National Library of Energy BETA

Sample records for dc hazardous waste

  1. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  2. Vermont Hazardous Waste Management Regulations | Open Energy...

    Open Energy Info (EERE)

    Hazardous Waste Management Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Hazardous Waste Management...

  3. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  4. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  5. NRS 459 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    59 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS 459 Hazardous WasteLegal Abstract Nevada statute setting...

  6. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, ... Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement ...

  7. Hazardous waste management in the Pacific basin

    SciTech Connect (OSTI)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  8. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  9. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  10. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  11. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  12. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  13. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  14. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  15. Hazardous waste cleanup: the preliminaries

    SciTech Connect (OSTI)

    Amos, K.

    1985-08-01

    This article describes the lengthiness and cost of the preliminary steps in a hazardous waste cleanup. The article describes the S-Area lawsuit, an area near Niagara Falls, New York which was an inactive chemical dump. Contaminated sludge was found at a nearby water treatment plant and was traced back to S-Area. In the past five years, S-Area negotiations have cost the U.S. Environmental Protection Agency two million dollars for advice on how work should proceed for the plant and the landfill. This lawsuit was one of the first in the U.S. against a chemical company for endangering the public through unsound waste disposal practices. Negotiation was selected instead of a trial for several reasons which are outlined. S-Area may serve as a model for other such settlements, as it provides for a flexible plan, open to consideration of alternate technologies that may be developed in the future. It contains a phased approach to both defining and evaluating existing problems, then suggesting remedies. It also requires monitoring for at least 35 years or until no danger remains.

  16. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste ...

  17. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there were no actual or potential hazards to human health or the environment due to exposure to hazardous waste or waste constituents. Further assessment of actual or...

  18. HMPT: Hazardous Waste Transportation Live 27928, Test 27929 ...

    Office of Scientific and Technical Information (OSTI)

    HMPT: Hazardous Waste Transportation Live 27928, Test 27929 Citation Details In-Document Search Title: HMPT: Hazardous Waste Transportation Live 27928, Test 27929 You are ...

  19. Utah Department of Environmental Quality Hazardous Waste Permits...

    Open Energy Info (EERE)

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  20. Hawaii DOH Hazardous Waste Section Webpage | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Hazardous Waste Section Webpage Abstract This webpage...

  1. Hawaii Department of Health Solid and Hazardous Waste Branch...

    Open Energy Info (EERE)

    and Hazardous Waste Branch Jump to: navigation, search Name: Hawaii Department of Health Solid and Hazardous Waste Branch Address: 919 Ala Moana Boulevard 212 Place: Honolulu,...

  2. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, ... Site Solid (Radioactive and Hazardous) Waste Program Environmental 3 Impact Statement ...

  3. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona ...

  4. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  5. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  6. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect (OSTI)

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  7. Title 40 CFR 260: Hazardous Waste Management System: General...

    Open Energy Info (EERE)

    : Hazardous Waste Management System: General Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 260: Hazardous...

  8. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of

  9. Ground freezing for containment of hazardous waste

    SciTech Connect (OSTI)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  10. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  11. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  12. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  13. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  14. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit Number...

  15. Hazardous Waste: Resource Pack for Trainers and Communicators...

    Open Energy Info (EERE)

    Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency...

  16. Montana Hazardous Waste Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    Waste Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Hazardous Waste Program Webpage Abstract Provides overview of permitting...

  17. 6 CCR 1007-3: Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    CCR 1007-3: Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 6 CCR 1007-3: Hazardous WasteLegal Abstract...

  18. EPA Hazardous Waste TSDF Guide | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA Hazardous Waste TSDF GuideLegal Abstract Guidance document prepared by the EPA for hazardous waste...

  19. Hazardous Waste Facility Permit Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Facility Permit Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Facility Permit Fact...

  20. RCRA Hazardous Waste Part A Permit Application: Instructions...

    Open Energy Info (EERE)

    Hazardous Waste Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste...

  1. ADEQ Managing Hazardous Waste Handbook | Open Energy Information

    Open Energy Info (EERE)

    Managing Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal...

  2. NMED Hazardous Waste Bureau website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Bureau website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMED Hazardous Waste Bureau websiteLegal Abstract The...

  3. ADEQ Hazardous Waste Management website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Management website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal...

  4. Oregon DEQ Hazardous Waste Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    DEQ Hazardous Waste Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Oregon DEQ Hazardous Waste Fact...

  5. NMAC 20.4 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    4 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.4 Hazardous WasteLegal Abstract Regulations...

  6. ARM 17-53 - Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    3 - Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-53 - Hazardous WasteLegal Abstract Sets forth...

  7. EPA Citizens Guide to Hazardous Waste Permitting Process | Open...

    Open Energy Info (EERE)

    Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

  8. Use of hazardous waste in cement kilns backed

    SciTech Connect (OSTI)

    Krieger, J.

    1993-07-19

    Cement kiln operators who are making use of hazardous waste as a partial substitute for fossil fuel now have a better engineering foundation for determining what is going on in the kilns and how to optimize their operations. A just-released study by a scientific advisory board of experts commissioned by the Cement Kiln Recycling Coalition (CKRC) in Washington, DC, has provided an in-depth look, at such operations and finds the practice to be a fundamentally sound' technology. Long residence times and high temperatures in cement kilns maximize the combustion efficiency for waste-derived fuels, according to the study report. The scientific advisory board notes that all organic compounds can be destroyed in a kiln at 99.9999% efficiency. Also, the behavior of metals in cement kilns can be readily measured, predicted, and controlled. Cement kilns are extremely efficient in reducing metals emissions.

  9. WIPP Hazardous Waste Facility Permit - 2008 Update

    SciTech Connect (OSTI)

    Kehrman, R.F.; Most, W.A.

    2008-07-01

    Important new changes to the Hazardous Waste Facility Permit (HWFP) were implemented during 2007. The challenge was to implement these changes without impacting shipping schedules. Many of the changes required advanced preparation and coordination in order to transition to the new waste analysis paradigm, both at the generator sites and at the WIPP without interrupting the flow of waste to the disposal facility. Not only did aspects of waste characterization change, but also a new Permittees' confirmation program was created. Implementing the latter change required that new equipment and facilities be obtained, personnel hired, trained and qualified, and operating procedures written and approved without interruption to the contact-handled (CH) transuranic (TRU) waste shipping schedule. This was all accomplished successfully with no delayed or cancelled shipments. Looking forward to 2008 and beyond, proposed changes that will deal with waste in the DOE TRU waste complex is larger than the TRUPACT-IIs can handle. Size reduction of the waste would lead to unnecessary exposure risk and ultimately create more waste. The WIPP is working to have the Nuclear Regulatory Commission (NRC) certify the TRUPACT-III. The TRUPACT-III will be able to accommodate larger sized TRU mixed waste. Along with this new NRC-certified shipping cask, a new disposal container, the Standard Large Box, must be proposed in a permit modification. Containers for disposal of TRU mixed waste at the WIPP must meet the DOT 7A standards and be filtered. Additionally, as the TRUPACT-III/Standard Large Box loads and unloads from the end of the shipping cask, the proposed modification will add horizontal waste handling techniques to WIPP's vertical CH TRU waste handling operations. Another major focus will be the Hazardous Waste Facility Permit reapplication. The WIPP received its HWFP in October of 1999 for a term of ten years. The regulations and the HWFP require that a new permit application be submitted 180-days before the expiration date of the HWFP. At that time, the WIPP will request only one significant change, the permitting of Panel 8 to receive TRU mixed waste. (author)

  10. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  11. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo Park Drive, Building 1 Santa Fe, NM 87502 Subject: Requesllo Invoke Dispute Resolution Related to Final Audit Report A-09 - 08 of the Idaho National Laboratory/Central Characterization Project Reference: Letter From Mr. James Bearzi to Dr. Dave Moody and Mr. Farok Sharif dated May 18, 2009 Dear Mr. Bearzi: This letter is

  12. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  13. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  14. HMPT: Hazardous Waste Transportation Live 27928, Test 27929 (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect HMPT: Hazardous Waste Transportation Live 27928, Test 27929 Citation Details In-Document Search Title: HMPT: Hazardous Waste Transportation Live 27928, Test 27929 HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos

  15. Audit of Selected Hazardous Waste Remedial Actions Program Costs,

    Energy Savers [EERE]

    ER-B-97-04 | Department of Energy of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 More Documents & Publications Audit Report: CR-B-97-04 Audit Report: IG-0443 Semiannual Report to Congress: April 1 - September 30, 1997

  16. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  17. Hazardous Waste Generator Treatment Permit by Rule | Open Energy...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Hazardous Waste Generator Treatment Permit by RulePermittingRegulatory GuidanceGuideHandbook...

  18. Vermont Instructions for Preparing the VT Hazardous Waste Handler...

    Open Energy Info (EERE)

    Instructions for Preparing the VT Hazardous Waste Handler Site ID Form Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  19. EPA Hazardous Waste Generators Website | Open Energy Information

    Open Energy Info (EERE)

    Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

  20. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM COSTS The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. ...

  1. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect (OSTI)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  2. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  3. Guidance manual for hazardous waste incinerator permits. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The manual provides guidance to the permit writer for designating facility - specific operating conditions necessary to comply with the RCRA standards for hazardous waste incinerators. Each section of the incineration regulation is addressed, including: waste analysis, designation of principal organic hazardous constituents and requirements for operation, inspection and monitoring. Guidance is also provided for evaluating incinerator performance data and trial burn procedures.

  4. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  5. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  6. Hazardous waste research and development in the Pacific Basin

    SciTech Connect (OSTI)

    Cirillo, R.R.; Carpenter, R.A.; Environment and Policy Inst., Honolulu, HI )

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

  7. Characterizing cemented TRU waste for RCRA hazardous constituents

    SciTech Connect (OSTI)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A. [and others

    1996-06-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol.

  8. Hazardous waste identification: A guide to changing regulations

    SciTech Connect (OSTI)

    Stults, R.G. )

    1993-03-01

    The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

  9. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Project 2014 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant {WIPP) Project 2014 Waste Minimization Report. This report, required by and prepared in accordance with the W IPP Hazardous Waste Facility Permit Part 2,

  10. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect (OSTI)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  11. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  12. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  13. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  14. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  15. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 0 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of Waste Isolation Pilot Plant Annual Geotechnical Analysis Report Dear Mr. Kieling : The purpose of this letter is to submit the following annual report as required by the Waste Isolation Pilot Plant Hazardous Waste Facility Permit No. NM4890139088-TSDF, Part 4, Section 4.6.1.2. * Waste Isolation Pilot Plant Geotechnical Ana lysis Report for July 2013- June

  16. EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

  17. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS...

  18. Title 40 CFR 261 Identification and Listing of Hazardous Waste...

    Open Energy Info (EERE)

    1 Identification and Listing of Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40...

  19. Vermont Hazardous Waste Handler Site ID Form | Open Energy Information

    Open Energy Info (EERE)

    to library Legal Document- Permit ApplicationPermit Application: Vermont Hazardous Waste Handler Site ID FormLegal Abstract This form is used to notify the Vermont Agency of...

  20. Hazardous Waste Part A Permit Application | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Part A Permit ApplicationLegal Abstract Detailed instructions for filing a RCRA...

  1. Title 40 CFR 270: EPA Administered Programs: The Hazardous Waste...

    Open Energy Info (EERE)

    270: EPA Administered Programs: The Hazardous Waste Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR...

  2. Process development accomplishments: Waste and hazard minimization, FY 1991

    SciTech Connect (OSTI)

    Homan, D.A.

    1991-11-04

    This report summarizes significant technical accomplishments of the Mound Waste and Hazard Minimization Program for FY 1991. The accomplishments are in one of eight major areas: environmentally responsive cleaning program; nonhalogenated solvent trials; substitutes for volatile organic compounds; hazardous material exposure minimization; nonhazardous plating development; explosive processing waste reduction; tritium capture without conversion to water; and robotic assembly. Program costs have been higher than planned.

  3. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  4. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Box 3090 Carlsbad, New Mexico 88221 N O V 2 4 2015 Ms. Kathryn Roberts, Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of Environmental Protection Agency Hazardous Waste Number 0001 to Waste Containers Disposed at the Waste Isolation Pilot

  5. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resou rce Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of Environmental Protection Agency Hazardous Waste Numbers D001 and D002 to Waste Containers Disposed at the Waste Isolation Pilot Plant Reference: Los Alamos National Laboratory Correspondence from Charles

  6. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  7. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  8. Wastes Hazardous or Solid | Open Energy Information

    Open Energy Info (EERE)

    or Solid Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWastesHazardousorSolid&oldid612186" Feedback Contact needs updating Image...

  9. Los Alamos National Laboratory Hazardous Waste Permit

    Office of Environmental Management (EM)

    ATTACHMENTS Attachment A Technical Area Unit Descriptions Attachment B Part A Application Attachment C Waste Analysis Plan Attachment D Contingency Plan Attachment E Inspection...

  10. Hazards Assessment Document of the New Waste Transfer Facility (NWTF)

    SciTech Connect (OSTI)

    Pareizs, J.M.

    1993-06-01

    This Hazards Assessment Document for the New Waste Transfer Facility (NWTF) has been prepared in accordance with the Interim Hazards Classification Guide for Non-Reactor Facilities at Savannah River Site. The conclusion of this assessment is that the facility is a High Hazard Nuclear Facility. The NWTF consists of all facilities installed by Project S-3122. The NWTF contains three segments. Segment 1 consists of the cells containing the diversion box and pump pits, with a Facility Segment Use Category (FSUC) determined to be High Hazard. Segment 2 is the building that encloses the cells. The FSUC of Segment 2 has been determined to be Low Hazard. Segment 3 consists of all parts of the facility external to the main building; this segment contains the ventilation system and HEPA filters and includes the diesel fuel tank. The FSUC of Segment 3 is Low Hazard.

  11. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  12. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOE Patents [OSTI]

    Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  13. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot...

  14. Federal-facilities Hazardous-Waste Compliance Manual. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-09

    In the continuing effort to achieve a higher level of compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) at Federal facilities, the Federal Facilities Hazardous Waste Compliance Office (FFHWCO) has developed the Federal Facilities Hazardous Waste Compliance Manual. The manual includes an overview of the Federal-facilities hazardous-waste compliance program, relevant statutory authorities, model provisions for Federal facility agreements, enforcement and other applicable guidance, Federal facilities docket and NPL listings, data-management information, selected DOD and DOE program guidance, and organization charts and contacts. This compendium is intended to be used as a reference by Regional RCRA and CERCLA enforcement personnel and Regional Counsels, particularly as an orientation guide for new Federal facilities staff.

  15. Hazardous waste site characterization (on cd-rom). Data file

    SciTech Connect (OSTI)

    1996-07-01

    Site characterization is one facet of hazardous waste site investigations. Environmental scientists and engineers within and outside the regulated community are becoming overwhelmed by the increasing number of guidance manuals, directives, documents and software products relating to the characterization of hazardous waste sites. People in the private sector, academia, and government are looking for convenient, definitive sources for this information. This CD-ROM combines into a single source a collection of useful references. The CD-ROM contains over 3,200 pages of EPA`s RCRA and Superfund Directives and Manuals that may be searched by key words or printed. It also contains a compilation of EPA-developed computer programs and documents to aid environmental professionals in the characterization of hazardous waste sites.

  16. Stabilization solutions to hazardous metals laden waste

    SciTech Connect (OSTI)

    Kramer, M.

