National Library of Energy BETA

Sample records for dealers bulk plants

  1. RAPID/BulkTransmission/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  2. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Refinery, Bulk Terminal, and Natural Gas ... 10:27:55 PM" "Back to Contents","Data 1: U.S. Refinery, Bulk Terminal, and Natural Gas ...

  3. Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Progress San Diego Dealers Plug-In to Electric Vehicle Progress to someone by E-mail Share Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Facebook Tweet about Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Twitter Bookmark Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Google Bookmark Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle

  4. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Natural Gas Plants (Thousand Barrels)","East Coast (PADD 1) Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand ...

  5. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrificati...

    Office of Environmental Management (EM)

    Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System (DBVS) Review Report Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System ...

  6. Rotary bulk solids divider

    DOE Patents [OSTI]

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  7. ROTARY BULK SOLIDS DIVIDER

    DOE Patents [OSTI]

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  8. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  9. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  10. Explosive bulk charge

    SciTech Connect (OSTI)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  11. Microfabricated bulk wave acoustic bandgap device (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated bulk wave acoustic bandgap device Title: Microfabricated bulk wave acoustic bandgap device A microfabricated bulk wave acoustic bandgap device comprises a periodic ...

  12. Bulk Data Mover

    SciTech Connect (OSTI)

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections, data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/

  13. Bulk Data Mover

    Energy Science and Technology Software Center (OSTI)

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections,more » data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/« less

  14. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  15. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  16. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  17. RAPID/BulkTransmission | Open Energy Information

    Open Energy Info (EERE)

    regulatory processes and requirements by searching our regulatory flowchart library. Learn more about bulk transmission. BulkTransCoverage.png Regulations and permitting...

  18. Bulk Electronic Structure of Quasicrystals (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Bulk Electronic Structure of Quasicrystals Prev Next Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; Singh, Sanjay ; ...

  19. Bulk Electronic Structure of Quasicrystals (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Bulk Electronic Structure of Quasicrystals Citation Details In-Document Search Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; ...

  20. Waste Form Qualification Compliance Strategy for Bulk Vitrification

    SciTech Connect (OSTI)

    Bagaasen, Larry M.; Westsik, Joseph H.; Brouns, Thomas M.

    2005-01-03

    The Bulk Vitrification System is being pursued to assist in immobilizing the low-activity tank waste from the 53 million gallons of radioactive waste in the 177 underground storage tanks on the Hanford Site. To demonstrate the effectiveness of the bulk vitrification process, a research and development facility known as the Demonstration Bulk Vitrification System (DBVS) is being built to demonstrate the technology. Specific performance requirements for the final packaged bulk vitrification waste form have been identified. In addition to the specific product-performance requirements, performance targets/goals have been identified that are necessary to qualify the waste form but do not lend themselves to specifications that are easily verified through short-term testing. Collectively, these form the product requirements for the DBVS. This waste-form qualification (WFQ) strategy document outlines the general strategies for achieving and demonstrating compliance with the BVS product requirements. The specific objectives of the WFQ activities are discussed, the bulk vitrification process and product control strategy is outlined, and the test strategy to meet the WFQ objectives is described. The DBVS product performance targets/goals and strategies to address those targets/goals are described. The DBVS product-performance requirements are compared to the Waste Treatment and Immobilization Plant immobilized low-activity waste product specifications. The strategies for demonstrating compliance with the bulk vitrification product requirements are presented.

  1. Fact #872: May 11, 2015 Study Finds More than 60% of Millennials and Generation Xers Use the Internet to Find a Car Dealer While Less than Half of Baby Boomers Did – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Study Finds More than 60% of Millennials and Generation Xers Use the Internet to Find a Car Dealer While Less than Half of Baby Boomers Did

  2. Fact #872: May 11, 2015 Study Finds More than 60% of Millennials and Generation Xers Use the Internet to Find a Car Dealer While Less than Half of Baby Boomers Did

    Broader source: Energy.gov [DOE]

    According to an AutoTrader-commissioned study of people who purchased vehicles within the past 12 months, the Internet is the source most used when finding a car dealer. However, the study revealed...

  3. Bulk Hauling Equipment for CHG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg *

  4. Bulk Power Generation and Transmission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Opportunities Blue lines: Transmission Grid Red lines: Lines that are congested or at outages - in RealTime Yellow and Red iconsdots: Power plant RealTime production ...

  5. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, ...

  6. Synthesis of bulk superhard semiconducting B-C material (Journal...

    Office of Scientific and Technical Information (OSTI)

    Synthesis of bulk superhard semiconducting B-C material Citation Details In-Document Search Title: Synthesis of bulk superhard semiconducting B-C material A bulk composite ...

  7. RAPID/BulkTransmission/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    BulkTransmissionAir Quality < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  8. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Stocks Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 18,525 19,638 17,733 17,607 17,525 17,252 1993-2016 PAD District 1 2,242 2,546 1,550 1,573 1,593 1,969 1993-2016 Connecticut 1993-2005 Delaware 1993-2010 Florida 926 877 835 853 781 998 1993-2016 Georgia 175 221 158 163 190 268 1993-2016 Maine 1993-2014 Maryland 1993-2009 Massachusetts 4 4 4 4 6 8 1993-2016 New Hampshire 1993-2006 New Jersey 534 804 23 60 98 16 1993-2016 New York 14 23 18 11 25 16 1993-2016 North Carolina 170

  9. Summary - Demonstration Bulk Vitrification System (DBVS) for...

    Office of Environmental Management (EM)

    External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for ... What the ETR Team Recommended Additional cold testing and demonstration is needed for ...

  10. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History RAPIDBulk Transmission < RAPID(Redirected from RAPIDOverviewBulkTransmission) Redirect page Jump to: navigation, search REDIRECT RAPIDBulkTransmission...

  11. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other

  12. Bulk materials handling equipment roundup

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-07-15

    The article reports recent product developments in belt conveyors. Flexco Steel Lancing Co. (Flexco) has a range of light, portable maintenance tools and offers training modules on procedures for belt conveyor maintenance on its website www.flexcosafe.com. Siemens recently fitted a 19 km long conveyor belt drive system at a Texan aluminium plant with five 556-kW Simovent Masterdrive VC drives. Voith recently launched the TPKL-T turbo coupling for users who want an alignment-free drive solution. Belt cleaners newly on the market include the RemaClean SGB brush and ASGCO Manufacturing's Razor-Back with Spray bar. Continental Conveyor has introduced a new line of dead-shaft pulleys offering increased bearing protection. 6 photos.

  13. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect (OSTI)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  14. bulk power system | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  15. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners venkatasubramanian.pdf (1.82 MB) More Documents & Publications Nano-structur...

  16. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    Open Energy Info (EERE)

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  17. Overview of Western's Interconnected Bulk Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western's Interconnected Bulk Electric System Western Area Power Admin. Objectives * Describe Western Area Power Administration Region and Facilities Overview * Explain Fundamentals of Electricity, Power Transformers and Transmission Lines * Discuss Overview of the Bulk Electric System (BES) * Objectives Review Western's Service Area Western marketing areas and offices 3 Wholesale Power Services * Markets 10,479 MW from 56 Federal hydropower projects owned by Bureau of Reclamation (BOR) , Army

  18. NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Overview The primary market for parabolic trough technology is large-scale bulk power. Because trough plants can be hybridized or can include thermal energy storage, they ...

  19. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  20. Design of Bulk Nanocomposites as High Efficiency Thermoelectric...

    Office of Science (SC) Website

    Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier ... News & Events Publications History Contact BES Home 04.27.12 Design of Bulk Nanocomposites ...

  1. RAPID/BulkTransmission/General Construction | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionGeneral Construction < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  2. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    Open Energy Info (EERE)

    for bulk transmission. Date: Tuesday, 29 July, 2014 - 09:30 - 15:30 Location: NREL Education Center Auditorium Golden, Colorado Groups: Federal Bulk Transmission Regulatory...

  3. RAPID/BulkTransmission/Water Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionWater Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  4. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    in Bulk Organic Electrolytes from First Principles Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic ...

  5. Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications...

    Office of Scientific and Technical Information (OSTI)

    Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications Citation Details In-Document Search Title: Linux Kernel Co-Scheduling For Bulk Synchronous Parallel ...

  6. Material Profile Influences in Bulk-Heterojunctions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Material Profile Influences in Bulk-Heterojunctions Citation Details In-Document Search Title: Material Profile Influences in Bulk-Heterojunctions he morphology in mixed ...

  7. Stability analysis of 5D gravitational solutions with N bulk...

    Office of Scientific and Technical Information (OSTI)

    Stability analysis of 5D gravitational solutions with N bulk scalar fields Prev Next Title: Stability analysis of 5D gravitational solutions with N bulk scalar fields ...

  8. RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy...

    Open Energy Info (EERE)

    Colorado < RAPID | Overview | BulkTransmission | Siting(Redirected from RAPIDAtlasBulkTransmissionSitingColorado) Redirect page Jump to: navigation, search REDIRECT...

  9. RAPID/BulkTransmission/Exploration | Open Energy Information

    Open Energy Info (EERE)

    search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Bulk Transmission ...

  10. RAPID/BulkTransmission/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  11. Bulk-memory processor for data acquisition

    SciTech Connect (OSTI)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user.

  12. Orchestrating Bulk Data Movement in Grid Environments

    SciTech Connect (OSTI)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  13. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  14. A stereoscopic look into the bulk

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-07-26

    Here, we present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphisminvariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimalmore » surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.« less

  15. Imprinting bulk amorphous alloy at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  16. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  17. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  18. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  19. Structural rejuvenation in bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; Bei, Hongbin; Yokoyama, Y.; Egami, Takeshi

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  20. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  1. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  2. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  3. Improving the bulk data transfer experience

    SciTech Connect (OSTI)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  4. Towards bulk based preconditioning for quantum dotcomputations

    SciTech Connect (OSTI)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  5. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C. )

    1991-01-01

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. The authors have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235}U sample mass, AmLi source strength, and source-to-sample coupling.

  6. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow The boundary entropy log(g) of a critical ...

  7. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow You are accessing a document from ...

  8. Summary - Demonstration Bulk Vitrification System (DBVS) for Low-Actvity Waste at Hanford

    Office of Environmental Management (EM)

    DBVS ETR Report Date: September 2006 ETR-3 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe retrieval, treatment and disposal of 53 million gallons of Hanford radioactive waste. The Waste Treatment Plant (WTP) is being designed to treat and vitrify the High Level

  9. Negative ion extraction from hydrogen plasma bulk

    SciTech Connect (OSTI)

    Oudini, N.; Taccogna, F.; Minelli, P.

    2013-10-15

    A two-dimensional particle-in-cell/Monte Carlo collision model has been developed and used to study low electronegative magnetized hydrogen plasma. A configuration characterized by four electrodes is used: the left electrode is biased at V{sub l} = −100 V, the right electrode is grounded, while the upper and lower transversal electrodes are biased at an intermediate voltage V{sub ud} between 0 and −100 V. A constant and homogeneous magnetic field is applied parallel to the lateral (left/right) electrodes. It is shown that in the magnetized case, the bulk plasma potential is close to the transversal electrodes bias inducing then a reversed sheath in front of the right electrode. The potential drop within the reversed sheath is controlled by the transversal electrodes bias allowing extraction of negative ions with a significant reduction of co-extracted electron current. Furthermore, introducing plasma electrodes, between the transversal electrodes and the right electrode, biased with a voltage just above the plasma bulk potential, increases the negative ion extracted current and decreases significantly the co-extracted electron current. The physical mechanism on basis of this phenomenon has been discussed.

  10. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times duemore » to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  11. SBOT MISSOURI KANSAS CITY PLANT POC C. J. Warrick Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services ... Other Fuel Dealers 454319 HEALTH CARE & SOCIAL ASSISTANCE Outpatient Mental Health and ...

  12. Bulk amorphous steels based on Fe alloys

    DOE Patents [OSTI]

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  13. Rotary adsorbers for continuous bulk separations

    DOE Patents [OSTI]

    Baker, Frederick S.

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  14. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  15. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50

  16. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  17. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2013-04-09

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  18. Determination of Bulk Dimensional Variation in Castings

    SciTech Connect (OSTI)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  19. Excitonic exchange splitting in bulk semiconductors

    SciTech Connect (OSTI)

    Fu, H.; Wang, L.; Zunger, A.

    1999-02-01

    We present an approach to calculate the excitonic fine-structure splittings due to electron-hole short-range exchange interactions using the local-density approximation pseudopotential method, and apply it to bulk semiconductors CdSe, InP, GaAs, and InAs. Comparing with previous theoretical results, the current calculated splittings agree well with experiments. Furthermore, we provide an approximate relationship between the short-range exchange splitting and the exciton Bohr radius, which can be used to estimate the exchange splitting for other materials. The current calculation indicates that a commonly used formula for exchange splitting in quantum dot is not valid. Finally, we find a very large pressure dependence of the exchange splitting: a factor of 4.5 increase as the lattice constant changes by 3.5{percent}. This increase is mainly due to the decrease of the Bohr radius via the change of electron effective mass. {copyright} {ital 1999} {ital The American Physical Society}

  20. Material Profile Influences in Bulk-Heterojunctions

    SciTech Connect (OSTI)

    Roehling, John D.; Rochester, Christopher W.; Ro, Hyun W.; Wang, Peng; Majewski, Jaroslaw; Batenburg, Kees J.; Arslan, Ilke; Delongchamp, Dean M.; Moule, Adam J.

    2014-10-01

    he morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualita-tively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the abso-lute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. The authors thank Luna Innovations, Inc. for donating the endohedral fullerenes used in this study and Plextronics for the P3HT. They are gratefully thank the National Science Foundation Energy for Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. This research was also supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  1. Thermodynamic properties of bulk and confined water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ? 225K). The second, T{sup *} ? 315 5K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient ?{sub P}(T, P) in the PT plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  2. ARM - Campaign Instrument - ec-convair580-bulk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsec-convair580-bulk Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Environment Canada Convair 580 Bulk Parameters (EC-CONVAIR580-BULK) Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Primary Measurements Taken The following measurements are those considered

  3. RAPID/BulkTransmission/Environment | Open Energy Information

    Open Energy Info (EERE)

    Policy Act (HEPA) Hawaii Department of Health Office of Environmental Quality Control Bulk Transmission Environment in Idaho Varies by local municipality Varies by...

  4. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  5. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate

    Broader source: Energy.gov [DOE]

    This project is producing high-efficiency semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates.

  6. RAPID/BulkTransmission/About | Open Energy Information

    Open Energy Info (EERE)

    Current Topics in Bulk Transmission West-Wide Energy Corridor Programmatic Environmental Impact Statement The West-Wide Energy Corridor Programmatic Environmental Impact Statement...

  7. Federal Bulk Transmission Regulatory Roadmapping | OpenEI Community

    Open Energy Info (EERE)

    Federal Bulk Transmission Regulatory Roadmapping Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll...

  8. Enhancing covalent mechanochemistry in bulk polymers using electrospun...

    Office of Scientific and Technical Information (OSTI)

    Enhancing covalent mechanochemistry in bulk polymers using electrospun ABA triblock copolymers Citation Details In-Document Search Title: Enhancing covalent mechanochemistry in ...

  9. High-Quality, Low-Cost Bulk Gallium Nitride Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    achieving GaN bulk growth without the limitations of tradi- tional crystal growth methods. ... MEMC technology transfer and marketing staff are coordinating with the research team to ...

  10. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Authors: Ong, M T ; Verners, O ; Draeger, E ...

  11. RAPID/BulkTransmission/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Hawaii. Use the Edit with form button to editupdate. Planning Organizations not provided Hawaii Owners not provided Current Projects not...

  12. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Alaska. Use the Edit with form button to editupdate. Planning Organizations not provided Alaska Owners not provided Current Projects not...

  13. RAPID/BulkTransmission/Texas | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Texas. Use the Edit with form button to editupdate. Planning Organizations not provided Texas Owners not provided Current Projects not...

  14. Investigation of Interfacial and Bulk Dissociation of HBr, HCl...

    Office of Scientific and Technical Information (OSTI)

    Investigation of Interfacial and Bulk Dissociation of HBr, HCl, and HNO3 Using Density Functional Theory-Based Molecular Dynamics Simulations Citation Details In-Document Search...

  15. Category:Bulk Transmission Regulatory Roadmap Sections | Open...

    Open Energy Info (EERE)

    Login | Sign Up Search Category Edit History Category:Bulk Transmission Regulatory Roadmap Sections Jump to: navigation, search GRR-logo.png Looking for the RAPIDRoadmap?...

  16. RAPID/BulkTransmission/Colorado | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Colorado. In addition, WECC provides...

  17. RAPID/BulkTransmission/Idaho | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Idaho. In addition, WECC provides an...

  18. RAPID/BulkTransmission/Washington | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Washington. In addition, WECC provides...

  19. RAPID/BulkTransmission/Nevada | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Nevada. WECC also provides an...

  20. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC also provides an...

  1. RAPID/BulkTransmission/Oregon | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Oregon. WECC also provides an environment...

  2. Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI

    Broader source: Energy.gov [DOE]

    Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners

  3. High Heat Flux Thermoelectric Module Using Standard Bulk Material

    Broader source: Energy.gov [DOE]

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions

  4. Ensuring a Reliable Bulk Electric System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Reliability Corporation (NERC): Ensuring a Reliable Bulk Electric System Cooling Tower Report, October 2008 Transmission Constraints and Congestion in the Western...

  5. Strategies for High Thermoelectric zT in Bulk Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Zintl principle in chemistry, complex electronic band structures, and incorporation of nanometer sized particles were used to explore, optimize and improve bulk thermoelectric materials

  6. RAPID/BulkTransmission/Site Considerations | Open Energy Information

    Open Energy Info (EERE)

    and comparison for Bulk Transmission Site Considerations across various states. To learn more detailed information about Site Considerations in a state, click on the...

  7. RAPID/BulkTransmission/Federal | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Regulatory Information Overviews Search for other...

  8. RAPID/BulkTransmission/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Access < RAPID | BulkTransmission(Redirected from RAPIDBulkTransmissionLeasing) Jump to: navigation, search RAPID Regulatory and Permitting...

  9. The Best of Both Worlds: Bulk Diamond Properties Realized at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a level of crystallographic and electronic ordering in purified HPHT nanodiamonds that matches fundamental properties of bulk diamond to the nanoscale while retaining its...

  10. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery ...

  11. Bulk Vitrification Castable Refractory Block Protection Study

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  12. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  13. Bulk Hauling Equipment for CHG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Hauling Equipment for CHG Bulk Hauling Equipment for CHG This presentation by Don Baldwin of Hexagon Composites was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. csd_workshop_8_baldwin.pdf (1.2 MB) More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance Hydrogen Delivery Roadmap US DRIVE Hydrogen Delivery Technical Team Roadmap

  14. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  15. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Operational Status Plant Operational Status Page Content Shift 1 - Day The Pantex Plant is open for normal Day Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 2 - Swing The Pantex Plant is open for normal Swing Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 3 - Grave The Pantex Plant is open for normal Graveyard Shift operations.

