Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Utility Direct Medium Voltage DC Fast Charger Update: DC Fast Charger Characterization  

Science Conference Proceedings (OSTI)

EPRI developed a fact charging technology for electric vehicles based on a solid state transformer technology known as the Intelligent Universal Transformer (IUT). The IUT technology replaces both the independent power conversion units as well as the conventional transformer with a single interface system which can be used for fast charging of electric vehicles. The versatility of the IUT provides an intermediate DC bus voltage at the 400-V level that can be directly used for a DC distribution ...

2012-12-31T23:59:59.000Z

2

Production EVSE Fact Sheet: DC Fast Charger: Hasetec  

NLE Websites -- All DOE Office Websites (Extended Search)

38 x 69 x 21 Charge level DC Fast Charge Input voltage 480 VAC - 3 Phase Isolation Transformer 1 75 kVA Maximum input current 2 120 Amp Test Conditions Test date 10232012...

3

Energy Storage for DC Fast Chargers Development and Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-13-28684 Energy Storage for DC Fast Chargers Development and Demonstration of Operating Protocols for 20-kWh and 200-kWh Field Sites Russell Newnham a Sally (Xiaolei) Sun a...

4

A FAST ALGORITHM FOR TOTAL VARIATION IMAGE ...  

E-Print Network (OSTI)

[29] A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems, Winston, Washington, DC, 1977. [30] E. van den Berg and M.P. Friedlander, Probing the pareto ...

5

A Review of Initial Analysis and Early Market Data on DC Fast Charging  

Science Conference Proceedings (OSTI)

At present, battery electric vehicles (BEVs) have limited on-board energy storage, and their limited range is a concern for potential customers. Direct current (DC) Fast Charging offers a way to mitigate this concern, but there is considerable uncertainty about how DC Fast Chargers will integrate with the existing electricity system and what the business case will be for installing and operating these chargers. This technical update provides a preliminary analysis of several of the issues raised by ...

2013-12-07T23:59:59.000Z

6

FAST  

Energy Science and Technology Software Center (OSTI)

002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0  https://software.sandia.gov/trac/fast 

7

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

8

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

9

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

10

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

11

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

12

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

13

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

14

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

15

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

16

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

17

A New Fast Response Instrument for Measuring Total Water Content from Aircraft  

Science Conference Proceedings (OSTI)

A device for measuring the total water content of a parcel of air from an aircraft has been developed. The total water of a parcel of air is a conserved quantity, independent of phase changes, provided there is no transport of water through the ...

S. Nicholls; J. Leighton; R. Barker

1990-10-01T23:59:59.000Z

18

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

19

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

20

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

22

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

23

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

24

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

25

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

26

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

27

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

28

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

29

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

30

Low-voltage-swing Monolithic DC-DC Conversion  

E-Print Network (OSTI)

Abstract—A low-voltage-swing MOSFET gate drive technique is proposed in this paper for enhancing the efficiency characteristics of high-frequency-switching dc–dc converters. The parasitic power dissipation of a dc–dc converter is reduced by lowering the voltage swing of the power transistor gate drivers. A comprehensive circuit model of the parasitic impedances of a monolithic buck converter is presented. Closed-form expressions for the total power dissipation of a low-swing buck converter are proposed. The effect of reducing the MOSFET gate voltage swings is explored with the proposed circuit model. A range of design parameters is evaluated, permitting the development of a design space for full integration of active and passive devices of a low-swing buck converter on the same die, for a target CMOS technology. The optimum gate voltage swing of a power MOSFET that maximizes efficiency is lower than a standard full voltage swing. An efficiency of 88 % at a switching frequency of 102 MHz is achieved for a voltage conversion from 1.8 to 0.9 V with a low-swing dc–dc converter based on a 0.18- m CMOS technology. The power dissipation of a low-swing dc–dc converter is reduced by 27.9 % as compared to a standard full-swing dc–dc converter. Index Terms—Buck converter, dc–dc converters, enhanced efficiency, high frequency, low power, low swing, monolithic integration, on-chip voltage conversion, parameter optimization, parasitic impedances, power dissipation modeling, power supply, reduced energy dissipation, reduced voltage swing, switching voltage regulator. I.