    1996-12-31

    This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

  17. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  18. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect (OSTI)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  19. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  20. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 2016 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Class 1 Permit Modification Notifications to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is a Notification of Class 1 Permit Modifications for the following items: Revise Recordkeeping Requirements for Training; Add Option for VOC Contract Laboratory Proficiency Testing; and Add Live Fire Extinguisher

  1. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUG 2 9 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit, Number NM4890139088-TSDF Reference: New Mexico Environment Department correspondence from Ryan Flynn to

  2. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit Number NM4890139088-TSDF Reference: New Mexico Environment Department correspondence from Ryan Flynn to Jose

  3. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 0 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of EPA Hazardous Waste Number D001 to Some Nitrate Salt Bearing Waste Containers Dear Mr. Kieling and Mr. Blaine: The purpose of this letter is to provide you written notice that the Department of

  4. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAR 2 3 2015 Ms. Kathryn Roberts, Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of EPA Hazardous Waste Number 0001 to Additional Nitrate Salt Bearing Waste Containers Dear Mr. Kieling and Ms. Roberts: The purpose of this letter is to provide you

  5. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAY 8 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application and Removal of EPA Hazardous Waste Number D001 to Nitrate Salt Bearing Waste Containers Dear Mr. Kieling and Ms. Roberts: The purpose of this letter is to provide you written notice that the U.

  6. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carl sbad, New Mexico 88221 FEB 1 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Class 1 Permit Modification Notification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is the following Class 1 Permit Modification Notification consisting of the following items: * Clarify the Date When Laboratory Procedures are Provided to NMED * Add

  7. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Class 1 Permit Modification Notification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is a Class 1 Permit Modification Notification: * Update Resource Conservation and Recovery Act Emergency Coordinator List We certify under penalty of law that this document and all attachments were prepared under our

  8. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 88221 September 02 , 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number NM4890139088-TSDF Dear Mr. Bearzi: The purpose of this letter is to transmit notification to the New Mexico Environment Department (NMED) of the loss of a hydrogen and methane monitoring sampling line as required under Permit Condition IV.F.5.e. The sampling

  9. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number NM4890139088-TSDF Dear Mr. Bearzi: The purpose of this letter is to transmit notification to the New Mexico Environment Department (NMED) of the loss of a hydrogen and methane monitoring sampling line as required under Permit Condition IV.F.5.e. The sampling line involved , identified as line Panel

  10. Evaluation of cement kiln laboratories testing hazardous waste derived fuels

    SciTech Connect (OSTI)

    Nichols, R.E.

    1998-12-31

    Cement kiln operators wishing to burn hazardous waste derived fuels in their kilns must submit applications for Resource Conservation Recovery Act permits. One component of each permit application is a site-specific Waste Analysis Plan. These Plans describe the facilities` sampling and analysis procedures for hazardous waste derived fuels prior to receipt and burn. The Environmental Protection Agency has conducted on-site evaluations of several cement kiln facilities that were under consideration for Resource Conservation Recovery Act permits. The purpose of these evaluations was to determine if the on-site sampling and laboratory operations at each facility complied with their site-specific Waste Analysis Plans. These evaluations covered sampling, laboratory, and recordkeeping procedures. Although all the evaluated facilities were generally competent, the results of those evaluations revealed opportunities for improvement at each facility. Many findings were noted for more than one facility. This paper will discuss these findings, particularly those shared by several facilities (specific facilities will not be identified). Among the findings to be discussed are the ways that oxygen bombs were scrubbed and rinsed, the analytical quality control used, Burn Tank sampling, and the analysis of pH in hazardous waste derived fuels.

  11. U.A.C. R315-5: Hazardous Waste Generator Requirements | Open...

    Open Energy Info (EERE)

    5: Hazardous Waste Generator Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: U.A.C. R315-5: Hazardous Waste...

  12. I.C. 39-44 - Idaho Hazardous Waste Management Act | Open Energy...

    Open Energy Info (EERE)

    44 - Idaho Hazardous Waste Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 39-44 - Idaho Hazardous Waste...

  13. Title 40 CFR 260-270 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    -270 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 260-270 Hazardous WasteLegal Abstract...

  14. RCRA Uniform Hazardous Waste Manifest (EPA Form 8700-22) | Open...

    Open Energy Info (EERE)

    Uniform Hazardous Waste Manifest (EPA Form 8700-22) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Uniform Hazardous Waste Manifest (EPA Form...

  15. H.A.R. 11-261 - Hazardous Waste Management | Open Energy Information

    Open Energy Info (EERE)

    1 - Hazardous Waste Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-261 - Hazardous Waste...

  16. Title 46 Alaska Statutes Section 03.302 Hazardous Waste Permit...

    Open Energy Info (EERE)

    02 Hazardous Waste Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska Statutes Section 03.302 Hazardous Waste...

  17. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  18. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  19. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  20. Remediation of DOE hazardous waste sites: Planning and integration requirements

    SciTech Connect (OSTI)

    Geffen, C.A.; Garrett, B.A.; Cowan, C.E.; Siegel, M.R.; Keller, J.F. )

    1989-09-01

    The US Department of Energy (DOE) is faced with a immense challenge in effectively implementing a program to mitigate and manage the environmental impacts created by current operations and from past activities at its facilities. The current regulatory framework and public interest in the environmental arena have made operating DOE facilities in an environmentally responsible manner a compelling priority. This paper provides information on the results of a project funded by DOE to obtain a better understanding of the regulatory and institutional drivers in the hazardous waste market and the costs and timeframes required for remediation activities. Few realize that before remediating a hazardous waste site, a comprehensive planning process must be conducted to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. The US Environmental Protection Agency (EPA) and others have found that it may take up to 7 years to complete the planning process at an average cost of $1.0 million per site. While cost information is not yet available for DOE sites, discussions with hazardous waste consulting firms indicate that average characterization and assessment costs will be 5 to 10 times this amount for DOE sites. The higher costs are expected because of the additional administrative requirements placed on DOE sites, the need to handle mixed wastes, the amount and extent of contamination at many of these sites, and the visibility of the sites. 15 refs., 1 fig., 2 tabs.

  1. Method for solidification of radioactive and other hazardous waste

    DOE Patents [OSTI]

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  2. Hazardous Waste Facility Permit Public Comments to Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Summary of Comments for July 2012 through August 2013 Last saved on: 8/30/2013 Annual Summary of CRP comment for July 2011- August 2012 1 SECTION COMMENT POST? 2.0 & 4.0 1. Fix broken links on pages 3 and 4 for the HWA permit. Yes 2.0 2. Revise a sentence on page 4 to: "Limits on LANL waste facilities may be found in Attachment J of the Permit." Yes 3. Delete Section 5.3.7 on RACER. Provide a description of Intellus. Yes 2.0 Yes 5.1 Yes Hazardous Waste Facility Permit

  3. Sandia National Laboratories Hazardous Waste (RCRA) Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index Hazardous Waste (RCRA) Information Repository Index Reading List Subject / Description Zimmerman ID There are no items on your reading list Print Instructions for Zimmerman Library Zimmerman Library is located near Roma Avenue and Yale Boulevard on the University of New Mexico main campus in Albuquerque. We strongly recommend making an appointment for document review, but you are not required to do so. To make an appointment, please contact Monica Dorame in the Government Information

  4. Method for encapsulating hazardous wastes using a staged mold

    DOE Patents [OSTI]

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  5. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    SciTech Connect (OSTI)

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  6. Fire Hazard Analysis for the Waste Isolation Pilot Plant | Department of

    Office of Environmental Management (EM)

    Energy Fire Hazard Analysis for the Waste Isolation Pilot Plant Fire Hazard Analysis for the Waste Isolation Pilot Plant The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the final report. PDF icon Fire Hazard Analysis for the Waste Isolation Pilot Plant, WIPP-023 (FHA), Revision 5A More Documents

  7. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect (OSTI)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  8. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  9. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  10. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  11. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect (OSTI)

    1996-01-01

    The report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. The study focused on three specific models: MEPAS version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. The approach to model review advocated in the study is directed to technical staff responsible for identifying, selecting and applying multimedia models for use at sites containing radioactive and hazardous materials. In the report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted.

  12. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505*6303 Phone (50S) 476-6000 Fax (50S) 476-6030 www.lfmenv.stale.nm.IU RYAN FLYNN Cabinet Secretary Designate JOHN A, SANCHr - :Z Lieutenant Governor CERTIFIED MAIL - RETURN RECEIPT REQUESTED SeplelIlber 20, 201 3 Jose Franco, Manager Carlsbad Field Office Department of Energy P.O. Box 3090 Carlsbad, New Mexico 88221-3090 M. Farok Sharif, Project Manager

  13. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Notification of Planned Physical Alteration to the Permitted Facility, Hazardous Waste Facility Permit, Number: NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to notify you of a planned physical alteration to the permitted facility in accordance with Permit Part 1, Section 1.7.11. (20.4.1.900 New Mexico Administrative Code (NMAC) incorporating Title 40 of the Code

  14. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  15. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  16. AAC R-18-8-260 Hazardous Waste Management System | Open Energy...

    Open Energy Info (EERE)

    AAC R-18-8-260 Hazardous Waste Management System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: AAC R-18-8-260 Hazardous...

  17. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  18. Hazardous waste site inspectors and operators: Their perceptions of the media and environmental groups

    SciTech Connect (OSTI)

    Graber, D.R.; Musham, C.

    1995-12-01

    This study assesses and compares the views and opinions of two groups (representing the `regulators` and the `regulated`) in one area of environmental management - the operation of commercial hazardous waste sites. A survey, sent to 141 managers of commercial treatment, storage, and disposal sites and 110 hazardous waste inspectors. This paper reports on their views of the role and influence of the media. In addition, the expectations for hazardous waste management by several stakeholder groups was examined.

  19. OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95

    Broader source: Energy.gov [DOE]

     The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are...

  20. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    SciTech Connect (OSTI)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-03-15

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  1. Plasma destruction of North Carolina`s hazardous waste based on hazardous waste generated between the years of 1989 and 1992

    SciTech Connect (OSTI)

    Williams, D.L.

    1994-12-31

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day`s average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina`s primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail.

  2. Public invited to comment on additional proposed modications to WIPP hazardous waste permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Invited to Comment on Additional Proposed Modifications To WIPP Hazardous Waste Permit CARLSBAD, N.M., April 26, 2000 - The public is invited to comment on additional proposed modifications to the hazardous waste facility permit for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). Earlier this month, DOE and the Westinghouse Waste Isolation Division requested -- through three Class 2 permit modification submittals -- that the New Mexico Environment Department

  3. 40 CFR Part 266, Standards for the Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities (DOE)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) regulates the management of hazardous waste through Title 40 of the Code of Federal Regulations (40 CFR) Part 266, under the authority of the Resource Conservation and Recovery Act (RCRA).

  4. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  5. Monitoring genetic damage to ecosystems from hazardous waste

    SciTech Connect (OSTI)

    Anderson, S.L.

    1992-03-01

    Applications of ecological toxicity testing to hazardous waste management have increased dramatically over the last few years, resulting in a greater awareness of the need for improved biomonitoring techniques. Our laboratory is developing advanced techniques to assess the genotoxic effects of environmental contamination on ecosystems. We have developed a novel mutagenesis assay using the nematode Caenorhabditis elegans, which is potentially applicable for multimedia studies in soil, sediment, and water. In addition, we are conducting validation studies of a previously developed anaphase aberration test that utilizes sea urchin embryos. Other related efforts include field validation studies of the new tests, evaluation of their potential ecological relevance, and analysis of their sensitivity relative to that of existing toxicity tests that assess only lethal effects, rather than genetic damage.

  6. Final Hazard Classification for the FFTF Solid Waste Cask

    SciTech Connect (OSTI)

    HIMES, D.A.

    2002-07-03

    The Solid Waste Cask (SWC) (a major component of the Fast Flux Test Facility (FFTF) spent fuel offload system) is a shielded, bottom-loading cask containing an internal hoist system used to transfer irradiated fuel or non-fuel components from the Interim Examination and Maintenance Cell (IEM Cell) to the Cask Loading Station (CLS). The SWC is assumed to be loaded with 7 irradiated fuel assemblies in a Core Component Container (CCC) having maximum average burn-ups of 150,000 MWd/MTHM. Results show that the fuel handling activities with the SWC loaded with 7 irradiated fuel assemblies in a CCC should be classified as a Category 3 hazard. This conclusion is consistent with the relative simplicity of the system and passive nature of the barriers for purposes of determining the graded approach specified in DOE-STD-1027-92 (DOE 1992).

  7. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems – July 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems

  8. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Waste Acceptance Criteria ('TSDF-WAC'); and iv. ... level waste from non-low level waste in the derived waste storage areas by ... This Plan only addresses the management of ...

  9. Exclusions and exemptions from RCRA hazardous waste regulation. RCRA Information Brief

    SciTech Connect (OSTI)

    Powers, J.

    1993-05-01

    The provisions in 40 CFR 261 establish which solid waste and are regulated under Subtitle C of the Resource Considered hazardous waste and are regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). These provisions also exclude or exempt certain wastes from regulation. Wastes are excluded or exempted from coverage for a variety of reasons. The original RCRA legislation excluded a number of wastes that did not present a significant threat to human health or the environment or that were managed under other environmental programs. Other wastes were excluded by EPA to encourage their recycling or reuse as feedstocks in manufacturing processes. Some exclusions or exemptions serve to establish when a waste material becomes subject to regulation or when waste quantities are too minimal to be fully covered by the Federal hazardous waste regulatory program. As new regulations have caused the universe of RCRA generators and facilities to increase, the number of exclusions and exemptions have increased as well. This information Brief provides an overview of the types of waste and hazardous waste management units/facilities that may be excluded or exempted from regulation under the Federal hazardous waste (RCRA) Subtitle C) regulatory program. These wastes and units/facilities may or may not be excluded or exempted from coverage under authorized State RCRA programs.

  10. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  11. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  12. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  13. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  14. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  15. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOE Patents [OSTI]

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  16. RCRA information on hazardous wastes for publicly owned treatment works. Technical report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The guidance manual provides guidance to municipal personnel in understanding hazardous waste requirements of the Resource Conservation and Recovery Act (RCRA) and the implications of these RCRA requirements for the wastewater treatment plant operated by your municipality, for your local pretreatment program, and for local industries served by the treatment plant. The primary purpose of the manual is the RCRA notification requirement specified in the General Pretreatment Regulations. The manual focuses on Subtitle C requirements. (Subtitle C is directly applicable to industries since this program regulates generators, transporters, and disposers of hazardous waste). The manual also provides a general understanding of how federal RCRA requirements for hazardous waste affect industrial users. The manual also will be helpful in complying with any applicable federal requirements incumbent upon your POTW under Subtitle C of RCRA. The appendices contain lists of hazardous wastes regulated by federal requirements; selected EPA-approved forms for hazardous waste facilities to use; RCRA information brochure which briefly outlines the Act's impact on industries that generate or transport hazardous wastes; and EPA pamphlets summarizing information for generators of small quantities of hazardous waste.

  17. Characterization of household hazardous waste from Marin County, California, and New Orleans, Louisiana

    SciTech Connect (OSTI)

    Rathje, W.L.; Wilson, D.C.; Lambou, V.W.; Herndon, R.C.

    1987-09-01

    There is a growing concern that certain constituents of common household products, that are discarded in residential garbage, may be potentially harmful to human health and the environment by adversely affecting the quality of ground and surface water. A survey of hazardous wastes in residential garbage from Marin County, California, and New Orleans, Louisiana, was conducted in order to determine the amount and characteristics of such wastes that are entering municipal landfills. The results of the survey indicate that approximately 642 metric tons of hazardous waste are discarded per year for the New Orleans study area and approximately 259 metric tons are discarded per year for the Marin County study area. Even though the percent of hazardous household waste in the garbage discarded in both study areas was less than 1%, it represents a significant quantity of hazardous waste because of the large volume of garbage involved.