  16. Bulk Energy Storage Webinar Rescheduled for February 9, 2012 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bulk Energy Storage Webinar Rescheduled for February 9, 2012 Bulk Energy Storage Webinar Rescheduled for February 9, 2012 February 1, 2012 - 12:48pm Addthis The U.S. Department of Energy (DOE) and the Iowa Stored Energy Park (ISEP) are conducting a free, 1-hour webinar, Lessons from Iowa: The Economic, Market, and Organizational Issues in Making Bulk Energy Storage Work, on Thursday, February 9, 2012 at 1 p.m. ET. Presenters include Dr. Imre Gyuk of DOE's Office of Electricity

  17. Interplay of topological surface and bulk electronic states in...

    Office of Scientific and Technical Information (OSTI)

    Title: Interplay of topological surface and bulk electronic states in Bi2Se3 Authors: Romanowich, Megan ; Lee, Mal-Soon ; Chung, Duck-Young ; Mahanti, S. D. ; Kanatzidis, Mercouri ...

  18. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Broader source: Energy.gov (indexed) [DOE]

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions crane.pdf ...

  19. Bulk viscosity of anisotropically expanding hot QCD plasma

    SciTech Connect (OSTI)

    Chandra, Vinod

    2011-11-01

    The bulk viscosity, {zeta} and its ratio with the shear viscosity, {zeta}/{eta} have been studied in an anisotropically expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy in the momentum distribution function of gluons, which has been determined from a linearized transport equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed quasiparticle model of pure SU(3) lattice QCD equation of state has been employed where the interactions are encoded in the effective fugacity. It has been argued that the interactions present in the equation of state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even at 1.5T{sub c}. Thus, one needs to take in account the effects of the bulk viscosity while studying the hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  20. Active hopper for promoting flow of bulk granular or powdered...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Active hopper for promoting flow of bulk granular or powdered ... An apparatus that promotes the flow of materials has a body having an inner shape for ...

  1. Development of a Wet Logistics System for Bulk Corn Stover

    Broader source: Energy.gov (indexed) [DOE]

    a Wet Logistics System for Bulk Corn Stover March 25, 2015 Lynn M. Wendt, William A. Smith, Austin Murphy, and Ian J. Bonner Idaho National Laboratory This presentation does not ...

  2. CMI Unique Facility: Bulk Combinatoric Materials Synthesis Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Bulk Combinatoric Materials Synthesis Facility The Bulk Combinatoric Materials Synthesis Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. Combinatoric studies of materials involve the creation of samples with varying composition, allowing the researcher to find the optimum combination of elements to produce a desired set of properties. The method has

  3. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    SciTech Connect (OSTI)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  4. The influence of molecular orientation on organic bulk heterojunction solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells The influence of molecular orientation on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28 April 2014 09:03 Work done on ALS Beamlines 11.0.1.2, 7.3.3, and 5.3.2.2. reveals that preferential orientation of polymer chains with respect to the fullerene domain leads to a high photovoltaic performance. Featured on the cover of Nature Photonics 8. Article link

  5. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    SciTech Connect (OSTI)

    Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  6. "Plastic" Solar Cells: Self-Assembly of Bulk HeterojunctionNano...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Bulk Heterojunction Nano-Materials by Spontaneous Phase Separation ... self-assembly of bulk heterojunction (BHJ) nano-materials by spontaneous phase separation. ...

  7. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

  8. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES

  9. Preparation of bulk superhard B-C-N nanocomposite compact

    DOE Patents [OSTI]

    Zhao, Yusheng; He, Duanwei

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  10. Palladium diffusion into bulk copper via the (100) surface.

    SciTech Connect (OSTI)

    Bussmann, Ezra; Pohl, Karsten; Sun, Jiebing; Kellogg, Gary Lee

    2009-01-01

    Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T > 240 C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 {+-} 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu{sub 3}Pd L 1{sub 2} bulk alloy phase.

  11. Properties of Bulk Sintered Silver As a Function of Porosity

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Vuono, Daniel J; Wang, Hsin; Ferber, Mattison K; Liang, Zhenxian

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity, thermal

  12. On-Site and Bulk Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » On-Site and Bulk Hydrogen Storage On-Site and Bulk Hydrogen Storage On-site hydrogen storage is used at central hydrogen production facilities, transport terminals, and end-use locations. Storage options today include insulated liquid tanks and gaseous storage tanks. The four types of common high pressure gaseous storage vessels are shown in the table. Type I All-metal cylinder Type II Load-bearing metal liner hoop wrapped with resin-impregnated continuous filament Type III

  13. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks

    Gasoline and Diesel Fuel Update (EIA)

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 127,474 128,838 129,088 124,543 124,729 118,611 1993-2016 PAD District 1 51,825 50,096 46,859 46,285 48,217 49,317 1993-2016 Connecticut 4,530 4,100 3,672 4,048 4,040 4,547 1993-2016 Delaware 453 470 273 505 477 591 1993-2016 District of Columbia 1993-2004 Florida 1,929 1,940 1,905 2,131 2,902 2,243 1993-2016 Georgia 1,498 1,677 1,441 1,529 1,580 1,490 1993-2016 Maine 2,292 2,093 2,110 1,819 1,721 1,576 1993-2016 Maryland 2,963 2,142

  14. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 37271,118323,35153,83170,,,,4862,103932,,56214,47718,41242,41061 37302,113911,34459,79452,,,,4385,97433,,54465,42968,38817,31781 37330,107954,33441,74513,,,,3995,91...

  15. U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Area: U.S. PAD District 1 Connecticut Delaware District of Columbia Florida Georgia Maine Maryland Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode ...

  16. Synthesis of bulk superhard semiconducting B-C material

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Dubrovinskaia, Natalia A.; Dubrovinsky, Leonid S.

    2004-08-30

    A bulk composite superhard material was synthesized from graphitelike BC{sub 3} at 20 GPa and 2300 K using a multianvil press. The material consists of intergrown boron carbide B{sub 4}C and B-doped diamond with 1.8 at.%B. The material exhibits semiconducting behavior and extreme hardness comparable with that of single-crystal diamond.

  17. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect (OSTI)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  18. Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B

    SciTech Connect (OSTI)

    Cooley, Scott K.; Pierce, Eric M.; Bagaasen, Larry M.; Schweiger, Michael J.

    2006-06-30

    The capacity of the waste treatment plant (WTP) being built at the Hanford Site is not sufficient to process all of the tank waste accumulated from more than 40 years of nuclear materials production. Bulk vitrification can accelerate tank waste treatment by providing some supplemental low-activity waste (LAW) treatment capacity. Bulk vitrification combines LAW and glass-forming chemicals in a large metal container and melts the contents using electrical resistance heating. A castable refractory block (CRB) is used along with sand to insulate the container from the heat generated while melting the contents into a glass waste form. This report describes engineering-scale (ES) and full-scale (FS) tests that have been conducted. Several ES tests showed that a small fraction of soluble Tc moves in the CRB and results in a groundwater peak different than WTP glass. The total soluble Tc-99 fraction in the FS CRB is expected to be different than that determined in the ES tests, but until FS test results are available, the best-estimate soluble Tc-99 fraction from the ES tests has been used as a conservative estimate. The first FS test results are from cold simulant tests that have been spiked with Re. An estimated scale-up factor extrapolates the Tc-99 data collected at the ES to the FS bulk vitrification waste package. Test FS-38A tested the refractory design and did not have a Re spike. Samples were taken and analyzed to help determine Re CRB background concentrations using a Re-spiked, six-tank composite simulant mixed with soil and glass formers to produce the waste feed. Although this feed is not physically the same as the Demonstration Bulk Vitrification System feed , the chemical make-up is the same. Extensive sampling of the CRB was planned, but difficulties with the test prevented completion of a full box. An abbreviated plan is described that looks at duplicate samples taken from refractory archive sections, a lower wall sample, and two base samples to gain early

  19. RAPID/BulkTransmission/Environment/Washington | Open Energy Informatio...

    Open Energy Info (EERE)

    are included in the checklist: Earth Air Water (surface and ground) Plants Animals Energy and Natural Resources Environmental Health Noise Land and Shoreline Use Housing...

  20. RAPID/BulkTransmission/Environment/Nevada | Open Energy Information

    Open Energy Info (EERE)

    Exploration): Type of State Environmental Review (Drilling): Type of State Environmental Review (Power Plant Siting): ContactsAgencies: Nevada Division of Environmental...

  1. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOE Patents [OSTI]

    Shtein, Max (Ann Arbor, MI); Yang, Fan (Princeton, NJ); Forrest, Stephen R. (Princeton, NJ)

    2008-10-14

    A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.

  2. Strength and flexibility of bulk high-{Tc} superconductors

    SciTech Connect (OSTI)

    Goretta, K.C.; Jiang, M.; Kupperman, D.S.; Lanagan, M.T.; Singh, J.P.; Vasanthamohan, N.; Hinks, D.G.; Mitchell, J.F.; Richardson, J.W. Jr.

    1996-08-01

    Strength, fracture toughness, and elastic modulus data have been gathered for bulk high-temperature superconductors, commercial 99.9% Ag, and a 1.2 at.% Mg/Ag alloy. These data have been used to calculate fracture strains for bulk conductors. The calculations indicate that the superconducting cores of clad tapes should begin to fracture at strains below 0.2%. In addition, residual strains in Ag-clad (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes have been measured by neutron diffraction. An explanation is offered for why many tapes appear to be able to tolerate large strains before exhibiting a reduction in current transport.

  3. Analysis of 1w Bulk Laser Damage in KDP

    SciTech Connect (OSTI)

    Cross, D A; Carr, C W

    2011-04-11

    The influence of laser parameters on laser-induced damage in the bulk of KDP is difficult to determine because the damage manifests as discrete sites a few microns in diameter distributed throughout a relatively large volume of material. Here, they present a method to directly measure the size and location of many thousands of such sites and correlate them to the laser conditions which produced them. This technique is used to characterize the effects of pulse duration on damage initiated by 1053 nm light in the bulk of KDP crystals. They find that the density of damage sites produced by 1053 nm light is less sensitive to pulse duration than was previously reported for 526 nm and 351 nm light. In addition, the effect of pulse duration on the size of the damage sites produced appears insensitive to wavelength.

  4. Factors influencing photocurrent generation in organic bulk heterojunction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells: interfacial energetics and blend microstructure | MIT-Harvard Center for Excitonics Factors influencing photocurrent generation in organic bulk heterojunction solar cells: interfacial energetics and blend microstructure April 29, 2009 at 3pm/36-428 Jenny Nelson Department of Physics Imperial College London jenny-nelson_000 abstract: The efficiency of photocurrent generation in conjugated polymer:small molecule blend solar is strongly influenced both by the energy level alignment

  5. Bulk ion heating with ICRF waves in tokamaks

    SciTech Connect (OSTI)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.; Kappatou, A.; McDermott, R. M.; Odstrčil, T.; Tardini, G.; Bernert, M.; Dux, R.; Maraschek, M.; Noterdaeme, J.-M.; Ryter, F.; Stober, J.; Nocente, M.; Hellsten, T.; Mantica, P.; Tardocchi, M.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; and others

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.

  6. Prediction of bulk properties using high accuracy ab initio methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interfaced with dynamical calculations | Argonne Leadership Computing Facility George Schoendorff, Iowa State University 1,024 water molecules in a lattice configuration Credits: George Schoendorff, Iowa State University Prediction of bulk properties using high accuracy ab initio methods interfaced with dynamical calculations PI Name: Theresa Windus PI Email: theresa@fi.ameslab.gov Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 8 Million Year: 2010

  7. Prediction of bulk properties using high accuracy ab initio methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interfaced with dynamical calculations | Argonne Leadership Computing Facility Prediction of bulk properties using high accuracy ab initio methods interfaced with dynamical calculations PI Name: Theresa Windus PI Email: theresa@fi.ameslab.gov Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2011 Research Domain: Chemistry Unprecedented accuracy will be used to gain insight into properties of large systems. This research has broad

  8. Evolution of bulk strain solitons in cylindrical inhomogeneous shells

    SciTech Connect (OSTI)

    Shvartz, A. Samsonov, A.; Dreiden, G.; Semenova, I.

    2015-10-28

    Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.

  9. Thermoelectric Bulk Materials from the Explosive Consolidation of

    Broader source: Energy.gov (indexed) [DOE]

    Nanopowders | Department of Energy Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material nemir.pdf (3.11 MB) More Documents & Publications The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ Enhancing the Figure-of-Merit in Half-Heuslers for Vehicle Waste Heat Recovery Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion

  10. Dynamics of dendritic polymers in the bulk and under confinement

    SciTech Connect (OSTI)

    Chrissopoulou, K.; Fotiadou, S.; Androulaki, K.; Anastasiadis, S. H.; Tanis, I.; Karatasos, K.; Prevosto, D.; Labardi, M.; Frick, B.

    2014-05-15

    The structure and dynamics of a hyperbranched polyesteramide (Hybrane S 1200) polymer and its nanocomposites with natural montmorillonite (Na{sup +}-MMT) are investigated by XRD, DSC, QENS, DS and Molecular Dynamics (MD) simulation. In bulk, the energy-resolved elastically scattered intensity from the polymer exhibits two relaxation steps, one attributed to sub-T{sub g} motions and one observed at temperatures above the glass transition, T{sub g}. The QENS spectra measured over the complete temperature range are consistent with the elastic measurements and can be correlated to the results emerging from the detailed description afforded by the atomistic simulations, which predict the existence of three relaxation processes. Moreover, dielectric spectroscopy shows the sub- T{sub g} beta process as well as the segmental relaxation. For the nanocomposites, XRD reveals an intercalated structure for all hybrids with distinct interlayer distances due to polymer chains residing within the galleries of the Na{sup +}-MMT. The polymer chains confined within the galleries show similarities in the behavior with that of the polymer in the bulk for temperatures below the bulk polymer T{sub g}, whereas they exhibit frozen dynamics under confinement at temperatures higher than that.

  11. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect (OSTI)

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  12. Recent progress in the morphology of bulk heterojunction photovoltaics

    SciTech Connect (OSTI)

    Brady, Michael A.; Su, Gregory M.; Chabinyc, Michael L.

    2011-10-06

    A review of current research in the characterization of the morphology of semiconducting polymer:fullerene bulk heterojunctions (BHJs) is presented. BHJs are complex blends of polymers and fullerenes with nanostructures that are highly dependent on materials, processing conditions, and post-treatments to films. Recent work on the study of the morphology of BHJs is surveyed. Emphasis is placed on emerging work on BHJs of poly(3-hexylthiophene), P3HT, and [6,6]-phenyl-C61-butyric acid methyl ester, PCBM, along with BHJs of donoracceptor polymers that have high power conversion efficiency.

  13. Neutron interaction and their transport with bulk materials

    SciTech Connect (OSTI)

    Rani, Esther Kalpana; Radhika, K.

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  14. Bagdad Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy ...

  15. Comment on ""bulk-plasmon contribution to the work function of...

    Office of Scientific and Technical Information (OSTI)

    Comment on ""bulk-plasmon contribution to the work function of metals Citation Details In-Document Search Title: Comment on ""bulk-plasmon contribution to the work function of...

  16. Development of a Bulk-Format System to Harvest, Handle, Store...

    Broader source: Energy.gov (indexed) [DOE]

    a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage generaprojectabstract1.pdf More Documents & Publications Development of a Bulk-Format System to Harvest,...

  17. Evidence for the Bulk Nature of Self-Assembled Monolayer Surface...

    Office of Scientific and Technical Information (OSTI)

    Evidence for the Bulk Nature of Self-Assembled Monolayer Surface of Fluorinated Alkyl ... Citation Details In-Document Search Title: Evidence for the Bulk Nature of Self-Assembled ...

  18. File:08COaBulkTransmissionSitingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:08COaBulkTransmissionSitingProcess.pdf Size of this preview: 463 599...

  19. High-Impact, Low-Frequency Risk to the North American Bulk Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) A ...

  20. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office

  1. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOE Patents [OSTI]

    Shtein, Max (Princeton, NJ); Yang, Fan (Princeton, NJ); Forrest, Stephen R. (Princeton, NJ)

    2008-09-02

    A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.

  2. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect (OSTI)

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ? 135 ?m) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ? 1.5 ?m) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ? 470 MPa that was accompanied by limited ductility (? 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: Bulk multi-modal Ni was processed by SPS from a powder blend. Ultrafine-grained matrix or rim observed around spherical microcrystalline entities Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. Debonding was found at the matrix/microcrystalline entity interfaces. In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  3. Organization of bulk power markets: A concept paper

    SciTech Connect (OSTI)

    Kahn, E.; Stoft, S.

    1995-12-01

    The electricity industry in the US today is at a crossroads. The restructuring debate going on in most regions has made it clear that the traditional model of vertically integrated firms serving defined franchise areas and regulated by state commissions may not be the pattern for the future. The demands of large customers seeking direct access to power markets, the entry of new participants, and proposed reforms of the regulatory process all signify a momentum for fundamental change in the organization of the industry. This paper addresses electricity restructuring from the perspective of bulk power markets. The authors focus attention on the organization of electricity trade and the various ways it has been and might be conducted. Their approach concentrates on conceptual models and empirical case studies, not on specific proposals made by particular utilities or commissions. They review literature in economics and power system engineering that is relevant to the major questions. The objective is to provide conceptual background to industry participants, e.g. utility staff, regulatory staff, new entrants, who are working on specific proposals. While they formulate many questions, they do not provide definitive answers on most issues. They attempt to put the industry restructuring dialogue in a neutral setting, translating the language of economists for engineers and vice versa. Towards this end they begin with a review of the basic economic institutions in the US bulk power markets and a summary of the engineering practices that dominate trade today.

  4. DESIGN OF THE DEMOSNTRATION BULK VITRIFICATION SYSTEM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect (OSTI)

    VAN BEEK JE

    2008-02-14

    In June 2004, the Demonstration Bulk Vitrification System (DBVS) was initiated with the intent to design, construct, and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford Tank 241-S-109. The DBVS facility uses In-Container Vitrification{trademark} (ICV{trademark}) at the core of the treatment process. The basic process steps combine liquid low-activity waste (LAW) and glassformers; dry the mixture; and then vitrify the mixture in a batch feed-while-melt process in a refractory lined steel container. Off-gases are processed through a state-of-the-art air pollution control system including sintered-metal filtration, thermal oxidation, acid gas scrubbing, and high-efficiency particulate air (HEPA) and high-efficiency gas adsorber (HEGA) filtration. Testing has focused on development and validation of the waste dryer, ICV, and sintered-metal filters (SMFs) equipment, operations enhancements, and glass formulation. With a parallel testing and design process, testing has allowed improvements to the DBVS equipment configuration and operating methodology, since its original inception. Design improvements include optimization of refractory panels in the ICV, simplifying glassformer addition equipment, increasing the number of waste feed chutes to the ICV, and adding capability for remote clean-out of piping, In addition, the U.S. Department of Energy (DOE) has provided an independent review of the entire DBVS process. While the review did not find any fatal flaws, some technical issues were identified that required a re-evaluation of the DBVS design and subsequent changes to the design. A 100 percent design package for the pilot plant will be completed and submitted to DOE for review in early 2008 that incorporates process improvements substantiated through testing and reviews. This paper provides a description of the bulk vitrification process and a discussion of major equipment design changes that have occurred based on full

  5. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Motor Gasoline Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are

  6. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Motor Gasoline Prices by Grade and Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in

  7. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  8. Structural origin of bulk molecular hydrogen in hydrogenated amorphous silicon

    SciTech Connect (OSTI)

    Liu, X.; Pohl, R.O.; Crandall, R.S.