Volkan Kursun; Siva G. Narendra; Vivek K. De; Eby G. Friedman

2004-01-01T23:59:59.000Z

31

Bi-Directional DC-DC Converter for PHEV Applications  

DOE Green Energy (OSTI)

Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

Abas Goodarzi

2011-01-31T23:59:59.000Z

32

Washington, DC'  

Office of Legacy Management (LM)

of. Energy of. Energy Washington, DC' 26585 , The Honorable Gene Eriquez .~ City Hall I55 Deer Hill Avenue + Danbury/Connecticut 06180 .. -r. - Dear Mayor Eriquez: Secretary of Energy Hazel O!Leary has .announced a knew approach -to openness in. the Department of Energy (DOE) and its communications with the public. In support of th,is initiative, we are,pleased to forward the enclosed information, related to the former Sperry Products,'.Inc. site in your jurisdiction ,that performed,work for DOE or its predecessor agencies. Th,is informatipn is provided,for your information, use, and retenti~oh. DOE's Formeily Utilized Sites Remedial Action Program is responsible for. identification of sites used by'DOE's predecessor agencies, determining their current radiological condition and,

33

Radio frequency dc-dc power conversion  

E-Print Network (OSTI)

THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

Rivas, Juan, 1976-

2007-01-01T23:59:59.000Z

34

Building Scale DC Microgrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale DC Microgrids Title Building Scale DC Microgrids Publication Type Conference Proceedings LBNL Report Number LBNL-5729E Year of Publication 2012 Authors Marnay, Chris, Steven...

35

AOCS Official Method Dc 5-59  

Science Conference Proceedings (OSTI)

Combined Alcohols AOCS Official Method Dc 5-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines total fatty alcohols and permits estimation

36

AOCS Official Method Dc 3a-59  

Science Conference Proceedings (OSTI)

Alcohol-Soluble Matter AOCS Official Method Dc 3a-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the total alcohol-soluble matter in a

37

DC source assemblies  

SciTech Connect

Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

Campbell, Jeremy B; Newson, Steve

2013-02-26T23:59:59.000Z

38

Building Scale DC Microgrids  

E-Print Network (OSTI)

a 10 kW vertical axis wind turbine, and Fig. 4 shows one ofgrid Fig. 3. Vertical axis wind turbine in the AIT DC µgrid

Marnay, Chris

2013-01-01T23:59:59.000Z

39

AC-DC Difference  

Science Conference Proceedings (OSTI)

... The NIST ac-dc Difference Project provides US industry with the essential link between ac ... Facilities/Tools Used: ... NIST CNST Nanofabrication facility. ...

2012-08-09T23:59:59.000Z

40

Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection  

Science Conference Proceedings (OSTI)

Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

Christensen, E.; Alleman, T. L.; McCormick, R. L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Scale DC Microgrids  

E-Print Network (OSTI)

an increasingly familiar generation source and elec- tronicssource of ancillary services either to buffer local variable generation,sources, e.g. photovoltaic modules (PV), from other direct current (DC) generation,

Marnay, Chris

2013-01-01T23:59:59.000Z

42

Adaptive decentralised control of parallel DC-DC converter systems  

Science Conference Proceedings (OSTI)

In this paper, we develop a robust controller for parallel DC-DC converter system by combining the adaptive backstepping technique and decentralised control. The voltages and currents of all converters are coupled with each other. The parallel DC-DC ...

Jing Zhou

2012-08-01T23:59:59.000Z

43

FAST LAB  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of the entrance to the FAST Lab building. FAST LAB Located on the campus of Aiken Technical College (see map 28k) in Aiken, South Carolina, the FAST Lab is a partnership of...

44

Differential impact of immediate total deregulation of wellhead prices of natural gas on minority and low-income homeowners: a general review and a case study in the Washington, DC area  

SciTech Connect

In this study, the authors evaluate the impact of total deregulation of wellhead prices of natural gas on various strata of the residential consuming population, and compare it to the baseline impact of a continuation of the Natural Gas Policy Act of 1978. They found that minority and poverty homeowners will suffer greater relative welfare losses than their white and non-poverty counterparts. They developed quantitative estimates of the extent of these differentials, and offered some policy proposals suggested by these findings. 54 refs., 8 figs., 68 tabs.

Green, R.D.; Gilbert, H.R.

1983-01-01T23:59:59.000Z

45

Dc arc weld starter  

DOE Patents (OSTI)

A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

Campiotti, R.H.; Hopwood, J.E.

1989-02-17T23:59:59.000Z

46

DC arc weld starter  

SciTech Connect

A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

Campiotti, Richard H. (Tracy, CA); Hopwood, James E. (Oakley, CA)

1990-01-01T23:59:59.000Z

47

A dc transformer  

Science Conference Proceedings (OSTI)

Although conventional transformers are ac, a device that may be termed a dc transformer has been constructed by using superconductors. To provide an understanding of how such a transformer would operate, some of the properties of type I and type II superconductors ...