  18. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  19. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  20. Investigation of separation, treatment, and recycling options for hazardous paint blast media waste. Final report

    SciTech Connect (OSTI)

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1996-02-01

    U.S. Army depot depaint operations generate over 4 million kg per year of contaminated paint blast media wastes. The objective of this work was to investigate technologies that might significantly mitigate this Army hazardous waste disposal problem. Most of the technologies investigated either failed to meet acceptable TCLP levels for hazardous metals content, or failed to meet Army disposal requirements. However, based on a review of several commercially available services, it is recommended that Army depot depaint operations consider processing hazardous blast media waste through properly regulated contractors that offer safe, effective, and economical stabilization, fixation, and recycling technologies.

  1. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  2. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Volume Tracking Checklist for Site-Derived ... Transuranic Waste Acceptance Criteria for the Waste ... WP 02-RC3110, Low-Level and Mixed Low- Level ...

  3. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    with the Waste 8 Management Programmatic ... include operational low-level radioactive waste (LLW), mixed low- 10 ... Groups of Estimated Criteria-Pollutant Impact ...

  4. Hazardous Waste Acceptance and Pick-up Guide | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Acceptance and Pick-up Guide Version Number: 0 Document Number: Guide 10200.011 Effective Date: 02/2013 File (public): PDF icon guide_10200.011_rev0

  5. U.A.C. R315: Environmental Quality, Solid and Hazardous Waste...

    Open Energy Info (EERE)

    : Environmental Quality, Solid and Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: U.A.C. R315:...

  6. IDAPA 58.01.05 - Rules and Standards for Hazardous Waste | Open...

    Open Energy Info (EERE)

    5 - Rules and Standards for Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.05 - Rules and...

  7. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 3 0 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Subject: Information Regarding the Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan Dear Mr. Kieling: The purpose of this letter is to provide the information requested in your August 5, 2014 letter regarding the Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan. The following are enclosed with the letter: * Waste Isolation

  8. Ecological investigation of a hazardous waste site, Warner Robins, Georgia

    SciTech Connect (OSTI)

    Wade, M.; Billig, P.

    1993-05-01

    Landfill No. 4 and the sludge lagoon at Robins Air Force Base, Warner Robins, Georgia, were added to the United States Environmental Protection Agency (EPA) National Priorities List in 1987 because of highpotential for contaminant migration. Warner Robins is located approximately 90 miles southeast of Atlanta. In 1990 CH2M HILL conducted a Remedial Investigation at the base that recommended that further ecological assessment investigations be conducted (CH2M HILL 1990). The subject paper is the result of this recommendation. The ecological study was carried out by the Hazardous Waste Remedial Actions Program (HAZWRAP)Division of Martin Marietta Energy Systems, Inc., working jointly with its subcontractor CDM (CDM 1992a). The primary area of investigation (Zone 1) included the sludge lagoon, Landfill No. 4, the wetland area east of the landfill and west of Hannah Road (including two sewage treatment ponds), and the area between Hannah Road and Horse Creek (Fig. 1). The bottomland forest wetlands of Zone 1 extend from the landfill east to Horse Creek. Surface water and groundwater flow across Zone 1 is generally in an easterly direction toward Horse Creek. Horse Creek is a south-flowing tributary of the Ocmulgee River Floodplain. The objective of the study was to perform a quantitative analysis of ecological risk associated with the ecosystems present in Zone 1. This investigation was unique because the assessment was to be based upon many measurement endpoints resulting in both location-specific data and data that would assess the condition of the overall ecosystem. The study was segregated into five distinct field investigations: hydrology, surface water and sediment, aquatic biology, wetlands ecology, and wildlife biology.

  9. FY 1993 Projection Capability Assurance Program waste and hazard minimization. Quarterly report, October--December 1993

    SciTech Connect (OSTI)

    Haws, L.D.; Homan, D.A.

    1993-01-15

    Waste and hazard minimization efforts in the following areas are described: (1) environmentally responsive cleaning, (2) hazardous material exposure, (3) explosive processing, (4) flex circuit manufacturing, (5) tritium capture w/o conversion to water, (6) ES&H compatible pyrotechnic materials, and (7) remote explosive component assembly.

  10. F-Area Hazardous Waste Management Facility Semiannual Correction Action Report, Vol. I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-11-18

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site is routinely monitored for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  11. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  12. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and radioactive) Generator B. Universal Waste Activities; Complete all parts ... installation D Generator Street 7665 TEXAS HIGHWAY 73 D Transporter City PORT ARTHUR ...

  13. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico 87505-6303 Subject: Transmittal of Waste Isolation Pilot Plant Annual Geotechnical Analysis Report Dear Mr. Kieling : The purpose of this letter is to submit the...

  14. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    denotes electronic distribution CBFO:EPD:GTB:MN:15-2222:UFC 5487.00 Sincerely, Philip J. Breidenbach, Project Manager Nuclear Waste Partnership LLC Original Signatures on...

  15. Hazardous Waste Facility Permit Public Comments to Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Laboratory's corrective action and waste management activities and associated environmental issues. It is composed of citizens representing the communities and pueblos of...

  16. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cartridges * Electrical Ballasts * Used oi l and oil filters * Electronics * Wood pallets, spools, * Lamps timbers. and waste * Metals In FY 20 14, 185 .36 metric tons of...

  17. B Plant complex hazardous, mixed and low level waste certification plan

    SciTech Connect (OSTI)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  18. Effects of hazardous wastes on housing and urban development and mitigation of impacts

    SciTech Connect (OSTI)

    Boyer, K.R.; Conrad, E.T.; Kane, P.F.; McLaughlin, M.W.; Morgan, J.T.

    1980-10-10

    This report determines the nature and scope of the hazardous waste problem affecting HUD programs and community development and redevelopment activities. It defines the problem and develops categories of hazardous wastes most applicable to HUD. The report identifies sources of hazardous waste and gives examples of their impacts. The role of HUD and other agencies in controlling hazardous waste is reviewed, and recommendations are made for mitigating known and potential impacts. Three case studies -- in Dover Township and Elizabeth, N.J., and in Richmond, Va., illustrate the wide range of impacts made possible because of improper handling of or lack of appreciation for hazardous substances. The report suggests that a Hazard Identification Guidebook be developed, similar to others addressing housing safety and noise assessment, that would require HUD personnel to carry out a number of investigations on and around a site. This process is briefly described here and could serve as a basis for a guidebook. Flow charts illustrate this process. Tables and 23 references are supplied.

  19. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA00000090931) from LANL waste stream LA-MIN04-S.001 (one located in Panel 6, Room 1, and two located in Panel 6, Room 3) and 69 containers from LANL waste stream LA-MHD01.001 (23 ...

  20. Process and material that encapsulates solid hazardous waste

    DOE Patents [OSTI]

    O'Brien, Michael H.; Erickson, Arnold W.

    1999-01-01

    A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  1. Investigating the construction of pyramid super-structures to dispose of radioactive and hazardous waste

    SciTech Connect (OSTI)

    Miller, D.J.

    1994-12-31

    Since the 1950`s, the United States and other countries have focused on utilizing {open_quotes}natural barriers{close_quotes} for disposing of dangerous radioactive and hazardous waste. The Waste Isolation Pilot Projects and Yucca Mountain Project seem practical as well as economical. However, the technical challenges involved in disposing of the waste have been underestimated. For example, geological waste disposal has difficulty in demonstrating reliability, guaranteeing protection against climatic changes or natural disasters (or combinations thereof), or ability to retrieve waste under adverse scenarios. Much has changed since the 1950`s. Technology has advanced dramatically in the areas of materials, science, and engineering. As a result, traditional approaches to waste disposal should be rethought, focusing instead on ways to apply technology breakthroughs to waste disposal problems. This paper proposes investigating the construction of fully retrievable waste disposal systems that resemble pyramid structures and rely totally on engineered barriers and preventive measurements to dispose and store radioactive and hazardous waste. This paper will describe problems currently faced by waste disposal systems that rely on natural barriers. Specific benefits demonstrated will detail the structures flexibility and durability in a number of areas.

  2. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A UG 1 7 2012 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation...

  3. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... reaction products increased the internal pressure in the drum until a ... Given this fact, an upper bound for the heat of combustion of this waste stream has been estimated from ...

  4. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No. NM4890139088-TSDF, Part 4, Section 4.6.1.2. * Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2012- June 2013, DOEIW IPP-13-3501 , Volumes 1 and 2...

  5. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... samples - Fauna samples were obtained on the dates shown in Attachment 3. 5.0 Updates on activities performed pursuant to the Underground Derived Waste Storage Plan, including a ...

  6. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, it has been determined that a drum located in a seven-pack assembly of 55-gallon drums located in Row 16 Column 4 top of the waste stack, shows evidence of a thermal...

  7. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  8. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 1 7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Subject: Update to the Information provided to the New Mexico Environment Department Regarding the WIPP Nitrate Salt Bearing Waste Container Isolation Plan dated September 5, 2014 Reference: New Mexico Environment Department Correspondence from Ryan Flynn, Secretary, to Jose Franco, Carlsbad Field Office and Robert L. McQuinn, Nuclear Waste Partnership LLC, dated August 7, 2014, subject:

  9. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APR 2 8 201 4 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505 Subject: Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling: The purpose of this letter is to provide the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014. This report is required by the

  10. EIS-0200: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste

    Broader source: Energy.gov [DOE]

    This Programmatic EIS evaluates the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States.

  11. Superfund at work: Hazardous waste cleanup efforts nationwide, Spring 1993 (Powersville site profile, Peach County, Georgia)

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The US Environmental Protection Agency (EPA) encountered much more than a municipal landfill at the Powersville site in Peach County, Georgia. Contamination from improperly dumped hazardous wastes and pesticides tainted an old quarry used for household garbage. Chemicals migrating into area ground water threatened local drinking water supplies. To address these issues, EPA's Superfund program designed a cleanup strategy that included: negotiating with the county and chemical companies to contain the hazardous wastes on site underneath a protective cover; investigating reports of drinking water contamination and extending municipal water lines to affected residents; and conducting a tailored community relations program to inform and educate residents about the site.

  12. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOE Patents [OSTI]

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  13. Tank waste remediation system FSAR hazard identification/facility configuration verification report

    SciTech Connect (OSTI)

    Mendoza, D.P., Westinghouse Hanford

    1996-05-01

    This document provides the results of the Tank Waste Remediation System Final Safety Analysis Report (TWRS FSAR) hazards identification/facility configuration activities undertaken from the period of March 7, 1996 to May 31, 1996. The purpose of this activity was to provide an independent overview of the TWRS facility specific hazards and configurations that were used in support of the TWRS FSAR hazards and accident analysis development. It was based on a review of existing published documentation and field inspections. The objective of the verification effort was to provide a `snap shot` in time of the existing TWRS facility hazards and configurations and will be used to support hazards and accident analysis activities.

  14. Hazardous waste dislodging and conveyance: The confined sluicing method

    SciTech Connect (OSTI)

    Summers, D.A.; Fossey, R.D.; Mann, M.D.; Blaine, J.G. [Univ. of Missouri, Rolla, MO (United States). High Pressure Waterjet Lab.; Rinker, M.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-09-01

    This report describes an investigation of a means for dislodging and conveying waste currently stored in underground storage tanks. A series of experiments have been carried out to evaluate the potential of a medium pressure, medium flow rate cutting system as a means of dislodging the waste. It has been found that waterjets at a pressure of 10,000 psi can effectively cut the material which has been chosen to simulate the hardened saltcake within the storage tanks. Based on a parameterization test it has thus been calculated that an inlet flow volume of approximately 30 gallons per minute will be sufficient to excavate 30 gallons per minute of waste from a tank. In order to transport the resulting slurry from the tank, a modified jet pump has been developed and has demonstrated its capability of conveying fluid and waste particles, up to one inch in diameter, to a height of more than 60 feet. Experiments were conducted to examine different configurations to achieve the production levels required for waste removal and to clean the walls of residual material. It was found more effective to clean the walls using an inclined angle of impact rather than a perpendicular angle of impact in order to provide a safeguard against driving the water through any cracks in the containment. It was demonstrated that excavation can take place with almost total immediate extraction of the water and debris from the cutting process. The results have qualitatively shown the potential of a medium pressure waterjet system for achieving the required results for underground storage tank waste retrieval.

  15. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAR 1 4 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Subject: Notification of the Use of Surge Storage in the Waste Handling Building Reference: DOE Memorandum CBFO:OESH:GB:MN:14-1427;UFC:5487 from Mr. Jose R. Franco and Mr. M. F. Sharif to Mr. John Kieling, dated February 26, 2014, subject: Request for an Extension to the Storage Times for the Parking Area Unit and Waste Handling Building Dear Mr. Kieling: The purpose of this letter is to

  16. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect (OSTI)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  17. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico ~8221 JUN"1 G 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.004.003 Dear Mr. Bearzi: We are submitting for your evaluation, a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP) at

  18. Mr. James Bearzi, Bureau Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departmen t of Energy Carlsbad Field Office . P. O. Box 3090 Carlsbad , New Mexico 8822 1 AY 2 () 2009 New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505-6313 Subject: Request for Evaluation of an AK Sufficiency Determination for Waste Stream SR-BCLDP.001.001 Dear Mr. Bearzi: We are submitting for your evaluation , a provisional approval of an Acceptable Knowledge (AK) Sufficiency Determination Request for the Central Characterization Project (CCP)

  19. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Supplement to Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling and Mr. Blaine: On April11, 2014, the Department of Energy

  20. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUG 1 8 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Second Supplement to Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11 , 2014 Dear Mr. Kieling and Mr. Blaine: On April 11 , 2014 , the Department

  1. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Fourth Supplement to the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April11 , 2014 Dear Mr. Kieling and Ms. Roberts: On April11, 2014, the Department

  2. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Bu ildi ng 1190 Saint Francis Drive, PO Box 5496 Santa Fe, NM 87502-5469 Subject: Fifth Supplement to the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling and Ms. Roberts: On April11 , 2014, the Department of

  3. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 7 2015 Ms. Kathryn Roberts, Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Standard Operating Procedures for the Underground Derived Waste Storage Plan Reference: Department of Energy Carlsbad Field Office Memorandum, CBFO:EPD:GTB:MN: 14-2666:UFC 5486.00 from Jose Franco, CBFO, to

  4. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JAN 0 6 2015 Mr. Butch Tongate New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Deputy Secretary and Acting Division Director Environmental Health Division New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Information Regarding the Underground Derived Waste Storage Plan Dear Mr. Kieling and Mr. Tongate: The purpose of this letter is to provide the information requested in

  5. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  6. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  7. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  8. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  9. Management of hazardous waste containers and container storage areas under the Resource Conservation and Recovery Act

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    DOE`s Office of Environmental Guidance, RCRA/CERCLA Division, has prepared this guidance document to assist waste management personnel in complying with the numerous and complex regulatory requirements associated with RCRA hazardous waste and radioactive mixed waste containers and container management areas. This document is designed using a systematic graphic approach that features detailed, step-by-step guidance and extensive references to additional relevant guidance materials. Diagrams, flowcharts, reference, and overview graphics accompany the narrative descriptions to illustrate and highlight the topics being discussed. Step-by-step narrative is accompanied by flowchart graphics in an easy-to-follow, ``roadmap`` format.

