in a single run. The goal is to design light-weight checkpoints to handle the most common failure modes and rely on more expensive checkpoints for less common, but more severe failures. While this approach is theoretically promising, it has not been fully evaluated in a large-scale, production system context. To this end we have designed a system, called the Scalable Checkpoint/Restart (SCR) library, that writes checkpoints to storage on the compute nodes utilizing RAM, Flash, or disk, in addition to the parallel file system. We present the performance and reliability properties of SCR as well as a probabilistic Markov model that predicts its performance on current and future systems. We show that multi-level checkpointing improves efficiency on existing large-scale systems and that this benefit increases as the system size grows. In particular, we developed low-cost checkpoint schemes that are 100x-1000x faster than the parallel file system and effective against 85% of our system failures. This leads to a gain in machine efficiency of up to 35%, and it reduces the the load on the parallel file system by a factor of two on current and future systems.

  11. On the design of a prototype model of the floating wave power device ``Mighty Whale``

    SciTech Connect (OSTI)

    Hotta, H.; Washio, Y.; Yokozawa, H.; Pizer, D.J.

    1996-12-31

    The Mighty Whale is a floating wave power device to convert the wave energy to other convenient energy for the conservation of the sea, and to create the calm sea area such as a floating breakwater. JAMSTEC (Japan Marine Science and Technology Center) has been promoting the R and D on this Mighty Whale since 1986. Already, the authors have finished fundamental development by theoretical, numerical and experimental study on the basic Mighty Whale. By 1996, they will finish designing the prototype model of the Mighty Whale, will start to construct it, and will carry out the open sea test between 1998 and 1999 at the coastal sea of Japan. The dimensions of the Mighty Whale are 50m in length, 30m in breadth and it has 3 air chambers, 3 units of the air turbines and generators of 50 kW rated power. It will be moored by mooring chains and anchors at the site of about 35m water depth. The mechanism to absorb the wave energy is of the OWC (Oscillating Water Column) type with the Wells Turbine. Its efficiency to absorb the wave energy is about 40--50% on average in regular waves, and it can make in the lee zone the height of incident waves about one half under 8 sec of the significant wave period. Because of such behavior, and from the view point of sustainable development at the coastal zone, the authors recognize the Mighty Whale can be a convenient and beneficial structure for the coastal development. In this paper, they introduce this design, and discuss the utilization of the Mighty Whale for the coastal development.

  12. Energy Department Announces Second Solar Decathlon | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This year's competition will once again employ a wide-range of innovative technologies to demonstrate the tremendous possibility of solar power and other renewable energy sources. ...

  13. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This information can indicate whether or not your site compels visitors to return. Updating web site content is one way to draw return visitors. | Domain Names This report lists ...

  14. Housing Innovation Awards at the Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Market Buildings.Energy.gov Next Generation Advanced Framing PHI - 3 Advanced framing techniques - Improve thermal performance - Reduce the cost of ...

  15. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs. Made of foam insulation sandwiched between two layers of ...

  16. [pic] EERE Web Site Statistics - Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Updating web site content is one way to draw return visitors. | Domain Names This report lists the domain names that generate the most activity to your web site. Because the data ...

  17. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  18. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    SciTech Connect (OSTI)

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, the capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.

  19. 2002 News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 News Releases Access news stories about the laboratory and renewable energy and energy efficiency technologies. Search Director of National Bioenergy Center Named - (12/12/02) Scientific American' Recognizes Solar Cell Research - (11/11/02) UPS Fleet Study Quantifies the Reliability, Low Emissions of CNG Trucks - (10/29/02) Energy Department Honors Solar Decathlon Winners - (10/05/02) Winner of Solar Decathlon to be Announced - (10/04/02) Solar Decathlon Engineering Design Results Announced -

  20. The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project Part 1: Overview and experimental design

    SciTech Connect (OSTI)

    Huntzinger, D.N.; Schwalm, C.; Michalak, A.M; Schaefer, K.; King, A.W.; Wei, Y.; Jacobson, A.; Liu, S.; Cook, R.; Post, W.M.; Berthier, G.; Hayes, D.; Huang, M.; Ito, A.; Lei, H.; Lu, C.; Mao, J.; Peng, C.H.; Peng, S.; Poulter, B.; Riccuito, D.; Shi, X.; Tian, H.; Wang, W.; Zeng, N.; Zhao, F.; Zhu, Q.

    2013-01-01

    Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.

  1. Multi-Scale Modeling Tools to Enable Manufacturing-Informed Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries Vehicle Technologies Office Merit ...

  2. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    SciTech Connect (OSTI)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  3. Synthesis and Evaluation of CO2 Thickeners Designed with Molecular Modeling

    SciTech Connect (OSTI)

    Robert Enick; Erick Beckman; J. Karl Johnson

    2009-08-31

    The objective of this research was to use molecular modeling techniques, coupled with our prior experimental results, to design, synthesize and evaluate inexpensive, non-fluorous carbon dioxide thickening agents. The first type of thickener that was considered was associating polymers. Typically, these thickeners are copolymers that contain a highly CO{sub 2}-philic monomer, and a small concentration of a CO{sub 2}-phobic associating monomer. Yale University was solely responsible for the synthesis of a second type of thickener; small, hydrogen bonding compounds. These molecules have a core that contains one or more hydrogen-bonding groups, such as urea or amide groups. Non-fluorous, CO{sub 2}-philic functional groups were attached to the hydrogen bonding core of the compound to impart CO{sub 2} stability and macromolecular stability to the linear 'stack' of these compounds. The third type of compound initially considered for this investigation was CO{sub 2}-soluble surfactants. These surfactants contain conventional ionic head groups and composed of CO{sub 2}-philic oligomers (short polymers) or small compounds (sugar acetates) previously identified by our research team. Mobility reduction could occur as these surfactant solutions contacted reservoir brine and formed mobility control foams in-situ. The vast majority of the work conducted in this study was devoted to the copolymeric thickeners and the small hydrogen-bonding thickeners; these thickeners were intended to dissolve completely in CO{sub 2} and increase the fluid viscosity. A small but important amount of work was done establishing the groundwork for CO{sub 2}-soluble surfactants that reduced mobility by generating foams in-situ as the CO{sub 2}+surfactant solution mixed with in-situ brine.

  4. Embedded Sensors and Controls to Improve Component Performance and Reliability - System Dynamics Modeling and Control System Design

    SciTech Connect (OSTI)

    Melin, Alexander M.; Kisner, Roger A.; Fugate, David L.

    2013-10-01

    This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.

  5. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  6. Application of high performance computing to automotive design and manufacturing: Composite materials modeling task technical manual for constitutive models for glass fiber-polymer matrix composites

    SciTech Connect (OSTI)

    Simunovic, S; Zacharia, T

    1997-11-01

    This report provides a theoretical background for three constitutive models for a continuous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and Development Agreement, "Application of High-Performance Computing to Automotive Design and Manufacturing." The full derivation of constitutive relations in the framework of the continuum program DYNA3D and have been used for the simulation and impact analysis of CSM composite tubes. The analysis of simulation and experimental results show that the model based on strain tensor split yields the most accurate results of the three implemented models. The parameters used in the models and their derivation from the physical tests are documented.

  7. Best practices for system dynamics model design and construction with powersim studio.

    SciTech Connect (OSTI)

    Malczynski, Leonard A.

    2011-06-01

    This guide addresses software quality in the construction of Powersim{reg_sign} Studio 8 system dynamics simulation models. It is the result of almost ten years of experience with the Powersim suite of system dynamics modeling tools (Constructor and earlier Studio versions). It is a guide that proposes a common look and feel for the construction of Powersim Studio system dynamics models.

  8. Model Based Structural Evaluation & Design of Overpack Container for Bag-Buster Processing of TRU Waste Drums

    SciTech Connect (OSTI)

    D. T. Clark; A. S. Siahpush; G. L. Anderson

    2004-07-01

    This paper describes a materials and computational model based analysis utilized to design an engineered overpack container capable of maintaining structural integrity for confinement of transuranic wastes undergoing the cryo-vacuum stress based Bag-Buster process and satisfying DOT 7A waste package requirements. The engineered overpack is a key component of the Ultra-BagBuster process/system being commercially developed by UltraTech International for potential DOE applications to non-intrusively breach inner confinement layers (poly bags/packaging) within transuranic (TRU) waste drums. This system provides a lower cost/risk approach to mitigate hydrogen gas concentration buildup limitations on transport of high alpha activity organic transuranic wastes. Four evolving overpack design configurations and two materials (low carbon steel and 300 series stainless) were considered and evaluated using non-linear finite element model analyses of structural response. Properties comparisons show that 300-series stainless is required to provide assurance of ductility and structural integrity at both room and cryogenic temperatures. The overpack designs were analyzed for five accidental drop impact orientations onto an unyielding surface (dropped flat on bottom, bottom corner, side, top corner, and top). The first three design configurations failed the bottom and top corner drop orientations (flat bottom, top, and side plates breached or underwent material failure). The fourth design utilized a protruding rim-ring (skirt) below the overpacks bottom plate and above the overpacks lid plate to absorb much of the impact energy and maintained structural integrity under all accidental drop loads at both room and cryogenic temperature conditions. Selected drop testing of the final design will be required to confirm design performance.

  9. Design Studies of Nb3Sn High-Gradient Quadrupole Models for LARP

    SciTech Connect (OSTI)

    Andreev, Nikolai; Caspi, Shlomo; Dietderich, Daniel; Ferracin, Paolo; Ghosh, Arup; Kashikhin, Vadim; Lietzke, Al; Novitski, Igor; Zlobin, Alexander; McInturff, Alfred; Sabbi, GianLuca

    2007-06-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 10{sup 35} cm{sup -2} s{sup -1} at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. Nb{sub 3}Sn conductor is required in order to operate at high field and with sufficient temperature margin. We report here on the conceptual design studies of a series of 1 m long 'High-gradient Quadrupoles' (HQ) that will explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ design is expected to provide coil peak fields of more than 15 T, corresponding to gradients above 300 T/m in a 90 mm bore. Conductor requirements, magnetic, mechanical and quench protection issues for candidate HQ designs will be presented and discussed.