I. Giaever

1966-09-01T23:59:59.000Z

48

Washington. DC,20585  

Office of Legacy Management (LM)

Washington. DC,20585 Washington. DC,20585 MAY' i 1995 .- The Honorable Freeman R. Bosley, Jr. ' r City Hall 1200 Narket Street St. Louis, Missouri 63103 Dear Mayor Bosley: ,'~ ,. : !' Secretary of Energy Hazel O'Leary'has announced a new approach to'openness'in " the Department of,Energy"(DOE) and its communications with the pu~blic. In 'support of this initiative, we are pleased to forward the enclosed information rel,ated to the former Petrolite Corp. site in your jurisdiction that,performed, work for DDE or,i.ts predecessor agencies. your information, use, and retention. This information is provided for DDE's Formerly Utilized Sites Remedial Action Program is responsible for identification of sites used by DDE's predecessor agencies, determining their

49

I ' Washington, DC'  

Office of Legacy Management (LM)

' Washington, DC' ' Washington, DC' 20585 The.Honorable Don Trotter, 102' Public Square Clarksville, Tennessee '37040 '_ _' ' Dear Mayor Trotter: '. Secretary of Energy Hazel .O'Leary has announced a new the Department of Energy (DOE) and its communications support of this initiative, we are pleased to forward related to the Clarksville Foundry.& Machine Co. site approach to openness in with the publ,ic'. In " the~enclosed~information in your'jurisdiction that performed work for DOE or its predecessor'agencies. This information. is provided, for.your information, use, and retention. remedial action conservative' set of technical investigations to assure environment. If'you have any questions, please feel free~to call DrI W. Alexander Uilliams 301-427-1719 of my staff.

50

Fast superconducting magnetic field switch  

DOE Patents (OSTI)

The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

Goren, Y.; Mahale, N.K.

1995-12-31T23:59:59.000Z

51

Auxiliary resonant DC tank converter  

SciTech Connect

An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

Peng, Fang Z. (Knoxville, TN)

2000-01-01T23:59:59.000Z

52

Improved DC Gun Insulator  

SciTech Connect

Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

2009-05-01T23:59:59.000Z

53

Fast superconducting magnetic field switch  

DOE Patents (OSTI)

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01T23:59:59.000Z

54

Departmentaf Energy Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departmentaf Departmentaf Energy Washington, DC 20585 MAR 4 1998 MEMORANDUM FOR: James H. Chafin, AL Robert Fisher, CH Steven Hamel, OR William Daubenspeck, LL James Hanley, SAN Robert Southworth, RL Harold Dixon, SR \ Lisa Jarr, FETC"/"',,,-' ( ~ ( ) ( I C{ \'"~V FROM: Paul A. Gottlieb'<,. ~ ' \ Assistant General Counsel . for Technology Transfer / and Intellectual Property SUBJECT: U.S. Competitiveness Provision. Except for the cases discussed further below, attached is the U.S. Competitiveness provision which you should begin providing as our initial negotiating position to inventors/contractors requesting identified and, advance patent waivers. Of course, it is not· expected that every inventor/contractor will agree to the exact language in the provision, in which case modifications to the provision can be made. In those cases where substantial changes are contemplated,

55

Washington, DC,20585  

Office of Legacy Management (LM)

>/gGq ' >/gGq ' ,, ' .. Department of Edgy Washington, DC,20585 ,I ' , APR 0 4 1995 The Honorable Patrick Ungaro 26 S. Phelps Street Youngstown, Ohio 44503 .' Dear );layor.Ungaro: Secretary of'Energy Hazel O'Leary has announced a new approach to openness in the Oepartment of Energy (DOE) and its coannunications with the public. In support of this initiative, we are pleased to forward the,enclosed information related to the former Ajax-Hagnethermic C,orp. site in your jurisdiction that performed work for DOE's predecessoragencies. This information is~provided for your information, use, and retention. DOE's Formerly Utilized Sites Remedial Action Program is responsible for identificationof sites used by DOE's predecessor agencies, determining their current radiological condition and, where it has authority, performing-

56

D.C.  

NLE Websites -- All DOE Office Websites (Extended Search)

Future scientists advance to national Future scientists advance to national level April 3, 2012 Science Bowl winners represent NM in Washington, D.C. A team from Los Alamos bested 39 other teams from around New Mexico in the 10- hour New Mexico Regional Science Bowl, held recently at Albuquerque Academy. The team went on to represent New Mexico in the 22nd Annual Department of Energy (DOE) National Science Bowl. In addition to their travel expenses, the team also won $5,000 for their school. The team consists of students, Alexander Wang, Micha Ben-Naim, Scott Carlsten, Lorenzo Venneri and Kevin Gao, and Coach, Paolo Venneri. - 2 - Albuquerque Academy took second place and La Cueva High School in Albuquerque placed third in the "Jeopardy!"-style event. During the competition, students are asked

57

Lessons Learned - The EV Project DC Fast Charge - Demand Charge...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle kW Kilowatt kWh Kilowatt-hour PEV Plug-in Electric Vehicle PHEV Plug-in Hybrid Electric Vehicle SOC State of Change TOU Time-of-Use U.S. United States Lessons...