  10. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JUN 2 5 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Underground Compliance Plan and Underground Derived Waste Storage Plan, as requested per Item 17a and 17b of the May 12, 2014, NMED Administrative Order Dear Mr. Kieling and Mr. Blaine: The purpose of this letter is to transmit the

  11. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEB 2 9 2016 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Transmittal of the Final Audit Report for Recertification Audit A-16-02 of th e Savannah River Site Central Characterization Program Dear Mr. Kieling: This letter transmits the Final Audit Report for Carlsbad Field Office (CBFO) Recertification Aud it A-16-02 of the Savannah Rive r Site Central Characterization Program for processes performed to characterize and certify waste in

  12. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OCT 2 9 2012 New Mexico Environment Department 2905 Rodeo Park Drive East. Building 1 Santa Fe. New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss. Waste Isolation Pilot Plant Dear Mr. Kieling: As required under Permit Section 4.6.5.5. the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of a loss of a hydrogen and methane monitoring sampling line. The sampling line involved was in Panel 3 Room

  13. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A UG 1 7 2012 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number N M4890 139088-TS DF Dear Mr. Kieling : The purpose of this letter is to transmit notification of the loss of a hydrogen and methane monitoring system sampling line as required under Permit Condition 4.6.5.5. The sampling line that was lost is identified as line Panel 4 Room 5E, which is on

  14. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  15. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C.; Rambaugh, J.O.; Potter, S.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.

  16. Function-based Biosensor for Hazardous Waste Toxin Detection

    SciTech Connect (OSTI)

    James J Hickman

    2008-07-09

    There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was to create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we demonstrated that patterned cardiac cells on microelectrode arrays could act as sensors as well.

  17. Hazardous waste minimization. Part 3. Waste minimization in the paint and allied products industry

    SciTech Connect (OSTI)

    Lorton, G.A.

    1988-04-01

    This paper looks at waste minimization practices available to the paint and coatings industry. The paper begins with an introduction to the industry and a description of the products. The steps involved in the manufacture of paints and coatings are then described. The paper then identifies the wastes generated. Source reduction and recycling techniques are the predominant means of minimizing waste in this industry. Equipment cleaning wastes are the largest category of wastes, and the paper concentrates on equipment and techniques available to reduce or eliminate these wastes. Techniques are described to reduce the other wastes from manufacturing operations. The paper concludes with a discussion of changing industry product trends and the effect that these trends will have on the generation of waste.

  18. Evaluation of bulk paint worker exposure to solvents at household hazardous waste collection events

    SciTech Connect (OSTI)

    Cameron, M.

    1995-09-01

    In fiscal year 93/94, over 250 governmental agencies were involved in the collection of household hazardous wastes in the State of California. During that time, over 3,237,000 lbs. of oil based paint were collected in 9,640 drums. Most of this was in lab pack drums, which can only hold up to 20 one gallon cans. Cost for disposal of such drums is approximately $1000. In contrast, during the same year, 1,228,000 lbs. of flammable liquid were collected in 2,098 drums in bulk form. Incineration of bulked flammable liquids is approximately $135 per drum. Clearly, it is most cost effective to bulk flammable liquids at household hazardous waste events. Currently, this is the procedure used at most Temporary Household Hazardous Waste Collection Facilities (THHWCFs). THHWCFs are regulated by the Department of Toxic Substances Control (DTSC) under the new Permit-by Rule Regulations. These regulations specify certain requirements regarding traffic flow, emergency response notifications and prevention of exposure to the public. The regulations require that THHWCF operators bulk wastes only when the public is not present. [22 CCR, section 67450.4 (e) (2) (A)].Santa Clara County Environmental Health Department sponsors local THHWCF`s and does it`s own bulking. In order to save time and money, a variance from the regulation was requested and an employee monitoring program was initiated to determine actual exposure to workers. Results are presented.

  19. A blasting additive that renders wastes non hazardous in lead paint abatement projects

    SciTech Connect (OSTI)

    Clark, R.; Rapp, D.J.; McGrew, M.

    1994-12-31

    Maintenance of steel structures often produces abrasive wastes that are considered toxic and hazardous due to the lead content of the old paint system present in spent abrasives. Environmental regulations in the US and Canada effectively preclude on-site treatment and disposal of these wastes, thereby forcing them into costly transport and secure disposal options. The authors have developed an abrasive additive that allows dry or wet blasting to remove old paint systems, but the resultant wastes are considered non-hazardous and are eligible for recycling or non-hazardous waste disposal, both at sharply reduced costs. The agent does not ``mask`` environmental test results, but does produce a stable residue suitable for long term disposal or reuse. Surface conditions after application of abrasives appear to be amenable to virtually all paint systems tested. The process is in use on an estimated 10% of all steel based lead paint abatement projects in the US, and is experiencing considerable growth in market acceptance. The technology may allow disposal cost reductions in excess of 50%.

  20. Ultraviolet reflector materials for solar detoxification of hazardous waste

    SciTech Connect (OSTI)

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  1. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems – September 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems at the Hanford Site Waste Treatment and Immobilization Plant

  2. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOE Patents [OSTI]

    Colombo, Peter; Kalb, Paul D.; Heiser, III, John H.

    1997-11-14

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  3. System for enhanced destruction of hazardous wastes by in situ vitrification of soil

    DOE Patents [OSTI]

    Timmerman, Craig L.

    1991-01-01

    The present invention comprises a system for promoting the destruction of volatile and/or hazardous contaminants present in waste materials during in situ vitrification processes. In accordance with the present invention, a cold cap (46) comprising a cohesive layer of resolidified material is formed over the mass of liquefied soil and waste (40) present between and adjacent to the electrodes (10, 12, 14, 16) during the vitrification process. This layer acts as a barrier to the upward migration of any volatile type materials thereby increasing their residence time in proximity to the heated material. The degree of destruction of volatile and/or hazardous contaminants by pyrolysis is thereby improved during the course of the vitrification procedure.

  4. The evaluation of an analytical protocol for the determination of substances in waste for hazard classification

    SciTech Connect (OSTI)

    Hennebert, Pierre; Papin, Arnaud; Padox, Jean-Marie; Hasebrouck, Benoît

    2013-07-15

    Highlights: • Knowledge of wastes in substances will be necessary to assess HP1–HP15 hazard properties. • A new analytical protocol is proposed for this and tested by two service laboratories on 32 samples. • Sixty-three percentage of the samples have a satisfactory analytical balance between 90% and 110%. • Eighty-four percentage of the samples were classified identically (Seveso Directive) for their hazardousness by the two laboratories. • The method, in progress, is being normalized in France and is be proposed to CEN. - Abstract: The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its constituents, according to the the Classification, Labelling and Packaging (CLP) regulation. Comprehensive knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol for determining waste composition is proposed, which includes using inductively coupled plasma (ICP) screening methods to identify major elements and gas chromatography/mass spectrometry (GC–MS) screening techniques to measure organic compounds. The method includes a gross or indicator measure of ‘pools’ of higher molecular weight organic substances that are taken to be less bioactive and less hazardous, and of unresolved ‘mass’ during the chromatography of volatile and semi-volatile compounds. The concentration of some elements and specific compounds that are linked to specific hazard properties and are subject to specific regulation (examples include: heavy metals, chromium(VI), cyanides, organo-halogens, and PCBs) are determined by classical quantitative analysis. To check the consistency of the analysis, the sum of the concentrations (including unresolved ‘pools’) should give a mass balance between 90% and 110%. Thirty-two laboratory samples comprising different industrial wastes (liquids and solids) were tested by two routine service laboratories, to give circa 7000 parameter results. Despite discrepancies in some parameters, a satisfactory sum of estimated or measured concentrations (analytical balance) of 90% was reached for 20 samples (63% of the overall total) during this first test exercise, with identified reasons for most of the unsatisfactory results. Regular use of this protocol (which is now included in the French legislation) has enabled service laboratories to reach a 90% mass balance for nearly all the solid samples tested, and most of liquid samples (difficulties were caused in some samples from polymers in solution and vegetable oil). The protocol is submitted to French and European normalization bodies (AFNOR and CEN) and further improvements are awaited.

  5. Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division

    Office of Legacy Management (LM)

    AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly

  6. Los Alamos National Laboratory Hazardous Waste Facility Permit Draft Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Draft Community Relations Plan Comment/Suggestion Form Instructions for completing the form: Please reference the section in the plan that your comments and suggestions address. Example: Section 1.0. General comments are also useful to plan improvment. Please include ideas for implementation of your suggestion, and your contact information for further discussion. Public comments and suggestions are received year round. A summary of comments are posted each year at

  7. Hazardous medical waste generation rates of different categories of health-care facilities

    SciTech Connect (OSTI)

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  8. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  9. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  10. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  11. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  12. Trends in characteristics of hazardous waste-derived fuel burned for energy recovery in cement kilns

    SciTech Connect (OSTI)

    Lusk, M.G.; Campbell, C.S.

    1996-12-31

    The Cement Kiln Recycling Coalition (CKRC) is a national trade association representing virtually all the U.S. cement companies involved in the use of waste-derived fuel in the cement manufacturing process as well as those companies involved in the collection, processing, managing, and marketing of such fuel. CKRC, in conjunction with the National Association of Chemical Recyclers (NACR), completed several data collection activities over the past two years to provide the Environmental Protection Agency (EPA) and other interested parties with industry-wide trend analyses. The analyses evaluated the content of specific metals in waste fuels utilized by cement kilns, average Btu value of substitute fuels used by kilns, and provides insight into the trends of these properties. With the exception of the data collected by NACR, the study did not evaluate materials sent to hazardous waste incinerators or materials that are combusted at {open_quotes}on-site{close_quotes} facilities.

  13. Principles and use of solidification/stabilization treatment for organic hazardous constituents in soil, sediment, and waste

    SciTech Connect (OSTI)

    Wilk, C.M.

    2007-07-01

    Solidification/stabilization (S/S) treatment involves mixing a binding reagent into contaminated media or waste. S/S treatment protects human health and the environment by immobilizing hazardous constituents within the treated material. S/S has been effective in treating a large variety of hazardous constituents in many different forms of waste and contaminated media. The U.S. Environmental Protection Agency (EPA) has identified S/S as Best Demonstrated Available Treatment Technology (BDAT) for at least 50 commonly produced industrial hazardous wastes. EPA has selected S/S treatment for over 20% of its Superfund site source control remediation projects. Much of the published literature and actual treatment project experience has to do with treatment of inorganic hazardous constituents including radioactive materials. Radioactive wastes and environmental contaminants are often mixtures of inorganic and organic hazardous constituents. In recent years S/S is increasingly being used to address soil and sediment contaminated with organic hazardous constituents. Many of these remediation projects include polycyclic aromatic hydrocarbons (PAH) or polychlorinated biphenyls (PCB). The paper and presentation will discuss the chemical and physical mechanisms that can immobilize inorganic and organic hazardous constituents within S/S-treated material. The paper will also discuss examples of recent full-scale projects where S/S has been used to successfully treat organic hazardous constituent contaminated soil and sediment both in-situ and on excavated material. (authors)

  14. F-Area Hazardous Waste Management Facility Correction Action Report, Third and Fourth Quarter 1998, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-23

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF), also known as the F-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  15. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

  16. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2001-10-05

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  17. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    SciTech Connect (OSTI)

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  18. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  19. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  20. H. R. 2670: A bill to amend the Solid Waste Disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 18, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on June 18, 1991 to amend the Solid Waste disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste. When garbage is burned, toxic materials are concentrated in the ash. If the ash is disposed of in a landfill, these toxic materials can contaminate the ground water or surface water by leaching toxic materials from the ash. In addition, disposing of contaminated ash improperly can pose a health hazard. New authority is provided for regulating incinerator ash as a hazardous waste.

  1. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Energy Savers [EERE]

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  2. Superfund at work: Hazardous waste cleanup efforts nationwide, Winter 1994 (Seymour recycling site profile, Seymour, Indiana)

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Leaking barrels of chemicals reacted and erupted into spontaneous fires and explosions at the Seymour Recycling Corporation in the 1970s. The poorly managed and overburdened hazardous waste storage and incineration facility polluted soil and ground water with solvents, acids, and heavy metals. With help from the Indiana Department of Environmental Management (IDEM) and the City of Seymour, cooperative efforts lead to an effective remediation of the site including: an immediate removal of drums, tanks and soil; a comprehensive ground water treatment system and extension of the municipal water supply to affected residents; and use of two innovative technologies, bioremediation and soil vapor extraction.

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  4. Predicting the impact from significant storm events on a hazardous waste site

    SciTech Connect (OSTI)

    Singh, U.P.; Dixon, N.P.; Mitchell, J.S.

    1994-12-31

    The Stringfellow Hazardous Waste Site is a former Class 1 industrial waste disposal facility located near the community of Glen Avon in southern California. In response to community concerns regarding flooding and possible exposure to contaminants via the surface water pathway, a study was performed to evaluate the potential effect significant/episodic storm events may have on the site and its engineered structures as they exist during present day conditions. Specific storm events such as significant recorded historic storms as well as synthetic design storms were considered and the impact on the onsite area and surface channels in Pyrite Canyon downstream of the site was evaluated. Conclusions were reached, and recommendations were made to minimize the potential flood impacts and exposure to contaminants via the surface water pathway in the areas downstream of the site.

  5. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect (OSTI)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

  6. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    SciTech Connect (OSTI)

    Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi

    2015-05-15

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobile phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using insulation (tape) on waste batteries to prevent fires, only 2.0% of discarded cylindrical dry batteries were insulated. Our field study of small WEEE showed that batteries made up an average of 4.6% of the total collected small WEEE on a weight basis. Exchangeable batteries were used in almost all of mobile phones, digital cameras, radios, and remote controls, but the removal rate was as low as 22% for mobile phones. Given the safety issues and the rapid changes occurring with mobile phones or other types of small WEEE, discussion is needed among stakeholders to determine how to safely collect and recycle WEEE and waste batteries.

  7. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    SciTech Connect (OSTI)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  8. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  9. EIS-0046: Management of Commercially Generated Radioactive Waste, Washington, D.C.

    Broader source: Energy.gov [DOE]

    This statement analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented.

  10. Quality assurance/quality control (QA/QC) procedures for hazardous-waste incineration. Handbook

    SciTech Connect (OSTI)

    Dux, T.; Gilford, P.; Bergman, F.; Boomer, B.; Hooton, D.

    1990-01-01

    The Environmental Protection Agency (EPA) has promulgated regulations for hazardous waste incinerators under the Resource Conservation and Recovery Act. These regulations require the permit applicant to conduct trial burns to demonstrate compliance with the regulatory limits and provide data needed to write the individual permits. Trial burns require a Quality Assurance Project Plan (QAPjP) with quality assurance/quality control (QA/QC) procedures to control and evaluate data quality. The primary focus of the handbook is the trial burn itself; however, a discussion of the QA/QC for routine incinerator monitoring and permit compliance is included in a separate chapter. The area has slightly different requirements and objectives from those of the trial burn. The trial burn should be viewed as a short-term project with a defined beginning and end, while compliance monitoring is considered an ongoing process.

  11. Portable sensor for hazardous waste. Final report, March 31, 1995--May 31, 1997

    SciTech Connect (OSTI)

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.H.; Finson, M.L.

    1997-12-31

    This report summarizes accomplishments for the second phase of a 5-year program designed to develop a portable monitor for sensitive hazardous waste detection. The approach is to excite atomic fluorescence by the technique of Spark-Induced Breakdown Spectroscopy (SIBS). The principal goals for this second phase of the program were to demonstrate sensitive detection of additional species, both RCRA metals (Sb, Be, Cd, Cr, Pb, As, Hg) and radionuclides (U, Th, Tc); to identify potential applications and develop instrument component processes, including, sample collection and excitation, measurement and test procedures, and calibration procedures; and to design a prototype instrument. Successful completion of these task results in being able to fabricate and field test a prototype of the instrument during the program`s third phase.