  10. Elevated Temperature Primary Load Design Method Using Pseudo Elastic-Perfectly Plastic Model

    SciTech Connect (OSTI)

    Carter, Peter; Sham, Sam; Jetter, Robert I

    2012-01-01

    A new primary load design method for elevated temperature service has been developed. Codification of the procedure in an ASME Boiler and Pressure Vessel Code, Section III Code Case is being pursued. The proposed primary load design method is intended to provide the same margins on creep rupture, yielding and creep deformation for a component or structure that are implicit in the allowable stress data. It provides a methodology that does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. Use of elastic-perfectly plastic analysis based on allowable stress with corrections for constraint, steady state stress and creep ductility is described. This approach is intended to ensure that traditional primary stresses are the basis for design, taking into account ductility limits to stress re-distribution and multiaxial rupture criteria.

  11. Designing computing system architecture and models for the HL-LHC era

    SciTech Connect (OSTI)

    Bauerdick, L.; Bockelman, B.; Elmer, P.; Gowdy, S.; Tadel, M.; Wurthwein, F.

    2015-01-01

    This work describes a programme to study the computing model in CMS after the next long shutdown near the end of the decade.

  12. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect (OSTI)

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  13. Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

    2008-12-01

    NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

  14. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    SciTech Connect (OSTI)

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  15. An economic decision framework using modeling for improving aquifer remediation design

    SciTech Connect (OSTI)

    James, B.R.; Gwo, J.P.; Toran, L.E.

    1995-11-01

    Reducing cost is a critical challenge facing environmental remediation today. One of the most effective ways of reducing costs is to improve decision-making. This can range from choosing more cost- effective remediation alternatives (for example, determining whether a groundwater contamination plume should be remediated or not) to improving data collection (for example, determining when data collection should stoop). Uncertainty in site conditions presents a major challenge for effective decision-making. We present a framework for increasing the effectiveness of remedial design decision-making at groundwater contamination sites where there is uncertainty in many parameters that affect remediation design. The objective is to provide an easy-to-use economic framework for making remediation decisions. The presented framework is used to 1) select the best remedial design from a suite of possible ones, 2) estimate if additional data collection is cost-effective, and 3) determine the most important parameters to be sampled. The framework is developed by combining elements from Latin-Hypercube simulation of contaminant transport, economic risk-cost-benefit analysis, and Regional Sensitivity Analysis (RSA).

  16. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  17. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    SciTech Connect (OSTI)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  18. EXPERIMENTAL DESIGN APPLICATIONS FOR MODELING AND ASSESSING CARBON DIOXIDE SEQUESTRATION IN SALINE AQUIFERS

    SciTech Connect (OSTI)

    Rogers, John

    2014-08-31

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to

  19. Tornado missile simulation and design methodology. Volume 2: model verification and data base updates. Final report

    SciTech Connect (OSTI)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments.

  20. Refining and end use study of coal liquids. Topical report: Petroleum Refinery; Linear Programming Model; and Design Basis

    SciTech Connect (OSTI)

    1995-03-01

    A model was developed for use in the Bechtel PIMS (Process Industry Modeling System) linear programming software to simulate a generic Midwest (PADD II) petroleum refinery of the future. This ``petroleum-only`` version of the model establishes the size and complexity of the refinery after the year 2000 and prior to the introduction of coal liquids. It should be noted that no assumption has been made on when a plant can be built to produce coal liquids except that it will be after the year 2000. The year 2000 was chosen because it is the latest year where fuel property and emission standards have been set by the Environmental Protection Agency. It assumes the refinery has been modified to accept crudes that are heavier in gravity and higher in sulfur than today`s average crude mix. In addition, the refinery has also been modified to produce a product slate of transportation fuels of the future (i.e. 40% reformulated gasolines). This model will be used as a basis for determining the optimum scheme for processing coal liquids in a petroleum refinery. This report summarizes the design basis for this ``petroleum only`` LP refinery model. A report detailing the refinery configuration when coal liquids are processed will be provided at a later date.

  1. Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Ba/Rh NOx Traps for Design and Optimization

    SciTech Connect (OSTI)

    Michael Harold; Vemuri Balakotaiah

    2010-05-31

    In this project a combined experimental and theoretical approach was taken to advance our understanding of lean NOx trap (LNT) technology. Fundamental kinetics studies were carried out of model LNT catalysts containing variable loadings of precious metals (Pt, Rh), and storage components (BaO, CeO{sub 2}). The Temporal Analysis of Products (TAP) reactor provided transient data under well-characterized conditions for both powder and monolith catalysts, enabling the identification of key reaction pathways and estimation of the corresponding kinetic parameters. The performance of model NOx storage and reduction (NSR) monolith catalysts were evaluated in a bench scale NOx trap using synthetic exhaust, with attention placed on the effect of the pulse timing and composition on the instantaneous and cycle-averaged product distributions. From these experiments we formulated a global model that predicts the main spatio-temporal features of the LNT and a mechanistic-based microkinetic models that incorporates a detailed understanding of the chemistry and predicts more detailed selectivity features of the LNT. The NOx trap models were used to determine its ability to simulate bench-scale data and ultimately to evaluate alternative LNT designs and operating strategies. The four-year project led to the training of several doctoral students and the dissemination of the findings as 47 presentations in conferences, catalysis societies, and academic departments as well 23 manuscripts in peer-reviewed journals. A condensed review of NOx storage and reduction was published in an encyclopedia of technology.

  2. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool Preprint N. Tom, M. Lawson, and Y.-H. Yu National Renewable Energy Laboratory To be presented at the International Offshore and Polar Engineering Conference (ISOPE 2015) Kona, Hawaii June 21-26, 2015 Conference Paper NREL/CP-5000-63905 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government

  3. Theory, modeling and instrumentation for materials by design: Proceedings of workshop

    SciTech Connect (OSTI)

    Allen, R.E.; Cocke, D.L.; Eberhardt, J.J.; Wilson, A.

    1984-01-01

    The following topics are contained in this volume: how can materials theory benefit from supercomputers and vice-versa; the materials of xerography; relationship between ab initio and semiempirical theories of electronic structure and renormalization group and the statistical mechanics of polymer systems; ab initio calculations of materials properties; metals in intimate contact; lateral interaction in adsorption: revelations from phase transitions; quantum model of thermal desorption and laser stimulated desorption; extended fine structure in appearance potential spectroscopy as a probe of solid surfaces; structural aspects of band offsets at heterojunction interfaces; multiconfigurational Green's function approach to quantum chemistry; wavefunctions and charge densities for defects in solids: a success for semiempirical theory; empirical methods for predicting the phase diagrams of intermetallic alloys; theoretical considerations regarding impurities in silicon and the chemisorption of simple molecules on Ni; improved Kohn-Sham exchange potential; structural stability calculations for films and crystals; semiempirical molecular orbital modeling of catalytic reactions including promoter effects; theoretical studies of chemical reactions: hydrolysis of formaldehyde; electronic structure calculations for low coverage adlayers; present status of the many-body problem; atomic scattering as a probe of physical adsorption; and, discussion of theoretical techniques in quantum chemistry and solid state physics.

  4. Development of Computational Tools for Metabolic Model Curation, Flux Elucidation and Strain Design

    SciTech Connect (OSTI)

    Maranas, Costas D

    2012-05-21

    An overarching goal of the Department of Energy™ mission is the efficient deployment and engineering of microbial and plant systems to enable biomass conversion in pursuit of high energy density liquid biofuels. This has spurred the pace at which new organisms are sequenced and annotated. This torrent of genomic information has opened the door to understanding metabolism in not just skeletal pathways and a handful of microorganisms but for truly genome-scale reconstructions derived for hundreds of microbes and plants. Understanding and redirecting metabolism is crucial because metabolic fluxes are unique descriptors of cellular physiology that directly assess the current cellular state and quantify the effect of genetic engineering interventions. At the same time, however, trying to keep pace with the rate of genomic data generation has ushered in a number of modeling and computational challenges related to (i) the automated assembly, testing and correction of genome-scale metabolic models, (ii) metabolic flux elucidation using labeled isotopes, and (iii) comprehensive identification of engineering interventions leading to the desired metabolism redirection.

  5. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect (OSTI)

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  6. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect (OSTI)

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki

    2009-11-15

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  7. Cognitive models applied to human effectiveness in national security environments (ergonomics of augmented cognition system design and application).

    SciTech Connect (OSTI)

    Ntuen, Celestine; Winchester, Woodrow III

    2004-06-01

    In complex simulation systems where humans interact with computer-generated agents, information display and the interplay of virtual agents have become dominant media and modalities of interface design. This design strategy is reflected in augmented reality (AR), an environment where humans interact with computer-generated agents in real-time. AR systems can generate large amount of information, multiple solutions in less time, and perform far better in time-constrained problem solving. The capabilities of AR have been leveraged to augment cognition in human information processing. In this sort of augmented cognition (AC) work system, while technology has become the main source for information acquisition from the environment, the human sensory and memory capacities have failed to cope with the magnitude and scale of information they encounter. This situation generates opportunity for excessive cognitive workloads, a major factor in degraded human performance. From the human effectiveness point of view, research is needed to develop, model, and validate simulation tools that can measure the effectiveness of an AR technology used to support the amplification of human cognition. These tools will allow us to predict human performance for tasks executed under an AC tool construct. This paper presents an exploration of ergonomics issues relevant to AR and AC systems design. Additionally, proposed research to investigate those ergonomic issues is discussed.

  8. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    SciTech Connect (OSTI)

    Gehin, J.C.; Worley, B.A.; Renier, J.P.; Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M.

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates.

  9. A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design

    SciTech Connect (OSTI)

    Qu, Ming; Yin, Hongxi; Archer, David H.