58

Direct Current Fast Charger System Characterization: Standards, Penetration Potential, Testing, and Performance Evaluation  

Science Conference Proceedings (OSTI)

The importance of direct current (dc) fast charging of plug-in electric vehicles (PEVs) is expected to grow in the near future. This report presents a brief overview of the various standards and protocols in use and in development along with a market assessment of various dc fast chargers and compatible vehicles planned. Modeling and analysis were performed to evaluate the penetration of dc fast chargers based on vehicle driving patterns, region, and charger power. A 200-V, three-phase fast charger was i...

2011-12-14T23:59:59.000Z

59

Triple voltage dc-to-dc converter and method  

DOE Patents (OSTI)

A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

Su, Gui-Jia (Knoxville, TN)

2008-08-05T23:59:59.000Z

60

DC's Marble ceiling : urban height and its regulation in Washington, DC; Urban height and its regulation in Washington, DC.  

E-Print Network (OSTI)

??Washington, DC has a unique urban form that is the result of a century-old law. Through the narrow lens of DC's height limit, I survey… (more)

Trueblood, Andrew Tyson

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Washington DC | OpenEI Community  

Open Energy Info (EERE)

Washington DC Home Linked Open Data Workshop in Washington, D.C. Description: A group organizing the LOD workshop in Washington, D.C. in fall 2012 A follow-up event to the...

62

Catalog of DC Appliances and Power Systems  

E-Print Network (OSTI)

Brushless DC permanent magnet motor EV electric vehicle Btubrushless DC permanent magnet motors [11]. We note that themotor 2 Same VSD = variable speed drive BDCPM = brushless DC permanent magnet

Garbesi, Karina

2012-01-01T23:59:59.000Z

63

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

64

Definition: DC Resistivity Survey (Schlumberger Array) | Open...  

Open Energy Info (EERE)

Schlumberger Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Schlumberger Array) The Schlumberger array is a type of electrode configuration for a DC...

65

Catalog of DC Appliances and Power Systems  

E-Print Network (OSTI)

by end use and appliance type. 217. Functions embodied in appliances and DC technologies thatthat both the standard appliance and the DC-internal

Garbesi, Karina

2012-01-01T23:59:59.000Z

66

D)Ig,Ital Pred'icti've n-Line Energy t*imi4zat4ioon cheme for D-DC Converters  

E-Print Network (OSTI)

D)Ig,Ital Pred'icti've n-Line Energy t*imi4zat4ioon cheme for D-DC Converters Olivier Trescases1 energy conservation technique based on predicting the load current of a DC-DC converter that may feed-time and applied as feed-forward to the DC-DC converter in order to reduce the total energy drawn from the battery

Prodiæ, Aleksandar

67

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

68

Catalog of DC Appliances and Power Systems  

SciTech Connect

This document catalogs the characteristics of current and potential future DC products and power systems.

Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

2010-10-13T23:59:59.000Z

69

Fast valve  

DOE Patents (OSTI)

A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

Van Dyke, W.J.

1992-04-07T23:59:59.000Z

70

Fast valve  

DOE Patents (OSTI)

A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

Van Dyke, William J. (Grafton, VA)

1992-01-01T23:59:59.000Z

71

AC versus DC distribution systems- Did we get it right?  

DOE Green Energy (OSTI)

We presently enjoy a predominantly ac electrical distribution system, the engineering basis for which was designed over 100 years ago. While ac distribution systems have served us well, we should periodically pause to assess what opportunities we have accepted or been denied by the overwhelming predominance of ac electrical power distribution systems. What opportunities could be obtained by engineering dc distribution into at least portions of our present system? What advantages of the present ac distribution system should be recognized and protected? This paper will focus on distribution within premise and low-voltage distribution systems. Specifically, we will address the conversion efficiency costs of adopting various premise ac and dc distribution system topologies. According to a simple predictive model formulated in this paper, premise residential dc distribution will incur unfavorable total conversion efficiency compared with existing ac premise distribution. However, if a residence is supplied by a fuel cell or another dc generator, the total conversion efficiency within a residential dc distribution system could be similar to, or even better than, that for ac distribution.