  12. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  13. Enterprise Assessments Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant High-Level Waste Facility Concentrate Receipt/Melter Feed/Glass Formers Reagent Hazards Analysis Event Tables – June 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant High-Level Waste Facility Concentrate Receipt/Melter Feed/Glass Formers Reagent Hazards Analysis Event Tables

  14. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect (OSTI)

    Sharifi, Mozafar Hadidi, Mosslem Vessali, Elahe Mosstafakhani, Parasto Taheri, Kamal Shahoie, Saber Khodamoradpour, Mehran

    2009-10-15

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  15. Development of a plasma arc system for the destruction of U.S. Department of Defense hazardous waste

    SciTech Connect (OSTI)

    Sartwell, B.D.; Gehrman, F.H. Jr.; Telfer, T.R.

    1999-07-01

    The Naval Base, Norfolk, located in the northern portion of the city of Norfolk, Virginia, is the world's largest naval base and home of the Atlantic Fleet. Activities at the naval base generate approximately 1.4 million kilograms (3.0 million pounds) of industrial waste (hazardous and non-hazardous) annually. Significant components of the waste stream include used paint, cleaning rags, cleaning compounds, solvents, and other chemicals used in industrial operations. The costs of disposing of this waste are significant and are currently over $4 million annually, representing an average of $3.30 per kilogram ($1.50 per pound). Plasma arc technology has been identified as having the potential to cost-effectively treat and destroy various types of waste materials, including contaminated soil, ordnance, pyrotechnics, and low-level radioactive waste. There are currently several pilot-scale plasma arc units being tested in the United States, but at present there are no fully-permitted production-scale units in operation. In July 1995 a project was awarded to the Naval Research Laboratory and Norfolk Naval Base under the DOD Environmental Security Technology Certification Program with the objective of establishing a production scale demonstration plasma arc hazardous waste treatment facility (PAHWTF) at the Naval Base that would be capable of destroying both solid and liquid waste on a production basis and obtaining operational data necessary to determine the cost effectiveness of the process. This paper provides a detailed description of the PAHWTF, which was designed and built by Retech in Ukiah, CA, and also provides results of treatability tests. Information is also provided on the status of an Environmental Impact Statement and of RCRA Research, Development, and Demonstration, and air permits.

  16. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: First quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility (Metlab HWMF) at Savannah River Plant were visited for sampling. Groundwater samples were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. This report describes the results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site flagging criteria during the quarter. Tetrachloroethylene exceeded the PDWS in wells AMB 4A, 5, and 7A; trichloroethylene exceeded the PDWS in wells AMB 4A, 4B, 4D, 5, and 7A; and total alpha-emitting radium (radium-224 and radium-226) exceeded the PDWS in well AMB 5. Total organic halogens exceeded the Flag 2 criterion in wells AMB 4A, 5, 6, 7A, 7B, and IODD; manganese was elevated in wells AMB 4D and TODD; iron was elevated in well AMB TODD; and pH was elevated in well AMB 10A.

  17. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year`s data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  18. Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste Rob P. Rechard a,n , Geoff A. Freeze b , Frank V. Perry c a Nuclear Waste Disposal Research & Analysis, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA b Applied Systems Analysis & Research, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA c Earth and Environmental Sciences Division, Los Alamos National

  19. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    SciTech Connect (OSTI)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation.

  20. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect (OSTI)

    Arnold, Patrick

    2014-02-14

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  1. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  2. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Milian, L.W.; Yim, S.P.; Dyer, R.S.; Michaud, W.R.

    1997-12-01

    The Republic of Kazakhstan generates significant quantities of excess elemental sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the US and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loadings of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing.

  3. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Yim, Sung Paal; Kalb, P.D.; Milian, L.W.

    1997-08-01

    The Republic of Kazakhstan generates significant quantities of excess sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the U.S. and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loading of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing. 14 refs., 7 figs., 6 tabs.

  4. Study of lay people's perceptions of appropriate management of gasoline/soil mixtures, hazardous waste mixtures, and trash/garbage mixtures

    SciTech Connect (OSTI)

    Simon, L.E.

    1988-01-01

    The method used was a researcher-developed questionnaire that was given to San Diego residents who were either Naval Reservists or worked at the corporate headquarters of a fast food chain. The respondents were chosen to yield a cross section of lay people. The forced-choice questionnaire asked identical questions about each of the wastes. The sequence in which each waste appeared was varied in order not to imply a ranking. One-way ANOVA and Bonferroni's Method was used to identify any significant differences. On all eight elements, there was a significant difference between each of the wastes at the p < .05 level. Lay people perceive a significant difference in what constitutes appropriate management of the three waste mixtures. Lay people who participated in the study saw Gasoline/Soil Mixtures as requiring management that was significantly more lenient that what they saw as needed for Hazardous Waste Mixtures and significantly more strict than what they saw as needed for Trash/Garbage Mixtures. The establishment of an intermediate category of solid waste between the existing categories of Hazardous Waste and Non-Hazardous Waste was clearly identified as a possibility by the respondents. If such a category were established it would: (1) clarify and resolve existing contradictions between various regulations; (2) reduce unnecessary filling of scarce hazardous waste disposal capacity; (3) reduce uncertainty, delay and expense to businesses trying to comply with the regulations.

  5. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  6. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-08-29

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  7. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect (OSTI)

    Jantzen, C; James Marra, J

    2007-09-17

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  8. Waste collection in developing countries - Tackling occupational safety and health hazards at their source

    SciTech Connect (OSTI)

    Bleck, Daniela; Wettberg, Wieland

    2012-11-15

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  9. 3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Cole, C.M. Sr.

    2001-04-17

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

  10. Office of Enterprise Assessments Operational Awareness Record for the Observation of the Waste Treatment and Immobilization Plant High Level Waste Faciity Concentrate Receipt/Melter Feed/Glass Formers Reagent Hazard Analysis and Review of the Radioactive Liquid Disposal Hazards Analysis Event Tables - March 2015

    Energy Savers [EERE]

    Operational Awareness Record Report Number: EA-WTP-HLW-2014-10-20 Site: Hanford Site Subject: Observation of the Waste Treatment and Immobilization Plant High Level Waste Facility Concentrate Receipt/Melter Feed/ Glass Formers Reagent Hazards Analysis Activities and Review of the Radioactive Liquid Disposal Hazards Analysis Event Tables Dates of Activity: 10/20/14 - 11/06/14 Report Preparer: James O. Low Activity Description/Purpose: Bechtel National, Incorporated (BNI) is implementing a Safety

  11. Enterprise Assessments Operational Awareness Record for the Review of the Hanford Site Waste Treatment and Immobilization Plant Low-Activity Facility Wide Draft Hazard Analysis Report – June 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant Low-Activity Facility-Wide Draft Hazard Analysis Report

  12. Evaluating stress corrosion and corrosion aspects in supercritical water oxidation systems for the destruction of hazardous waste

    SciTech Connect (OSTI)

    Mitton, D.B.; Zhang, S.H.; Hautanen, K.E.; Cline, J.A.; Han, E.H.; Latanision, R.M.

    1997-08-01

    There is, currently, simultaneous public resistance to traditional waste handling procedures and a compelling need to destroy both military and civilian hazardous waste. Supercritical water oxidation (SCWO) is one developing technology particularly appropriate for treating a broad range of dilute aqueous organic wastes. Above its critical point (374 C and 221 atm) water is a low density fluid possessing properties intermediate between those of a liquid and a gas, and solvation characteristics more typical of a low polarity organic than water. Although this is a promising technology, a critical issue in its development will be the ability to overcome severe degradation problems of the materials of construction. While titanium and platinum liners have shown promise for some hazardous military feed streams, costs are high. Although nickel alloys are considered important for severe service, the indication is that they will not survive certain SCWO environments. Nevertheless, there is evidence that judicious feed modification may be employed to mitigate corrosion and reduce fabrication cost. Exposure studies have been accomplished for various alloys over a range of temperatures from 300--600 C. Experiments have been carried out in environments as innocuous as deionized water and as aggressive as highly chlorinated aqueous organic feed streams. Analysis of a number of failed components has provided enlightenment on degradation mechanisms and cracking, pitting and elevated corrosion rates are all observed in these systems. For chlorinated feed streams, both dealloying and cracking have been observed for alloy C-276. Samples exposed to a highly chlorinated organic indicate that the high-nickel alloys behave significantly better at 600 C than stainless steel type 316.

  13. Site 300 hazardous-waste-assessment project. Interim report: December 1981. Preliminary site reconnaissance and project work plan

    SciTech Connect (OSTI)

    Raber, E.; Helm, D.; Carpenter, D.; Peifer, D.; Sweeney, J.

    1982-01-20

    This document was prepared to outline the scope and objectives of the Hazardous Waste Assessment Project (HWAP) at Site 300. This project was initiated in October, 1981, to investigate the existing solid waste landfills in an effort to satisfy regulatory guidelines and assess the potential for ground-water contamination. This involves a site-specific investigation (utilizing geology, hydrology, geophysics and geochemistry) with the goal of developing an effective ground-water quality monitoring network. Initial site reconnaissance work has begun and we report the results, to date, of our geologic hydrogeologic studies. All known solid waste disposal locations are underlain by rocks of either the Late Miocene Neroly Formation or the Cierbo Formation, both of which are dominantly sandstones interbedded with shale and claystone. The existence of a regional confined (artesian) aquifer, as well as a regional water-table aquifer is postulated for Site 300. Preliminary analysis has led to an understanding of directions and depths of regional ground-water flow.

  14. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  15. Evaluations in support of regulatory and research decisions by the U. S. Environmental Protection Agency for the control of toxic hazards from hazardous wastes, glyphosate, dalapon, and synthetic fuels

    SciTech Connect (OSTI)

    Scofield, R.

    1984-01-01

    This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes including methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.

  16. Systematic approach for the design of pumpable cement-based grouts for immobilization of hazardous wastes

    SciTech Connect (OSTI)

    Sams, T.L.; Gilliam, T.M.

    1987-01-01

    Cement-based grouts have been proven to be an economical and environmentally acceptable means of waste disposal. Costs can be reduced if the grout is pumped to the disposal site. This paper presents a systematic approach to guide the development of pumpable grouts. 20 refs., 2 figs.

  17. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    SciTech Connect (OSTI)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  18. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    SciTech Connect (OSTI)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel.

  19. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  20. Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments

    SciTech Connect (OSTI)

    Hammack, R.W.

    2008-01-01

    In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depth images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.

  1. Best demonstrated available technology (BDAT) background document for universal standards. Volume A. Universal standards for nonwastewater forms of listed hazardous wastes. Final report

    SciTech Connect (OSTI)

    1994-07-01

    The Environmental Protection Agency (EPA or the Agency) is establishing Best Demonstrated Available Technology (BDAT) universal standards for the listed wastes identified in Title 40, Code of Federal Regulations Section 261.31 (40 CFR 261.31). A universal treatment standard (i.e., universal standard) is a single concentration-based treatment standard established for a specific constituent; a constituent has the same treatment standard in each waste code in which it is regulated. The background document provides the Agency`s rationale and technical support for selecting the constituents for regulation under universal standards and for developing the universal standards for nonwastewater forms of listed hazardous wastes.

  2. Best demonstrated available technology (BDAT) background document for universal standards. Volume B. Universal standards for wastewater forms of listed hazardous wastes. Final report

    SciTech Connect (OSTI)

    1994-07-01

    The Environmental Protection Agency (EPA) is establishing Best Demonstrated Available Technology (BDAT) universal standards for the listed wastes identified in Title 40, Code of Federal Regulations, Section 261.31 (40 CFR 261.31). A universal standard is a single concentration-based treatment standard established for a specific constituent; a constituent has the same treatment standard in each waste code in which it is regulated. The background document provides the Agency`s rationale and technical support for selecting the constituents for regulation under universal standards and for developing the universal standards for wastewater forms of listed hazardous wastes.

  3. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    SciTech Connect (OSTI)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  4. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  5. Applications of Atomistic Simulation to Radioactive and Hazardous Waste Glass Formulation Development

    SciTech Connect (OSTI)

    Kielpinski, A.L.

    1995-03-01

    Glass formulation development depends on an understanding of the effects of glass composition on its processibility and product quality. Such compositional effects on properties in turn depend on the microscopic structure of the glass. Historically, compositional effects on macroscopic properties have been explored empirically, e.g., by measuring viscosity at various glass compositions. The relationship of composition to structure has been studied by microstructural experimental methods. More recently, computer simulation has proved a fruitful complement to these more traditional methods of study. By simulating atomic interaction over a period of time using the molecular dynamics method, a direct picture of the glass structure and dynamics is obtained which can verify existing concepts as well as permit ``measurement`` of quantities inaccessible to experiment. Atomistic simulation can be of particular benefit in the development of waste glasses. As vitrification is being considered for an increasing variety of waste streams, process and product models are needed to formulate compositions for an extremely wide variety of elemental species and composition ranges. The demand for process and product models which can predict over such a diverse composition space requires mechanistic understanding of glass behavior; atomistic simulation is ideally suited for providing this understanding. Moreover, while simulation cannot completely eliminate the need for treatability studies, it can play a role in minimizing the experimentation on (and therefore contact handling of) such materials. This paper briefly reviews the molecular dynamics method, which is the primary atomistic simulation tool for studying glass structure. We then summarize the current state of glass simulation, emphasizing areas of importance for waste glass process/product modeling. At SRS, glass process and product models have been formulated in terms of glass structural concepts.

  6. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  7. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995

    SciTech Connect (OSTI)

    1995-03-01

    This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

  8. Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility

    SciTech Connect (OSTI)

    Banerjee, K.; O`Toole, T.J.

    1995-12-01

    A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

  9. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, December 30, 1996--March 30, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The objective of this project is to utilize coal ashes to process hazardous materials such as industrial waste water treatment residues, contaminated soils, and air pollution control dusts from the metal industry and municipal waste incineration. This report describes the activities of the project team during the reporting period. The principal work has focused upon continuing evaluation of aged samples from Phase 1, planning supportive laboratory studies for Phase 2, completing scholarly work, reestablishing MAX Environmental Technologies, Inc., as the subcontractor for the field work of Phase 2, proposing two presentations for later in 1997, and making and responding to several outside contacts.

  10. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-05-12

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  11. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  12. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  13. An assessment of potential environmental impacts of cement kiln dust produced in kilns co-fired with hazardous waste fuels

    SciTech Connect (OSTI)

    Goad, P.T.; Millner, G.C.; Nye, A.C.

    1998-12-31

    The Keystone Cement Company (Keystone), located in Bath, Pennsylvania, produces cement in two kilns that are co-fired with hazardous waste-derived fuels. Beginning in the late 1970`s Keystone began storing cement kiln dust (CKD) in an aboveground storage pile located on company property adjacent to the cement kilns. Storm water runoff from the CKD pile is channeled into a storm water settling pond which in turn discharges into Monocacy Creek, a stream running along the eastern property boundary. Monocacy Creek sustains a thriving trout fishery and is routinely fished during the open recreational fishing season in pennsylvania. The CKD pile has a surface area of approximately 12 acres, with an average height of approximately 35 feet. The southern edge of the pile is contiguous with an adjacent company-owned field in which field corn is grown for cattle feed. Some of the corn on the edges of the field is actually grown in direct contact with CKD that comprises the edge of the storage pile. The CKD pile is located approximately 150 yards to the west of Monocacy Creek. In 1995--1996 water, sediment and fish (trout) samples were obtained from Monocacy Creek sampling stations upstream and downstream of the point of discharge of storm water runoff from the CKD pile. In addition, corn samples were obtained from the field contiguous with the CKD pile and from a control field located distant to the site. The sediment, water, fish, and corn samples were analyzed for various chemicals previously identified as chemicals of potential concern in CKD. These data indicate that chemical constituents of CKD are not contaminating surface water or sediment in the stream, and that bioaccumulation of organic chemicals and/or metals has not occurred in field corn grown in direct contact with undiluted CKD, or in fish living in the waters that receive CKD pile runoff.