    1999-07-01

    The elastic anomaly observed previously at the triple point of bulk molecular hydrogen in hydrogenated amorphous silicon films prepared by hot-wire chemical-vapor deposition has also been observed in deuterated films at the triple point of D{sub 2}. The origin of this anomaly has now been traced to bubbles formed at the crystalline-amorphous interface. An upper limit of the pressure in these bubbles at their formation temperature, 440 C, has been estimated to be 11 MPa, and is suggested to be a measure of the bonding strength between film and substrate at that temperature. Bubble formation after heat treatment at 400 C has also been observed in films prepared by plasma-enhanced chemical-vapor deposition. The internal friction anomalies resemble those observed previously in cold-worked hydrogenated iron where they have been interpreted through plastic deformation of solid hydrogen in voids.

  9. Bulk Properties of Nuclear Matter From Excitations of Nuclei

    SciTech Connect (OSTI)

    Shlomo, Shalom

    2007-10-26

    We consider the predictive power of Hartree-Fock (HF) approximation in determining properties of finite nuclei and thereby in extracting bulk properties of infinite nuclear matter (NM) by extrapolation. In particular, we review the current status of determining the value of NM incompressibility coefficient K, considering the most sensitive method of analyzing the recent accurate experimental data on excitation strengths of compression modes of nuclei within microscopic relativistic and non-relativistic theoretical models. We discuss the consequences of common violations of self-consistency in HF based random-phase-approximation calculations of strength functions and present results of highly accurate calculations of centroid energies and excitation cross sections of giant resonances. Explanations (resolutions) of long standing discrepancies in the value of K are presented.

  10. Coherent rho 0 photoproduction in bulk matter at high energies

    SciTech Connect (OSTI)

    Couderc, Elsa; Klein, Spencer

    2009-01-09

    The momentum transfer {Delta}k required for a photon to scatter from a target and emerge as a {rho}{sup 0} decreases as the photon energy k rises. For k > 3 x 10{sup 14} eV, {Delta}k is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a {rho}{sup 0}, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above 10{sup 23} eV, coherent conversion is the dominant process; photons interact predominantly as {rho}{sup 0}. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.

  11. FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Jordan, J.

    2010-06-02

    The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.

  12. Radiative cooling of bulk silicon by incoherent light pump

    SciTech Connect (OSTI)

    Malyutenko, V. K. Bogatyrenko, V. V.; Malyutenko, O. Yu.

    2013-12-23

    In contrast to radiative cooling by light up conversion caused exclusively by a low-entropy laser pump and employing thermally assisted fluorescence/luminescence as a power out, we demonstrate light down conversion cooling by incoherent pumps, 0.47–0.94 μm light emitting diodes, and employing thermal emission (TE) as a power out. We demonstrate ≤3.5 K bulk cooling of Si at 450 K because overall energy of multiple below bandgap TE photons exceeds the energy of a single above bandgap pump photon. We show that using large entropy TE as power out helps avoid careful tuning of an incoherent pump wavelength and cool indirect-bandgap semiconductors.

  13. Interaction of graphene quantum dots with bulk semiconductor surfaces

    SciTech Connect (OSTI)

    Mohapatra, P. K.; Singh, B. P.; Kushavah, Dushyant; Mohapatra, J.

    2015-05-15

    Highly luminescent graphene quantum dots (GQDs) are synthesized through thermolysis of glucose. The average lateral size of the synthesized GQDs is found to be ?5 nm. The occurrence of D and G band at 1345 and 1580 cm{sup ?1} in Raman spectrum confirms the presence of graphene layers. GQDs are mostly consisting of 3 to 4 graphene layers as confirmed from the AFM measurements. Photoluminescence (PL) measurement shows a distinct broadening of the spectrum when GQDs are on the semiconducting bulk surface compared to GQDs in water. The time resolved PL measurement shows a significant shortening in PL lifetime due to the substrate interaction on GQDs compared to the GQDs in solution phase.

  14. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOE Patents [OSTI]

    Luo, Ping

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.

  15. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOE Patents [OSTI]

    Luo, P.

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.

  16. DEVELOPMENT OF THE BULK VITRIFICATION TREATMENT PROCESS FOR THE LOW ACTIVITY FRACTION OF HANFORD SINGLE SHELL TANK WASTES

    SciTech Connect (OSTI)

    Thompson, L.E.; Lowery, P.S.; Arrowsmith, H.W.; Snyder, T.; McElroy, J.L.

    2003-02-27

    AMEC Earth & Environmental, Inc. and RWE NUKEM Corporation have teamed to develop and apply a waste pre-treatment and bulk vitrification process for low activity waste (LAW) from Hanford Single Shell Tanks (SSTs). The pretreatment and bulk vitrification process utilizes technologies that have been successfully deployed to remediate both radioactive and chemically hazardous wastes at nuclear power plants, DOE sites, and commercial waste sites in the US and abroad. The process represents an integrated systems approach. The proposed AMEC/NUKEM process follow the extraction and initial segregation activities applied to the tank wastes carried out by others. The first stage of the process will utilize NUKEM's concentrate dryer (CD) system to concentrate the liquid waste stream. The concentrate will then be mixed with soil or glass formers and loaded into refractory-lined steel containers for bulk vitrification treatment using AMEC's In-Container Vitrification (ICV) process. Following the vitrification step, a lid will be placed on the container of cooled, solidified vitrified waste, and the container transported to the disposal site. The container serves as the melter vessel, the transport container and the disposal container. AMEC and NUKEM participated in the Mission Acceleration Initiative Workshop held in Richland, Washington in April 2000 [1]. An objective of the workshop was to identify selected technologies that could be combined into viable treatment options for treatment of the LAW fraction from selected Hanford waste tanks. AMEC's ICV process combined with NUKEM's CD system and other remote operating capabilities were presented as an integrated solution. The Team's proposed process received some of the highest ratings from the Workshop's review panel. The proposed approach compliments the Hanford Waste Treatment Plant (WTP) by reducing the amount of waste that the WTP would have to process. When combined with the capabilities of the WTP, the proposed approach

  17. Tuned critical avalanche scaling in bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; Wraith, Matthew; Qiao, Junwei; Zhang, Yong; Liaw, Peter K.; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters,more » such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less

  18. High-entropy bulk metallic glasses as promising magnetic refrigerants

    SciTech Connect (OSTI)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao E-mail: jqwang@nimte.ac.cn; Wang, Jun-Qiang E-mail: jqwang@nimte.ac.cn; Li, Run-Wei; Inoue, Akihisa

    2015-02-21

    In this paper, the Ho{sub 20}Er{sub 20}Co{sub 20}Al{sub 20}RE{sub 20} (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS{sub M}{sup pk}) and refrigerant capacity (RC) reaches 15.0 J kg{sup −1} K{sup −1} and 627 J kg{sup −1} at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS{sub M}{sup pk} and RC. In addition, the magnetic ordering temperature, ΔS{sub M}{sup pk} and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures.

  19. International Round-Robin Testing of Bulk Thermoelectrics

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Bottner, Harold; Konig, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolett, Alex; Smith, Charlene; Harris, Fred; Sharp, Jeff; Lo, Jason; Keinke, Holger; Kiss, Laszlo I.

    2011-11-01

    Two international round-robin studies were conducted on transport properties measurements of bulk thermoelectric materials. The study discovered current measurement problems. In order to get ZT of a material four separate transport measurements must be taken. The round-robin study showed that among the four properties Seebeck coefficient is the one can be measured consistently. Electrical resistivity has +4-9% scatter. Thermal diffusivity has similar +5-10% scatter. The reliability of the above three properties can be improved by standardizing test procedures and enforcing system calibrations. The worst problem was found in specific heat measurements using DSC. The probability of making measurement error is great due to the fact three separate runs must be taken to determine Cp and the baseline shift is always an issue for commercial DSC. It is suggest the Dulong Petit limit be always used as a guide line for Cp. Procedures have been developed to eliminate operator and system errors. The IEA-AMT annex is developing standard procedures for transport properties testing.

  20. Magnetic and magnetocaloric properties of bulk dysprosium chromite

    SciTech Connect (OSTI)

    McDannald, A.; Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269 ; Kuna, L.; Jain, M.; Department of Physics, University of Connecticut, Storrs, Connecticut 06269

    2013-09-21

    In this work, a polycrystalline bulk DyCrO{sub 3} sample was prepared by a solution route and the structural and magnetic properties were investigated. The phase purity and ionic valence state of the DyCrO{sub 3} sample were determined by x-ray diffraction/Raman spectroscopy and x-ray photoelectron spectroscopy, respectively. The AC and DC magnetization measurements revealed the onset of antiferromagnetic order at 146 K with an effective moment of 8.88 μ{sub B}. Isothermal magnetization measurements of this material are presented for the first time, showing a peak in the coercive field at 80 K that is explained by the competition between the paramagnetic Dy{sup 3+} and Cr{sup 3+} sublattices. DyCrO{sub 3} was found to display a large magnetocaloric effect (8.4 J/kg K) and relative cooling power (217 J/kg) at 4 T applied field, which renders DyCrO{sub 3} useful for magnetic refrigeration between 5 K and 30 K.

  1. Bulk Fuel Procurement Process & Alternative Drop-in Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bulk Fuel Procurement Process & Alternative Drop-in Fuel Bulk Fuel Procurement Process & Alternative Drop-in Fuel Jeanne Binder, DLA Energy, presentation on Bulk Fuel Procurement Process & Alternative Drop-in Fuel at the Advanced Biofuels Industry Roundtable. 7_binder_roundtable.pdf (1.17 MB) More Documents & Publications DLA Energy: Your Supplemental Energy Contracting Venue Advanced Drop-In Biofuels Initiative Agenda FUPWG Spring 2015 Agenda and Presentations

  2. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  3. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  4. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  5. Image-based Stokes flow modeling in bulk proppant packs and propped...

    Office of Scientific and Technical Information (OSTI)

    Image-based Stokes flow modeling in bulk proppant packs and propped fractures under high loading stresses Citation Details In-Document Search This content will become publicly ...

  6. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 60%, and energy for information technology infrastructure power delivery by 20%. High-Quality, Low-Cost Bulk Gallium Nitride Substrates (1009.69 KB) More Documents & ...

  7. Bulk and shear viscosities of the two-dimensional electron liquid...

    Office of Scientific and Technical Information (OSTI)

    Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene ... electron liquid in a doped graphene sheet Authors: Principi, Alessandro ; ...

  8. Raman vibrational spectra of bulk to monolayer Re S 2 with lower...

    Office of Scientific and Technical Information (OSTI)

    Title: Raman vibrational spectra of bulk to monolayer Re S 2 with lower symmetry Authors: Feng, Yanqing ; Zhou, Wei ; Wang, Yaojia ; Zhou, Jian ; Liu, Erfu ; Fu, Yajun ; Ni, ...

  9. Unpaired Majorana modes in Josephson-Junction Arrays with gapless bulk excitations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pino, M.; Tsvelik, A.; Ioffe, L. B.

    2015-11-06

    In this study, the search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L~10.

  10. The Role of Surface Chemistry and Bulk Properties on the Cycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate Capability of Lithium Positive Electrode Materials The Role of Surface Chemistry on the Cycling and ...

  11. Electron-induced single event upsets in 28 nm and 45 nm bulk...

    Office of Scientific and Technical Information (OSTI)

    with previous work in which SRAMs were irradiated with low energy muons and protons. ... bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is ...

  12. Better Plants

    Broader source: Energy.gov [DOE]

    Leading manufacturers and industrial-scale energy-using organizations demonstrate their commitment to improving energy performance by signing a voluntary pledge to reduce their energy intensity by 25% over a ten year period. The U.S. Department of Energys Better Buildings, Better Plants Program is an important partnership which consists of approximately 150 industrial companies, representing about 2,300 facilities and close to 11% of the total U.S. manufacturing energy footprint as well as several water and wastewater treatment organizations.

  13. Stormwater/washwater treatment at petroleum bulk transfer facilities

    SciTech Connect (OSTI)

    Chilcote, D.D.

    1995-12-31

    Aerated bioreactors that incorporate submerged, stationary, fixed-film biological treatment technology are ideal systems for treating stormwater/washwater flows containing biodegradable petroleum hydrocarbons. They present a small footprint. are resistant to shock loads, require minimal operator attention, generate a minimal amount of sloughed biomass, and are inexpensive to operate. The characteristics of the bioreactor include multiple cells to maximize performance. The multiple-cell configuration produces dispersed plug-flow hydraulics which, for first-order biodegradation kinetics, significantly improves the effluent quality over that produced from a single cell with the same total volume. Positive-displacement blowers are used to provide aeration via a fine-bubble, self-cleaning diffuser assembly located at the base of each cell. The cells are filled with structured PVC packing which provides 30 sq.ft. of surface area per cubic foot of reactor volume (95% void space). Microorganisms attach to this plastic surface and provide the biofilm for treatment. This arrangement allows a high concentration of microorganisms to exist in the reactor, which minimizes reactor volume. Nutrients in the form of a simple liquid fertilizer solution are mixed with the influence to provide appropriate levels of nitrogen and phosphorus for microbial metabolism. A case study from a petroleum bulk transfer facility shows the effectiveness of this technology for treating stormwater and washwater containing a variety of petroleum hydrocarbons. Removal efficiencies for the gasoline range of organics typically exceeded 99 percent. A typical capital cost for the full-scale treatment system was $73,000, with operating costs estimated at $0.85/1000 gallons treated.

  14. Measuring process solutions in a reprocessing plant to 0. 1%

    SciTech Connect (OSTI)

    Crawford, J.M.; Ehinger, M.H.; Ellis, J.H.

    1980-03-01

    Measurement of SNM in reprocessing plant solutions involves two major problems; measurement of bulk solution quantities and analysis of highly radioactive samples. It has been shown at the BNFP that bulk measurements can be made routinely under operating conditions to less than 0.1% total uncertainty. Two specific advances in measurement technology have been largely responsible for this improved performance. The quartz bourdon tube electromanometer replaces the fluid manometer for differential pressure measurements. The vibrating tube densimeter provides accurate measurement of density in lab samples. These instruments, coupled with a rigorous measurement and quality control procedures, are the means to achieve better than 0.1% performance.

  15. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    SciTech Connect (OSTI)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  16. Mechanical properties of bulk and nanoscale TiO[subscript 2] phases

    SciTech Connect (OSTI)

    Swamy, V.; Holbig, E.; Dubrovinksy, L.S.; Prakapenka, V.; Muddle, B.C.

    2008-09-11

    The mechanical properties of bulk and nanoscale TiO{sub 2} phases are examined with a view to assess the available bulk modulus and hardness data, and to understand the size-dependent behaviors. The bulk modulus values of thermodynamically stable bulk TiO{sub 2} phases show a general correlation with Ti-O coordination number. As with the cotunnite-structured (OII) phase, it is likely that the seven-coordinated OI and eight-coordinated fluorite forms of TiO{sub 2} are ultrahard substances. Of the nanoscale phases investigated thus far, nanocrystalline anatase displays the strongest size dependence of bulk modulus values, with possible stiffening behavior effected by incipient grain boundary amorphization under pressure. Nanocrystalline rutile and baddeleyite phases do not show appreciable size dependence in their compression behaviors.

  17. Bulk and surface controlled diffusion of fission gas atoms

    SciTech Connect (OSTI)

    Andersson, Anders D.

    2012-08-09

    Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion in UO

  18. Observation of surface to bulk interatomic Auger decay from Ta(100)

    SciTech Connect (OSTI)

    Jensen, E. ); Bartynski, R.A. ); Weinert, M. ); Hulbert, S.L.; Johnson, E.D.; Garrett, R.F. )

    1990-06-15

    Core-valence-valence ({ital CVV}) Auger spectra from Ta(100) taken in coincidence with bulk and surface-shifted 4{ital f}{sub 7/2} core-level emission are presented. These data are compared with self-convolutions of calculations of the {ital d}-band densities of states for the surface and subsurface layers of a nine-layer slab. Agreement of the bulk spectrum with the calculation is good; agreement for the surface spectrum is very poor. These data are explained by proposing an interatomic surface to bulk Auger decay mode for the surface core hole that is competitive with the conventional {ital CVV} decay process.

  19. Radius stabilization and dark matter with a bulk Higgs in warped extra dimension

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahmed, A.; Grzadkowski, B.; Gunion, J. F.; Jiang, Y.

    2015-01-01

    In this study, we employ an SU(2) bulk Higgs doublet as the stabilization field in the RandallSundrum model with appropriate bulk and brane-localized potentials. The gauge hierarchy problem can be solved for an exponentially IR-localized Higgs background field with mild values of fundamental parameters of the 5D theory. We consider an IRUVIR background geometry with the 5D SM fields in the bulk such that all the fields have even and odd towers of KK-modes. The zero-mode 4D effective theory contains all the SM fields plus a stable scalar, which serves as a dark matter candidate.

  20. Radius stabilization and dark matter with a bulk Higgs in warped extra dimension

    SciTech Connect (OSTI)

    Ahmed, A.; Grzadkowski, B.; Gunion, J. F.; Jiang, Y.

    2015-01-01

    In this study, we employ an SU(2) bulk Higgs doublet as the stabilization field in the Randall–Sundrum model with appropriate bulk and brane-localized potentials. The gauge hierarchy problem can be solved for an exponentially IR-localized Higgs background field with mild values of fundamental parameters of the 5D theory. We consider an IR–UV–IR background geometry with the 5D SM fields in the bulk such that all the fields have even and odd towers of KK-modes. The zero-mode 4D effective theory contains all the SM fields plus a stable scalar, which serves as a dark matter candidate.

  1. Bulk superhard B-C-N nanocomposite compact and method for preparing thereof

    DOE Patents [OSTI]

    Zhao, Yusheng; He, Duanwei

    2004-07-06

    Bulk, superhard, B-C-N nanocomposite compact and method for preparing thereof. The bulk, superhard, nanocomposite compact is a well-sintered compact and includes nanocrystalline grains of at least one high-pressure phase of B-C-N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compact has a Vicker's hardness of about 41-68 GPa. It is prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture, and sintering the encapsulated ball-milled mixture at a pressure of about 5-25 GPa and at a temperature of about 1000-2500 K.

  2. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    SciTech Connect (OSTI)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  3. Identification and Preliminary Assessment and Site Inspection Report for Quarry Bulk Wastes at the Weldon Spring Chemical Plant Quarry.

    Office of Legacy Management (LM)

  4. Plant-based Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant-based Materials Catalysis Center for Energy Innovation teams with consumer goods and ... announced a research program with the Plant PET Technology Collaborative (PTC) to ...

  5. Melting of “non-magic” argon clusters and extrapolation to the bulk limit

    SciTech Connect (OSTI)

    Senn, Florian Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-28

    The melting of argon clusters Ar{sub N} is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, “Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations,” Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes.

  6. The Role of Surface Chemistry and Bulk Properties on the Cycling...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications The Role of Surface Chemistry and Bulk Properties on the ... Energy Storage R&D The Role of Surface Chemistry on the Cycling and Rate Capability of ...