    2010-02-15

    A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

  10. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where

  11. Investigations on Repository Near-Field Thermal Modeling - Repository Science/Thermal Load Management & Design Concepts (M41UF033302)

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Fratoni, M; Greenberg, H R; Ross, A D

    2011-07-15

    The various layers of material from the waste package (such as components of the engineered barrier system and the host rock surface) to a given distance within the rock wall at a given distance can be described as concentric circles with varying thermal properties (see Figure 5.1-1). The selected model approach examines the contributions of the waste package, axial waste package neighbors and lateral neighboring emplacement drifts (see Section 5.2.1 and Appendix H, Section 2). In clay and deep borehole media, the peak temperature is driven by the central waste package whereas, in granite and salt, the contribution to the temperature rise by adjacent (lateral) waste packages in drift or emplacement borehole lines is dominant at the time of the peak temperature. Mathematical models generated using Mathcad software provide insight into the effects of changing waste package spacing for six waste forms, namely UOX, MOX, co-extraction, new extraction, E-Chem ceramic and E-Chem metal in four different geologic media (granite, clay, salt and deep borehole). Each scenario includes thermal conductivity and diffusivity for each layer between the waste package and the host rock, dimensions of representative repository designs (such as waste package spacing, drift or emplacement borehole spacing, waste package dimensions and layer thickness), and decay heat curves generated from knowledge of the contents of a given waste form after 10, 50, 100 and 200 years of surface storage. Key results generated for each scenario include rock temperature at a given time calculated at a given radius from the central waste package (Section 5.2.1 and Appendix H, Section 3), the corresponding temperature at the interface of the waste package and EBS material, and at each EBS layer in between (Section 5.2.2 and Appendix H, Section 4). This information is vital to understand the implications of repository design (waste package capacity, surface storage time, waste package spacing, and emplacement

  12. Applying Human-performance Models to Designing and Evaluating Nuclear Power Plants: Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    O'Hara, J.M.

    2009-11-30

    Human performance models (HPMs) are simulations of human behavior with which we can predict human performance. Designers use them to support their human factors engineering (HFE) programs for a wide range of complex systems, including commercial nuclear power plants. Applicants to U.S. Nuclear Regulatory Commission (NRC) can use HPMs for design certifications, operating licenses, and license amendments. In the context of nuclear-plant safety, it is important to assure that HPMs are verified and validated, and their usage is consistent with their intended purpose. Using HPMs improperly may generate misleading or incorrect information, entailing safety concerns. The objective of this research was to develop guidance to support the NRC staff's reviews of an applicant's use of HPMs in an HFE program. The guidance is divided into three topical areas: (1) HPM Verification, (2) HPM Validation, and (3) User Interface Verification. Following this guidance will help ensure the benefits of HPMs are achieved in a technically sound, defensible manner. During the course of developing this guidance, I identified several issues that could not be addressed; they also are discussed.

  13. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  14. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick; Bradu, Benjamin

    2014-01-29

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  15. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Rahul P. Nabar

    2006-09-29

    Work continued on the development of a microkinetic model of Fischer-Tropsch synthesis (FTS) on supported and unsupported Fe catalysts. The following aspects of the FT mechanism on unsupported iron catalysts were investigated on during this third year: (1) the collection of rate data in a Berty CSTR reactor based on sequential design of experiments; (2) CO adsorption and CO-TPD for obtaining the heat of adsorption of CO on polycrystalline iron; and (3) isothermal hydrogenation (IH) after Fischer Tropsch reaction to identify and quantify surface carbonaceous species. Rates of C{sub 2+} formation on unsupported iron catalysts at 220 C and 20 atm correlated well to a Langmuir-Hinshelwood type expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. From desorption of molecularly adsorbed CO at different temperatures the heat of adsorption of CO on polycrystalline iron was determined to be 100 kJ/mol. Amounts and types of carbonaceous species formed after FT reaction for 5-10 minutes at 150, 175, 200 and 285 C vary significantly with temperature. Mr. Brian Critchfield completed his M.S. thesis work on a statistically designed study of the kinetics of FTS on 20% Fe/alumina. Preparation of a paper describing this work is in progress. Results of these studies were reported at the Annual Meeting of the Western States Catalysis and at the San Francisco AIChE meeting. In the coming period, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on unsupported Fe catalysts with/without K and Pt promoters by SSITKA method. This study will help us to (1) understand effects of promoter and support on elementary kinetic parameters and (2) build a microkinetics model for FTS on iron. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on models of defected Fe surfaces, most significantly the stepped Fe(211) surface. Binding

  16. Model of Procedure Usage – Results from a Qualitative Study to Inform Design of Computer-Based Procedures

    SciTech Connect (OSTI)

    Johanna H Oxstrand; Katya L Le Blanc

    2012-07-01

    The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use performance, researchers, together with the nuclear industry, have been looking at replacing the current paper-based procedures with computer-based procedure systems. The concept of computer-based procedures is not new by any means; however most research has focused on procedures used in the main control room. Procedures reviewed in these efforts are mainly emergency operating procedures and normal operating procedures. Based on lessons learned for these previous efforts we are now exploring a more unknown application for computer based procedures - field procedures, i.e. procedures used by nuclear equipment operators and maintenance technicians. The Idaho National Laboratory, the Institute for Energy Technology, and participants from the U.S. commercial nuclear industry are collaborating in an applied research effort with the objective of developing requirements and specifications for a computer-based procedure system to be used by field operators. The goal is to identify the types of human errors that can be mitigated by using computer-based procedures and how to best design the computer-based procedures to do this. The underlying philosophy in the research effort is “Stop – Start – Continue”, i.e. what features from the use of paper-based procedures should we not incorporate (Stop), what should we keep (Continue), and what new features or work processes should be added (Start). One step in identifying the Stop – Start – Continue was to conduct a baseline study where affordances related to the current usage of paper-based procedures were identified. The purpose of the study was to develop a model of paper based procedure use which will help to identify desirable features for computer based procedure prototypes. Affordances such as note taking, markups

  17. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect (OSTI)

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  18. DesignForward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new programming models, improvements in energy utilization, improvements in resilience and reliability, etc. Interconnect Technology Better overall design to integrate...

  19. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale; Rahul P. Nabar; Calvin H. Bartholomew; Hu Zou; Brian Critchfield

    2006-03-03

    Efforts during this second year focused on four areas: (1) continued searching and summarizing of published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) investigation of CO adsorption/desorption and temperature programmed hydrogenation (TPH) of carbonaceous species after FTS on unsupported iron and alumina-supported iron catalysts; (3) activity tests of alumina-supported iron catalysts in a fixed bed reactor; (4) sequential design of experiments, for the collection of rate data in a Berty CSTR reactor, and nonlinear-regression analysis to obtain kinetic parameters. Literature sources describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts were compiled in a review. Temperature-programmed desorption/reaction methods (the latter using mass-spectrometry detection and also thermogravimetric analyzer (TGA)) were utilized to study CO adsorption/-desorption on supported and unsupported iron catalysts. Molecular and dissociative adsorptions of CO occur on iron catalysts at 25-150 C. The amounts adsorbed and bond strengths of adsorption are influenced by supports and promoters. That CO adsorbs dissociatively on polycrystalline Fe at temperatures well below those of FT reaction indicates that CO dissociation is facile and unlikely to be the rate-limiting step during FTS. Carbonaceous species formed after FT reaction for only 5 minutes at 200 C were initially hydrogenated under mild, isothermal condition (200 C and 1 atm), followed by TPH to 800 C. During the mild, isothermal hydrogenation, only about 0.1-0.2 mL of atomic carbon is apparently removed, while during TPH to 800 C multilayer equivalents of atomic, polymeric, carbidic, and graphitic carbons are removed. Rates of CO conversion on alumina-supported iron catalysts at 220-260 C and 20 atm are correlated well by a Langmuir-Hinshelwood expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be

  20. An in-depth noise model for giant magnetoresistance current sensors for circuit design and complementary metaloxidesemiconductor integration

    SciTech Connect (OSTI)

    Roldn, A. Roldn, J. B.; Reig, C.; Cardoso, S.; Cardoso, F.; Ferreira, R.; Freitas, P. P.

    2014-05-07

    Full instrumentation bridges based on spin valve of giant magnetoresistance and magnetic tunnel junction devices have been microfabricated and experimentally characterized from the DC and noise viewpoint. A more realistic model of these devices was obtained in this work, an electrical and thermal model previously developed have been improved in such a way that noise effects are also included. We have implemented the model in a circuit simulator and reproduced the experimental measurements accurately. This provides a more realistic and complete tool for circuit design where magnetoresistive elements are combined with well-known complementary metaloxidesemiconductor modules.

  1. Development of the Symbolic Manipulator Laboratory modeling package for the kinematic design and optimization of the Future Armor Rearm System robot

    SciTech Connect (OSTI)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M. ); Dubey, R.V. . Dept. of Mechanical and Aerospace Engineering)

    1992-08-01

    A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capable of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.

  2. Development of the Symbolic Manipulator Laboratory modeling package for the kinematic design and optimization of the Future Armor Rearm System robot. Ammunition Logistics Program

    SciTech Connect (OSTI)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M.; Dubey, R.V.

    1992-08-01

    A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capable of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.

  3. STILE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    designed to serve a family "from a full nest to an empty nest." Learn More CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County --...

  4. INDIGO PINE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    designed to serve a family "from a full nest to an empty nest." Learn More CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County --...

  5. University of California, Davis, and Mass/Central America Win...

    Energy Savers [EERE]

    ... "Most of the highly efficient designs and products on display at the U.S. Department of Energy Solar Decathlon are available today and can help anyone save money by saving energy ...

  6. Photovoltaic Enterway

    Broader source: Energy.gov [DOE]

    This photograph features the solar modules, designed for grid-connected applications, from BP Solar that grace the entrance of this 2007 Solar Decathlon competition home. With a rated power of 190...