Hammerstrom, Donald J.

2007-06-28T23:59:59.000Z

72

Stabilizing technique for AC-DC boost PFC converter based on time delay feedback  

Science Conference Proceedings (OSTI)

It is well known that the ac-dc power factor correction (PFC) boost preregulator can present instability at the line frequency. This nonlinear phenomenon can jeopardize the system performances by increasing the total harmonic distortion and decreasing ... Keywords: ac-dc converters, line frequency instability, power factor correction (PFC), time delay feedback (TDF)

Abdelali El Aroudi; Mohamed Orabi

2010-01-01T23:59:59.000Z

73

Light-weight DC to very high voltage DC converter  

DOE Patents (OSTI)

A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

Druce, Robert L. (Union City, CA); Kirbie, Hugh C. (Dublin, CA); Newton, Mark A. (Livermore, CA)

1998-01-01T23:59:59.000Z

74

Light-weight DC to very high voltage DC converter  

DOE Patents (OSTI)

A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

Druce, R.L.; Kirbie, H.C.; Newton, M.A.

1998-06-30T23:59:59.000Z

75

Convergence Analysis of DC Algorithm for DC programming with ...  

E-Print Network (OSTI)

programs to which it gave almost always global solutions and proved to be more robust ... In this paper, we consider DC programming with subanalytic data. .... open ball with the center x ? Rn and radius ? > 0 is denoted by B(x, ?); while the unit ... and C ? Rn is a nonempty convex set, we can equivalently transform it into a.

76

A high-power switch-mode dc power supply for dynamic loads  

SciTech Connect

High-voltage dc power supplies are often required to operate with highly dynamic loads, such as arcs. A switch-mode dc power supply can offer significant advantages over conventional thyristor-based dc power supplies under such conditions. It can quickly turn off the supply to extinguish the arc, and it can quickly recover after the arc. It has a relatively small output filter capacitance, which results in small stored energy available to the arc. A 400-kW, 50-kV switch-mode dc power supply for an electron-beam gun that exploits these advantages was designed and tested. It uses four 100-kW, current-source-type dc-dc converters with inputs in parallel and outputs in series. The dc-dc converters operate at 20 kHz in the voltage regulator part and 10 kHz in the inverter, transformer, and output rectifier part of the circuit. Insulated gate bipolar transistors (IGBTs) are used as the power switches. Special techniques are used to protect the power supply and load against arcs and hard shorts. The power supply has an efficiency of 93%, an output voltage ripple of 1%, and fast dynamic response. In addition, it is nearly one-third the size of conventional power supplies.

Shimer, D.W.; Lange, A.C. [Lawrence Livermore National Lab., CA (United States); Bombay, J.N. [Kaiser Engineers, Oakland, CA (United States)

1994-06-23T23:59:59.000Z

77

DC systems with transformerless converters  

Science Conference Proceedings (OSTI)

A technical and economic feasibility study of HVDC systems without converter transformers is presented. The presentation includes proposed solutions to the drawback related to the absence of galvanic separation between the ac and dc systems, if the converter transformers are eliminated. The results show that HVDC systems without converter transformers are both technically and economically feasible. The cost savings can be substantial.

Vithayathil, J.J.; Mittlestadt, W. [Bonneville Power Administration, Portland, OR (United States); Bjoerklund, P.E. [ABB Power Systems AB, Ludvika (Sweden)

1995-07-01T23:59:59.000Z

78

Nuclear magnetic resonance experiments with dc SQUID amplifiers  

Science Conference Proceedings (OSTI)

The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

Heaney, M.B. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

79

DC to DC power converters and methods of controlling the same  

DOE Patents (OSTI)

A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

2012-12-11T23:59:59.000Z

80

Catalog of DC Appliances and Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of DC Appliances and Power Systems Catalog of DC Appliances and Power Systems Title Catalog of DC Appliances and Power Systems Publication Type Report LBNL Report Number LBNL-5364E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, and Hongxia Shen Document Number LBNL-5364E Date Published October Publisher Lawrence Berkeley National Laboratory Abstract This document catalogs the characteristics of current and potential future direct current (DC) products and power systems. It is part of a larger U.S. Department of Energy-funded project, "Direct-DC Power Systems for Energy Efficiency and Renewable Energy Integration with a Residential and Small Commercial Focus". That project is investigating the energy-savings potential, benefits, and barriers of using DC generated by on-site renewable energy systems directly in its DC form, rather than converting it first to alternating current (AC) for distribution to loads. Two related reports resulted from this work: this Catalog and a companion report that addresses direct-DC energy savings in U.S. residential buildings.Interest in 'direct-DC' is motivated by a combination of factors: the very rapid increase in residential and commercial photovoltaic (PV) power systems in the United States; the rapid expansion in the current and expected future use of energy efficient products that utilize DC power internally; the demonstrated energy savings of direct-DC in commercial data centers; and the current emergence of direct-DC power standards and products designed for grid-connected residential and commercial products. Based on an in-depth study of DC appliances and power systems, we assessed off-grid markets for DC appliances, the DC compatibility of mainstream electricity end-uses, and the emerging mainstream market for direct-DC appliances and power systems.