  14. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    SciTech Connect (OSTI)

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  15. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  16. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  17. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report - Calendar Year 2014

    SciTech Connect (OSTI)

    Arnold, Patrick

    2015-02-17

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  18. WASHINGTON. DC.

    Office of Legacy Management (LM)

    WASHINGTON. DC. tzr.~Dfak nuf, Ama fall- II* 8. Atoalc l%mqy Camlealnn . . . . ,L:,. ' ,. 8ta loui Are0 offlaa " . . : ' ; ,.' ~. ._ ; . . ..!"C.. ,:. . . ..~.;~..?n:,.;,, ,_ ," .L,: ' ..: ' I I. P.O. Box 36 ,, ,,,,: ,.,.:... . . Brorarw Btotlrn . St. Louis, $105cnlr1 =- %A. WO. LB - FCA Fbn. A. Dfcklooa, V?,ao huralb$

  19. AGREEMENT BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS WASTE BUREAU AND WASTE ISOLATION PILOT PLANT PERMITTEES REGARDING A TIME EXTENSION FOR DISPUTE RESOLUTION RELATED TO FINAL AUDIT...

  20. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  1. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994

    SciTech Connect (OSTI)

    1994-12-01

    This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

  2. Nuclear Waste Policy Act Signed | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Waste Policy Act Signed Nuclear Waste Policy Act Signed Washington, DC President Reagan signs the Nuclear Waste Policy Act of 1982, the Nation's first comprehensive nuclear waste ...

  3. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise; K. L. Vialetti

    2008-05-12

    This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

  4. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect (OSTI)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  5. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    SciTech Connect (OSTI)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work.

  6. Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R.; Lechel, Robert A.

    2012-08-31

    The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), {section}270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR {section}270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR-12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

  7. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    SciTech Connect (OSTI)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3.

  8. Health assessment for Fletcher's Paint Works and Storage Facility Hazardous Waste Material, Milford, Hillsborough County, New Hampshire, Region 1. CERCLIS No. NHD981067614. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1990-06-11

    Fletcher's Paint Works and Storage Facility Hazardous Waste Site (Fletcher's Paint Site) in Milford, New Hampshire, consists of three distinct entities: Fletcher's Paint Works at 21 Elm Street, Fletcher's Paint Storage Facility on Mill Street, and a drainage ditch leading from the storage facility property to Hampshire Paper Company property. The aggregation of these three properties was based on the similar nature of operations and wastes, the close proximity of the areas, the same target population, and the same underlying aquifer at risk of contamination. The aggregated site has contributed to the contamination of soil, groundwater, surface water, sediment, and air with various volatile organic chemicals (VOCs), semivolatile organic chemicals (SVOCs), heavy metals, and polychlorinated biphenyls (PCBs). Environmental monitoring related to the Fletcher's Paint Site has consisted of sampling of the Keyes Well by the NH WSPCC, and sampling at the paint works, storage facility and drainage ditch by NUS Corporation and EPA's Environmental Services Division (ESD). Contaminant levels at each location is discussed individually. Based upon the available information, the Fletcher's Paint NPL Site is considered to be of potential public health concern because of the risk to public health caused by potential exposure to hazardous substances, such as VOCs, PCBs, PAHs, and heavy metals, at concentrations that may result in adverse health effects. Exposure to contaminated soil and surface water, and potentially contaminated fish may be occurring. The site is located in a densely populated part of town, while the storage facility is readily accessible to children walking to and from school.

  9. H. R. 3516: A Bill to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes. Introduced in the House of Representatives, One Hundredth First Congress, First Session, October 24, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    H.R. 3516 is a bill to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes.

  10. H. R. 1272: A Bill to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes, introduced in the House of Representatives, One Hundred Second Congress, First Session, March 5, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on March 7, 1991 to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes. A credit of 2 cents is allowed for each pound of qualified hazardous waste recycled during the taxable year. To qualify as hazardous the waste must be listed by the EPA under section 3001 of the Solid Waste Act and is a waste product generated by the taxpayer in a trade or business.

  11. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect (OSTI)

    LaVerne, Jay A.

    2005-06-01

    Experiments in combination with diffusion-kinetic modeling incorporating track structure simulations are used to examine the radiation chemistry of aqueous systems containing chlorinated hydrocarbons. Irradiations with both Co-60 gamma rays and alpha particles are employed in order to simulate typical mixed radiation environments encountered in waste management. The goal is to determine fundamental mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management.

  12. The use of representative cases in hazard analysis of the tank waste remediation system at Hanford. The information in this document is a combination of HNF-SA-3168-A {ampersand} HNF-SA-3169-A - The control identification process

    SciTech Connect (OSTI)

    Niemi, B.J.

    1997-04-24

    During calendar year 1996, Duke Engineering and Services Hanford, Inc. conducted a safety analysis in accordance with DOE-STD-3009-94 as part of the development of a Final Safety Analysis Report (TSAR) for the Tank Waste Remediation System (TWRS) at the DOE Hanford site. The scope of the safety analysis of TWRS primarily addressed 177 large underground liquid waste storage tanks and associated equipment for transferring waste to and from tanks. The waste in the tanks was generated by the nuclear production and processing facilities at Hanford. The challenge facing the safety analysis team was to efficiently analyze the system within the time and budget allotted to provide the necessary and sufficient information for accident selection, control identification, and justification on the acceptability of the level of safety of TWRS. It was clear from the start that a hazard and accident analysis for each of the 177 similar tanks and supporting equipment was not practical nor necessary. For example, many of the tanks were similar enough that the results of the analysis of one tank would apply to many tanks. This required the development and use of a tool called the ''Hazard Topography''. The use of the Hazard Topography assured that all tank operations and configurations were adequately assessed in the hazard analysis and that the results (e.g., hazard identification and control decisions) were appropriately applied to all tanks and associated systems. The TWRS Hazard Topography was a data base of all the TWRS facilities (e.g., tanks, diversion boxes, transfer lines, and related facilities) along with data on their configuration, material at risk (MAR), hazards, and known safety related phenomenological issues. Facilities were then classified into groups based on similar combinations of configuration, MAR, hazards and phenomena. A hazard evaluation was performed for a tank or facility in each group. The results of these evaluations, also contained in a data base, were then mapped back to all TWRS facilities and used to select candidate accidents for the SAR. The Hazard Topography and hazard evaluation results were then used to support the identification of controls that address all TWRS facilities.

  13. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  14. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-10-24

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

  15. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  16. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  17. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

  18. Bi-directional dc-dc Converter

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Bi-directional dc-dc Converter

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  20. Seismic hazard methodology for the Central and Eastern United...

    Office of Scientific and Technical Information (OSTI)

    ... EARTHQUAKES; HAZARDS; SEISMICITY; MATHEMATICAL MODELS; GROUND MOTION; PROBABILITY; RISK ASSESSMENT; MOTION; SEISMIC EVENTS 200203* -- Fossil-Fueled Power Plants-- Waste ...

  1. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. CalTOX, a multimedia total exposure model for hazardous-waste sites; Part 1, Executive summary

    SciTech Connect (OSTI)

    McKone, T.E.

    1993-06-01

    CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population.

  3. Vermont Waste Management and Prevention Division | Open Energy...

    Open Energy Info (EERE)

    federal and state programs regulating hazardous wastes, solid wastes, and underground storage tanks, and manages cleanup at hazardous sites under state and federal authorities,...

  4. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for...

  5. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2004-12-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement beneath each trench. Soil moisture results obtained to date indicate that the compliance criterion of less than 5% Residual Volumetric Moisture Content was met. Soil conditions remain dry and stable beneath the trenches, and the cover is functioning as designed within the compliance limits.

  6. Independent Oversight Review, Waste Treatment and Immobilization Plant- December 2012

    Broader source: Energy.gov [DOE]

    Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity

  7. DC source assemblies

    DOE Patents [OSTI]

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  8. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect (OSTI)

    LaVerne, Jay A.

    2004-12-01

    Scope. The radiation chemistry of aqueous systems containing chlorinated hydrocarbons is investigated using a multi-pronged approach employing 60Co gamma ray and alpha particle irradiation experiments in conjunction with diffusion-kinetic modeling incorporating track structure simulations. The goal is to determine mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The information obtained is of a fundamental nature, but the radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management. Program Highlights. Radiation-induced production of H2 and HCl from chlorinated hydrocarbons. 60Co gamma-radiolysis experiments and stochastic kinetic modeling have been used to investigated the radiation-induced yield of H2 and Cl- from aqueous solutions of 1,2-dichloroethane (1,2-DCE) and 1,1-dichloroethane (1,1-DCE) over the concentration range 1-80 mM. In deoxygenated solution, the yield of H2 from both 1,2-DCE and 1,1-DCE solutions decreases as the concentration of DCE is increased. The decrease in the H2 yield shows that the reaction of H atom with DCE does not lead to the production of H2. This observation is unexpected and reflects the reverse of the effect seen in the gas phase, where the reaction of H atom with 1,2-DCE and 1,1-DCE leads to the production of H2. The yield of Cl- from 1,2-DCE and 1,1-DCE solutions increases slightly from 2.8 ions/100eV to 3.6 over the concentration range 10-50 mM, demonstrating the increased competition of the DCE with intra-track processes. Comparison of the measured yields of Cl- with the predictions of stochastic kinetic modeling shows that the reactions of eaq- with 1,2-DCE and with 1,1-DCE are quantitative, and that the reaction of H atom with both DCEs leads to the production of Cl- (and Haq+). In aerated solution, the yield of Cl- from 1,2-DCE and from 1,1-DCE solutions is very significantly higher ({approx} x 3-4) than from deoxygenated solution. Furthermore, the observed yield is both dose and dose rate dependent. The mechanisms for Cl- production in aerated aqueous solutions of 1,2-DCE and of 1,1-DCE are currently under investigation. Rate coefficients for the reaction of eaq- and -OH with chlorinated hydrocarbons. There is considerable disagreement over the rate coefficients for the reaction of the primary radiation-produced reducing and oxidizing radicals from water, eaq- and -OH respectively, with 1,2-DCE and with 1,1-DCE. Electron pulse-radiolysis experiments monitoring the decay of eaq- have been used to measure the rate coefficients: 1,2 DCE eaq- + CH2Cl-CH2Cl ' CH2Cl-CH2- + Cl- k1 = 2.3 x 109 dm3 mole-1 s-1 1,1 DCE eaq- + CH3Cl-CHCl2 ' CH3-CHCl- + Cl- k2 = 3.5 x 109 dm3 mole-1 s-1 while competition kinetic experiments were employed to determine the rate coefficients: 1,2 DCE -OH + CH2Cl-CH2Cl ' CH2Cl-CHCl- + H2O k3 = 1.8 x 108 dm3 mole-1 s-1 1,1 DCE -OH + CH3Cl-CHCl2 ' CH3-CCl2- + H2O k4 = 1.1 x 108 dm3 mole-1 s-1 The values obtained are similar to those measured by Asmus and co-workers, but there is a significant discrepancy from the estimate of Getoff and co-workers for k1. Rate coefficient for the reaction of OH with thiocyanide ion. The rate coefficient for the reaction of the -OH radical with a chlorinated hydrocarbon is obtained by a competition experiment, in which the change in the radiation-induced yield of (SCN)2-- from an aqueous SCN- solution is monitored on the addition of the hydrocarbon. The mechanism for the radiation-induced formation of (SCN)2-- from a SCN- is complex and involves a number of equilibria. Careful electron pulse radiolysis experiments have been performed and analyzed, employing the full, complex reaction mechanism, to re-evaluated the rate coefficient for the fundamental reaction -OH + SCN- ' (HOSCN)-- k5 = 1.4 x 1010 dm3 mole-1 s-1 This reaction is central to the experimental determination of the rate coefficient of a solute with OH using the

  9. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  10. Washington, DC.20585

    Office of Legacy Management (LM)

    Department of ,En&gy Washington, DC.20585 , ' . The Honorable Thomas, Murphy : ,, 414 Grant.Street Pittsburgh, Pennsylvania 15219 Dear Rayor Murphy:. Secretary of Energy ...

  11. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Hazardous (Classified) Location IDENTIFIER Y-2000-OR-BJCETTP-0101 DATE January 6, 2000 LESSONS LEARNED STATEMENT- Radios that were not certified as approved for Class I,...

  12. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  13. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Final Supplemental Environmental Impact Statement, complet- ed in September 1997. ... at the WIPP , a description of procedures for handling hazardous wastes, ...

  14. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned ...

  15. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report ... of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness ...

  16. US Integrated Waste Services Association | Open Energy Information

    Open Energy Info (EERE)

    Integrated Waste Services Association Jump to: navigation, search Name: US Integrated Waste Services Association Place: Washington, DC Product: Focussed on promoting integrated...

  17. Global Waste to Energy Conversion Company GWECC | Open Energy...

    Open Energy Info (EERE)

    Waste to Energy Conversion Company GWECC Jump to: navigation, search Name: Global Waste to Energy Conversion Company (GWECC) Place: Washington, DC Product: GWECC is a global...

  18. Multilevel DC link inverter

    DOE Patents [OSTI]

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  19. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  20. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity The Office of Enforcement and...

  1. Small businesses selected for nuclear waste services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    buildings, and chemical or other hazardous wastes. Some of these materials may include trace or low levels of radioactive material. They also include transuranic waste generated...

  2. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  3. Waste management progress report

    SciTech Connect (OSTI)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management.

  4. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  5. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  6. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  7. Draft Waste Management Programmatic Environmental Impact Statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume 3, Appendix A: Public response to revised NOI, Appendix B: Environmental restoration, Appendix C, Environmental impact analysis methods, Appendix D, Risk

    SciTech Connect (OSTI)

    1995-08-01

    Volume three contains appendices for the following: Public comments do DOE`s proposed revisions to the scope of the waste management programmatic environmental impact statement; Environmental restoration sensitivity analysis; Environmental impacts analysis methods; and Waste management facility human health risk estimates.

  8. Deployment at the Savannah River Site of a standardized, modular transportable and connectable hazard category 2 nuclear system for repackaging TRU waste

    SciTech Connect (OSTI)

    Lussiez, G.; Hickman, S.; Anast, K. R.; Oliver, W. B.

    2004-01-01

    This paper describes the conception, design, fabrication and deployment of a modular, transportable, connectable Category 2 nuclear system deployed at the Savannah River site to be used for characterizing and repackaging Transuranic Waste destined for the Waste Isolation Pilot Plant (WIPP). A standardized Nuclear Category 2 and Performance Category 2 envelope called a 'Nuclear Transportainer' was conceived and designed that provides a safety envelope for nuclear operations. The Nuclear Transportainer can be outfitted with equipment that performs functions necessary to meet mission objectives, in this case repackaging waste for shipment to WIPP. Once outfitted with process and ventilation systems the Nuclear Transportainer is a Modular Unit (MU). Each MU is connectable to other MUS - nuclear or non-nuclear - allowing for multiple functions, command & control, or increasing capacity. The design took advantage of work already in-progress at Los Alamos National Laboratory (LANL) for a similar system to be deployed at LANL's Technical Area 54.