  7. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  8. Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2009-05-01

    Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

  9. Seizure control with thermal energy? Modeling of heat diffusivity in brain tissue and computer-based design of a prototype mini-cooler.

    SciTech Connect (OSTI)

    Osario, I.; Chang, F.-C.; Gopalsami, N.; Nuclear Engineering Division; Univ. of Kansas

    2009-10-01

    Automated seizure blockage is a top priority in epileptology. Lowering nervous tissue temperature below a certain level suppresses abnormal neuronal activity, an approach with certain advantages over electrical stimulation, the preferred investigational therapy for pharmacoresistant seizures. A computer model was developed to identify an efficient probe design and parameters that would allow cooling of brain tissue by no less than 21 C in 30 s, maximum. The Pennes equation and the computer code ABAQUS were used to investigate the spatiotemporal behavior of heat diffusivity in brain tissue. Arrays of distributed probes deliver sufficient thermal energy to decrease, inhomogeneously, brain tissue temperature from 37 to 20 C in 30 s and from 37 to 15 C in 60 s. Tissue disruption/loss caused by insertion of this probe is considerably less than that caused by ablative surgery. This model may be applied for the design and development of cooling devices for seizure control.

  10. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)

    SciTech Connect (OSTI)

    Petti, David; Martin, Philippe; Phelip, Mayeul; Ballinger, Ronald

    2004-12-01

    The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

  11. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    SciTech Connect (OSTI)

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  12. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  13. Thermo-mechanical and neutron lifetime modeling and design of Be pebbles in the neutron multiplier for the LIFE engine

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; de Caro, M S; Caro, A

    2009-03-16

    Concept designs for the laser-initiated fusion/fission engine (LIFE) include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a safe and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermomechanical behavior under continued neutron exposure. We consider the effects of high fluence/fast flux on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 C to enable creep to relax the stresses induced by swelling, which we estimate to be at least 16 months if uncoated and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  14. Conversion of cellulosic wastes to liquid hydrocarbon fuels: Vol. 6, The modeling and design of a staged indirect liquefaction reactor: Final report

    SciTech Connect (OSTI)

    Kuester, J.L.

    1986-11-01

    A staged reactor was designed to convert biomass to useful fuels. The reactor consists of three stages. The first stage is a concentric combustor/pyrolyzer system where the biomass is gasified in a fluidized bed at high temperatures in the absence of oxygen. The second stage is a cyclonic scrubber where particulates and condensable materials are removed from the gas stream while the gas is cooled. In the final stage the gas undergoes a Fischer-Tropsch synthesis in a fluidized bed or slurry reactor. Mathematical models of the system were developed and used to create computer programs that would predict the behavior of the bed. The models were based on fundamental phenomena and were used to predict key dimensions of the staged reactor system. A transparent plastic, full-scale, cold flow reactor simulator was built using the models' predictions. The simulator was used to refine the models and determine the operating characteristics of the reactor. The design was determined to be workable and potentially useful. The reactor was, however, difficult to operate and would require extensive automated control systems.

  15. Solar Decathlon 2013: Let the Building Begin | Department of Energy

    Energy Savers [EERE]

    Managing Social Media Records Managing Social Media Records What is Social Media? Your Responsibilities As a DOE federal or contractor Employee your basic records obligations are to: Follow the Lifecycle Records Management Lifecycle Create or receive official records needed to do business Social Media, Web 2.0, and Gov 2 0 bring together technology obligations are to: Planning for the use of Social Media should address records management requirements. Create or Capture records A RECORD is a

  16. Middlebury Students Practice 'Self-Reliance' with Solar Decathlon House |

    Energy Savers [EERE]

    Energy Michigan Saves Reaches $50 Million Investment Milestone Michigan Saves Reaches $50 Million Investment Milestone Photo of a group of people holding a cake and looking toward the camera. Michigan families and businesses are making smart investments in energy efficiency, from the western tip of the Upper Peninsula to the state's eastern coast of Lake Erie. In June, Michigan Saves celebrated a significant milestone: $50 million in energy investments. The home energy upgrade program, which

  17. Solar Decathlon 2013: Raising More Than Just Walls | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the teams can even start on the building process, they must first master the art of fundraising. To get them started, the Energy Department gives each team a 100,000...

  18. Solar Decathlon Opening Ceremony and VIP Ribbon Cutting | Department...

    Office of Environmental Management (EM)

    Department of Renewable and New Energy, China Competition sponsors including: Dow ... Team Belgium (Ghent University) Team China (Tongji University) Team Florida (The ...

  19. Secretary of Energy Moniz Cuts Ribbon, Kicks Off Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and clean energy products available today can help families and businesses save money by saving energy," said Secretary of Energy Ernest Moniz. "The event provides student ...

  20. Solar Decathlon 2013: Going the Distance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for an ultra-efficient house and make sustainability trendy. | Photo courtesy of Stanford. ... The Southern California Institute of Architecture and California Institute of Technology ...

  1. Solar Decathlon 2013: Meet the Teams | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Louisville, Ball State University and University of Kentucky -- is building a low-cost, solar-powered house that can easily be deployed after a disaster. Inspired by a tornado that...

  2. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    school's first, the team has drawn from a tradition of innovation and pride in its identity to create its entry "Aggie Sol." Learn More ALF HOUSE Western New York may not be...

  3. Vote for Your Favorite Solar Decathlon House | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    school's first, the team has drawn from a tradition of innovation and pride in its identity to create its entry "Aggie Sol." Learn More DURA URBAN HOUSE People from many nations...

  4. Shedding Light on the Solar Decathlon 2013 Teams | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction site. | Photo courtesy of New York City College of Technology. ...

  5. Secretary of Energy Moniz Cuts Ribbon, Kicks Off Solar Decathlon...

    Office of Environmental Management (EM)

    are able to tour the houses, gather ideas to use in their own homes, and learn how energy-saving features can help them save money today. The overall winner will be...

  6. Solar Decathlon 2013: Life After the Competition | Department...

    Broader source: Energy.gov (indexed) [DOE]

    serves as student housing and university research facilities. | Photo courtesy of the Energy Department. Missouri University of Science and Technology's Chameleon House will join...

  7. Secretary Chu to Speak at Solar Decathlon 2011 Awards Ceremony...

    Office of Environmental Management (EM)

    ... of Technology Team Belgium (Ghent University) Team China (Tongji University) Team Florida (The University of South Florida, Florida State University, the University of ...

  8. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  9. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient

  10. Laboratories for the 21st Century: Best Practices; Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide provides general information on specifying acceptable exhaust and intake designs. It also provides various quantitative approaches that can be used to determine expected concentration levels resulting from exhaust system emissions. In addition, the guide describes methodologies that can be employed to operate laboratory exhaust systems in a safe and energy efficient manner by using variable air volume (VAV) technology. The guide, one in a series on best practices for laboratories, was produced by Laboratories for the 21st Century (Labs21), a joint program of the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE). Geared toward architects, engineers, and facility managers, the guides contain information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories. Studies show a direct relationship between indoor air quality and the health and productivity of building occupants. Historically, the study and protection of indoor air quality focused on emission sources emanating from within the building. For example, to ensure that the worker is not exposed to toxic chemicals, 'as manufactured' and 'as installed' containment specifications are required for fume hoods. However, emissions from external sources, which may be re-ingested into the building through closed circuiting between the building's exhaust stacks and air intakes, are an often overlooked aspect of indoor air quality.

  11. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    SciTech Connect (OSTI)

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  12. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    SciTech Connect (OSTI)

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Auchmann, B.; Karppinen, M.; /CERN

    2011-11-28

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb{sub 3}Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at {approx}11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb{sub 3}Sn strand and cable parameters and test results are also reported.

  13. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint

    SciTech Connect (OSTI)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-03-01

    WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number of interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases.

  14. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect (OSTI)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  15. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    SciTech Connect (OSTI)

    Moro, Erik A.

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity

  16. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  17. ATOMIC-SCALE DESIGN OF IRON FISCHER-TROPSCH CATALYSTS: A COMBINED COMPUTATIONAL CHEMISTRY, EXPERIMENTAL, AND MICROKINETIC MODELING APPROACH

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale; Rahul P. Nabar; Calvin H. Bartholomew; Hu Zou; Brian Critchfield

    2005-03-22

    Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts was compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on

  18. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J.

    2006-11-01

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  19. Where science meets art | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Where are They Now? In Search of Former Solar Decathlon Houses Where are They Now? In Search of Former Solar Decathlon Houses September 22, 2015 - 4:54pm Addthis Swimming in Sustainability: The LISI House, Team Austria's 2013 entry, took home top honors before returning to Vienna, where the house was retrofitted as a floating model of sustainability. Swimming in Sustainability: The LISI House, Team Austria's 2013 entry, took home top honors before returning to Vienna, where the

  20. Mechanical Design

    SciTech Connect (OSTI)

    Shook, Richard; /Marquette U. /SLAC

    2010-08-25

    The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.

  1. Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

    2011-09-30

    This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

  2. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Analysis, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia Develops Stochastic ...

  3. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monte Carlo modeling it was found that for noisy signals with a significant background component, accuracy is improved by fitting the total emission data which includes the...

  4. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power ...

  5. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid ...

  6. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Actuarial Practice" Read More Permalink New Project Is the ACME of Computer Science to Address Climate Change Analysis, Climate, Global Climate & Energy, Modeling, ...

  7. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Though adequate for modeling mean transport, this approach does not address ... Microphysics such as diffusive transport and chemical kinetics are represented by ...

  8. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    SciTech Connect (OSTI)

    Burtchard, G.C.; Moblo, P.

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  9. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2...

  10. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the ...

  11. The Sandia MEMS passive shock sensor : FY08 design summary. ...

    Office of Scientific and Technical Information (OSTI)

    SENSORS; DESIGN; MATHEMATICAL MODELS; SHOCK WAVES; MONITORING; MICROELECTRONICS; SENSITIVITY Microelectromechanical systems-Design and construction.; Shock waves-Measurement. ...