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ecological benefits of dc power transmission  

Science Conference Proceedings (OSTI)

The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

Kutuzova, N. B. [JSC 'NIIPT' (Russian Federation)

2011-05-15T23:59:59.000Z

82

A high-voltage low-power DC-DC buck regulator for automotive applications  

Science Conference Proceedings (OSTI)

This work presents a High-Voltage Low-Power CMOS DC-DC buck regulator for automotive applications. The overall system, including the high and low voltage analog devices, the power MOS and the low voltage digital devices, was realized in the Austriamicrosystems ... Keywords: DC-DC regulator, buck converter, current control, low quiscent current, pulse frequency modulation

G. Pasetti; L. Fanucci; R. Serventi

2010-03-01T23:59:59.000Z

83

DC picogrids: a case for local energy storage for uninterrupted power to DC appliances  

Science Conference Proceedings (OSTI)

An increasing number of appliances now operate on DC and providing uninterrupted power supply (UPS) to them through outages requires two conversions: first from an energy store, typically a DC battery, to AC mains and then from AC mains to the DC input ... Keywords: DC picogrid, conversion losses, power source identification

Sunil Kumar Ghai, Zainul Charbiwala, Swarnalatha Mylavarapu, Deva P. Seetharamakrishnan, Rajesh Kunnath

2013-01-01T23:59:59.000Z

84

Multiport DC/DC Converter for Stand-alone Photovoltaic Lighting System with Battery Storage  

Science Conference Proceedings (OSTI)

Photovoltaic energy has nowadays an increased importance in electrical power applications. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore a multiple-input DC/DC converter ... Keywords: Multiport DC/DC Converter, photovoltaic (PV), battery, charge/discharge

Shengyong Liu; Xing Zhang; Haibin Guo; Jun Xie

2010-06-01T23:59:59.000Z

85

EA-327-A DC Energy, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-A DC Energy, LLC EA-327-A DC Energy, LLC Order authorizing DC Energy to export electric energy to Canada. EA-327-A DC Energy.pdf More Documents & Publications Application to...

86

EA-377 DC Energy Texas LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-377 DC Energy Texas LLC EA-377 DC Energy Texas LLC Order authorizing DC Energy Texas LLC to export electric energy to Mexico. EA-377 DC Energy Texas LLC More Documents &...

87

EA-351 DC Energy Dakota, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 DC Energy Dakota, LLC EA-351 DC Energy Dakota, LLC Order authorizing DC Energy Dakota, LLC to export electric energy to Canada EA-351 DC Energy Dakota, LLC More Documents &...

88

Phase-Shifted Full Bridge DC-DC Converter with Energy Recovery Clamp and Reduced Circulating Current  

E-Print Network (OSTI)

Phase-Shifted Full Bridge DC-DC Converter with Energy Recovery Clamp and Reduced Circulating an improved PSFB DC-DC converter using only a modified energy recovery clamp circuit attached at the secondary and/or output voltage changes. Section II describes the PSFB DC-DC circuit with the proposed energy

89

DC Distribution: The Power To Change Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

DC Distribution: The Power To Change Buildings DC Distribution: The Power To Change Buildings Speaker(s): Brian Patterson Dennis Symanski Liang Downey Date: July 14, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This seminar presents an overview of the effort to create new applications standards to drive the distribution and use of native direct current (dc) in net zero energy commercial and residential buildings. From the early days of electric power generation, distribution and use there's been a debate over which form of power, AC or DC, is best. Edison set the stage for this argument in the late 1800's with his invention of DC powered lighting systems. Tesla's system of AC dynamos, transformers and motors all but stopped the growing use of DC by the turn of the century. With the

90

Map Locating Berkeley Lab Washington, DC Office  

NLE Websites -- All DOE Office Websites (Extended Search)