  9. DC arc weld starter

    DOE Patents [OSTI]

    Campiotti, Richard H. (Tracy, CA); Hopwood, James E. (Oakley, CA)

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  10. Waste minimization assessment procedure

    SciTech Connect (OSTI)

    Kellythorne, L.L. )

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

  11. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  12. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    SciTech Connect (OSTI)

    Freudenburg, W.R.; Carter, L.F.; Willard, W.; Lodwick, D.G.; Hardert, R.A.; Levine, A.G.; Kroll-Smith, S.; Couch, S.R.; Edelstein, M.R.

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  13. Hazardous-waste cleanup and enforcement problems: Indiana. Hearing before the Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Seventh Congress, Second Session, June 1, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Thirteen witnesses representing the private and public sectors testified at a Seymour, Indiana hearing on hazardous materials at the Seymour Recycling facility and efforts to clean up the site. The facility began operations in 1968, and was closed down in February of 1980; the Environmental Protection Agency (EPA) had discovered during 1978 that the company was not disposing of its chemical wastes properly. Local concerns focused on why the EPA efforts slowed noticeably in the spring of 1981 and whether the site qualifies for superfund financing. Spokesmen from EPA argued that the slowdown was due to inaction at the state level, but state representatives countered that the problem was a lack of state funds to match federal funding. Other witnesses pursued health and safety issues and the efforts Seymour citizens have made to gain relief. (DCK)

  14. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L.; Turner, Paul C.; O'Connor, William K.; Hansen, Jeffrey S.

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  15. Waste Isolation Pilot Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  16. Waste Isolation Pilot Plant | Department of Energy

    Energy Savers [EERE]

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  17. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  18. D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    92 10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)).

  19. Waste Disposition Update by Christine Gelles

    Office of Environmental Management (EM)

    Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o ...

  20. Preliminary plan for treating mixed waste

    SciTech Connect (OSTI)

    Vandegrift, G.F.; Conner, C.; Hutter, J.C.; Leonard, R.A.; Nunez, L.; Sedlet, J.; Wygmans, D.G.

    1993-06-01

    A preliminary waste treatment plan was developed for disposing of radioactive inorganic liquid wastes that contain hazardous metals and/or hazardous acid concentrations at Argonne National Laboratory. This plan, which involves neutralization and sulfide precipitation followed by filtration, reduces the concentration of hazardous metals and the acidity so that the filtrate liquid is simply a low-level radioactive waste that can be fed to a low-level waste evaporator.

  1. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems July 2015 Office of Nuclear Safety and Environmental...

  2. Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013

    Broader source: Energy.gov [DOE]

    Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

  3. Transuranic Waste Burning Potential of Thorium Fuel in a Fast...

    Office of Scientific and Technical Information (OSTI)

    ... HEALTH HAZARDS; HIGH-LEVEL RADIOACTIVE WASTES; NUCLEAR FUELS; NUCLEAR INDUSTRY; RADIOACTIVE WASTE MANAGEMENT; RISK ASSESSMENT; THORIUM; THORIUM CYCLE; URANIUM 233; URANIUM 235

  4. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of Energy Office of Environment, Health, Safety and Security Office of Health and Safety Office of Worker Safety and Health Assistance Washington, DC 20585 Nuclear Waste Partnership, LLC DOE-VPP Onsite Review WIPP March 2015 i Foreword The Department of Energy (DOE) recognizes that true excellence can be encouraged and guided

  5. Agencies complete comprehensive investigation for radioactive and hazardous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste landfill Printer-friendly icon Printer-Friendly June 29, 2007 Agencies complete comprehensive investigation for radioactive and hazardous waste landfill; agree to extend document submittal milestone The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (IDEQ), and U.S. Environmental Protection Agency (EPA) have completed a CERCLA (Superfund) Remedial Investigation and Baseline Risk Assessment and Feasibility Study of a radioactive and hazardous waste landfill

  6. Washingtori, DC.20585

    Office of Legacy Management (LM)

    Departmeni of &ergy' ~ ,, Washingtori, DC.20585 ,' JAM 2'3: 199: " ,, The Honorable Peter G. Lawson First Selectman P.O. Box 155 Falls Village, Connecticut '06031 Dear Mayor 'Lawson: : Secretary of Energy 'Hazel O'Leary has announced a'new approach to openness in the Department of Energy (DOE) ,and itscommunications.with the,public. In support of this initiative, we are pleased to forward the enclosed information related to the former New England'Lime Co. site in your jurisdiction that

  7. Fire Hazards Listing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards Listing Fire Hazards Listing Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance Emergency Management (505) 667-1692 Email Currently reported fire hazards Below are the currently reported fire hazards. The list is updated each day by the close of business. Current fire hazards Hazard Description Date Submitted Status No hazards currently reported. Legend: R=Resolved, P=Pending, NAR=No Action Required

  8. Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glare Hazard Analysis Tool - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  9. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  10. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  11. DC Wafers | Open Energy Information

    Open Energy Info (EERE)

    Wafers Jump to: navigation, search Name: DC Wafers Place: Leon, Spain Product: Spanish manufacturer of multicrystalline silicon wafers. Planning a 30MW wafer slicing line in Leon,...

  12. Process Waste Assessment - Paint Shop

    SciTech Connect (OSTI)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  13. Hazard evaluation for 244-AR vault facility

    SciTech Connect (OSTI)

    BRAUN, D.J.

    1999-08-25

    This document presents the results of a hazard identification and evaluation performed on the 244-AR Vault Facility to close a USQ (USQ No.TF-98-0785, Potential Inadequacy in Authorization Basis (PIAB): To Evaluate Miscellaneous Facilities Listed In HNF-2503 And Not Addressed In The TWRS Authorization Basis) that was generated as part of an evaluation of inactive TWRS facilities. A hazard evaluation for the Hanford Site 244-AR Vault Facility was performed. The process and results of the hazard evaluation are provided in this document. A previous hazard evaluation was performed for the 244-AR Vault Facility in 1996 in support of the Basis for Interim Operation (BIO) (HNF-SD-WM-BIO-001, 1998, Revision 1) of the Tank Waste Remediation System (TWRS). The results of that evaluation are provided in the BIO. Upon review of those results it was determined that hazardous conditions that could lead to the release of radiological and toxicological material from the 244-AR vaults due to flooding was not addressed in the original hazards evaluation. This supplemental hazard evaluation addresses this oversight of the original hazard evaluation. The results of the hazard evaluation were compared to the current TWRS BIO to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. This document is not part of the AB and is not a vehicle for requesting changes to the AB. It is only intended to provide information about hazardous conditions associated with the condition and configuration of the 244-AR vault facility. The AB Control Decision process could be used to determine the applicability and adequacy of existing AB controls as well as any new controls that may be needed for the identified hazardous conditions associated with 244-AR vault flooding. This hazard evaluation does not constitute an accident analysis.

  14. Hanford Site Hazards Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Hazards Guide 2016 Approved for Public Release; Further Dissemination Unlimited Hanford Site Hazards Guide Contents ASBESTOS .............................................................................................................................................. 2 BERYLLIUM ........................................................................................................................................... 4 CHEMICAL SAFETY

  15. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  16. Hazardous waste contamination of water resources (Superfund clean-up policy and the Seymour recycling case). Hearings before the Subcommittee on Investigations and Oversight of the Committee on Public Works and Transportation, House of Representatives, Ninety-Eighth Congress, Second Session, March 13, 14, 15, 1984

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Nine witnesses testified over three days of hearings on water contamination due to illegal dumping of hazardous wastes and the administration of the Superfund Law to clean up designated sites. The witnesses were asked to evaluate the overall effect of the program and to consider whether Superfund has a positive or negative effect on the development of more environmentally benign technology. A focus for the testimony was on the Seymour waste site. The witnesses included representatives of the aluminum, automobile, chemical, and high technology industries, who were among the 24 industries making a settlement with the Environmental Protection Agency. Additional material submitted for the record by the witnesses and others follows the testimony.

  17. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  18. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  19. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP

  20. Triple voltage dc-to-dc converter and method

    DOE Patents [OSTI]

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  1. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect (OSTI)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  2. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  3. Waste Management Magazine Highlights Nevada National Security Site |

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  4. Washington DC | OpenEI Community

    Open Energy Info (EERE)

    DC Home Linked Open Data Workshop in Washington, D.C. Description: A group organizing the LOD workshop in Washington, D.C. in fall 2012 A follow-up event to the successful LOD...

  5. D.C. | OpenEI Community

    Open Energy Info (EERE)

    D.C. Home Kyoung's picture Submitted by Kyoung(150) Contributor 6 September, 2012 - 08:51 GRR Update Meeting scheduled for 913 in D.C. D.C. GRR meeting update The next Geothermal...

  6. H.A.R. 11-265 - Hazardous Management: Interim Status Standard...

    Open Energy Info (EERE)

    Status Standard for Owners and OperatorsLegal Abstract The Hawaii State Department of Health regulates hazardous waste management through this chapter of the administrative...

  7. U.A.C. R315-3: Application and Permit Procedures for Hazardous...

    Open Energy Info (EERE)

    3: Application and Permit Procedures for Hazardous Waste Treatment, Storage, and Disposal Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  8. High Level Waste Corporate Board Newsletter - 09/11/08

    Office of Environmental Management (EM)

    Waste Federal Review Group (LFRG) in Washington, DC on 16-18 September 2008. Contact Maureen O'Dell for details (MAUREEN.O'DELL@hq.doe.gov) Next High-Level Waste Corporate ...

  9. Good Energies (Washington DC) | Open Energy Information

    Open Energy Info (EERE)

    Good Energies (Washington DC) Name: Good Energies (Washington DC) Address: 1250 24th St., NW, Suite 250 Place: Washington, District of Columbia Zip: 20037 Product: Global investor...

  10. Title 18 Alaska Administrative Code Section 60.020 Hazardous...

    Open Energy Info (EERE)

    60.020 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Section 60.020...

  11. DC Pro Software Tool Suite

    SciTech Connect (OSTI)

    2009-04-01

    This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

  12. Waste management units: Savannah River Site

    SciTech Connect (OSTI)

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  13. Hanford Sitewide Probabilistic Seismic Hazard Analysis - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sitewide Probabilistic Seismic Hazard Analysis Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Sitewide Probabilistic Seismic Hazard Analysis Email

  14. Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Reagents Systems Hazards Analysis Activity Observation (EA-WTP-LAW-2014-06-02)

  15. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

  16. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014

    Broader source: Energy.gov [DOE]

    Observation of the Waste Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

  17. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – October 2013

    Broader source: Energy.gov [DOE]

    Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21

  18. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

  19. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – July 2013

    Broader source: Energy.gov [DOE]

    Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

  20. Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant- March 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Observation of the Waste Treatment and Immobilization Plant High Level Waste Facility Concentrate Receipt/Melter Feed/Glass Formers Reagent Hazards Analysis and Review of the Radioactive Liquid Disposal Hazards Analysis Event Tables.

  1. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of...

  2. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 88221 September 02 , 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of...

  3. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2010 New Mexico Environment Department 2905 E. Rodeo Park Dr. Bldg . 1 Santa Fe, New Mexico 87505-6303 Subject: Certification by a New Mexico Registered Professional Engineer in Support of TRUPACT-III References: United States Department Of Energy letter CBFO:OESH :GTB:MAG:11- 0702:UFC 5487.00 from Edward Ziemianski and M. F. Sharif to James Bearzi, dated January 10, 2011, subject: Notification of Planned Change to the Permitted Facility to Support TRUPACT-III United States Department Of

  4. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permittees shall maintain a minimum aisle space of 44 inches (1.1m) between facility pallets in the CH Bay of the WHB Unit. The Permittees shall maintain adequate aisle space of...

  5. Sandia National Laboratories Hazardous Waste (RCRA) Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requirements in the RCRA Facility Operating Permit. Proposed Location of Information Repository for Sandia National Laboratories Date: 01052015 Author: Todd Source: DOESandia...

  6. Sandia National Laboratories Hazardous Waste (RCRA) Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permit Documents in this category include the RCRA Facility Operating Permit, applications, modification requests, and correspondence. Some of these documents are also available...

  7. WIPP Hazardous Waste Permit - Approved Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approved Modifications Class 1 Permit Modification Notification to Update Contingency Plan, March 2006 Class 1 RCRA Permit Modification Correcting Typographical Error in Table B-10, October 24, 2005 Class 1 RCRA Permit Modification, Update Contingency Plan, October 16, 2006 Class 1 RCRA Permit Modification, Correct References, Inconsistencies and Figures, October 16, 2006 Class 1 Permit Modification, Correct Inconsistencies, November 30, 2006 Class 1 Permit Modification Panel 4 Figures January

  8. Catalog of DC Appliances and Power Systems

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

    2010-10-13

    This document catalogs the characteristics of current and potential future DC products and power systems.

  9. Hazard index for underground toxic material

    SciTech Connect (OSTI)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  10. Waste-to-Energy: Waste Management and Energy Production Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Indian Tribes. The forum

  11. Hazard Communication Training - Upcoming Implementation Date...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard ...

  12. Light-weight DC to very high voltage DC converter

    DOE Patents [OSTI]

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  13. Light-weight DC to very high voltage DC converter

    DOE Patents [OSTI]

    Druce, Robert L.; Kirbie, Hugh C.; Newton, Mark A.

    1998-01-01

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

  14. Tank farms solid waste characterization guide with sampling and analysis plan attachment

    SciTech Connect (OSTI)

    Quigley, J.T.

    1997-04-02

    This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

  15. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa...

  16. Automated Hazard Analysis

    Energy Science and Technology Software Center (OSTI)

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control andmore » job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the work planning process.« less

  17. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  18. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  19. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOE Patents [OSTI]

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  20. Hazard Analysis Reports for Nuclear Explosive Operations

    Energy Savers [EERE]

    NA-STD-3016-2006 May 2006 DOE LIMITED STANDARD HAZARD ANALYSIS REPORTS FOR NUCLEAR EXPLOSIVE OPERATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-NA-STD-3016-2006 iii FORWARD This Department of Energy (DOE)/National Nuclear Security Administration (NNSA)

  1. A complete electrical hazard classification system and its application

    SciTech Connect (OSTI)

    Gordon, Lloyd B; Cartelli, Laura

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

  2. Method of making nanostructured glass-ceramic waste forms

    DOE Patents [OSTI]

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  3. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  4. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  5. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

  6. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – March 31 – April 10, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Observation of the Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Hazards Analysis Activities [IAR-WTP-2014-03-31

  7. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  8. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  9. DC to DC power converters and methods of controlling the same

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  10. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  11. What is the deal with DC Microgrids?

    Energy Savers [EERE]

    2015 Acuity Brands What is the deal with DC Microgrids? and why would a Lighting company care? Yan Rodriguez VP Product and Technology 2015 Acuity Brands * Why DC Microgrids? *...

  12. ARM - Campaign Instrument - dc8-nasa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...strumentsdc8-nasa Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA DC-8 (DC8-NASA) Instrument Categories ...

  13. Ecological benefits of dc power transmission

    SciTech Connect (OSTI)

    Kutuzova, N. B.

    2011-05-15

    The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

  14. Newseum Washington, D.C.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2016 Newseum Washington, D.C. Shaping the future of the marine and hydrokinetic energy industry EXECUTIVE SUMMIT ON MARINE AND HYDROKINETIC RESEARCH AND DEVELOPMENT LETTER FROM THE DIRECTOR Dear Industry Executive, I would like to take this opportunity to personally welcome you to the Executive Summit on Marine and Hydrokinetic (MHK) Research and Development presented by the U.S. Department of Energy Wind and Water Power Technologies Office. We are excited to bring together executive members

  15. Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-07-09

    Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

  16. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection Waste Treatment and Immobilization Plant, managed by Bechtel National, Inc. ... EA observed the Bechtel National, Inc. hazards analysis teams' activities associated with ...