  12. Microscale Electrode Design Using Coupled Kinetic, Thermal and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2009 DOE ...

  13. Policies for green design

    SciTech Connect (OSTI)

    Fullerton, D.; Wu, W.

    1998-09-01

    A simple general equilibrium model is used to analyze disposal-content fees, subsidies for recyclable designs, unit-pricing of household disposal, deposit-refund systems, and manufacturer take-back requirements. Firms use primary and recycled inputs to produce output that has two attributes: packaging per unit output, and recyclability. If households pay the social cost of disposal, then they send the right signals to producers to reduce packaging and to design products that can more easily be recycled. If garbage is collected for free, then socially optimum attributes can still be achieved by a tax on producers` use of packaging and subsidy to recyclable designs.

  14. Biosystems Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2: Frontiers and Horizons Session 2-A: Synthetic Biology and the Promise of Biofuels Pablo Rabinowicz, Program Manager, Biosystems Design Program, Biological and Environmental Research (BER), U.S. Department of Energy

  15. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  16. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab

    SciTech Connect (OSTI)

    Chen, Yuxiang; Galal, Khaled; Athienitis, A.K.

    2010-11-15

    This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

  17. control design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  18. Designing tomorrow's warheads -- today

    SciTech Connect (OSTI)

    Schneider, D.P.

    1988-03-15

    Until recently, new weapons' warheads were most often an incremental improvement on a previous warhead design. The tools available to the munition designer today, however, allow for a more comprehensive methodology to be employed. The focus of this paper will be a portion of the process of design of an explosively formed projectile (EFP) which uses tantalum as its liner material. Several questions surrounding tantalum's behavior under high strains require answers before such an EFP can be properly designed. The base-technology issues of different material properties will be explored using a three-dimensional finite element code (DYNA3D) and then compared to experiments. State-of-the-art diagnostics are an integral part of this methodology. Predetermined ''flasher block'' contours will provide specific position/time data which will assist in improving and understanding the high explosive equation of state as well as determining the energy imparted to the liner. In turn, this will lead to improved modeling of the liner as it translates along the line of flight. Flash X-ray Radiograph (FXR) will provide clues to axial symmetry, density, and overall time/distance information. This data will also provide answers to the strain rate depencence of the tantalum. Integration of the data from the experiment with the material response models allows post-experiment normalization of the code. This ''normalized'' tool is, finally used in the point design of the warhead.

  19. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    SciTech Connect (OSTI)

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  20. Center for Energy Efficient Design

    High Performance Buildings Database

    Rocky Mount, VA As the first Passivhaus public school in North America, the Center for Energy Efficient Design (CEED) in Rocky Mount, Virginia, is a national model for green school construction. An extension of The Leonard A.

  1. Decontamination systems information and research program -- Literature review in support of development of standard test protocols and barrier design models for in situ formed barriers project

    SciTech Connect (OSTI)

    1994-12-01

    The US Department of Energy is responsible for approximately 3,000 sites in which contaminants such as carbon tetrachloride, trichlorethylene, perchlorethylene, non-volatile and soluble organic and insoluble organics (PCBs and pesticides) are encountered. In specific areas of these sites radioactive contaminants are stored in underground storage tanks which were originally designed and constructed with a 30-year projected life. Many of these tanks are now 10 years beyond the design life and failures have occurred allowing the basic liquids (ph of 8 to 9) to leak into the unconsolidated soils below. Nearly one half of the storage tanks located at the Hanford Washington Reservation are suspected of leaking and contaminating the soils beneath them. The Hanford site is located in a semi-arid climate region with rainfall of less than 6 inches annually, and studies have indicated that very little of this water finds its way to the groundwater to move the water down gradient toward the Columbia River. This provides the government with time to develop a barrier system to prevent further contamination of the groundwater, and to develop and test remediation systems to stabilize or remove the contaminant materials. In parallel to remediation efforts, confinement and containment technologies are needed to retard or prevent the advancement of contamination plumes through the environment until the implementation of remediation technology efforts are completed. This project examines the various confinement and containment technologies and protocols for testing the materials in relation to their function in-situ.

  2. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept

    SciTech Connect (OSTI)

    Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled

    2010-11-15

    This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

  3. Where to Build in New York City? Team New York Looks Up | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Where to Build in New York City? Team New York Looks Up Where to Build in New York City? Team New York Looks Up July 22, 2011 - 3:27pm Addthis In honor of the U.S. Department of Energy Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive -- we are profiling each of the 20 teams participating in the competition. In honor of the U.S. Department of Energy Solar Decathlon --

  4. 2015 Hydrogen Student Design Contest Challenges Students to Develop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Design Contest Challenges Students to Develop Innovative Hydrogen Fueling Station Business and Financing Models 2015 Hydrogen Student Design Contest Challenges Students to ...

  5. System Advisor Model

    Energy Science and Technology Software Center (OSTI)

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  6. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    SciTech Connect (OSTI)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and

  7. WEC Model Development at Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Designs WEC Farm Hydrodynamic Modeling WEC Farm Environmental Modeling WEC Farm Power Modeling Wave Energy Development Roadmap: WEC Farm TRL 56, 78 & 9 Note: All specified flows ...

  8. Watermark Designs: Order (2010-CW-1404)

    Broader source: Energy.gov [DOE]

    DOE ordered Watermark Designs Holdings, Ltd. d/b/a Watermark Designs, Ltd. to pay a $135,104 civil penalty after finding Watermark Designs had failed to certify that various models of showerheads comply with the applicable water conservation standards.

  9. Computational fluid dynamics in oil burner design

    SciTech Connect (OSTI)

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  10. Catalysis by Design - Theoretical and Experimental Studies of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts for Lean NOx ... Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts Catalysis by ...

  11. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  12. GEM Technical Design Report

    SciTech Connect (OSTI)

    Not Available

    1993-07-31

    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence the name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.

  13. D.C. Community Comes Together in the Name of Sustainability, Affordability

    Broader source: Energy.gov [DOE]

    The New School for Design and Stevens Institute of Technology 2011 Solar Decathlon team is partnering with D.C. community members and Habitat for Humanity to build an energy efficient home that will be moved to the Deanwood neighborhood of Washington, D.C. following the competition.

  14. Autonomie: Automotive System Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomie: Automotive System Design Autonomie: Automotive System Design Argonne's Autonomie is a MATLAB©-based software environment and framework for automotive control system design, simulation and analysis. Autonomie is capable of Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), Hardware-in-the-Loop (HIL) and Rapid-Control-Prototyping (RCP) Integrating math-based engineering activities through all stages of development Mixing and matching models of different levels of abstraction with

  15. Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy.gov Solar Decathlon 2015 Solar Decathlon 2015 The competition is heating up at U.S. Department of Energy Solar Decathlon 2015 Go to energy.govsolardecathlon for full...

  16. Mesoscale Modeling Framework Design: Subcontract Report Chen...

    Office of Scientific and Technical Information (OSTI)

    Tang, M; Heo, T W; Wood, B C 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory (LLNL),...

  17. Mesoscale Modeling Framework Design: Subcontract Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS ...

  18. Mesoscale Modeling Framework Design: Subcontract Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  19. COMPETENCY MODEL ASSESSMENT DESIGN, ADMINISTRATION, AND ANALYSIS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and organizational workforce development use via gap analysis reporting A mapping of core, general, functional, and leadership competencies to various positions (Completed ...

  20. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  1. Setting the Stage for the Next Solar Decathlon | Department of Energy

    Energy Savers [EERE]

    Sequoia Ranked as Fastest Supercomputer in the World Sequoia Ranked as Fastest Supercomputer in the World June 25, 2012 - 2:19pm Addthis A view of one of the aisles of racks that hold Sequoia’s 1.6 million cores. Its 16.32 sustained petaflops and 1.6 petabytes of memory make it the world's fastest supercomputer. | Photo courtesy of Lawrence Livermore National Laboratory. A view of one of the aisles of racks that hold Sequoia's 1.6 million cores. Its 16.32 sustained petaflops and 1.6

  2. Energy Department Opens Competition to Select Student Teams for Solar Decathlon 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    In support of President Obamas commitment to a clean energy future, the Energy Department today began the process to select collegiate teams to compete in the U.S. Department of Energy Solar...

  3. OSTIblog Articles in the decathlon Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The winner of the competition will be announced on October 1. To learn more about solar energy and other green energy technologies, go to the DOE Green Energy Portal and find ...

  4. Video: 2017 U.S. Department of Energy Solar Decathlon Dates Announced |

    Energy Savers [EERE]

    Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn about exciting technologies and ongoing research in advanced technology vehicles and alternative fuel vehicles that run on fuels other than traditional petroleum.. ADVANCED TECHNOLOGY AND ALTERNATIVE FUEL VEHICLES There are a variety of alternative fuel vehicles and advanced technology vehicles available. Learn about: Flexible Fuel Vehicles Fuel

  5. OSTIblog Articles in the decathlon Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    comfort (maintaining comfortable temperature and humidity in the home), hot water (producing a sufficient quantity for washing and bathing), appliances (such as keeping ...

  6. Solar Decathlon Entry Uses iPad to Monitor Home | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? ... Addthis Related Articles Team Austria of the Vienna Institute of Technology created an ...

  7. Designated Team Leader

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Design Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm McFadden/NREL. Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm

  8. Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Design Design Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm McFadden/NREL. Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm

  9. NRT preliminary design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preliminary design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... SunShot Grand Challenge: Regional Test Centers NRT preliminary design HomeTag:NRT ...

  10. Rotor Aerodynamic Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Rotor Aerodynamic Design HomeStationary ...

  11. Energy Department Announces Student Teams, Location for Solar...

    Office of Environmental Management (EM)

    Student Teams, Location for Solar Decathlon 2015 Energy Department Announces Student Teams, Location for Solar Decathlon 2015 February 13, 2014 - 1:00pm Addthis News Media Contact ...