  7. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum...

  8. Bulk glass formation in the Pd{endash}Ni{endash}P system

    SciTech Connect (OSTI)

    He, Y.; Schwarz, R.B.; Archuleta, J.I. [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1996-09-01

    Bulk amorphous Pd{endash}Ni{endash}P rods with diameters ranging from 10 to 25 mm were prepared by a fluxing technique over a wide composition range. For most bulk glassy alloys studied, the difference between the glass transition temperature and the crystallization temperature, {ital T}{sub {ital x}}{minus}{ital T}{sub {ital g}}, is larger than 90 K. Of all the alloy compositions examined, Pd{sub 40}Ni{sub 40}P{sub 20} has the highest glass formability, and 300-g bulk amorphous cylinders, 25 mm in diameter and 50 mm in length, were easily and repeatedly formed. This size, however, is not an upper limit. The elastic properties of these bulk amorphous alloys were determined by a resonant ultrasound spectroscopy technique.

  9. The effect of confinement on the crystalline microstructure of polymer: fullerene bulk heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ashraf, A.; Dissanayake, D. M. N. M.; Eisaman, M. D.

    2015-07-01

    We investigate the effect of confinement on the coherence length and the crystalline microstructure of the polymer component of polymer: fullerene bulk heterojunction thin films using grazing incidence wide angle x-ray scattering. We find that the polymer crystallite size decreases and the alignment of the molecules along the surface normal increases, as the thin-film thickness is reduced from 920nm to < 20nm and approaches the thin-film confinement regime. Furthermore, we find that the polymer crystallite size near the surface (air interface) is lower than the crystallite size in the bulk or the bottom (substrate interface) of bulk heterojunction films thickermore » than the confinement regime. Variation in polymer crystallite size can cause changes in charge carrier mobility and recombination rates, which in turn affect the performance of bulk heterojunction thin film devices such as photovoltaics and photodetectors« less

  10. The effect of confinement on the crystalline microstructure of polymer: fullerene bulk heterojunctions

    SciTech Connect (OSTI)

    Ashraf, A.; Dissanayake, D. M. N. M.; Eisaman, M. D.

    2015-07-01

    We investigate the effect of confinement on the coherence length and the crystalline microstructure of the polymer component of polymer: fullerene bulk heterojunction thin films using grazing incidence wide angle x-ray scattering. We find that the polymer crystallite size decreases and the alignment of the molecules along the surface normal increases, as the thin-film thickness is reduced from 920nm to < 20nm and approaches the thin-film confinement regime. Furthermore, we find that the polymer crystallite size near the surface (air interface) is lower than the crystallite size in the bulk or the bottom (substrate interface) of bulk heterojunction films thicker than the confinement regime. Variation in polymer crystallite size can cause changes in charge carrier mobility and recombination rates, which in turn affect the performance of bulk heterojunction thin film devices such as photovoltaics and photodetectors

  11. All bulk and boundary unitary cubic curvature theories in three dimensions

    SciTech Connect (OSTI)

    Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram

    2011-01-15

    We construct all the bulk and boundary unitary cubic curvature parity invariant gravity theories in three dimensions in (anti)-de Sitter spaces. For bulk unitarity, our construction is based on the principle that the free theory of the cubic curvature theory reduces to one of the three known unitary theories which are the cosmological Einstein-Hilbert theory, the quadratic theory of the scalar curvature, or the new massive gravity (NMG). Bulk and boundary unitarity in NMG is in conflict; therefore, cubic theories that are unitary both in the bulk and on the boundary have free theories that reduce to the other two alternatives. We also study the unitarity of the Born-Infeld extensions of NMG to all orders in curvature.

  12. Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion

    Broader source: Energy.gov [DOE]

    Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

  13. A new class of high ZT doped bulk nanothermoelectrics through bottom-up synthesis

    Broader source: Energy.gov [DOE]

    Reports on synthesis of large quantities of p- and n-type nanocrystals then sintered into bulk samples with high power factors and low thermal conductivity through impurity doping and nanostructuring

  14. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD

    Broader source: Energy.gov [DOE]

    To develop ESG into a viable bulk growth process for GaN that is more scalable to large-area wafer manufacturing and able to produce cost-effective, high-quality bulk GaN substrates.

  15. Surface magnetism of Gd(0001): Evidence of ferromagnetic coupling to bulk

    SciTech Connect (OSTI)

    Mulhollan, G.A.; Garrison, K.; Erskine, J.L. )

    1992-11-30

    Previous polarized electron experiments and recent {ital ab} {ital initio} calculations suggest that the surface layer magnetic moments of Gd(0001) are antiferromagnetically coupled to the bulk magnetic moments. Spin-polarized photoemission data are presented which show that the spin polarization of the magnetic surface state and the surface 4{ital f} states of Gd(0001) are coupled ferromagnetically to the bulk magnetic moment.

  16. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  17. Thermal Conductivity Measurements of Bulk Thermoelectric Materials (Prop. 2004-067)

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Sharp, J

    2006-01-01

    Thermal conductivity is an important material property of the bulk thermoelectrics. To improve ZT a reduced thermal conductivity is always desired. However, there is no standard material for thermoelectrics and the test results, even on the same material, often show significant scatter. The scatter in thermal conductivity made reported ZT values uncertain and sometime unrepeatable. One of the reasons for the uncertainty is due to the microstructure differences resulting from sintering, heat treatment and other processing parameters. They selected commonly used bulk thermoelectric materials and conducted thermal conductivity measurements using the laser flash diffusivity and differential scanning calorimeter (DSC) systems. Thermal conductivity was measured as a function of temperature of temperature from room temperature to 500 K and back to room temperature. The effect of thermal cycling on the bulk thermoelectric was studied. Comnbined with measurements on electrical resistivity and Seebeck coefficient, they show the use of a ZT map in selecting thermoelectrics. The commercial bulk material showed very good consistency and reliability compared to other bulk materials. The goal is to develop a thermal transport properties database for the bulk thermoelectrics and make the information available to the research community and industry.

  18. Synchrophasor Measurement-Based Wind Plant Inertia Estimation: Preprint

    SciTech Connect (OSTI)

    Zhang, Y.; Bank, J.; Wan, Y. H.; Muljadi, E.; Corbus, D.

    2013-05-01

    The total inertia stored in all rotating masses that are connected to power systems, such as synchronous generations and induction motors, is an essential force that keeps the system stable after disturbances. To ensure bulk power system stability, there is a need to estimate the equivalent inertia available from a renewable generation plant. An equivalent inertia constant analogous to that of conventional rotating machines can be used to provide a readily understandable metric. This paper explores a method that utilizes synchrophasor measurements to estimate the equivalent inertia that a wind plant provides to the system.

  19. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  20. Ethylene insensitive plants

    DOE Patents [OSTI]

    Ecker, Joseph R.; Nehring, Ramlah; McGrath, Robert B.

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  1. Polyhydroxyalkanoate synthesis in plants

    DOE Patents [OSTI]

    Srienc, Friedrich; Somers, David A.; Hahn, J. J.; Eschenlauer, Arthur C.

    2000-01-01

    Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

  2. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  3. Plant fatty acid hydroxylases

    DOE Patents [OSTI]

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  4. Evaluation of bulk paint worker exposure to solvents at household hazardous waste collection events

    SciTech Connect (OSTI)

    Cameron, M.

    1995-09-01

    In fiscal year 93/94, over 250 governmental agencies were involved in the collection of household hazardous wastes in the State of California. During that time, over 3,237,000 lbs. of oil based paint were collected in 9,640 drums. Most of this was in lab pack drums, which can only hold up to 20 one gallon cans. Cost for disposal of such drums is approximately $1000. In contrast, during the same year, 1,228,000 lbs. of flammable liquid were collected in 2,098 drums in bulk form. Incineration of bulked flammable liquids is approximately $135 per drum. Clearly, it is most cost effective to bulk flammable liquids at household hazardous waste events. Currently, this is the procedure used at most Temporary Household Hazardous Waste Collection Facilities (THHWCFs). THHWCFs are regulated by the Department of Toxic Substances Control (DTSC) under the new Permit-by Rule Regulations. These regulations specify certain requirements regarding traffic flow, emergency response notifications and prevention of exposure to the public. The regulations require that THHWCF operators bulk wastes only when the public is not present. [22 CCR, section 67450.4 (e) (2) (A)].Santa Clara County Environmental Health Department sponsors local THHWCF`s and does it`s own bulking. In order to save time and money, a variance from the regulation was requested and an employee monitoring program was initiated to determine actual exposure to workers. Results are presented.

  5. Safeguards and security modeling for electrochemical plants

    SciTech Connect (OSTI)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D.

    2013-07-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers.

  6. Simultaneous measurement of the surface and bulk magnetization in thin magnetic films

    SciTech Connect (OSTI)

    Teplin, Charles W.; Rogers, Charles T.

    2001-06-01

    We describe an apparatus for the simultaneous measurement of the transverse and longitudinal linear magneto-optic Kerr effects and the transverse second-harmonic magneto-optic Kerr effect. We have used this system to study low frequency bulk and surface magnetization loops, and high frequency response to 100 ps impulse fields for 70 nm thick Ni{sub 80}Fe{sub 20} films. Magnetization loops show that the surface and bulk magnetization fields in these films respond essentially identically to external fields. Similarly, the dynamic response of the films to 100 ps magnetic field impulses also shows simultaneous rotation of the surface and bulk magnetization. Finally, we use the system to produce 8 {mu}m resolution (at the diffraction limit for our ellipsometric optical geometry) images of the magnetization spatial and temporal response. {copyright} 2001 American Institute of Physics.

  7. Linking structure to fragility in bulk metallic glass-forming liquids

    SciTech Connect (OSTI)

    Wei, Shuai E-mail: m.stolpe@mx.uni-saarland.de; Stolpe, Moritz E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  8. Plant Phenotype Characterization System

    SciTech Connect (OSTI)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  9. High-Impact, Low-Frequency Risk to the North American Bulk Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (June 2010) | Department of Energy High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. The North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) partnered in July of 2009 on an effort to

  10. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  11. Understanding Bulk Power Reliability: The Importance of Good Data and A Critical Review of Existing Sources

    SciTech Connect (OSTI)

    Fisher, Emily; Eto, Joseph H.; LaCommare, Kristina Hamachi

    2011-10-19

    Bulk power system reliability is of critical importance to the electricity sector. Complete and accurate information on events affecting the bulk power system is essential for assessing trends and efforts to maintain or improve reliability. Yet, current sources of this information were not designed with these uses in mind. They were designed, instead, to support real-time emergency notification to industry and government first-responders. This paper reviews information currently collected by both industry and government sources for this purpose and assesses factors that might affect their usefulness in supporting the academic literature that has relied upon them to draw conclusions about the reliability of the US electric power system.

  12. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday, 03 April 2013 13:32 Spin-coating is extensively used in the lab-based manufacturing of organic solar cells, including most of the record-setting cells. Aram Amassian and co-workers report in this study the first direct observation of photoactive layer formation as it occurs during spin-coating. The

  13. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVbulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

  14. High-Impact, Low-Frequency Risk to the North American Bulk Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (June 2010) | Department of Energy Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Impact, Low-Frequency Risk to the North American Bulk Power System (June 2010) A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. The North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) partnered in July of 2009 on an effort to

  15. Plant centromere compositions

    DOE Patents [OSTI]

    Mach; Jennifer M. , Zieler; Helge , Jin; RongGuan , Keith; Kevin , Copenhaver; Gregory P. , Preuss; Daphne

    2011-11-22

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  16. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer; Zieler, Helge; Jin, James; Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2007-06-05

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  17. Plant centromere compositions

    DOE Patents [OSTI]

    Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2006-10-10

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  18. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer; Zieler, Helge; Jin, James; Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2006-06-26

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  19. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer M.; Zieler, Helge; Jin, RongGuan; Keith, Kevin; Copenhaver, Gregory P.; Preuss, Daphne

    2011-08-02

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  20. T Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact ... and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage ...

  1. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. February 2, 2015 A rabbit on LANL land. A rabbit on Los Alamos National Laboratory land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from

  2. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  3. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  4. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  5. Decoupling Bulk and Surface Contributions in Water- Splitting Photocatalysts by In Situ Ultrafast Spectroscopy

    SciTech Connect (OSTI)

    Appavoo, Kannatassen; Mingzhao, Liu; Black, Charles T.; Sfeir, Matthew Y.

    2015-05-10

    By performing ultrafast emission spectroscopy in an operating, bias-controlled photoelectrochemical cell, we distinguish between bulk (charge transport) and surface (chemical reaction) recombination processes in a nanostructured photocatalyst and correlate its electronic properties directly with its incident-photon-to-current efficiency.

  6. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect (OSTI)

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  7. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  8. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOE Patents [OSTI]

    Jothimurugesan, Kandaswamy; Goodwin, Jr., James G.; Gangwal, Santosh K.

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  9. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  10. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    SciTech Connect (OSTI)

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; Ryu, Won -Hee; Gittleson, Forrest S.; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; Bordeenithikasem, Punnathat; Kinser, Emily; Liu, Yanhui; Tong, Xiao; Osuji, Chinedum; Schroers, Jan; Mukherjee, Sundeep; Taylor, Andre D.

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  11. Silicon surface and bulk defect passivation by low temperature PECVD oxides and nitrides

    SciTech Connect (OSTI)

    Chen, Z.; Rohatgi, A.; Ruby, D.

    1995-01-01

    The effectiveness of PECVD passivation of surface and bulk defects in Si, as well as phosphorous diffused emitters, Is investigated and quantified. Significant hydrogen incorporation coupled with high positive charge density in the PECVD SiN layer is found to play an important role in bulk and surface passivation. It is shown that photo-assisted anneal in a forming gas ambient after PECVD depositions significantly improves the passivation of emitter and bulk defects. PECVD passivation of phosphorous doped emitters and boron doped bare Si surfaces is found to be a strong function of doping concentration. Surface recombination velocity of less than 200 cm/s for 0.2 Ohm-cm and less than 1 cm/s for high resistivity substrates ({approximately} Ohm-cm) were achieved. PECVD passivation improved bulk lifetime in the range of 30% to 70% in multicrystalline Si materials. However, the degree of the passivation was found to be highly material specific. Depending upon the passivation scheme, emitter saturation current density (J{sub oe}) can be reduced by a factor of 3 to 9. Finally, the stability of PECVD oxide/nitride passivation under prolonged UV exposure is established.

  12. Method of aeration disinfecting and drying grain in bulk and pretreating seeds and a transverse blow silo grain dryer therefor

    DOE Patents [OSTI]

    Danchenko, Vitaliy G.; Noyes, Ronald T.; Potapovych, Larysa P.

    2012-02-28

    Aeration drying and disinfecting grain crops in bulk and pretreating seeds includes passing through a bulk of grain crops and seeds disinfecting and drying agents including an ozone and air mixture and surrounding air, subdividing the disinfecting and drying agents into a plurality of streams spaced from one another in a vertical direction, and passing the streams at different heights through levels located at corresponding heights of the bulk of grain crops and seeds transversely in a substantially horizontal direction.

  13. Better Plants Pre-In-Plant Training Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    A listing of Better Plants pre-In-Plant Training webinars on reducing energy in a variety of systems.

  14. WHAT GOVERNS THE BULK VELOCITY OF THE JET COMPONENTS IN ACTIVE GALACTIC NUCLEI?

    SciTech Connect (OSTI)

    Chai Bo; Cao Xinwu; Gu Minfeng E-mail: cxw@shao.ac.cn

    2012-11-10

    We use a sample of radio-loud active galactic nuclei (AGNs) with measured black hole masses to explore the jet formation mechanisms in these sources. Based on Koenigl's inhomogeneous jet model, the jet parameters, such as the bulk motion Lorentz factor, magnetic field strength, and electron density in the jet, can be estimated with the very long baseline interferometry and X-ray data.. We find a significant correlation between black hole mass and the bulk Lorentz factor of the jet components for this sample, while no significant correlation is present between the bulk Lorentz factor and the Eddington ratio. The massive black holes will be spun up through accretion, as the black holes acquire mass and angular momentum simultaneously through accretion. Recent investigation indeed suggested that most supermassive black holes in elliptical galaxies have on average higher spins than the black holes in spiral galaxies, where random, small accretion episodes (e.g., tidally disrupted stars, accretion of molecular clouds) might have played a more important role. If this is true, then the correlation between black hole mass and the bulk Lorentz factor of the jet components found in this work implies that the motion velocity of the jet components is probably governed by the black hole spin. No correlation is found between the magnetic field strength at 10R {sub S} (R {sub S} = 2GM/c {sup 2} is the Schwarzschild radius) in the jets and the bulk Lorentz factor of the jet components for this sample. This is consistent with the black hole spin scenario, i.e., the faster moving jets are magnetically accelerated by the magnetic fields threading the horizon of more rapidly rotating black holes. The results imply that the Blandford-Znajek mechanism may dominate over the Blandford-Payne mechanism for the jet acceleration, at least in these radio-loud AGNs.

  15. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    SciTech Connect (OSTI)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: A new method of clinker characterization Combination of electron probe technique with cluster analysis Simultaneous assessment of phase abundance, composition and bulk chemistry Experimental validation performed on industrial clinkers.

  16. NEMS Modeling of Coal Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific ... FF - Cost to convert to natural gas-fired steam plant - Cost to implement heat ...

  17. Conditional sterility in plants

    DOE Patents [OSTI]

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  18. Better Buildings, Better Plants:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings, Better Plants: AMO Technical Assistance Overview Andre de Fontaine This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 | Advanced Manufacturing Office Better Buildings, Better Plants Overview  Better Buildings, Better Plants is a national, voluntary industrial energy efficiency leadership initiative.  It is a key component of the President's Better Buildings Initiative, which seeks to improve the energy efficiency of

  19. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect (OSTI)

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  20. SC Johnson Waxdale Plant

    SciTech Connect (OSTI)

    2010-01-01

    This is a combined heat and power (CHP) project profile on a 6.4 MW CHP application at SC Johnson Waxdale Plant in Racine, Wisconsin.

  1. Leatherwood prep plant upgrade

    SciTech Connect (OSTI)

    Hollis, R.W.; Jain, S.M.

    2007-06-15

    The Blue Diamond Coal Co. recently implemented major circuit modifications to the Leatherwood coal preparation plant (formerly known as the J.K. Cornett prep plant) in Slemp, KY, USA. The plant was originally built in the late 1980s, and then modified in 1999. The 2006 plant modifications included: two Krebs 33-inch heavy-media cyclones; five 10 x 20 ft single deck Conn-Weld Banana type vibrating screens; two 10 ft x 48 inch Eriez self-leveling magnetic separators; two Derrick Stacksizer high frequency screens; two CMI EBR-48 centrifugal dryers; Warman process pumps; and eight triple start MDL spiral concentrators. 2 figs.

  2. concentrating solar power plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  3. CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE

    SciTech Connect (OSTI)

    MAY TH

    2008-04-16

    The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.