  17. Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))

  18. Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b))

  19. EA-377 DC Energy Texas LLC | Department of Energy

    Energy Savers [EERE]

    7 DC Energy Texas LLC EA-377 DC Energy Texas LLC Order authorizing DC Energy Texas LLC to export electric energy to Mexico. PDF icon EA-377 DC Energy Texas LLC More Documents & ...

  20. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  1. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  2. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  3. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  4. Report Wildland Fire Area Hazard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sighting (check box if animal poses serious threat) Trails (accessegress) Hazard Trees (falling, fire hazard) Utilities (Lab employees: use Form 1821 (pdf) to report utility...

  5. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazard Assessments The Oak Ridge Institute for Science and Education (ORISE) analyzes accumulated data to identify potential workplace hazards to which individuals or groups of workers may be exposed. ORISE assesses both chemical and radiation exposures, and conducts both internal and external radiation dose assessments. Our capabililities include: Linkage of exposure data to site rosters Assessment of retrospective exposures Preparation of assessment protocols Design and testing of dose

  6. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  7. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  8. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  9. Mr. John E. Kieling, Chief Hazardous Was te Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John E. Kieling, Chief Hazardous Was te Bureau Depa rtment of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 NOV 0 5 2013 New Mexico Environment Department 2905 Rodeo Park Drive East. Building 1 Santa Fe, New Mexico 87505-6303 Subject: Panel 6 Closure and Final Waste Emplacement Notifications Dear Mr. Kieling : The purpose of this leiter is 1 0 notify th e New Mexico Environment Department (NMEO) that the Permittees intend to commence closure of Hazardous Waste Disposa

  10. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  11. Waste minimization in an autobody repair shop

    SciTech Connect (OSTI)

    Baria, D.N.; Dorland, D.; Bergeron, J.T.

    1994-12-31

    This work was done to document the waste minimization incorporated in a new autobody repair facility in Hermantown, Minnesota. Humes Collision Center incorporated new waste reduction techniques when it expanded its old facilities in 1992 and it was able to achieve the benefits of cost reduction and waste reduction. Humes Collision Center repairs an average of 500 cars annually and is a very small quantity generator (VSQG) of hazardous waste, as defined by the Minnesota Pollution Control Agency (MPCA). The hazardous waste consists of antifreeze, batteries, paint sludge, refrigerants, and used oil, while the nonhazardous waste consists of cardboard, glass, paint filters, plastic, sanding dust, scrap metal, and wastewater. The hazardous and nonhazardous waste output were decreased by 72%. In addition, there was a 63% reduction in the operating costs. The waste minimization includes antifreeze recovery and recycling, reduction in unused waste paint, reduction, recovery and recycle of waste lacquer thinner for cleaning spray guns and paint cups, elimination of used plastic car bags, recovery and recycle of refrigerant, reduction in waste sandpaper and elimination of sanding dust, and elimination of waste paint filters. The rate of return on the investment in waste minimization equipment is estimated from 37% per year for the distillation unit, 80% for vacuum sanding, 146% for computerized paint mixing, 211% for the refrigerant recycler, to 588% per year for the gun washer. The corresponding payback time varies from 3 years to 2 months.

  12. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  13. DC Survey 2013 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Management / Aerial Measuring System DC Survey 2013 DC Background Survey (.zip) DC 2013 survey Related Topics ams Emergency Response Related News Department of Energy's chief risk officer visits Nevada National Security Site NNSA sites prepared for disasters using real-time response management system NNSA emergency response assets highlighted NNSA displays helicopter in Baltimore NNSA to Conduct Aerial Radiation Monitoring Survey over Boston April 17-20

  14. Washington, D.C. Office | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office NREL's Washington, D.C. office provides energy analysis and technical program support to the U.S. Department of Energy. View Larger Map National Renewable Energy Laboratory - D.C. Office 901 D Street, SW (also 370 L'Enfant Promenade, adjacent to the Forrestal building) Suite 930 Washington, D.C., 20024 202-488-2200 D.C. Visitor Information See local information to plan your trip. Security Procedures Building security will accept HSPD-12 badges (recognizable by gold chip on front) or valid

  15. SSL Demonstration: Parking Garage Lighting, Washington, DC

    SciTech Connect (OSTI)

    2013-06-01

    GATEWAY program report brief summarizing an SSL parking garage demonstration at the Dept. of Labor headquarters parking garage in Washington, DC.

  16. Glass Ceramic Dielectrics for DC Bus Capacitors

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Simultaneous distribution of AC and DC power

    DOE Patents [OSTI]

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  18. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  19. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  20. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  1. Hanford Site Solid Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  2. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  3. Waste-to-Energy using Fuel Cells Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office and the U.S. Department of Defense (DOD) held a workshop on January 13, 2011, in Washington, DC, to discuss waste-to-energy and...

  4. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Cirucci Air Products and Chemicals, Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective Develop a novel system that produces electricity or hydrogen from waste heat conversion and waste effluent oxidation waste water effluent treated effluent dual benefit process waste heat electricity or hydrogen Issues with existing,

  5. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  6. WITS - WASTE DATA COLLECTION WITH OUR PALMS AT OUR FINGERTIPS

    SciTech Connect (OSTI)

    B. MARTINEZ

    2000-11-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory (LANL) has initiated a project to build a computer-based system for tracking inventory, storage and disposal information for hazardous and radioactive waste and contaminated byproducts. This project, the Waste Inventory Tracking System (WITS), will initially be used in TA-55 (which includes the Los Alamos National Laboratory Plutonium Facility) and the Chemical and Metallurgy Research (CMR) building where wastes are generated. The system handles numerous waste types with variation in size, disposal method, and hazard classification including: low level waste such as room trash (compactable waste), SEG waste (non-compactable), and over-sized waste, mixed waste, hazardous and chemical waste, universal waste, and waste containing asbestos and PCB's. WITS is designed to provide up-to-date location, status, content information, radioactivity analyses, and other inventory information for every waste item and container managed by NMT-7. The system will support comprehensive reporting capabilities and cradle-to-grave audit trails. WITS is intended to facilitate handling of waste by NMT-7 staff to help minimize waste disposal costs, ensure compliance with applicable regulations, and standardize waste management methodologies and practices. This paper compares current management practices with revised methodologies supported by WITS. It shows how automating inventory tracking helps achieve these goals.

  7. DC-based magnetic field controller

    DOE Patents [OSTI]

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  8. DC-based magnetic field controller

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  9. Utah. Code. Ann. 19-6-108: New nonhazardous solid or hazardous...

    Open Energy Info (EERE)

    8: New nonhazardous solid or hazardous waste operation plans for facility or site Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  10. Surveillance study of health effects associated with cleanup of a hazardous waste site, Ralph Gray Trucking Company (a/k/a Westminster Tract Number 2633), Westminster, Orange County, California, Region 9: CERCLIS number CAD981995947

    SciTech Connect (OSTI)

    Hoshiko, S.; Underwood, M.C.; Smith, D.; DeLorenze, G.; Neuhaus, J.

    1999-04-01

    Excavation of a Superfund site, the Ralph Gray Truncking Company located in Westminster Orange County, California was anticipated to release sulfur dioxide and other chemicals. The California Department of Health Services, under cooperative agreement with the Agency for Toxic Substances and Disease Registry, conducted a surveillance study to assess whether illnesses were associated with cleanup activities. A panel primarily composed of more sensitive persons (n = 36) was selected to report daily respiratory symptoms and odors. Exposures included sulfur dioxide (SO{sub 2}) measurements and daily tonnage of waste removed. Analysis used Conditional Likelihood Regression and Generalized Estimating Equations (GEE) methods. Levels of SO{sub 2} were generally higher than usual ambient air, at times exceeding levels which can cause health effects among asthmatics in laboratory settings. Wheeze and cough were significantly associated with tonnage of waste removed, especially on days when the highest amounts of waste were removed. Upper respiratory symptoms were found to be associated with SO{sub 2}, and weak relationships were found with nausea and burning nose and SO{sub 2}.

  11. Hazard Communication Training- Upcoming Implementation Date for New Hazard Communication Standard

    Broader source: Energy.gov [DOE]

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard - OSHA's 29 CFR 1910.1200, Hazard Communication Standard.

  12. DOE Issues Salt Waste Determination for the Savannah River Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks,

  13. Hazard classification process at LLNL

    SciTech Connect (OSTI)

    Hildum, J. S., LLNL

    1998-05-01

    An essential part of Integrated Safety Management is the identification of hazards in the workplace and the assessment of possible consequences of accidents involving those hazards. The process of hazard classification suggested by the DOE orders on Safety Analysis is the formalization of this identification and assessment for hazards that might cause harm to the public or workers external to the operation. Possible injury to workers in the facility who are exposed to the hazard is not considered in the designation of the hazard classification for facilities at LLNL, although worker safety is discussed in facility Safety Basis documentation.

  14. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  15. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  16. Technical Safety Requirements for the Waste Storage Facilities May 2014

    SciTech Connect (OSTI)

    Laycak, D. T.

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs.

  17. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  18. Hazardous waste and the stringfellow acid pits. Hearing before the Subcommittee on Natural Resources, Agriculture Research and Environment of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, First Session, April 22, 1983

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    California residents and state and federal officials testified at a field hearing in Glen Avon, California on the cleanup operations at the Stringfellow acid pits, an abandoned site, under the Superfund law. Sally Tanner, Chairwoman of the State Assembly Committee on Consumer Protection and Toxic Chemicals, expressed disappointment that the federal program did not match state readiness to solve the problem. The Environmental Protection Agency's (EPA's) failure to use available funds and to listen to public concerns has been frustrating to Californians concerned about health hazards. Other witnesses spoke of the improbability of a complete cleanup because of groundwater migration and flooding in the area. EPA representatives described cleanup procedures at the site. An appendix with additional material submitted for the record follows the testimony of 11 witnesses.

  19. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Bullard, K.L.

    1994-08-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  20. EA-327-A DC Energy, LLC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DC Energy to export electric energy to Canada. EA-327-A DC Energy.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-327-A DC Energy, LLC...

  1. Washington, D.C. Roundtable Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. Roundtable Summary Washington, D.C. Roundtable Summary Summary of the DOE Office of Indian Energy roundtable held March 30, 2011, in Washington, D.C. PDF icon ...

  2. Hazardous waste cleanup and enforcement problems: Indiana. Hearing before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Seventh Congress, Second Session, June 1, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Seymour, Indiana was the scene of a one-day hearing on the Seymour Recycling facility, which was closed in 1980 because of improper handling of chemical wastes. Citizen concern centers on the fact that the Environmental Protection Agency (EPA) provided funds to study and plan a cleanup program, but no Superfund money was provided to carry out the plan to remove the threat of ground water contamination. Testifying at the hearing were 13 witnesses from the Seymour area and the EPA. The EPA response was that the problem rests with the state and local failure to match federal funds. (DCK)

  3. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  4. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  5. Hazard Communications Training Deadline Approaches

    Broader source: Energy.gov [DOE]

    All DOE Federal and contractor employees with hazardous chemicals in their workplace MUST complete the new Hazard Communications Standard Training, per 10 CFR 851, Worker Safety and Health Program, by DECEMBER 1, 2013.

  6. Application of EPA regulations to low-level radioactive waste

    SciTech Connect (OSTI)

    Bowerman, B.S.; Piciulo, P.L.

    1985-01-01

    The survey reported here was conducted with the intent of identifying categories of low-level radioactive wastes which would be classified under EPA regulations 40 CFR Part 261 as hazardous due to the chemical properties of the waste. Three waste types are identified under these criteria as potential radioactive mixed wastes: wastes containing organic liquids; wastes containing lead metal; and wastes containing chromium. The survey also indicated that certain wastes, specific to particular generators, may also be radioactive mixed wastes. Ultimately, the responsibility for determining whether a facility's wastes are mixed wastes rest with the generator. However, the uncertainties as to which regulations are applicable, and the fact that no legal definition of mixed wastes exists, make such a determination difficult. In addition to identifying mixed wastes, appropriate methods for the management of mixed wastes must be defined. In an ongoing study, BNL is evaluating options for the management of mixed wastes. These options will include segregation, substitution, and treatments to reduce or eliminate chemical hazards associated with the wastes listed above. The impacts of the EPA regulations governing hazardous wastes on radioactive mixed waste cannot be assessed in detail until the applicability of these regulations is agreed upon. This issue is still being discussed by EPA and NRC and should be resolved in the near future. Areas of waste management which may affect generators of mixed wastes include: monitoring/tracking of wastes before shipment; chemical testing of wastes; permits for treatment of storage of wastes; and additional packaging requirements. 3 refs., 1 fig., 2 tabs.

  7. NNSS Waste Acceptance 11-6-13_final_print-ready

    Office of Environmental Management (EM)

    NNSS Waste Acceptance Waste disposed at the Nevada National Security Site (NNSS) must comply with the NNSS waste acceptance criteria. Compliance is evaluated by a team of experts in the areas of quality assurance, waste traceability, radiological characterization/nuclear criticality, and hazardous material characterization. The State of Nevada is involved throughout this waste review process. Waste Acceptance Criteria: Provide requirements, terms, and conditions under which waste is accepted for

  8. Logan Daum > Analyst - DC Energy > Center Alumni > The Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Logan Daum Analyst - DC Energy lrd56@cornell.edu Formerly a graduate student with the Fennie Group, Logan joined DC Energy in June of 2013...

  9. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  10. Maryland DC Virginia Solar Energy Industries Association MDV...

    Open Energy Info (EERE)

    DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name: Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place: Bethesda,...

  11. Washington, D.C. and Indiana: Allison Hybrid Technology Achieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success August 21,...

  12. Multilevel cascade voltage source inverter with seperate DC sources...

    Office of Scientific and Technical Information (OSTI)

    Multilevel cascade voltage source inverter with seperate DC sources Citation Details In-Document Search Title: Multilevel cascade voltage source inverter with seperate DC sources ...

  13. Multilevel cascade voltage source inverter with seperate DC sources...

    Office of Scientific and Technical Information (OSTI)

    Multilevel cascade voltage source inverter with seperate DC sources Citation Details In-Document Search Title: Multilevel cascade voltage source inverter with seperate DC sources A ...

  14. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging ...

  15. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory. PDF icon DC Fast Charge Effects on Battery ...

  16. Hazard Class Category

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Material sample holder catalog 01/05/2015 Hazard Class Category Containment # 3 Layer containment for Very High and High Radiotoxicity (Group 1 and 2) 1.a LBNL Lexan or aluminum sample holder with kapton tape surrounded by 2 each individual heat sealed plastic bag. Layer 1- Kapton Tape, sealed Layer 2- Heat sealed plastic bag Layer 3- Heat sealed plastic bag Physical Approvals: Ambient temperature 1.b LANL cryostat sample holder Sample holder with kapton windows and indium seam Layer

  17. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    SciTech Connect (OSTI)

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California`s waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator`s hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia`s site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized.

  18. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

  19. Annual waste reduction activities report. Issue 1

    SciTech Connect (OSTI)

    1991-03-18

    This report discusses the waste minimization activities for the Pinellas Plant. The Pinellas Plant deals with low-level radioactive wastes, solvents, scrap metals and various other hazardous materials. This program has realized cost savings through recycling and reuse of materials.

  20. Nuclear Waste Policy Act.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Civilian Radioactive Waste Management Washington, D.C. 20585 March 2004 i THE NUCLEAR WASTE POLICY ACT OF 1982 1 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of