  12. Energy Department Announces Student Teams, New Location for Solar...

    Office of Environmental Management (EM)

    Student Teams, New Location for Solar Decathlon 2013 Energy Department Announces Student Teams, New Location for Solar Decathlon 2013 January 26, 2012 - 10:56am Addthis WASHINGTON, ...

  13. Energy Department Announces Dates and New Contests for Solar...

    Energy Savers [EERE]

    Dates and New Contests for Solar Decathlon 2017 in Denver, Colorado Energy Department Announces Dates and New Contests for Solar Decathlon 2017 in Denver, Colorado August 24, 2016 ...

  14. Richard King | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Starting with the Solar Decathlon 2007 the competition began including international teams, and in 2010 the first Solar Decathlon Europe was held in Madrid, Spain. The success of ...

  15. Office of Energy Efficiency & Renewable Energy | Department of...

    Office of Environmental Management (EM)

    more Energy Secretary Moniz Launches Solar Decathlon 2015 Energy Secretary Moniz Launches Solar Decathlon 2015 Secretary Moniz kicked off our competition that challenges collegiate...

  16. OSTIblog Articles in the DOE EcoCar 2 Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    chart or developing "Living Light", a net-zero energy home for DOE's Solar Decathlon. ... Related Topics: .EDUconnections, cancer, DOE EcoCar 2, DOE's Solar Decathlon, Knoxville, ...

  17. OSTIblog Articles in the Knoxville Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    chart or developing "Living Light", a net-zero energy home for DOE's Solar Decathlon. ... Related Topics: .EDUconnections, cancer, DOE EcoCar 2, DOE's Solar Decathlon, Knoxville, ...

  18. Center for Inverse Design: Inverse Design Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design Approach This page describes the inverse materials design methodology used by the Center for Inverse Design, which integrates and combines the following: (1) theory, or prediction, (2) synthesis, or realization, and (3) characterization, or validation. The result of this approach is an acceleration-by orders of magnitude-in developing new materials for solar energy technologies. The figure illustrates the research approach, outlined under the three primary steps. Flow diagram that

  19. Physics of compact ignition tokamak designs

    SciTech Connect (OSTI)

    Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.

    1986-03-01

    Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.

  20. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  1. Hydroforming design and process advisor

    SciTech Connect (OSTI)

    Greer, J.T.; Ni, C.M.

    1996-10-10

    The hydroforming process involves hydraulically forming components by conforming them to the inner contours of a die. These contours can be complex and can often cause the material being formed to be stressed to rupture. Considerable process knowledge and materials modeling expertise is required to design hydroform dies and hydroformed parts that are readily formed without being overly stressed. For this CRADA, materials properties for steel tubes subjected to hydraulic stresses were collected; algorithms were developed which combined the materials properties data with process knowledge; and a user friendly graphical interface was utilized to make the system usable by a design engineer. A prototype hydroforming advisor was completed and delivered to GM. The technical objectives of the CRADA were met allowing for the development of an intelligent design systems, prediction of forming properties related to hydroforming, simulation and modeling of process execution, and design optimization. The design advisor allows a rapid and seamless approach to integration an otherwise enormous and onerous task of analysis and evaluation.

  2. Impact-GMI Model

    Energy Science and Technology Software Center (OSTI)

    2007-03-22

    IMPACT-GMI is an atmospheric chemical transport model designed to run on massively parallel computers. It is designed to model trace pollutants in the atmosphere. It includes models for emission, chemistry and deposition of pollutants. It can be used to assess air quality and its impact on future climate change.

  3. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    1999-04-01

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  4. Development of Reference Models and Design Tools (LCOE Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies Effects on the Physical ...

  5. Control system design guide

    SciTech Connect (OSTI)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  6. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  7. Sensitivity analysis of Stirling engine design parameters

    SciTech Connect (OSTI)

    Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

    1998-07-01

    In the preliminary Stirling engine design process, the values of some design parameters (temperature ratio, swept volume ratio, phase angle and dead volume ratio) have to be assumed; as a matter of fact it can be difficult to determine the best values of these parameters for a particular engine design. In this paper, a mathematical model is developed to analyze the sensitivity of engine's performance variations corresponding to variations of these parameters.

  8. Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Reference Model 5: Oscillating Surge Wave Energy Converter. NRELTP-5000-62861. Golden, CO, National Renewable Energy Laboratory (NREL). January 2015. Power Conversion Chain Design ...

  9. Automated Design Space Exploration with Aspen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spafford, Kyle L.; Vetter, Jeffrey S.

    2015-01-01

    Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less

  10. Dynamical Systems in Circuit Designer's Eyes

    SciTech Connect (OSTI)

    Odyniec, M.

    2011-05-09

    Examples of nonlinear circuit design are given. Focus of the design process is on theory and engineering methods (as opposed to numerical analysis). Modeling is related to measurements It is seen that the phase plane is still very useful with proper models Harmonic balance/describing function offers powerful insight (via the combination of simulation with circuit and ODE theory). Measurement and simulation capabilities increased, especially harmonics measurements (since sinusoids are easy to generate)

  11. Preliminary Safety Design RM

    Office of Environmental Management (EM)

    Preliminary Safety Design Review Module March 2010 CD-0 O 0 OFFICE OF Pr C CD-1 F ENVIRO ... (CD) Ap CD March 2010 L MANAGE n (SRP) y Design e pplicability D-3 EMENT CD-4 Post Ope ...

  12. Photonic Design for Photovoltaics

    SciTech Connect (OSTI)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  13. Seismic Design Expectations Report

    Broader source: Energy.gov [DOE]

    The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to...

  14. Energy design for architects

    SciTech Connect (OSTI)

    Shaw, A.

    1989-01-01

    This book contains techniques for energy efficiency in architectural design. Many aspects are covered including: cost; comfort and health; energy use; the design process; and analytical techniques. 202 figs. (JF)

  15. Energy Design Assistance Project Tracker- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Larry Brackney, National Renewable Energy Laboratory The Energy Design Assistance Program Tracker (EDAPT) tracks and manages projects, performs automated quality checks of energy model designs, and generates project documentation and reports for commercial buildings.

  16. System Design Stage

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter addresses translating the user-oriented functional design specifications into a set of technical, computer-oriented system design specifications; and designing the data structure and processes to the level of detail necessary to plan and execute the Programming and Installation Stages.

  17. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    SciTech Connect (OSTI)

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presented as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.

  18. Foundation Design Handbook

    SciTech Connect (OSTI)

    Carmody, John; Mosiman, Garrett; Handeen, Daniel; Huelman, Patrick; Christian, Jeffery

    2013-10-01

    The purpose of this handbook is to provide information that will enable designers, builders, and homeowners to understand foundation design problems and solutions. The foundation of a house is a somewhat invisible and sometimes ignored component of the building. It is increasingly evident, however, that attention to good foundation design and construction has significant benefits to the homeowner and the builder, and can avoid some serious future problems. Good foundation design and construction practice means not only insulating to save energy, but also providing effective structural design as well as moisture, termite, and radon control techniques where appropriate.

  19. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and ...

  20. Results of two- and three-dimensional groundwater flow modeling for the design criteria studies in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This report combines results from 2-D and 3-D groundwater flow simulations. An overview of the hydrogeologic setting of WAG 6 located at ORNL is presented followed by a discussion of the numerical models used. Model development is discussed for both the 3-D and 2-D models. Results are then presented for the 3-D models followed by results from the 2-D models. The report concludes with an integrated summary of conclusions. This report contains many figures because graphics are advantageous in effectively portraying modeling results.

  1. The Building Design Advisor

    SciTech Connect (OSTI)

    Papamichael, K.; LaPorta, J.; Chauvet, H.; Collins, D.; Trzcinski, T.; Thorpe, J.; Selkowitz, S.

    1996-03-01

    The Building Design Advisor (BDA) is a software environment that supports the integrated use of multiple analysis and visualization tools throughout the building design process, from the initial, schematic design phases to the detailed specification of building components and systems. Based on a comprehensive design theory, the BDA uses an object-oriented representation of the building and its context, and acts as a data manager and process controller to allow building designers to quickly navigate through the multitude of descriptive and performance parameters addressed by the analysis and visualization tools linked to the BDA. Through the Browser the user can edit the values of input parameters and select any number of input and/or output parameters for display in the Decision Desktop. The Desktop allows building designers to compare multiple design alternatives with respect to any number of parameters addressed by the tools linked to the BDA.

  2. Final Report for "Compact Crab Cavity Design"

    SciTech Connect (OSTI)

    Smithe, David N

    2012-11-08

    The goal of this project is to provide an innovative, new crab cavity design relevant to the MEIC. Through this work, we will provide comprehensive modeling of this new cavity design, including electromagnetic, thermal, and microphonic effects. One most likely candidate configuration is the design put forward by JLab and Lancaster University, UK, researchers known as the four-rod configuration. In the Phase I, Tech-X Corporation researchers performed analysis and design optimization and iteration, utilizing their state-of-the art time-domain particle-in-cell software, on a 400 MHz design for the LHC by JLab and Lancaster University, UK, researchers known as the four-rod design.

  3. Feasibility and Design Studies for a High Temperature Downhole Tool

    Broader source: Energy.gov [DOE]

    Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

  4. Central ballast tanker design

    SciTech Connect (OSTI)

    1997-01-01

    The purpose of this paper is to present the CENTRAL BALLAST TANKER Design. This design is intended to reduce the volume of oil spilled from tankers by giving the crew a tanker properly designed and equipped to allow large quantities of oil from ruptured tank(s) to flow safely to a fully-inerted central ballast tank. In addition to reducing the volume of oil spilled, the design also addresses many of the shortcomings of the DOUBLE HULL DESIGN which are increasingly becoming a concern. The following is a brief review of the development of the CENTRAL BALLAST TANKER. The simple operational features, stability, low cost and ease of maintenance of the single hull tanker were important and can be retained with the CENTRAL BALLAST DESIGN.