WASHINGTON, DC PROJECTS OFFICE WASHINGTON, DC PROJECTS OFFICE Map LEGEND: A:Berkeley Lab DC Office; PNNL; NREL; ORNL | B: EPA Waterside Mall C: Metrorail Station: Smithsonian | D: Metrorail Station: L'Enfant Plaza Notice: Due to security requirements in the building, all visitors to the Berkeley Lab DC Projects Office must check in at the ground floor entrance. If you do not have a DOE access badge, you will need to obtain a building visitor badge. To expedite this process, visitors are encouraged to RSVP to their meeting host or call (202) 488-2250 ahead of time. Metal detectors and x-ray screening of personal items are required for all visitors and staff entering the building. Directions to the Lab's Washington, DC Projects Office 901 D Street, SW Suite 950 Washington, DC 20024 Phone/Fax: (202) 488-2250

91

Active dc filter for HVDC systems  

SciTech Connect

This article is a case history of the installation of active dc filters for high-performance, low-cost harmonics filtering at the Lindome converter station in the Konti-Skan 2 HVDC transmission link between Denmark and Sweden. The topics of the article include harmonics, interference, and filters, Lindome active dc filter, active dc filter design, digital signal processor, control scheme, protection and fault monitoring, and future applications.

Zhang, W. (Royal Inst. of Tech., Stockholm (Sweden)); Asplund, G.

1994-01-01T23:59:59.000Z

92

AOCS Official Method Dc 1-59  

Science Conference Proceedings (OSTI)

Sampling and Preparation of Laboratory Sample AOCS Official Method Dc 1-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS DEFINITION Not applica

93

Catalog of DC Appliances and Power Systems  

E-Print Network (OSTI)

Savings in the Residential and Commercial Sectors with High- Efficiency Electric Motors,savings of 30% from switching to the use of variable speed brushless DC motors. Electric

Garbesi, Karina

2012-01-01T23:59:59.000Z

94

High efficiency resonant dc/dc converter for solar power applications  

E-Print Network (OSTI)

This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across ...

Inam, Wardah

2013-01-01T23:59:59.000Z

95

Radio frequency dc-dc converters : device characterization, topology evaluation, and design  

E-Print Network (OSTI)

High frequency power conversion is attractive for the opportunities it affords for improved performance. Dc-dc converters operating at high frequencies use smaller-valued energy storage elements, which tend to be physically ...

Leitermann, Olivia

2008-01-01T23:59:59.000Z

96

Design and evaluation of a very high frequency dc/dc converter  

E-Print Network (OSTI)

This thesis presents a resonant boost topology suitable for very high frequency (VHF, 30-300 MHz) dc-dc power conversion. The proposed design is a fixed frequency, fixed duty ratio resonant converter featuring low device ...

Pilawa-Podgurski, Robert C. N

2007-01-01T23:59:59.000Z

97

Design and characterization of a radio-frequency dc/dc power converter  

E-Print Network (OSTI)

The use of radio-frequency (RF) amplifier topologies in dc/dc power converters allows the operating frequency to be increased by more than two orders of magnitude over the frequency of conventional converters. This enables ...

Jackson, David A. (David Alexander)

2005-01-01T23:59:59.000Z

98

Washington, DC~ZO585  

Office of Legacy Management (LM)

jpfl.3%2' jpfl.3%2' ) .,Departhent of Eikrgj! : Washington, DC~ZO585 .-, , , Lf; I: ~.1,' .Yj4 , The Honorable Louis Barlup 55 ,E. Main Street Waynesboro;,Pennsy,lvania 17268 '~ Dear Mayor Barl,up:' Secretary of Energy Hazel O'Leary has'announced' a new approach to openness,in the Department of Energy-(DOE) and its communications with the public. In support-of this initiative, we are pleased.to forward the enclosed information related to the former Landis Machine Tool Co. site in your jurisdiction that performed work for DOE or its predecessor agencies. This information:is provided for your information< use, and retention. DOE's Formerly Utilized Sites Remedial Action Program is responsible for identification of sites used by DOE's predecessor agencies, determining their

99

High voltage DC power supply  

DOE Patents (OSTI)

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

Droege, T.F.

1989-12-19T23:59:59.000Z

100

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE - Office of Legacy Management -- Naval Research Laboratory - DC 02  

Office of Legacy Management (LM)

Research Laboratory - DC 02 Research Laboratory - DC 02 FUSRAP Considered Sites Site: NAVAL RESEARCH LABORATORY (DC.02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.02-4 Evaluation Year: 1987 DC.02-4 Site Operations: Research and development on thermal diffusion. DC.02-4 Site Disposition: Eliminated - No Authority - AEC licensed - Military facility DC.02-4 DC.02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium DC.02-2 DC.02-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to DOD DC.02-4 Also see Documents Related to NAVAL RESEARCH LABORATORY DC.02-1 - AEC Memorandum and Source Material License No. C-3393;