  4. High-Performance All Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Black, C.T.; Nam, C.-Y.; Su, D.

    2009-10-23

    High photovoltaic device performance is demonstrated in ambient-air-processed bulk heterojunction solar cells having an active blend layer of organic poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), with power conversion efficiencies as high as 4.1%, which is comparable to state-of-the-art bulk heterojunction devices fabricated in air-free environments. High-resolution transmission electron microscopy is combined with detailed analysis of electronic carrier transport in order to quantitatively understand the effects of oxygen exposure and different thermal treatments on electronic conduction through the highly nanostructured active blend network. Improvement in photovoltaic device performance by suitable post-fabrication thermal processing results from the reduced oxygen charge trap density in the active blend layer and is consistent with a corresponding slight increase in thickness of an {approx}4 nm aluminum oxide hole-blocking layer present at the electron-collecting contact interface.

  5. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  6. Intense femtosecond photoexcitation of bulk and monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Paradisanos, I.; Fotakis, C.; Kymakis, E.; Kioseoglou, G.; Stratakis, E.

    2014-07-28

    The effect of femtosecond laser irradiation on bulk and single-layer MoS{sub 2} on silicon oxide is studied. Optical, field emission scanning electron microscopy and Raman microscopy were used to quantify the damage. The intensity of A{sub 1g} and E{sub 2g}{sup 1} vibrational modes was recorded as a function of the number of irradiation pulses. The observed behavior was attributed to laser-induced bond breaking and subsequent atoms removal due to electronic excitations. The single-pulse optical damage threshold was determined for the monolayer and bulk under 800 nm and 1030 nm pulsed laser irradiation, and the role of two-photon versus one photon absorption effects is discussed.

  7. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOE Patents [OSTI]

    Manthiram, Arumugam; Wu, Yan

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  8. Control Center and Data Management Improvements Modernize Bulk Power Operations in Georgia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Georgia System Operations Corporation's (GSOC) Smart Grid Investment Grant (SGIG) project modernized bulk

  9. Method of altering the effective bulk density of solid material and the resulting product

    DOE Patents [OSTI]

    Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  10. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOE Patents [OSTI]

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  11. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110C at adiabatic conditions. Additional testing is recommended.

  12. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region

    SciTech Connect (OSTI)

    Cheng Ming; Zhang Shihong; Wang Ruixue

    2010-06-15

    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  13. "Plastic" Solar Cells: Self-Assembly of Bulk Heterojunction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano-Materials by Spontaneous Phase Separation | MIT-Harvard Center for Excitonics "Plastic" Solar Cells: Self-Assembly of Bulk Heterojunction Nano-Materials by Spontaneous Phase Separation October 20, 2009 at 3pm/36-428 Alan Heeger Department of Chemistry, University of California, Santa Barbara heeger abstract: Solar cells - Power from the Sun - can provide and must provide - a significant contribution to our future energy needs. The challenge is clear; we must create the

  14. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  15. The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Stanford Synchrotron Radiation Lightsource The Best of Both Worlds: Bulk Diamond Properties Realized at the Nanoscale Friday, August 9, 2013 - 10:30am SLAC, Conference Room 137-322 Presented by Abraham Wolcott, Department of Chemistry, Columbia University High-pressure, high-temperature (HPHT) nanodiamonds with nitrogen vacancy centers represent a unique class of fluorophores due to their long-lived electron spin properties, all-carbon matrix, and long-term photostability. While this class

  16. Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation

    SciTech Connect (OSTI)

    Bian Shaoping; Kuzyk, Mark G.

    2004-08-16

    We report the generation of dark spatial solitons in bulk Disperse Red 1 doped poly(methyl methacrylate) using photoinduced reorientation of azo-dye molecules. Planar solitions are formed when illuminated with a continuous-wave laser at intensities of the order of hundreds of miliwatts per square centimeter. The width of the soliton saturates to a minimum value at high intensity; and when the width of the initial dark notch is reduced, the equilibrium minimum width is unchanged.

  17. A Bulk Superconducting Magnetic System for the CLAS12 Target at Jefferson Lab

    SciTech Connect (OSTI)

    Statera, Marco; Contalbrigo, Marco; Ciullo, Giuseppe; Lenisa, Paulo; Lowry, Michael M.; Sandorfi, Andrew M.

    2015-06-01

    A feasibility study of a bulk magnetic system for the target of an experiment to measure the transverse spin effects in semi-inclusive deep inelastic scattering (SIDIS) at 11 GeV with a transversely polarized target using the CLAS12 detector is presented. An experiment has been approved with the highest priority rating to study spin azimuthal asymmetries in SIDIS using 11-GeV polarized electron beams from the upgraded CEBAF facility and the CLAS12 detector equipped with a transversely polarized target. The transverse target in CLAS12 requires the shielding of a volume inside the longitudinal field of the main solenoid. In the shielded region, a transverse target magnet can operate; for the proposed magnetic configuration, the main solenoid maximum magnetic induction is 2 T. A bulk MgB2 cylinder cooled in liquid helium is proposed both to shield the longitudinal field of the main solenoid and to provide a transverse field induction up to 1.2 T for the hydrogen deuteride ice (HD-ice) target. The installation and magnetization procedure will be described. The magnetization procedure has to be compatible with the polarization and installation procedure of the HD-ice target. The design of a test bench to measure the transverse magnetization of a MgB2 bulk cylinder cooled by a coldhead is presented together with the scheduled measurements.

  18. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-01-11

    Here, the crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism wasmore » confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.« less

  19. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; et al

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  20. Effect of mechanical strain on electronic properties of bulk MoS{sub 2}

    SciTech Connect (OSTI)

    Kumar, Sandeep Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    Ab-initio density functional theory based calculations of electronic properties of bulk and monolayer Molybdenum di-Sulfide (MoS{sub 2}) have been performed using all electron Full Potential Linearised Augmentad Plane Wave (FPLAPW) method using Elk code. We have used Generalised Gradient Approximation (GGA) for exchange and correlation functionals and performed calculaitons of Lattice parameters, Density Of States (DOS) and Band Structure (BS). Band structure calculations revealed that bulk MoS{sub 2} has indirect band gap of 0.97 eV and mono-layer MoS{sub 2} has direct band gap which has increased to 1.71 eV. These are in better agreement with experimental values as compared with the other calculations using pseudo-potential code. The effect of mechanical strain on the electronic properties of bulk MoS{sub 2} has also been studied. For the different values of compressive strain (varying from 2% to 8% in steps of 2%) along the c-axis, the corresponding DOS and BS are obtained. We observed that the band gap decreases by about 15% for every 2% increase in strain along the c-axis.

  1. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    SciTech Connect (OSTI)

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh -Lin; Ng, Fay; Zhu, X. -Y.; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.

  2. Better Plants Program Overview

    SciTech Connect (OSTI)

    2015-09-30

    The U.S. Department of Energy’s (DOE’s) Better Buildings, Better Plants Program is a voluntary partnership initiative to drive significant energy efficiency improvement across energy intensive companies and organizations. 157 leading manufacturers and public water and wastewater treatment utilities are partnering with DOE through Better Plants to improve energy efficiency, slash carbon emissions, and cut energy costs.

  3. Modulating lignin in plants

    DOE Patents [OSTI]

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  4. Plant pathogen resistance

    SciTech Connect (OSTI)

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  5. Plant growth promoting rhizobacterium

    SciTech Connect (OSTI)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  6. NUCLEAR POWER PLANT

    DOE Patents [OSTI]

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  7. Plant pathogen resistance

    DOE Patents [OSTI]

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  8. Plant fatty acid hydroxylase

    DOE Patents [OSTI]

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  9. Better Plants Program Partners

    Broader source: Energy.gov [DOE]

    DOE recognizes the following companies for their commitment to reducing the energy intensity of their U.S. manufacturing operations by 25% or more within 10 years. These Better Plants Program Partners set ambitious goals, establish energy management plans, and report progress annually to DOE. Click on the arrows below to view Better Plants Program Partner profiles and learn more about their commitment.

  10. Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals

    SciTech Connect (OSTI)

    Luan, Qingbin; Ni, Zhenyi; Zhu, Tiejun; Yang, Deren; Pi, Xiaodong; Koura, Setsuko

    2014-12-15

    Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs). In this work bulk Si with the resistivity as low as ∼ 0.8 (40) mΩ•cm has been produced by hot pressing P (B)-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature is the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity) of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤  ∼ 30 cm{sup -2}V{sup -1}s{sup -1}) mainly due to the scattering of carriers induced by structural defects such as pores.

  11. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals

    SciTech Connect (OSTI)

    Boes, Andreas, E-mail: s3363819@student.rmit.edu.au; Steigerwald, Hendrik; Sivan, Vijay; Mitchell, Arnan [School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001 (Australia); ARC Center for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, Victoria 3001 (Australia); Yudistira, Didit [School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001 (Australia); Wade, Scott [Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Mailis, Sakellaris [Optoelectronics Research Centre, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Soergel, Elisabeth [Institute of Physics, University of Bonn, Wegelerstr. 8, 53115 Bonn (Germany)

    2014-09-01

    We report the realization of high-resolution bulk domains achieved using a shallow, structured, domain inverted surface template obtained by UV laser-induced poling inhibition in MgO-doped lithium niobate. The quality of the obtained bulk domains is compared to those of the template and their application for second harmonic generation is demonstrated. The present method enables domain structures with a period length as small as 3??m to be achieved. Furthermore, we propose a potential physical mechanism that leads to the transformation of the surface template into bulk domains.

  12. FRIB Cryogenic Plant Status

    SciTech Connect (OSTI)

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  13. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  15. Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities

    SciTech Connect (OSTI)

    Zhao, Xin; Reece, Charles; Palczewski, Ari; Ciovati, Gianluigi; Krishnan, Mahadevan; James, Colt; Irfan, Irfan

    2013-09-01

    This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via a cathodic arc Nb plasma ions source, an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Literally, a top-surface layer of Nb films which sustains SRF function, always grows up in homo-epitaxy mode, on top of a Nb nucleation layer. Homo-epitaxy growth of Nb must be the final stage (a crystal thickening process) of any coatings of Nb film on alternative cavity structure materials. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavities were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film could be as same as the pre-coated bulk Nb surface (which received a chemically-buffered polishing plus a light electro-polishing); but quality factor of two tested cavities dropped quickly. We are investigating if the severe Q-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.

  16. Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

    2007-08-06

    Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

  17. The nature of the interlayer interaction in bulk and few-layer phosphorus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shulenburger, Luke; Baczewski, A. D.; Zhu, Z.; Guan, J.; Tomanek, David

    2015-11-02

    Sensitive dependence of the electronic structure on the number of layers in few-layer phosphorene raises a question about the true nature of the interlayer interaction in so-called van der Waals (vdW) solids . We performed quantum Monte Carlo calculations and found that the interlayer interaction in bulk black phosphorus and related few-layer phosphorene is associated with a significant charge redistribution that is incompatible with purely dispersive forces and not captured by density functional theory calculations with different vdW corrected functionals. Lastly, these findings confirm the necessity of more sophisticated treatment of nonlocal electron correlation in total energy calculations.

  18. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    SciTech Connect (OSTI)

    Emin, David; Akhtari, Massoud; Ellingson, B. M.; Mathern, G. W.

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  19. The use of bulk states to accelerate the band edge statecalculation of a semiconductor quantum dot

    SciTech Connect (OSTI)

    Vomel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques,Osni A.; Dongarra, Jack J.

    2006-05-10

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations.

  20. Radiation detector using a bulk high T[sub c] superconductor

    DOE Patents [OSTI]

    Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

    1993-12-07

    A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

  1. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect (OSTI)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.810{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  2. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M.

  3. Development of an optical current transducer with a bulk type Faraday sensor for metering

    SciTech Connect (OSTI)

    Katsukawa, H.; Ishikawa, H.; Okajima, H.; Cease, T.W.

    1996-04-01

    An optical current transducer (OCT) with a bulk type Faraday sensor demonstrated 0.3% class accuracy for metering. The Faraday sensor had Bi{sub 12}SiO{sub 20} (BSO) single crystals with right and left optical rotatory power to cancel out temperature dependency. A prototype 161 kV OCT installed in a TVA substation verified 0.3% class performance. The OCT had the Faraday sensor, a gapped magnetic iron core, a 1.6 m optical insulator, and an optical interface.

  4. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    SciTech Connect (OSTI)

    Schmidt, Christian B. Priyadarshi, Shekhar; Bieler, Mark; Tarasenko, Sergey A.

    2015-04-06

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which is the inverse spin Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  5. Desalination Plant Optimization

    Energy Science and Technology Software Center (OSTI)

    1992-10-01

    MSF21 and VTE21 perform design and costing calculations for multistage flash evaporator (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. An optimization capability is available, if desired. The MSF plant consists of a recovery section, reject section, brine heater, and associated buildings and equipment. Operating costs and direct and indirect capital costs for plant, buildings, site, and intakes are calculated. Computations are based on the first and last stages of each section and amore » typical middle recovery stage. As a result, the program runs rapidly but does not give stage by stage parameters. The VTE plant consists of vertical tube effects, multistage flash preheater, condenser, and brine heater and associated buildings and equipment. Design computations are done for each vertical tube effect, but preheater computations are based on the first and last stages and a typical middle stage.« less

  6. B Plant facility description

    SciTech Connect (OSTI)

    Chalk, S.E.

    1996-10-04

    Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

  7. Plant Vascular Biology 2010

    SciTech Connect (OSTI)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  8. Power Plant Cycling Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Intertek APTECH has organized the cycling cost data in consultation with NREL and WECC by the following eight generator plant types: 1. Small coal-fired sub-critical steam (35-299 ...

  9. Special Better Plants Training Opportunities | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Better Plants Special Better Plants Training Opportunities Special Better Plants Training Opportunities Better Plants process heating training at an ...

  10. Plant Phenotype Characterization System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Phenotype Characterization System Plant Phenotype Characterization System New X-Ray Technology Accelerates Plant Research The ability to analyze plant root structure and...

  11. Better Plants Overview SGH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Plants Overview SGH 151007.pdf (315.86 KB) More Documents & Publications Better Plants Two-Page Overview Better Plants Progress Update Fall 2013 Better Plants Progress ...

  12. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  13. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  14. Quiz: Know Your Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Think you know where coal, solar and other power plants are located around the country? Test your knowledge with our power plants quiz!

  15. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  16. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  17. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  18. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  19. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  20. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  1. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  2. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  3. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  4. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  5. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  6. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  7. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  8. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  9. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  10. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  11. Gasification Plant Databases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Databases Welcome to the U. S. Department of Energy, National Energy Technology Laboratory's Gasification Plant Databases Within these databases you will find current publicly available information on proposed projects and projects undergoing construction and initial operation within the United States and worldwide. Currently operating projects are excluded. The data have been compiled here to keep the public informed of the technologies and investments in major industrial coal

  12. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal. The IBM PC version contains two auxiliary programs, DATAPREP and FORLIST. DATAPREP is an interactive preprocessor for creating and editing COALPREP input data. FORLIST converts carriage-control characters in FORTRAN output data to ASCII line-feed (X''0A'') characters.« less

  13. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal.« less

  14. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Noel, J.S.; Martin, R.J. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    Experimental results are presented for bulk and mechanical properties measurements on specimens of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5, at Yucca Mountain, Nevada. Measurements have been performed on three thermal/mechanical units, PTn, TSwl, and TSw2. On each specimen the following bulk properties have been reported: dry bulk density, saturated bulk density, average grain density, and porosity. Unconfined compression to failure, confined compression to failure, and indirect tensile strength tests were performed on selected specimens recovered from the boreholes. In addition, compressional and shear wave velocities were measured on specimens designated for unconfined compression and confined compression experiments. Measurements were conducted at room temperature on nominally water-saturated specimens. The nominal rate for the fracture experiments was 10{sup -5}s{sup -1}.

  15. Solution-Derived Bi(ZnTi)O3 - BaTiO3 Thin Films with Bulk-like...

    Office of Scientific and Technical Information (OSTI)

    Title: Solution-Derived Bi(ZnTi)O3 - BaTiO3 Thin Films with Bulk-like Permittivity. Abstract not provided. Authors: Meyer, Kelsey Elizabeth ; Kotula, Paul Gabriel ; Brennecka, ...

  16. Properties of nitrogen implanted and electron beam annealed bulk ZnO

    SciTech Connect (OSTI)

    Kennedy, J.; Carder, D. A.; Markwitz, A.; Reeves, R. J.

    2010-05-15

    The optical properties of bulk ZnO ion implanted with nitrogen ions, at an energy of 23 keV have been studied as a function of implantation fluence and electron beam (EB) annealing conditions. Nuclear reaction analysis and Raman results have revealed the implanted N concentration and its structural changes with respect to various nitrogen ion fluences. The optical properties of nitrogen implanted bulk ZnO were investigated by low temperature photoluminescence measurements. An enhanced peak at 3.235 eV has been attributed to donor-accepter pair (DAP) emission involving the implanted N acceptor in ZnO. The emission near 3.3085 eV is attributed to a free electron to acceptor transition. We also report a broad band emission feature at {approx}3.09 eV in the nitrogen implanted with 1-2x10{sup 15} ions cm{sup -2} and EB annealed at 800-900 deg. C. This is assigned to a thermally activated nitrogen acceptor transition as it is unique only to nitrogen implanted samples. An ionization energy of 377 meV indicates that this line may correspond to a significantly less shallow acceptor level. In addition an increase in the intensity and dominance of this DAP line in nitrogen implanted samples over the other acceptor transitions was observed with increasing annealing time and temperatures. It is shown that EB annealing offers a method of enhanced nitrogen activation when compared to a more conventional furnace approach.

  17. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less

  18. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    SciTech Connect (OSTI)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  19. Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; Lee, Wen -Jay; Scheel, Mario; Chuang, Chih -Pin; Liaw, Peter K.; Lo, Yu -Chieh; Zhang, Yong; Di Michiel, Marco

    2014-03-18

    In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less

  20. Bulk crystal growth of antimonide based III-V compounds for thermophotovoltaics applications

    SciTech Connect (OSTI)

    Dutta, P.S.; Ostrogorsky, A.G.; Gutmann, R.J.

    1998-10-01

    In this paper, the bulk growth of crack-free GaInSb and single phase GaInAsSb alloys are presented. A new class of III-V quasi-binary [A{sub III}B{sub V}]{sub 12{minus}x}[C{sub III}D{sub V}]{sub x} semiconductor alloys has been synthesized and bulk crystals grown from the melt for the first time. The present investigation is focused on the quasi-binary alloy (GaSb){sub 1{minus}x}(InAs){sub x} (0 < x < 0.05) due to its importance for thermophotovoltaic applications. The structural properties of this melt-grown quasi-binary alloy are found to be significantly different from the conventional quaternary compound Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} with composition x = y. Synthesis and growth procedures are discussed. For the growth of ternary alloys, it was demonstrated that forced convection or mixing in the melt during directional solidification of In{sub x}Ga{sub 1{minus}x}Sb (0 < x < 0.1) significantly reduces cracks in the crystals.

  1. Nonlinear optical properties of bulk cuprous oxide using single beam Z-scan at 790?nm

    SciTech Connect (OSTI)

    Serna, J.; Rueda, E.; Garca, H.