  5. Explosiv3Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosiv3Design 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Explosiv3Design 3D-printing technology is booming and could revolutionize the design of high explosives. March 8, 2016 3D printer makes cones of explosive materials A 3D printer is the ideal tool to make these cones of explosive material with finely controlled internal microstructure. Scientists are revolutionizing both the manufacturing process and the explosive materials

  6. Structural design considerations

    SciTech Connect (OSTI)

    Marshall, P.; Chang, B.

    1996-12-31

    This paper is one of seven presented at a special OTC session on international standards for the design of offshore platforms for earthquakes. Companion papers describe an overview of proposed ISO provisions, seismic exposure, foundation design, performance characteristics, a site-specific example, and probability-based LRFD. The focus of this paper is upon results of interest to structural designers, such as: simplified load and resistance factors; lifetime reliability estimates; ductility analysis using API jolts; and example North Sea application.

  7. Conceptual Design RM

    Office of Environmental Management (EM)

    ... Design Report DOE Department of Energy EIR External Independent Review EM Office of ... form) of an External Independent Review (EIR) or Independent Project Review (IPR) report ...

  8. Advanced Energy Design Guides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ADVANCED ENERGY DESIGN GUIDES FACT SHEET EERE Information Center 1-877-EERE-INFO ... For more information, contact: Jerome Lam Energy Technology Program Specialist Commercial ...

  9. QA in Design Guidance

    Office of Environmental Management (EM)

    Assurance During the Design and Construction Life Cycle September 2011 Page 2 of 29 ... AISC American Institute of Steel Construction ASL Approved Supplier List ASME ...

  10. The LCLS Design Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R-593 April 2002 UC-414 Linac Coherent Light Source (LCLS) Conceptual Design Report Published April 2002 Prepared for the Department of Energy under contract number...

  11. Effective Design Strategies

    Broader source: Energy.gov [DOE]

    As described in the Whole Building Design Guide (WBDG), all Federal agencies are required to follow the Guiding Principles for New Construction and Major Renovations, which include considerations...

  12. ERHIC INTERACTION REGION DESIGN.

    SciTech Connect (OSTI)

    MONTAG,C.PARKER,B.PTITSYN,V.TEPIKIAN,S.WANG,D.WANG,F.

    2003-10-13

    This paper presents the current interaction region design status of the ring-ring version of the electron-ion collider eRHIC (release 2.0).

  13. Design of the EFR

    SciTech Connect (OSTI)

    Mitchell, C.H.; Debru, M. )

    1992-01-01

    The design work on the European Fast Reactor (EFR) started in the spring of 1988 at the request of the EFR Utilities Group (EFRUG), which comprises electricity producing utilities from France, Germany, Great Britain, and Italy. Other European utilities have expressed their interest in joining the EFR project. The EFR design work is being performed by EFR Associates, a group of design and construction companies that includes: (1) Novatome, a division of Framatome, France; (2) NNC, a member of the GEC group of companies, Great Britain; and (3) Siemens Engineerzeugung KWU, Germany. A first consistent design of a nuclear island for the EFR as submitted to EFRUG in the spring of 1990. This design combines the best features from previous national designs (SPX2, SNR2, and CDFR). Since 1990, the design validation work has been in an advanced stage, and EFR Associates proposal for the main features of a consistent design, which was presented to EFRUG in autumn 1991 (mid-phase 2), represented an important milestone in the design phase of the project.

  14. Cold Climates Heat Pump Design Optimization

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2012-01-01

    Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

  15. GAX absorption cycle design process

    SciTech Connect (OSTI)

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  16. Core Design Applications

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    CORD-2 is intended for core desigh applications of pressurized water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refueling).

  17. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as part of your whole-house design -- an approach for building an energy-efficient home. Indoor Lighting Design When designing indoor lighting for energy efficiency,...

  18. Beam director design report

    SciTech Connect (OSTI)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  19. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  20. System Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Design System Design This template is used to define the system design System Design (34.87 KB) More Documents & Publications Transition Plan Training Plan Feasibility Study Report Template

  1. Novel rocket design flight tested

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel rocket design flight tested Novel rocket design flight tested Scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that ...

  2. Novel rocket design flight tested

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel rocket design flight tested Novel rocket design flight tested Scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that...

  3. Lighting Design | Department of Energy

    Energy Savers [EERE]

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways ... Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the ...

  4. Decathletes Demonstrate Affordable Solar Housing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decathletes Demonstrate Affordable Solar Housing Decathletes Demonstrate Affordable Solar Housing September 27, 2011 - 3:54pm Addthis Parsons The New School for Design and Stevens Institute of Technology tied with Purdue University's INhome to win the Affordability Contest at the 2011 Solar Decathlon by building Empowerhouse for less than $230,000. | Courtesy of <a href="http://parsit.parsons.edu/">Empowerhouse.</a> Parsons The New School for Design and Stevens Institute of

  5. Competitions: Student STEM Contests and Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competitions: Student STEM Contests and Events Competitions: Student STEM Contests and Events The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. At the National Science Bowl, high school and middle

  6. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  7. Proposals and Design Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals and Design Reports Proposals and Design Reports Proposal (1/2/04) Proposal Addendum (29/3/04) Physics Case and Detector Technology Report (12/04) Technical Design Report (7/06) Reviews DOE CD-4 DOE 2008 DOE CD-3b CD-3b Readiness DOE CD-1/2/3a CD-2/3a Readiness CD-1 Readiness PAC Report (4/05) Approvals FNAL PAC Approval: April 15, 2004 DOE Critical Decision 1,2,3a (Performance Baseline, Construction Start) Approval: March 30, 2007 DOE Critical Decision 4 (Project Completion) Approval:

  8. Computational Modeling | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Modeling NREL uses computational modeling to increase the efficiency of biomass conversion by rational design using multiscale modeling, applying theoretical approaches, and testing scientific hypotheses. model of enzymes wrapping on cellulose; colorful circular structures entwined through blue strands Cellulosomes are complexes of protein scaffolds and enzymes that are highly effective in decomposing biomass. This is a snapshot of a coarse-grain model of complex cellulosome

  9. Header design evaluation. Final report

    SciTech Connect (OSTI)

    Stubenhofer, R.L.

    1993-08-01

    An evaluation was conducted of two new six-pin header designs. This evaluation consisted of designing, evaluating, procuring, and building contact module subassemblies with each of the two designs. The study was initiated as a result of the high scrap costs associated with the current product design. Two new designs were found to be feasible alternative to the current design.

  10. Seismic Design Expectations Report

    Office of Environmental Management (EM)

    March 2010 CD- This Rev of th Se -0 view Module w he overall Cons OFFICE O eismic De C ... CD-4 ldg. 3019 60% rned from this r ule. ) Post Ope design review review have be eration w ...

  11. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    otherwise does not necessarily constitute o r imply its endorsement, rccom- mendation, or ... : Enclosed f o r your useinformation is DOE-HTGR-88106, Rev. 0, "Metals Design Handbook". ...

  12. Subsea HIPPS design procedure

    SciTech Connect (OSTI)

    Aaroe, R.; Lund, B.F.; Onshus, T.

    1995-12-31

    The paper is based on a feasibility study investigating the possibilities of using a HIPPS (High Integrity Pressure Protection System) to protect a subsea pipeline that is not rated for full wellhead shut-in pressure. The study was called the Subsea OPPS Feasibility Study, and was performed by SINTEF, Norway. Here, OPPS is an acronym for Overpressure Pipeline Protection System. A design procedure for a subsea HIPPS is described, based on the experience and knowledge gained through the ``Subsea OPPS Feasibility Study``. Before a subsea HIPPS can be applied, its technical feasibility, reliability and profitability must be demonstrated. The subsea HIPPS design procedure will help to organize and plan the design activities both with respect to development and verification of a subsea HIPPS. The paper also gives examples of how some of the discussed design steps were performed in the Subsea OPPS Feasibility Study. Finally, further work required to apply a subsea HIPPS is discussed.

  13. Wind Turbine Blade Design

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

  14. Center for Inverse Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design EFRC Director: Alex Zunger Lead Institution: National Renewable Energy Laboratory Mission: Achieve the grand challenge of materials and nanostructures by design: Given the desired, target property, find the structure/configuration that has it, and then make the material. Historically, the development of new materials for technological applications has been based to a large extent on trial-and-error searches or accidental discoveries. This pattern is exemplified not only by the

  15. Design documentation: Krypton encapsulation preconceptual design

    SciTech Connect (OSTI)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  16. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  17. Advanced solar panel designs

    SciTech Connect (OSTI)

    Ralph, E.L.; Linder, E.

    1995-10-01

    This paper describes solar cell panel designs that utilize new high efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  18. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  19. Knowledge-based design of complex mechanical systems

    SciTech Connect (OSTI)

    Ishii, K.

    1988-01-01

    The recent development of Artificial Intelligence (AI) techniques allows incorporation of qualitative aspects of design into the computer aids. This thesis presents a framework for applying AI techniques to the design of complex mechanical systems. A complex, yet well-understood design example as a vehicle for the effort is used. The author first reviews how experienced designers use knowledge at various stages of system design. He then proposes a knowledge-based model of the design process and develop frameworks for applying knowledge engineering in order to construct a consultation system for the designers. He proposes four such frameworks for use at different stages of design: (1) Design Compatibility Analysis (DCA) analyzes the compatibility of the designer's design alternatives with the design specification, (2) Initial Design Suggestion (IDS) provides the designer with reasonable initial estimates of the design variables, (3) Rule-based Sensitivity Analysis (RSA) guides the user through redesign, and (4) Active Constraint Deduction (ACD) identifies the bottlenecks of design by heuristic knowledge. These frameworks eliminate unnecessary iterations and allows the user to obtain a satisfactory solution rapidly.

  20. Considering value of information when using CFD in design

    SciTech Connect (OSTI)

    Misra, John Satprim

    2009-12-19

    This thesis presents an approach to find lower resolution CFD models that can accurately lead a designer to a correct decision at a lower computational cost. High-fidelity CFD models often contain too much information and come at a higher computational cost, limiting the designs a designer can test and how much optimization can be performed on the design. Lower model resolution is commonly used to reduce computational time. However there are no clear guidelines on how much model accuracy is required. Instead experience and intuition are used to select an appropriate lower resolution model. This thesis presents an alternative to this ad hoc method by considering the added value of the addition information provided by increasing accurate and more computationally expensive models.

  1. Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, Renewable Energy, Research & Capabilities, Wind Energy, Wind News Virtual LIDAR Model Helps Researchers ...

  2. Water Cooled Mirror Design

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  3. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  4. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  5. Ceramic tubesheet design analysis

    SciTech Connect (OSTI)

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  6. OOTW Force Design Tools

    SciTech Connect (OSTI)

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  7. design basis threat

    National Nuclear Security Administration (NNSA)

    training courses, and additional full-time instructors.

    • The shift to an "Elite Forces," or Tactical Response Force (TRF) model, to transform NNSA's protective forces...

    • Project Profile: Design of Social and Economic Incentives and Information

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Campaigns to Promote Solar Technology Diffusion through Data-Driven Behavior Modeling | Department of Energy Soft Costs » Project Profile: Design of Social and Economic Incentives and Information Campaigns to Promote Solar Technology Diffusion through Data-Driven Behavior Modeling Project Profile: Design of Social and Economic Incentives and Information Campaigns to Promote Solar Technology Diffusion through Data-Driven Behavior Modeling Logos of Sandia National Laboratories, the Center of

    • 2015 Hydrogen Student Design Contest Challenges Students to Develop

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Innovative Hydrogen Fueling Station Business and Financing Models | Department of Energy 5 Hydrogen Student Design Contest Challenges Students to Develop Innovative Hydrogen Fueling Station Business and Financing Models 2015 Hydrogen Student Design Contest Challenges Students to Develop Innovative Hydrogen Fueling Station Business and Financing Models November 25, 2014 - 5:18pm Addthis Registration is open for university students worldwide until January 16, 2015. The Hydrogen Education

    • Remote Systems Design & Deployment

      SciTech Connect (OSTI)

      Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

      2009-08-28

      The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

    • Designing radiation protection signs

      SciTech Connect (OSTI)

      Rodriguez, M.A.; Richey, C.L.

      1995-03-01

      Entry into hazardous areas without the proper protective equipment is extremely dangerous and must be prevented whenever possible. Current postings of radiological hazards at the Rocky Flats Environmental Technology Site (RFETS) do not incorporate recent findings concerning effective warning presentation. Warning information should be highly visible, quickly, and easily understood. While continuing to comply with industry standards (e.g., Department of Energy (DOE) guidelines), these findings can be incorporated into existing radiological sign design, making them more effective in terms of usability and compliance. Suggestions are provided for designing more effective postings within stated guidelines.

    • Fire protection design criteria

      SciTech Connect (OSTI)

      1997-03-01

      This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

    • Nacelle Systems Engineering Model and Hub Systems Engineering Model

      Energy Science and Technology Software Center (OSTI)

      2012-09-30

      nacelleSE and hubSE are a set of models that size wind turbine hub system and drivetrain components based on key turbine design parameters and load inputs from a rotor model.

    • Good, Better, Best: Designing a Designation Program for Solar | Department

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      of Energy Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar December 4, 2012 - 4:00pm Addthis The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. The Energy Department is gathering input on solar designation programs that could one day help consumers

    • HOMER® Energy Modeling Software

      Energy Science and Technology Software Center (OSTI)

      2000-12-31

      The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

    • Combustion and Emissions Modeling

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Combustion and Emissions Modeling This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background Modern transportation engines are designed to use the available fuel resources efficiently and minimize harmful emissions. Optimization of these designs is based on a wealth of practical design, construction and operating experiences, and use of modern testing facilities and sophisticated analyses of the combustion

    • Algal Supply System Design - Harmonized Version

      SciTech Connect (OSTI)

      Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

      2013-03-01

      The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

    • Salt repository design approach

      SciTech Connect (OSTI)

      Matthews, S.C.

      1983-01-01

      This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

    • FHR Generic Design Criteria

      SciTech Connect (OSTI)

      Flanagan, George F; Holcomb, David Eugene; Cetiner, Sacit M

      2012-06-01

      The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC) - based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process.

    • FHR Generic Design Criteria

      SciTech Connect (OSTI)

      Flanagan, G.F.; Holcomb, D.E.; Cetiner, S.M.

      2012-06-15

      The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC)–based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process.

  1. Tool and Fixture Design

    SciTech Connect (OSTI)

    Graham, Mark W.

    2015-07-28

    In a manufacturing process, a need is identified and a product is created to fill this need. While design and engineering of the final product is important, the tools and fixtures that aid in the creation of the final product are just as important, if not more so. Power supplies assembled at the TA-55 PF-5 have been designed by an excellent engineering team. The task in PF-5 now is to ensure that all steps of the assembly and manufacturing process can be completed safely, reliably, and in a quality repeatable manner. One of these process steps involves soldering fine wires to an electrical connector. During the process development phase, the method of soldering included placing the power supply in a vice in order to manipulate it into a position conducive to soldering. This method is unacceptable from a reliability, repeatability, and ergonomic standpoint. To combat these issues, a fixture was designed to replace the current method. To do so, a twelve step engineering design process was used to create the fixture that would provide a solution to a multitude of problems, and increase the safety and efficiency of production.

  2. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  3. Microresonator electrode design

    DOE Patents [OSTI]

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  4. Designing a Benchmarking Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program (WIP) Solution Center document about how state and local governments, Indian tribes, and overseas U.S. territories can design a plan to benchmark the energy consumption in public buildings.

  5. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Design for Efficiency Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but ...

  6. Optimal design of distributed wastewater treatment networks

    SciTech Connect (OSTI)

    Galan, B.; Grossmann, I.E.

    1998-10-01

    This paper deals with the optimum design of a distributed wastewater network where multicomponent streams are considered that are to be processed by units for reducing the concentration of several contaminants. The proposed model gives rise to a nonconvex nonlinear problem which often exhibits local minima and causes convergence difficulties. A search procedure is proposed in this paper that is based on the successive solution of a relaxed linear model and the original nonconvex nonlinear problem. Several examples are presented to illustrate that the proposed method often yields global or near global optimum solutions. The model is also extended for selecting different treatment technologies and for handling membrane separation modules.

  7. Video: Training Clean Energy Leaders of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Clean Energy Leaders of the Future Video: Training Clean Energy Leaders of the Future October 22, 2013 - 10:26am Addthis Watch our latest video for highlights from this year's Solar Decathlon and insights into how the competition is shaping the careers of the students involved and making sustainable home design popular. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene

  8. Building America Update: September 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: September 2015 Building America Update: September 2015 September 9, 2015 - 12:53pm Addthis Building Designers of the Future Unite-and Compete! Zero Energy Ready Homes Housing Innovation Awards at the EEBA Conference! The "Zero" Movement Begins-The Tour of Zero National Campaign RESNET Proposes Amendment to ANSI Standard for Airtightness and Airflow Department of Energy Seeks New Teams and Venue for Solar Decathlon 2017 DOE Publishes Final Report on Climate-Specific Passive

  9. Design of Roadside Safety Features

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis and Design of the Roadside Safety Features for Safety Performance Texas Transportation Institute (TTI) researchers are investigating the performance of a crash wall design ...

  10. ORISE: Instructional Design and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructional Design and Development The Oak Ridge Institute for Science and Education ... instructional design programs, from traditional classroom teaching to online education. ...

  11. Ventuno Design | Open Energy Information

    Open Energy Info (EERE)

    Ventuno Design Jump to: navigation, search Name: Ventuno Design Place: Lower Saxony, Germany Zip: 49767 Sector: Wind energy Product: German-based wind farm developer with...

  12. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  13. A Toolkit for Microgrid Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To aid in optimal design of microgrids, and help avoid potential problems with maintenance, safety, power quality, and stability, Sandia has developed the Microgrid Design Toolkit ...

  14. Penetrator reliability investigation and design exploration : from conventional design processes to innovative uncertainty-capturing algorithms.

    SciTech Connect (OSTI)

    Martinez-Canales, Monica L.; Heaphy, Robert; Gramacy, Robert B.; Taddy, Matt; Chiesa, Michael L.; Thomas, Stephen W.; Swiler, Laura Painton; Hough, Patricia Diane; Lee, Herbert K. H.; Trucano, Timothy Guy; Gray, Genetha Anne

    2006-11-01

    This project focused on research and algorithmic development in optimization under uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into account uncertainty, we addressed three challenges in current simulation-based engineering design and analysis processes. The first challenge required leveraging small local samples, already constructed by optimization algorithms, to build effective surrogate models. We used Gaussian Process (GP) models to construct these surrogates. We developed two OUU algorithms using 'local' GPs (OUU-LGP) and one OUU algorithm using 'global' GPs (OUU-GGP) that appear competitive or better than current methods. The second challenge was to develop a methodical design process based on multi-resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). The third challenge involved the development of tools that are computational feasible and accessible. We created MATLAB{reg_sign} and initial DAKOTA implementations of our algorithms.

  15. Achromatic Interaction Point Design

    SciTech Connect (OSTI)

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  16. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  17. Rotor Aerodynamic Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  18. Rotor Design Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  19. ESF BLAST DESIGN ANALYSIS

    SciTech Connect (OSTI)

    E.F. fitch

    1995-03-13

    The purpose and objective of this design analysis are to develop controls considered necessary and sufficient to implement the requirements for the controlled drilling and blasting excavation of operations support alcoves and test support alcoves in the Exploratory Studies Facility (ESF). The conclusions reached in this analysis will flow down into a construction specification ensuring controlled drilling and blasting excavation will be performed within the bounds established here.

  20. Photovoltaic Incentive Design Handbook

    SciTech Connect (OSTI)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.