    2014-11-10

    The two-photon absorption (TPA) coefficient ? and the nonlinear index of refraction n{sub 2} for bulk cuprous oxide (Cu{sub 2}O) direct gap semiconductor single crystal have been measured by using a balance-detection Z-scan single beam technique, with an excellent signal to noise ratio. Both coefficients were measured at 790?nm using a 65 fs laser pulse at a repetition rate of 90.9?MHz, generated by a Ti:Sapphire laser oscillator. The experimental values for ? were explained by using a model that includes allowed-allowed, forbidden-allowed, and forbidden-forbidden transitions. It was found that the forbidden-forbidden transition is the dominant mechanism, which is consistent with the band structure of Cu{sub 2}O. The low value for ? found in bulk, as compared with respect to thin film, is explained in terms of the structural change in thin films that result in opposite parities of the conduction and valence band. The n{sub 2} is also theoretically calculated by using the TPA dispersion curve and the Kramers-Kronig relations for nonlinear optics.

  2. In situ current voltage measurements for optimization of a novel fullerene acceptor in bulk heterojunction photovoltaics

    SciTech Connect (OSTI)

    Shuttle, Christopher G.; Treat, Neil D.; Fan, Jian; Varotto, Alessandro; Hawker, Craig J.; Wudl, Fred; Chabinyc, Michael L.

    2011-10-31

    The evaluation of the power conversion efficiency (PCE) of new materials for organic bulk heterojunction (BHJ) photovoltaics is difficult due to the large number of processing parameters possible. An efficient procedure to determine the optimum conditions for thermal treatment of polymer-based bulk heterojunction photovoltaic devices using in situ current-voltage measurements is presented. The performance of a new fullerene derivative, 1,9-dihydro-64,65-dihexyloxy-1,9-(methano[1,2] benzomethano)fullerene[60], in BHJ photovolatics with poly(3-hexylthiophene) (P3HT) was evaluated using this methodology. The device characteristics of BHJs obtained from the in situ method were found to be in good agreement with those from BHJs annealed using a conventional process. This fullerene has similar performance to 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methano fullerene in BHJs with P3HT after thermal annealing. For devices with thickness of 70 nm, the short circuit current was 6.24 mA/cm with a fill factor of 0.53 and open circuit voltage of 0.65 V. The changes in the current-voltage measurements during thermal annealing suggest that the ordering process in P3HT dominates the improvement in power conversion efficiency.

  3. Brane gravity, massless bulk scalar, and self-tuning of the cosmological constant

    SciTech Connect (OSTI)

    Kim, Jihn E.; Kyae, Bumseok; Shafi, Qaisar

    2004-09-15

    We show that a self-tuning mechanism of the cosmological constant could work in 5D noncompact space-time with a Z{sub 2} symmetry in the presence of a massless scalar field. The standard model matter fields live only on the 4D brane. The change of vacuum energy on the brane (brane cosmological constant) by, for instance, electroweak and QCD phase transitions, just gives rise to dynamical shifts of the profiles of the background metric and the scalar field in the extra dimension, keeping 4D space-time flat without any fine-tuning. To avoid naked singularities in the bulk, the brane cosmological constant should be negative. We introduce an additional brane-localized 4D Einstein-Hilbert term so as to provide the observed 4D gravity with the noncompact extra dimension. With a general form of the brane-localized gravity term allowed by the symmetries, the low energy Einstein gravity is successfully reproduced on the brane at long distances. We show this phenomenon explicitly for the case of vanishing bulk cosmological constant.

  4. Bulk scalar emission from a rotating black hole pierced by a tense brane

    SciTech Connect (OSTI)

    Kobayashi, Tsutomu; Nozawa, Masato; Takamizu, Yu-ichi

    2008-02-15

    We study the emission of scalar fields into the bulk from a six-dimensional rotating black hole pierced by a 3-brane. We determine the angular eigenvalues in the presence of finite brane tension by using the continued fraction method. The radial equation is integrated numerically, giving the absorption probability (graybody factor) in a wider frequency range than in the preexisting literature. We then compute the power and angular momentum emission spectra for different values of the rotation parameter and brane tension, and compare their relative behavior in detail. As is expected from the earlier result for a nonrotating black hole, the finite brane tension suppresses the emission rates. As the rotation parameter increases, the power spectra are reduced at low frequencies due to the smaller Hawking temperature and are enhanced at high frequencies due to superradiance. The angular momentum spectra are enhanced over the whole frequency range as the rotation parameter increases. The spectra and the amounts of energy and angular momentum radiated away into the bulk are thus determined by the interplay of these effects.

  5. Differentiation of surface and bulk conductivities in topological insulator via four-probe spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xiaoguang; McGuire, Michael A.; Chen, Yong P.; Li, An -Ping; Durand, Corentin; Hus, Saban M.; Ma, Chuanxu; Hu, Yang; Cao, Helin; Miotkowski, Ireneusz

    2016-03-08

    Topological insulators, with characteristic topological surface states, have emerged as a new state of matter with rich potentials for both fundamental physics and device applications. However, the experimental detection of the surface transport has been hampered by the unavoidable extrinsic conductivity associated with the bulk crystals. Here we show that a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system can be used to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators. We derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allowsmore » quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 with that of a pure 2D conductance of graphene on SiC substrate. We also report the 2D conductance enhancement due to the surface doping effect in topological insulators. This technique can be applied to reveal 2D to 3D crossover of conductance in other complex systems.« less

  6. Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Jothimurugesan, Kandaswami

    1990-01-01

    A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.

  7. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  8. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  9. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  10. Willow plant name 'Preble'

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2014-06-10

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  11. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  12. Pantex Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pantex Plant Pantex Plant Pantex Plant | September 2010 Aerial View Pantex Plant | September 2010 Aerial View The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear weapons in support of the NNSA stockpile stewardship program. Pantex also performs research and development in conventional high explosives and serves as an interim storage site for plutonium pits removed from dismantled weapons. Enforcement April 8, 2015 Enforcement Letter, Packaging

  13. U Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities U Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration

  14. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3542 Site Sustainability Plan Waste Isolation Pilot Plant Fiscal Year 2015 Narrative November 2014 Office of Site Operations Carlsbad Field Office U.S. Department of Energy Approved By: //signature on file// 12/30/14 Jose R. Franco, Date Manager, Carlsbad Field Office Site Sustainability Plan Waste Isolation Pilot Plant, Fiscal Year 2015 Narrative DOE/WIPP-14-3542 Page 2 of 48 TABLE OF CONTENTS I. EXECUTIVE SUMMARY 4 TABLE 1. DOE Goal Summary Table 6 II. PERFORMANCE REVIEW AND PLAN NARRATIVE

  15. B Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H Reactor

  16. Fossil assests management: Making decisions on older plants

    SciTech Connect (OSTI)

    Douglas, J.

    1996-01-01

    Deregulation of the bulk power market is prompting many electric utilities to reexamine their older fossil generating units to see how they fit into the company`s overall operating strategy and whether they should be retired or modified to help the company become more competitive. EPRI`s Fossil Assets Management methodologies provide a formal value-analysis process for determining which investment and utilization options for fossil plants provide the greatest benfits at the corporate level. Three major types of asset management decisions are involved: how to deploy each unit in a utility`s fossil plant fleet, what investments should be made at specific plants, and how to modify operation and maintenance practices in view of present equipment condition. EPRI has also developed the Strategic Asset Management methodology which focuses on even border alternatives for allocating budgets and staff time across the utility. The FAM and SAM methodologies can be used together to analyze a full suite of asset management decisions, ranging from corporate-level reorganization to key equipment purchases at specific plants. This paper describes these strategies.

  17. Scaling trends in SET pulse widths in Sub-100 nm bulk CMOS processes.

    SciTech Connect (OSTI)

    Narasimham, Balaji; Ahlbin, Jonathan R.; Schrimpf, Ronald D.; Gadlage, Matthew J.; Massengill, Lloyd W.; Vizkelethy, Gyorgy; Reed, Robert A.; Bhuva, Bharat L.

    2010-07-01

    Digital single-event transient (SET) measurements in a bulk 65-nm process are compared to transients measured in 130-nm and 90-nm processes. The measured SET widths are shorter in a 65-nm test circuit than SETs measured in similar 90-nm and 130-nm circuits, but, when the factors affecting the SET width measurements (in particular pulse broadening and the parasitic bipolar effect) are considered, the actual SET width trends are found to be more complex. The differences in the SET widths between test circuits can be attributed in part to differences in n-well contact area. These results help explain some of the inconsistencies in SET measurements presented by various researchers over the past few years.

  18. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect (OSTI)

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  19. Numerical design of SiC bulk crystal growth for electronic applications

    SciTech Connect (OSTI)

    Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J.; Tymicki, E.

    2014-10-06

    Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.

  20. Radiation detector using a bulk high T.sub.c superconductor

    DOE Patents [OSTI]

    Artuso, Joseph F. (Santa Barbara, CA); Franks, Larry A. (Santa Barbara, CA); Hull, Kenneth L. (Ventura, CA); Symko, Orest G. (Salt Lake City, UT)

    1993-01-01

    A radiation detector (10) is provided, wherein a bulk high T.sub.c superconducting sample (11) is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil (12) which is coupled by an input coil (15) to an rf SQUID (16).

  1. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    SciTech Connect (OSTI)

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  2. H-point exciton transitions in bulk MoS{sub 2}

    SciTech Connect (OSTI)

    Saigal, Nihit; Ghosh, Sandip

    2015-05-04

    Reflectance and photoreflectance spectrum of bulk MoS{sub 2} around its direct bandgap energy have been measured at 12?K. Apart from spectral features due to the A and B ground state exciton transitions at the K-point of the Brillouin zone, one observes additional features at nearby energies. Through lineshape analysis the character of two prominent additional features are shown to be quite different from that of A and B. By comparing with reported electronic band structure calculations, these two additional features are identified as ground state exciton transitions at the H-point of the Brillouin zone involving two spin-orbit split valance bands. The excitonic energy gap at the H-point is 1.965?eV with a valance bands splitting of 185?meV. While at the K-point, the corresponding values are 1.920?eV and 205?meV, respectively.

  3. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision

    SciTech Connect (OSTI)

    Jesse, Stephen; He, Qian; Lupini, Andrew R.; Leonard, Donovan N.; Oxley, Mark P.; Ovchinnikov, Oleg; Unocic, Raymond R.; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Pennycook, Stephen J.; Kalinin, Sergei V.; Borisevich, Albina Y.

    2015-10-19

    We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.

  4. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  5. Unique properties of CuZrAl bulk metallic glasses induced by microalloying

    SciTech Connect (OSTI)

    Huang, B.; Bai, H. Y.; Wang, W. H.

    2011-12-15

    We studied the glass forming abilities (GFA), mechanical, and physical properties of (CuZr){sub 92.5}Al{sub 7}X{sub 0.5} (X = La, Sm, Ce, Gd, Ho, Y, and Co) bulk metallic glasses (BMGs). We find that the GFA, mechanical, and physical properties can be markedly changed and modulated by the minor rare earth addition. The Kondo screening effect is found to exist in (CuZr){sub 92.5}Al{sub 7}Ce{sub 0.5} BMG at low temperatures and the Schottky effect exists in all the rare earth element doped BMGs. Our results indicate that the minor addition is an effective way for modulating and getting desirable properties of the BMGs. The mechanisms of the effects of the addition are discussed. The results have implications for the exploration of metallic glasses and for improving the mechanical and low temperature physical properties of BMGs.

  6. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    SciTech Connect (OSTI)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  7. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect (OSTI)

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  8. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  9. Method of casting articles of a bulk-solidifying amorphous alloy

    DOE Patents [OSTI]

    Lin, Xianghong; Johnson, William L.; Peker, Atakan

    1998-01-01

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.

  10. Method of casting articles of a bulk-solidifying amorphous alloy

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.; Peker, A.

    1998-08-25

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.

  11. Further development and testing of a second-order bulk boundary layer model. Master's thesis

    SciTech Connect (OSTI)

    Krasner, R.D.

    1993-05-03

    A one-layer bulk boundary layer model is developed. The model predicts the mixed layer values of the potential temperature, mixing ratio, and u- and v-momentum. The model also predicts the depth of the boundary layer and the vertically integrated turbulence kinetic energy (TKE). The TKE is determined using a second-order closure that relates the rate of dissipation to the TKE. The fractional area covered by rising motion sigma and the entrainment rate (E) are diagnostically determined. The model is used to study the clear convective boundary layer (CBL) using data from the Wangara, Australia boundary layer experiment. The Wangara data is also used as an observation base to validate model results. A further study is accomplished by simulating the planetary boundary layer (PBL) over an ocean surface. This study is designed to find the steady-state solutions of the prognostic variable.

  12. Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials

    SciTech Connect (OSTI)

    Basoli, Francesco; Senesi, Roberto; Kolesnikov, Alexander I; Licoccia, Silvia

    2014-01-01

    Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

  13. Estimation of thickness, complex bulk permittivity and surface conductivity using interdigital dielectrometry

    SciTech Connect (OSTI)

    Zaretsky, M.C.; Li, P.; Melcher, J.R. . Lab. for Electromagnetic and Electronic Systems)

    1989-12-01

    Based on theoretical techniques for deducing continuum parameters from the gain-phase response of interdigital electrodes, experiments are described that demonstrate the use of 50 {mu}m or 1 mm wavelength interdigitated electrodes for the absolute measurement of (1) the thickness and voidage of a layer formed by the sedimentation of 41 {mu}m particles in transformer oil (2) the thickness and high frequency bulk permittivity of plasma deposited bromobenzene and vacuum deposited parylene, the former {ital in-situ} (3) the complex permittivity of transformer oil without and with a parylene passivation layer to prevent the adsorption of water (4) the dispersion of oil impregnated paper having a finite thickness and (5) the surface conductivity due to adsorption of water on a silicon dioxide substrate. The frequency range for (3--5) is 0.005 Hz to 10 kHz. Difficulties, apparently due to charging effects on the integrated circuitry, are discussed.

  14. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect (OSTI)

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  15. Study of microstructure and electrical properties of bulk YBCO prepared by melt textured growth technique

    SciTech Connect (OSTI)

    Gonal, M. R.; Krishnan, Madangopal; Tewari, R.; Tyagi, A. K.; Gyore, A.; Vajda, I.

    2015-06-24

    Bulk YBCO components were prepared using Melt Texture Growth (MTG) technique. Components were fabricated using MTG by addition of Y{sub 2}BaCuO{sub 5} (Y211) and Ag to YBCO, which leads to improved grain size without affecting superconducting properties. Green compacts prepared by cold isostatic pressing were pre-sintered at 930°C before subjecting melt texturing. Cooling rates lower than 1 °C.h{sup −1} was used, in between (peritectic) temperature of about 995 and 1025°C, to obtain large grained components. Microstructure studies in details were carried out by Scanning Electron Microscope (SEM), Electron Probe Micro Analysis (EPMA), Orientation Imaging Microscope (OIM) and TEM correlated with electrical properties like Critical current density (J{sub c})

  16. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    SciTech Connect (OSTI)

    Wang, Kai; Yi, Chao; Liu, Chang; Hu, Xiaowen; Chuang, Steven; Gong, Xiong

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated with MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.

  17. Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots

    SciTech Connect (OSTI)

    Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab; Ludwig Hernandez-Martinez, Pedro; Volkan Demir, Hilmi

    2013-12-23

    We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.

  18. Combustion of Bulk 84% Fe/16% KCIO{sub 4} heat powder

    SciTech Connect (OSTI)

    Nissen, M.; Guidotti, R.A.; Berry, B.

    1996-05-01

    Fe/KClO{sub 4} pyrotechnic mixtures are used in thermal batteries to provide the heat necessary to bring the battery stack to operating temperatures of 550 to 600 C. This heat source is normally used as discs pressed from bulk powder. To evaluate the consequences associated with unexpected ignition of large amounts of heat powder, combustion of 84% Fe/16% KClO{sub 4} heat powders was conducted for various scenarios under controlled conditions and the response documented. Increasing amounts of heat powder--up to 8 lbs--were ignited in both unconfined and confined (sealed) containers in a remote area. The containers were thermocoupled and the resulting burning filmed with a standard video camera, high-speed (1,000 frames/s) film and video cameras, and an infrared video camera. A 20- minute video of the burning under the various conditions is presented.

  19. Bulk viscosity in a hyperonic star and r-mode instability

    SciTech Connect (OSTI)

    Jha, T. K.; Mishra, H.; Sreekanth, V.

    2010-08-15

    We consider a rotating neutron star with the presence of hyperons in its core. We use an equation of state in an effective chiral model within the relativistic mean-field approximation. We calculate the hyperonic bulk viscosity coefficient caused by nonleptonic weak interactions. By estimating the damping time scales of the dissipative processes, we investigate its role in the suppression of gravitationally driven instabilities in the r mode. We observe that r-mode instability remains very significant for hyperon core temperatures of around 10{sup 8} K, which results in a comparatively larger instability window. We find that such instability can reduce the angular velocity of the rapidly rotating star considerably up to {approx}0.04{Omega}{sub K}, with {Omega}{sub K} as the Keplerian angular velocity.

  20. Change of variables as a method to study general ?-models: Bulk universality

    SciTech Connect (OSTI)

    Shcherbina, M.

    2014-04-15

    We consider ? matrix models with real analytic potentials. Assuming that the corresponding equilibrium density ? has a one-interval support (without loss of generality ? = [?2, 2]), we study the transformation of the correlation functions after the change of variables ?{sub i} ? ?(?{sub i}) with ?(?) chosen from the equation ?{sup ?}(?)?(?(?)) = ?{sub sc}(?), where ?{sub sc}(?) is the standard semicircle density. This gives us the deformed ?-model which has an additional interaction term. Standard transformation with the Gaussian integral allows us to show that the deformed ?-model may be reduced to the standard Gaussian ?-model with a small perturbation n{sup ?1}h(?). This reduces most of the problems of local and global regimes for ?-models to the corresponding problems for the Gaussian ?-model with a small perturbation. In the present paper, we prove the bulk universality of local eigenvalue statistics for both one-cut and multi-cut cases.

  1. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    SciTech Connect (OSTI)

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A.

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser power densities from 2.5 × 103 to 2.5 × 105 W cm–2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 105 Wcm–2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.

  2. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A.

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser powermore » densities from 2.5 × 103 to 2.5 × 105 W cm–2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 105 Wcm–2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.« less

  3. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    SciTech Connect (OSTI)

    Womac, Alvin; Groothuis, Mitch; Westover, Tyler; Phanphanich, Manunya; Webb, Erin; Sokhansanj, Shahab; Turhollow, Anthony

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  4. Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage

    SciTech Connect (OSTI)

    Zhou X.; Wielopolski L.; Lakkaraju, V. R.; Apple, M.; Dobeck, L. M.; Gullickson, K.; Shaw, J. A.; Cunningham, A. B.; Spangler, L. H.

    2012-03-01

    Experimental observations of signature changes of bulk soil electrical conductivity (EC) due to CO{sub 2} leakage were carried out at a field site at Bozeman, Montana, to investigate the change of soil geophysical properties in response to possible leakage of geologically sequestered CO{sub 2}. The dynamic evolution of bulk soil EC was measured during an engineered surface leakage of CO{sub 2} through in situ continuous monitoring of bulk soil EC, soil moisture, soil temperature, rainfall rate, and soil CO{sub 2} concentration to investigate the response of soil bulk EC signature to CO{sub 2} leakage. Observations show that: (1) high soil CO{sub 2} concentration due to CO{sub 2} leakage enhances the dependence of bulk soil EC on soil moisture. The bulk soil EC is a linear multivariate function of soil moisture and soil temperature, the coefficient for soil moisture increased from 2.111 dS for the non-leaking phase to 4.589 dS for the CO{sub 2} leaking phase; and the coefficient for temperature increased from 0.003 dS/C for the non-leaking phase to 0.008 dS/C for the CO{sub 2} leaking phase. The dependence of bulk soil EC on soil temperature is generally weak, but leaked CO{sub 2} enhances the dependence, (2) after the CO{sub 2} release, the relationship between soil bulk EC and soil CO{sub 2} concentration observes three distinct CO{sub 2} decay modes. Rainfall events result in sudden changes of soil moisture and are believed to be the driving forcing for these decay modes, and (3) within each mode, increasing soil CO{sub 2} concentration results in higher bulk soil EC. Comparing the first 2 decay modes, it is found that the dependence of soil EC on soil CO{sub 2} concentration is weaker for the first decay mode than the second decay mode.

  5. Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion

    SciTech Connect (OSTI)

    Beard, Matthew C.; Midgett, Aaron G.; Hanna, Mark C.; Luther, Joseph M.; Hughes, Barbara K.; Nozik, Arthur J.

    2010-07-26

    Multiple exciton generation (MEG) in quantum dots (QDs) and impact ionization (II) in bulk semiconductors are processes that describe producing more than one electron-hole pair per absorbed photon. We derive expressions for the proper way to compare MEG in QDs with II in bulk semiconductors and argue that there are important differences in the photophysics between bulk semiconductors and QDs. Our analysis demonstrates that the fundamental unit of energy required to produce each electron-hole pair in a given QD is the band gap energy. We find that the efficiency of the multiplication process increases by at least 2 in PbSe QDs compared to bulk PbSe, while the competition between cooling and multiplication favors multiplication by a factor of 3 in QDs. We also demonstrate that power conversion efficiencies in QD solar cells exhibiting MEG can greatly exceed conversion efficiencies of their bulk counterparts, especially if the MEG threshold energy can be reduced toward twice the QD band gap energy, which requires a further increase in the MEG efficiency. Finally, we discuss the research challenges associated with achieving the maximum benefit of MEG in solar energy conversion since we show the threshold and efficiency are mathematically related.

  6. Pinellas Plant facts

    SciTech Connect (OSTI)

    1990-11-01

    The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

  7. Fossil plant self assessment

    SciTech Connect (OSTI)

    Bozgo, R.H.; Maguire, B.A.

    1996-07-01

    The increasingly competitive environment of the electric utility business is focusing utilities attention on reducing the cost of electricity generation. By using benchmark indicators, gains are being sought in plant material condition with corresponding improvements in operating efficiency and capacity factor as well as reductions in Operating and Maintenance (O&M) costs. In designing a process for improvement, Consolidated Edison Company of New York, Inc. (Con Edison) plant managers were asked to review and approve objectives and criteria for Fossil Plant Operations. The program methods included optimizing work processes (including material condition, maintenance programs, work control systems, and personnel performance); team building techniques to foster personnel buy-in of the process; and long term cultural change to insure an ongoing continuous improvement process with measurable results. The program begins with a self assessment of each plant based upon the approved Objectives and Criteria. The Criteria and Review Approaches (CRAs) are established by senior management and the review team. The criteria cover Management, Operations, Maintenance, and Support Functions including Technical Support, Training and Qualification, Environmental Compliance, Chemistry, and Safety and Emergency Preparedness. The Assessment is followed by a review of corrective action plans and an interim corrective action review. Annual Assessments are planned to ensure continuous improvement. Emphasis is placed on progress made in maintenance at the fossil stations.

  8. Mechanisms in Plant Development

    SciTech Connect (OSTI)

    Hake, Sarah

    2013-08-21

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  9. Grace adds hydroprocessing plant

    SciTech Connect (OSTI)

    Fattah, H.

    1997-01-01

    W.R. Grace`s Davison Refining Catalysts Division will build a 20-million lbs/year hydroprocessing catalysts plant at Lake Charles, LA. The plant, planned for startup in early 1998, is part of the company`s ongoing effort to increase capacity to take advantage of significant growth in the hydroprocessing markets. The move {open_quotes}signifies a major step in our long-term commitment to the market,{close_quotes} says Robert Bullard, v.p./hydroprocessing catalysts. Davison also has an expansion scheduled for startup in February at its hydroprocessing catalysts plant at Curtis Bay, MD that will raise capacity there to 30 million lbs/year. The Lake Charles plant and the expansion total $40 million in investment, Grace says. Catalyst Consultants (Spring House, PA) expects growth of hydroprocessing demand to outstrip capacity, which is projected to grow 2.5%-3.5%/year. Demand is largely being fueled by tough environmental requirements on the sulfur content of gasoline, as well as by increased use of heavy, sour crude oil.

  10. B Plant hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-23

    This document establishes the technical basis in support of Emergency Planning Activities for B Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific , Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  11. T Plant hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-27

    This document establishes the technical basis in support of Emergency Planning activities for the T Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  12. Getting Inside Plants | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Inside Plants Getting Inside Plants Seeing Green - This image of a rose leaf was captured with a plant imaging system that is based on the same technology used to conduct PET scans in humans. The ultimate goal of the plant imaging program is to see how plants will respond to rising levels of carbon dioxide in the atmosphere. Getting Inside Plants PET scans have been used for decades to help doctors diagnose disease in people - from cancers to heart problems. Now, the technology is

  13. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  14. Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy

    SciTech Connect (OSTI)

    Zhao, Zhengyang; Jamali, Mahdi; Smith, Angeline K.; Wang, Jian-Ping

    2015-03-30

    Spin-orbit torques are studied in Ta/TbFeCo/MgO patterned structures, where the ferrimagnetic material TbFeCo provides a strong bulk perpendicular magnetic anisotropy (bulk-PMA) independent of the interfaces. The current-induced magnetization switching in TbFeCo is investigated in the presence of a perpendicular, longitudinal, or transverse field. An unexpected partial-switching phenomenon is observed in the presence of a transverse field unique to our bulk-PMA material. It is found that the anti-damping torque related with spin Hall effect is very strong, and a spin Hall angle is determined to be 0.12. The field-like torque related with Rashba effect is unobservable, suggesting that the interface play a significant role in Rashba-like torque.

  15. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less

  16. Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas

    SciTech Connect (OSTI)

    Liu Yongxin; Zhang Quanzhi; Liu Jia; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2012-09-10

    The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.

  17. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, W.G.; Lindbo, J.A.

    1996-12-10

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

  18. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation ...,"1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  19. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, William G.; Lindbo, John A.

    1996-01-01

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

  20. Gene encoding plant asparagine synthetase

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  1. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  2. Columbia Boulevard Wastewater Treatment Plant

    SciTech Connect (OSTI)

    2005-08-01

    This is a combined heat and power (CHP) project profile on 320 kW fuel cell and microturbine power plants at Columbia Boulevard Wastewater Treatment Plant in Portland, Oregon.

  3. Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts

    SciTech Connect (OSTI)

    Phivilay, Somphonh; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    The most active photocatalyst system for water splitting under UV irradiation (270 nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized photonic efficiency (P.E.) of 56%, but fundamental issues about the nature of the surface catalytic active sites and their involvement in the photocatalytic process still need to be clarified. This is the first study to apply cutting edge surface spectroscopic analyses to determine the surface nature of tantalum mixed oxide photocatalysts. Surface analysis with HR-XPS (1-3nm) and HS-LEIS (0.3nm) spectroscopy indicates that the NiO and La2O3 promoters are concentrated in the surface region of the bulk NaTaO3 phase. The La2O3 is concentrated on the NaTaO3 outermost surface layers while NiO is distributed throughout the NaTaO3 surface region (1-3nm). Raman and UV-vis spectroscopy revealed that the bulk molecular and electronic structures, respectively, of NaTaO3 were not modified by the addition of the La2O3 and NiO promoters, with La2O3 resulting in a slightly more ordered structure. Photoluminescence (PL) spectroscopy reveals that the addition of La2O3 and NiO produces a greater number of electron traps resulting in the suppression of the recombination of excited electrons/holes. In contrast to earlier reports, the La2O3 is only a textural promoter (increasing the BET surface area ~7x by stabilizing smaller NaTaO3 particles), but causes a ~3x decrease in the specific photocatalytic TORs ( mol H2/m2/h) rate because surface La2O3 blocks exposed catalytic active NaTaO3 sites. The NiO promoter was found to be a potent electronic promoter that enhances the NaTaO3 surface normalized TORs by a factor of ~10-50 and TOF by a factor of ~10. The level of NiO promotion is the same in the absence and presence of La2O3 demonstrating that there is no promotional synergistic interaction between the NiO and La2O3 promoters. This study demonstrates the important contributions of the photocatalyst surface properties to the fundamental

  4. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  5. Jennings Demonstration PLant

    SciTech Connect (OSTI)

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  6. Power plant emissions reduction

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  7. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plans and Reports WIPP Recovery Plan The Waste Isolation Pilot Plant (WIPP) Recovery Plan outlines the necessary steps to resume limited waste disposal operations in the first quarter of calendar year 2016. WIPP operations were suspended following an underground truck fire and a radiological release in February 2014. The recovery plan was issued on Sept. 30, 2014. Key elements of the recovery plan include strengthening safety programs, regulatory compliance, decontamination of the underground,

  8. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective Actions Actions to Protect Workers, Public and the Environment The February 14 radioactivity release was a watershed event for the Waste Isolation Pilot Plant (WIPP). It was the first accident of its kind in the 15-year operating history of the transuranic nuclear waste repository. No workers were underground when the release occurred. There were 11 workers on the night shift at the time of the release and two additional employees entered the site in response to the accident. These 13

  9. wave energy plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. NEUTRONIC REACTOR POWER PLANT

    DOE Patents [OSTI]

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  11. US prep plant census 2008

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-10-15

    Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

  12. NEMS Modeling of Coal Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis Laura Martin June 14, 2016 Washington, DC 2 EMM Structure EFD ECP EFP ELD Laura Martin Washington, DC, June 14, 2016 Electricity Load and Demand Submodule Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific inputs - Fixed and variable operating and maintenance costs, annual capital additions - Retrofit costs (capital and O&M) - FGD, DSI, SCR, SNCR, CCS, FF -

  13. Better Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Technical Assistance » Better Plants Better Plants Better Plants has moved to its new <a href="http://betterbuildingssolutioncenter.energy.gov/better-plants">home</a> at the Better Buildings Solution Center, which includes new information and resources. It features effective strategies, tips, and best-practice models and more than 400 solutions. Search by topic, building type, solution type, building size, sector, technology, location, and more. Better

  14. Development of Virtual Power Plants | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of Virtual Power Plants

  15. Regulating nutrient allocation in plants

    SciTech Connect (OSTI)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  16. Cibuni Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Pengalengan Geothermal Area Geothermal Region West Java Plant Information Owner PLN Commercial Online Date 2014 Power Plant Data Type of Plant...

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  18. SC Johnson Waxdale Plant | Open Energy Information

    Open Energy Info (EERE)

    SC Johnson Waxdale Plant Jump to: navigation, search Name SC Johnson Waxdale Plant Facility SC Johnson Waxdale Plant Sector Wind energy Facility Type Community Wind Facility Status...

  19. Mecca Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

  20. Deniz Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  1. Wairakei Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Taupo Volcanic Zone Plant Information Facility Type Binary, Wet Steam Owner Contact Energy Number of Units 12 1 Commercial Online Date 1958 Power Plant Data Type of Plant...

  2. Kakkonda Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Arc Plant Information Facility Type Single Flash Owner Tohoku Hydropower,Geothermal Energy.CoTohoku Electric Power Commercial Online Date 1978 Power Plant Data Type of Plant...

  3. Niigata Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Japanese Archipelago Plant Information Facility Type Binary Owner Wasabi Developer Wasabi Energy Purchaser EcoGen Commercial Online Date 2012 Power Plant Data Type of Plant Number...

  4. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  5. Pailas Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Facility Type Binary Cycle Power Plant Owner Instituto Costarricense de Electricidad Number of Units 1 1 Commercial Online Date 2011 Power Plant Data Type of Plant...

  6. Eburru Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  7. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  8. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  9. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  10. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  11. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant - December 2014 Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 December, 2014 Review of the Waste Isolation Pilot Plant ...

  12. Hull Municipal Light Plant | Open Energy Information

    Open Energy Info (EERE)

    Hull Municipal Light Plant Jump to: navigation, search Logo: Hull Municipal Light Plant Name: Hull Municipal Light Plant Place: Massachusetts Phone Number: 781-925-0051 Website:...

  13. Geothermal Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  14. Geothermal/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  15. Plant Metabolic Imaging | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Metabolic Imaging The Ames Laboratory has developed state-of-the-art processes for imaging plant metabolites. Identifying and understanding plant chemicals will lead to the ...

  16. Independent Oversight Review, Pantex Plant - February 2012 |...

    Office of Environmental Management (EM)

    Plant - February 2012 Independent Oversight Review, Pantex Plant - February 2012 February 2012 Review of the Pantex Plant Implementation Verification Review Processes This report ...

  17. Plant Optimization Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Clean Coal Crosscutting Research Plant Optimization Technologies Plant ... which has not been used in pulverized coal-fired power generation plants. ...

  18. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Kai; Yi, Chao; Liu, Chang; Hu, Xiaowen; Chuang, Steven; Gong, Xiong

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less

  19. Investigation of Tc Migration Mechanism During Bulk Vitrification Process Using Re Surrogate

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Bagaasen, Larry M.; Crum, Jarrod V.; Fluegel, Alex; Gallegos, Autumn B.; Martinez, Baudelio; Matyas, Josef; Meyer, Perry A.; Paulsen, Dan; Riley, Brian J.; Schweiger, Michael J.; Stewart, Charles W.; Swoboda, Robert G.; Yeager, John D.

    2006-12-04

    As a part of Bulk vitrification (BV) performance enhancement tasks, Laboratory scoping tests were performed in FY 2004-2005 to explore possible ways to reduce the amount of soluble Tc in the BV waste package. Theses scoping tests helped identify which mechanisms play an important role in the migration of Tc in the BV process (Hrma et al. 2005 and Kim et al. 2005). Based on the results from these scoping tests, additional tests were identified that will improve the understanding of Tc migration and to clearly identify the dominant mechanisms. The additional activities identified from previous studies were evaluated and prioritized for planning for Tasks 29 and 30 conducted in FY2006. Task 29 focused on the improved understanding of Tc migration mechanisms, and Task 30 focused on identifying the potential process changes that might reduce Tc/Re migration into the castable refractory block (CRB). This report summarizes the results from the laboratory- and crucible-scale tests in the lab for improved Tc migration mechanism understanding utilizing Re as a surrogate performed in Task 29.

  20. Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells

    SciTech Connect (OSTI)

    Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain; Shim, Jae Won; Cheun, Hyeunseok; Steffy, Fred; So, Franky; Kippelen, Bernard; Reynolds, John R.

    2011-03-15

    The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 0.37% with no PDMS to 2.16 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) as the electron acceptor. PDMS is shown to have a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.

  1. Bulk Data Movement for Climate Dataset: Efficient Data Transfer Management with Dynamic Transfer Adjustment

    SciTech Connect (OSTI)

    Sim, Alexander; Balman, Mehmet; Williams, Dean N.; Shoshani, Arie; Natarajan, Vijaya

    2010-07-16

    Many scientific applications and experiments, such as high energy and nuclear physics, astrophysics, climate observation and modeling, combustion, nano-scale material sciences, and computational biology, generate extreme volumes of data with a large number of files. These data sources are distributed among national and international data repositories, and are shared by large numbers of geographically distributed scientists. A large portion of data is frequently accessed, and a large volume of data is moved from one place to another for analysis and storage. One challenging issue in such efforts is the limited network capacity for moving large datasets to explore and manage. The Bulk Data Mover (BDM), a data transfer management tool in the Earth System Grid (ESG) community, has been managing the massive dataset transfers efficiently with the pre-configured transfer properties in the environment where the network bandwidth is limited. Dynamic transfer adjustment was studied to enhance the BDM to handle significant end-to-end performance changes in the dynamic network environment as well as to control the data transfers for the desired transfer performance. We describe the results from the BDM transfer management for the climate datasets. We also describe the transfer estimation model and results from the dynamic transfer adjustment.

  2. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-02-25

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less

  3. DYNAMIC ANALYSIS OF THE BULK TRITIUM SHIPPING PACKAGE SUBJECTED TO CLOSURE TORQUES AND SEQUENTIAL IMPACTS

    SciTech Connect (OSTI)

    Wu, T; Paul Blanton, P; Kurt Eberl, K

    2007-07-09

    This paper presents a finite-element technique to simulate the structural responses and to evaluate the cumulative damage of a radioactive material packaging requiring bolt closure-tightening torque and subjected to the scenarios of the Hypothetical Accident Conditions (HAC) defined in the Code of Federal Regulations Title 10 part 71 (10CFR71). Existing finite-element methods for modeling closure stresses from bolt pre-load are not readily adaptable to dynamic analyses. The HAC events are required to occur sequentially per 10CFR71 and thus the evaluation of the cumulative damage is desirable. Generally, each HAC event is analyzed separately and the cumulative damage is partially addressed by superposition. This results in relying on additional physical testing to comply with 10CFR71 requirements for assessment of cumulative damage. The proposed technique utilizes the combination of kinematic constraints, rigid-body motions and structural deformations to overcome some of the difficulties encountered in modeling the effect of cumulative damage. This methodology provides improved numerical solutions in compliance with the 10CFR71 requirements for sequential HAC tests. Analyses were performed for the Bulk Tritium Shipping Package (BTSP) designed by Savannah River National Laboratory to demonstrate the applications of the technique. The methodology proposed simulates the closure bolt torque preload followed by the sequential HAC events, the 30-foot drop and the 30-foot dynamic crush. The analytical results will be compared to the package test data.

  4. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ≈50 fs, 800 nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (≈90%) of small nanoparticles, and a residual part (≈10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  5. Bulk amorphous Pd{endash}Ni{endash}Fe{endash}P alloys: Preparation and characterization

    SciTech Connect (OSTI)

    Shen, T.D.; He, Y.; Schwarz, R.B. [Materials Science and Technology Division, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-05-01

    Bulk amorphous alloys of Pd{sub x}Ni{sub y}Fe{sub 80{minus}x{minus}y}P{sub 20} (25{le}x{le}60, 20{le}y{le}55, x+y{ge}60) were prepared by a flux-melting and water-quenching method. Seven-mm diameter glassy rods of Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} (0{le}x{le}20) were studied in greater detail. For these alloys, the difference between the crystallization and glass transition temperatures ranges from 102 K for x=0 to 53 K for x=20. In this composition range, the reduced glass transition temperature, T{sub rg}, ranges from 0.66 to 0.57. The change in density upon crystallization ranges from 0.24{plus_minus}0.04{percent} for x=0 to 1.33{plus_minus}0.24{percent} for x=10. The partial molar volume of Fe in amorphous Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} alloys is significantly larger than the molar volume of (metastable) fcc Fe. This, as well as a comparison with the molar volumes of crystalline compounds, suggests chemically selective Fe{endash}Pd bonding in these glasses. {copyright} {ital 1999 Materials Research Society.}

  6. Doped Interlayers for Improved Selectivity in Bulk Herterojunction Organic Photovoltaic Devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mauger, Scott A.; Glasser, Melodie P.; Tremolet de Villers, Bertrand J.; Duong, Vincent V.; Ayzner, Alexander L.; Olson, Dana C.

    2016-01-21

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is less selective for holes in inverted-architecture organic photovoltaic (OPV) than it is in a conventional-architecture OPV device due differences between the interfacial-PSS concentration at the top and bottom of the PEDOT:PSS layer. In this work, thin layers of polysulfonic acids are inserted between the P3HT:ICBA bulk heterojunction (BHJ) active layer and PEDOT:PSS to create a higher concentration of acid at this interface and, therefore, mimic the distribution of materials present in a conventional device. Upon thermal annealing, this acid layer oxidizes P3HT, creating a thin p-type interlayer of P3HT+/acid- on top of the BHJ. Using x-raymore » absorption spectroscopy, Kelvin probe and ellipsometry measurements, this P3HT+/acid- layer is shown to be insoluble in water, indicating it remains intact during the subsequent deposition of PEDOT:PSS. Current density - voltage measurements show this doped interlayer reduces injected dark current while increasing both open-circuit voltage and fill factor through the creation of a more hole selective BHJ-PEDOT:PSS interface.« less

  7. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul (Northridge, CA); Hays, Charles C. (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    2007-07-17

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  8. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  9. The perturbation energy: A missing key to understand the “nobleness” of bulk gold

    SciTech Connect (OSTI)

    Alcántara Ortigoza, Marisol Stolbov, Sergey

    2015-05-21

    The nobleness of gold surfaces has been appreciated since long before the beginning of recorded history. Yet, the origin of this phenomenon remains open because the so far existing explanations either incorrectly imply that silver should be the noblest metal or would fail to predict the dissolution of Au in aqua regia. Here, based on our analyses of oxygen adsorption, we advance that bulk gold’s unique resistance to oxidation is traced to the large energy cost associated with the perturbation its surfaces undergo upon adsorption of highly electronegative species. This fact is related to the almost totally filled d-band of Au and relativistic effects, but does not imply that the strength of the adsorbate-Au bond is weak. The magnitude of the structural and charge-density perturbation energy upon adsorption of atomic oxygen—which is largest for Au—is assessed from first-principles calculations and confirmed via a multiple regression analysis of the binding energy of oxygen on metal surfaces.

  10. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect (OSTI)

    Gupta, Vinay; Department of Physics, University of California, Santa Barbara, California 93106 ; Upreti, Tanvi; Chand, Suresh

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7?-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b?]dithiophene-2,6-diyl) bis(6-fluoro-4-(5?-hexyl-[2,2?-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc})?=?5.45?mA/cm{sup 2}, open circuit voltage (V{sub oc})?=?0.727?V, and fill factor (FF)?=?51%, and a power conversion efficiency?=?2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  11. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    SciTech Connect (OSTI)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  12. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect (OSTI)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.; Woll, A. R.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  13. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    SciTech Connect (OSTI)

    Hall, A.; Han, T. Y.

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  14. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    SciTech Connect (OSTI)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS? space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H ? ?? decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H ? ?? rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. We perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.

  15. ES-3100: A New Generation Shipping Container for Bulk Highly Enriched Uranium and Other Fissile Materials

    SciTech Connect (OSTI)

    Arbital, J.G.; Byington, G.A.; Tousley, D.R.

    2004-07-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) is shipping bulk quantities of surplus fissile materials, primarily highly enriched uranium (HEU), over the next 15 to 20 years for disposition purposes. The U.S. Department of Transportation (DOT) specification 6M container is the package of choice for most of these shipments. However, the 6M does not conform to the Type B packaging requirements in the ''Code of Federal Regulations'' (10CFR71) and, for that reason, is being phased out for use in the secure transportation system of DOE. BWXT Y-12 is currently developing a package to replace the DOT 6M container for HEU disposition shipping campaigns. The new package is based on state-of-the-art, proven, and patented insulation technologies that have been successfully applied in the design of other packages. The new package, designated the ES-3100, will have a 50% greater capacity for HEU than the 6M and will be easier to use. Engineering analysis on the new package includes detailed dynamic impact finite element analysis (FEA). This analysis gives the ES-3100 a high probability of complying with regulatory requirements.

  16. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    SciTech Connect (OSTI)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 ?m in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  17. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS? space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H ? ?? decay rate and show that they are finite (at one-loop order) as a consequencemoreof gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H ? ?? rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. We perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.less

  18. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    SciTech Connect (OSTI)

    Vukoje, Ivana D.; Vodnik, Vesna V.; Dunuzovi?, Jasna V.; Dunuzovi?, Enis S.; Marinovi?-Cincovi?, Milena T.; Jeremi?, Katarina; Nedeljkovi?, Jovan M.

    2014-01-01

    Graphical abstract: - Highlights: Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. The glass transition temperature decreased in nanocomposites with respect to the pure polymer. Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 1.5 nm were well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.

  19. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; Kramer, M. J.; Voyles, Paul M.

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr50Cu35Al15 and Zr50Cu45Al5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr50Cu35Al15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, Tg, than in Zr50Cu45Al5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr50Cu35Al15 on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clustersmore » grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  20. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    SciTech Connect (OSTI)

    Nieh, T.G.

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 ???? 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article ?¢????Super Plastic Bulk Metallic Glasses at Room Temperature?¢???, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is

  1. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less

  2. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  3. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect (OSTI)

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  4. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    SciTech Connect (OSTI)

    Bhole, Kiran Gandhi, Prasanna; Kundu, T.

    2014-07-28

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  5. LOPOS; Advanced device isolation for a 0. 8. mu. CMOS/BULK process technology

    SciTech Connect (OSTI)

    Ghezzo, M.; Kaminsky, E.; Nissan-Cohen, Y.; Frank, P.; Saia, R. . Corporate Research and Development Dept.)

    1989-07-01

    Local oxidation of polysilicon over silicon (LOPOS) isolation has been characterized for use in a 0.8 {mu}m CMOS/BULK process with reduced field oxide edge encroachment (bird's beak). Compared to the standard local oxidation of silicon (LOCOS) LOPOS adds a thin polysilicon layer between the stress relief oxide and the overlying nitride without changing the active area patterning procedure. To optimize the LOPOS structure, the thickness of the oxide and nitride layers was varied in a fully-factorial experiment, measuring the bird's beak and checking for the presence of silicon edge defects. It was found that for a 6000{Angstrom} field oxide the bird's beak can be safely reduced to {approx}0.3 {mu}m per side with LOPOS, which is significantly less than {approx}0.55 {mu}m with LOCOS. The corresponding stack consisted of 1500{Angstrom} Si{sub 3}N{sub 4}/550{Angstrom} polysilicon (undoped)/200{Angstrom} SiO{sub 2}. LOPOS fabricated diodes exhibited low leakage of {lt} 0.5 nA/cm{sup 2} and {lt} 0.5 pA/cm for the area and edge components, respectively, while MOS capacitors were breakdown-free up to 8 MV/cm during voltage-stress tests, compared to 6 MV/cm for LOCOS.

  6. An experimental comparison of laboratory techniques in determining bulk properties of tuffaceous rocks; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Boyd, P.J.; Martin, R.J. III; Price, R.H.

    1994-04-01

    Samples of tuffaceous rock were studied as part of the site characterization for a potential nuclear waste repository at Yucca Mountain in southern Nevada. These efforts were scoping in nature, and their results, along with those of other investigations, are being used to develop suitable procedures for determining bulk properties of tuffaceous rock in support of thermal and mechanical properties evaluations. Comparisons were made between various sample preparation, handling, and measurement techniques for both zeolitized and nonzeolitized tuff in order to assess their effects on bulk property determinations. Laboratory tests included extensive drying regimes to evaluate dehydration behavior, the acquisition of data derived from both gas and water pycnometers to compare their suitability in determining grain densities, a comparison of particle size effects, and a set of experiments to evaluate whole core saturation methods. The results affirm the added complexity of these types of measurements where there is a zeolite component in the sample mineralogy. Absolute values for the bulk properties of zeolitized tuff are immeasurable due to the complex nature of their dehydration behavior. However, the results of the techniques that were investigated provide a basis for the development of preferred, consistent methods for determining the grain density, dry and saturated bulk densities, and porosity of tuffaceous rock, including zeolitic tuff in support of thermal and mechanical properties evaluations.

  7. Kaluza-Klein masses of bulk fields with general boundary conditions in AdS{sub 5} space

    SciTech Connect (OSTI)

    Chang, Sanghyeon; Park, Seong Chan; Song, Jeonghyeon

    2005-05-15

    Recently bulk Randall-Sundrum theories with the gauge group SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} have drawn a lot of interest as an alternative to the electroweak symmetry breaking mechanism. These models are in better agreement with electroweak precision data since custodial isospin symmetry on the IR-brane is protected by the extended bulk gauge symmetry. We comprehensively study, in the S{sup 1}/Z{sub 2}xZ{sub 2}{sup '} orbifold, the bulk gauge and fermion fields with the general boundary conditions as well as the bulk and localized mass terms. Master equations to determine the Kaluza-Klein (KK) mass spectra are derived without any approximation, which is an important basic step for various phenomenologies at high energy colliders. The correspondence between orbifold boundary conditions and localized mass terms is demonstrated not only in the gauge sector but also in the fermion sector. As the localized mass increases, the first KK fermion mass is shown to decrease while the first KK gauge boson mass is shown to increase. The degree of gauge coupling universality violation is computed to be small in most parameter space, and its correlation with the mass difference between the top quark and light quark KK mode is also studied.

  8. Pinellas Plant Environmental Baseline Report

    SciTech Connect (OSTI)

    Not Available

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  9. THE SCIOTO ORDNANCE PLANT

    Office of Legacy Management (LM)

    ' 1 . \." _ j. .I > * .A; .i ,' / / ,/ ' , ( , ( 1: 1 i I l-1 5 ' / ,,' :A' ' , THE SCIOTO ORDNANCE PLANT . and THE MARION ENGINEER DEPOT of Marion, Ohio A Profile AFTER FORTY YEARS BY Charles D. Mosher and Delpha Ruth Mosher . . . 111 THE AUTHORS Charles D. Mosher was born on a farm located in Morrow County on Mosher Road near Mt. Gilead. He received his TH.B. from Malone College, B.A. from Baldwin-Wallace College and his B.Div. and M.Div. at the Nazarene Theological Seminary in Kansas

  10. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/25/16 WIPP Home Page About WIPP Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. CH and RH Waste WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. It consists of clothing, tools,

  11. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What happened at WIPP in February 2014 Burned Truck Salt hauling truck after the fire Two isolated events took place at the Waste Isolation Pilot Plant (WIPP) in February. On February 5, a salt haul truck caught fire. Workers were evacuated, and the underground portion of WIPP was shut down. Six workers were treated for smoke inhalation. Nine days later, late in the evening of February 14, a second, unrelated event occurred when a continuous air monitor (CAM) alarmed during the night shift. Only

  12. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  13. Integrating fuel cell power systems into building physical plants

    SciTech Connect (OSTI)

    Carson, J.

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  14. Status of in-plant neutron coincidence counting

    SciTech Connect (OSTI)

    Enssling, N.; Krick, M.; Menlove, H.; Stewart, J.

    1986-01-01

    Neutron coincidence counters are used in nuclear material processing plants to assay bulk quantities of plutonium or uranium. Passive assays of plutonium are often made with the High-Level Neutron Counter (HLNC or HLNC-II), the Dual-Range Coincidence Counter, or customized detector geometries. Active assays of uranium are often made with the Active Well Coincidence Counter or the Uranium Neutron Coincidence Collar. Modern counters may have flattened efficiency profiles, fast AMPTEK amplifier/discriminators mounted directly next to the /sup 3/He detection tubes, external background shields, or special sample-loading mechanisms. Typical counting times and accuracies that can be obtained for plutonium are summarized. If isotopic composition is known, large plutonium samples can be assayed in 100 to 200 s - comparable to the time requires to input sample data into the counter's calculator or computer.

  15. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    SciTech Connect (OSTI)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.

  16. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; et al

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  17. Petascale Simulations of the Morphology and the Molecular Interface of Bulk Heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carrillo, Jan-Michael Y.; Seibers, Zach; Kumar, Rajeev; Matheson, Michael A.; Ankner, John F.; Goswami, Monojoy; Bhaskaran-Nair, Kiran; Shelton, William A.; Sumpter, Bobby G.; Kilbey, S. Michael

    2016-07-14

    Understanding how additives interact and segregate within bulk heterojunction (BHJ) thin films is critical for exercising control over structure at multiple length scales and delivering improvements in photovoltaic performance. The morphological evolution of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) blends that are commensurate with the size of a BHJ thin film is examined using petascale coarse-grained molecular dynamics simulations. When comparing 2 component and 3 component systems containing short P3HT chains as additives undergoing thermal annealing we demonstrate that the short chains alter the morphol- ogy in apparently useful ways: They efficiently migrate to the P3HT/PCBM interface, increasingmore » the P3HT domain size and interfacial area. Simulation results agree with depth profiles determined from neutron reflectometry measurements that reveal PCBM enrichment near substrate and air interfaces, but a decrease in that PCBM enrich- ment when a small amount of short P3HT chains are integrated into the BHJ blend. Atomistic simulations of the P3HT/PCBM blend interfaces show a non-monotonic dependence of the interfacial thickness as a function of number of repeat units in the oligomeric P3HT additive, and the thiophene rings orient parallel to the interfacial plane as they approach the PCBM domain. Using the nanoscale geometries of the P3HT oligomers, LUMO and HOMO energy levels calculated by density functional theory are found to be invariant across the donor/acceptor interface. Finally, these connections between additives, processing, and morphology at all length scales are generally useful for efforts to improve device performance.« less

  18. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequencemore » of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.« less

  19. The impact of gas bulk rotation on the Lyα line

    SciTech Connect (OSTI)

    Garavito-Camargo, Juan N.; Forero-Romero, Jaime E.; Dijkstra, Mark E-mail: je.forero@uniandes.edu.co

    2014-11-10

    We present results of radiative transfer calculations to measure the impact of gas bulk rotation on the morphology of the Lyα emission line in distant galaxies. We model a galaxy as a sphere with an homogeneous mixture of dust and hydrogen at a constant temperature. These spheres undergo solid-body rotation with maximum velocities in the range 0-300 km s{sup –1} and neutral hydrogen optical depths in the range τ{sub H} = 10{sup 5}-10{sup 7}. We consider two types of source distributions in the sphere: central and homogeneous. Our main result is that rotation introduces a dependence of the line morphology with viewing angle and rotational velocity. Observations with a line of sight parallel to the rotation axis yield line morphologies similar to the static case. For lines of sight perpendicular to the rotation axis, both the intensity at the line center and the line width increase with rotational velocity. Along the same line of sight, the line becomes single peaked at rotational velocities close to half the line width in the static case. Notably, we find that rotation does not induce any spatial anisotropy in the integrated line flux, the escape fraction or the average number of scatterings. This is because Lyman scattering through a rotating solid-body proceeds identically to the static case. The only difference is the Doppler shift from the different regions in the sphere that move with respect to the observer. This allows us to derive an analytic approximation for the viewing-angle dependence of the emerging spectrum, as a function of rotational velocity.

  20. Quantitative and high spatial resolution d{sub 33} measurement of piezoelectric bulk and thin films

    SciTech Connect (OSTI)

    Shetty, Smitha Yang, Jung In; Trolier-McKinstry, Susan; Stitt, Joe

    2015-11-07

    A single beam laser interferometer based on a modified Mirau detection scheme with a vertical resolution of ∼5 pm was developed for localized d{sub 33} measurements on patterned piezoelectric films. The tool provides high spatial resolution (∼2 μm), essential for understanding scaling and processing effects in piezoelectric materials. This approach enables quantitative information on d{sub 33}, currently difficult in local measurement techniques such as piezoresponse force microscopy. The interferometer is built in a custom microscope and employs a phase lock-in technique in order to detect sub-Angstrom displacements. d{sub 33} measurements on single crystal 0.67PbMg{sub 0.33}Nb{sub 0.67}O{sub 3}-0.33PbTiO{sub 3} and bulk PbZrTiO{sub 3}-5A ceramics demonstrated agreement within <3% with measurements using a double beam laser interferometer. Substrate bending contributions to out-of-plane strain, observed in thin continuous PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films grown on Si substrates is reduced for electrode diameters smaller than 100 μm. Direct scanning across room temperature and 150 °C poled 5 μm and 10 μm features etched in 0.5 μm thick PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films doped with 1% Nb confirmed minimal substrate contributions to the effective d{sub 33,f}. Furthermore, enhanced d{sub 33,f} values were observed along the feature edges due to partial declamping from the substrate, thus validating the application of single beam interferometry on finely patterned electrodes.

  1. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  2. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  3. Ulumbu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  4. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self?funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty?three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  5. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  6. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  7. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  8. The SONATRACH jumbo LPG plant

    SciTech Connect (OSTI)

    Ahmed Khodja, A.; Bennaceur, A.

    1988-01-01

    The authors aim is to give to the 17 TH world gas conference a general idea on SONATRACH LPG PLANT which is located in the ARZEW area. They develop this communication as follows: general presentation of LPG plant: During the communication, the author's will give the assistance all the information concerning the contractions the erection's date and the LPG PLANT process, start-up of the plant: In this chapter, the authors's will describe the start-up condition, the performance test result, the flexibility test result and the total mechanical achievement of the plant; operation by SONATRACH: After the success that obtained during the mechanical achievement and performance test, the contractor handed over the plant to SONATRACH.

  9. ATOMIC POWER PLANT

    DOE Patents [OSTI]

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  10. (Photosynthesis in intact plants)

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

  11. LPG dealers, manufacturers report diverse effects of recession and war

    SciTech Connect (OSTI)

    Prowler, S.

    1991-01-01

    The author presents a survey of LPG marketers. The effects of the Persian Gulf War and U.S. recession on the LPG industry are discussed.

  12. Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association

    Broader source: Energy.gov [DOE]

    Joined the Challenge: February 2015Headquarters: Washington, DCCharging Location: Washington, DCDomestic Employees: 18

  13. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  14. Power Plant Modeling and Simulation

    SciTech Connect (OSTI)

    2008-07-21

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  15. "NATURAL GAS PROCESSING PLANT SURVEY"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... connected to the plant. (Please check all that apply.)" "Name:" "Capacity (list amount and check units):",,,..." MMcfDay",,,,," BblsDay" "Pipeline ...

  16. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  17. Better Buildings, Better Plants Program

    SciTech Connect (OSTI)

    2011-12-08

    The Better Buildings, Better Plants Program is part of a national leadership initiative calling on business leaders and others to create American jobs through energy efficiency.

  18. disrupting the plant cell wall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disrupting the plant cell wall - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  19. Phytozome Comparative Plant Genomics Portal

    SciTech Connect (OSTI)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  20. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.