102

Washington, DC | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC Washington, DC Last updated on 2013-08-02 Current News In December, the DC CCCB voted 7-1 to adopt the 2012 IECC. The code will now enter administrative review and legislative process with likely adoption in the second half of 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Based on 2008 DC Construction Code with several amendments. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the District of Columbia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 12/26/2009 Adoption Date 12/26/2008 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No DC DOE Determination Letter, May 31, 2013

103

Method of measuring the dc electric field and other tokamak parameters  

DOE Patents (OSTI)

A method including a brief, deliberate perturbation of hot tokamak electrons which produces a transient synchrotron radiation signal, in frequency-time space, and the inference, using very fast algorithms, of plasma parameters including the effective ion charge state Z{sub eff}, the direction of the magnetic field, and the position and width in velocity space of the brief heating, and, in particular, the dc toroidal electric field.

Fisch, N.J.; Kritz, A.H.

1990-03-01T23:59:59.000Z

104

State Energy Program Assurances - Washington D.C. Mayor Fenty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Washington D.C. Mayor Fenty State Energy Program Assurances - Washington D.C. Mayor Fenty Letter from Washington D.C. Mayor Fenty providing...

105

EA-377 DC Energy Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 DC Energy Texas EA-377 DC Energy Texas Order authorizing DC Energy Texas to export electric energy to Mexico. EA-377 DCE Texas Order.pdf More Documents & Publications Application...

106

EA-377 DC Energy Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-377 DC Energy Texas EA-377 DC Energy Texas Order authorizing DC Energy Texas to export electric energy to Mexico. EA-377 DCE Texas Order.pdf More Documents & Publications...

107

Energy savings from direct-DC in U.S. residential buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

savings from direct-DC in U.S. residential buildings savings from direct-DC in U.S. residential buildings Title Energy savings from direct-DC in U.S. residential buildings Publication Type Journal Article Year of Publication 2013 Authors Vossos, Vagelis, Karina Garbesi, and Hongxia Shen Journal Energy and Buildings Volume Volume 68, Part A Pagination 223-231 Date Published 09/2013 Keywords Direct current (DC), energy conservation, Photovoltaics (PV), residential buildings Abstract An increasing number of energy-efficient appliances operate on direct current (DC) internally, offering the potential to use DC directly from renewable energy systems, thereby avoiding the energy losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of a 'direct-DC house' compared to that of a typical net-metered house with AC distribution, assuming identical DC-internal loads. The model comparisons were run for 14 cities in the United States, using hourly, simulated PV-system output and residential loads. The model tested the effects of climate and battery storage. A sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect potential energy savings. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate.

108

National Petroleum Council Washington, DC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Petroleum Council Washington, DC National Petroleum Council Washington, DC Remarks by Secretary of Energy Spencer Abraham on the national energy plan. National Petroleum...

109

News From the D.C. Office  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office The federal government is the largest single purchaser in the world for many energy-related products. Federal buying power-along with that of state and local agencies-represents a largely untapped resource to increase the energy efficiency of consumer products and commercial equipment. LBL is helping the DOE Federal Energy Management Program (FEMP) develop and lead a government-wide initiative to capture this market-transforming opportunity. Jeff Harris and others in LBL's D.C. office are heading FEMP's efforts to identify how future federal purchases can be more energy-efficient. The U.S. government spends more than $70 billion a year to purchase supplies and equipment, of which an estimated $10-20 billion are energy-

110

D.C. | OpenEI Community  

Open Energy Info (EERE)

94 94 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234494 Varnish cache server D.C. Home Kyoung's picture Submitted by Kyoung(155) Contributor 6 September, 2012 - 08:51 GRR Update Meeting scheduled for 9/13 in D.C. D.C. GRR meeting update The next Geothermal Regulatory Roadmap update meeting will be held in Washington, D.C. on Thursday, September 13 from 2-4 p.m. Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

111

AOCS Official Method Dc 3b-59  

Science Conference Proceedings (OSTI)

Alcohol-Insoluble Matter AOCS Official Method Dc 3b-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The residue from the alcohol-soluble determination (AOCS O

112

AOCS Official Method Dc 6-59  

Science Conference Proceedings (OSTI)

Alkalinity AOCS Official Method Dc 6-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the alkalinity or acidity of fatty alkyl sulfates.

113

AOCS Official Method Dc 7-59  

Science Conference Proceedings (OSTI)

Sodium Sulfate AOCS Official Method Dc 7-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the sodium sulfate in fatty alkyl sulfates by

114

AOCS Official Method Dc 8-59  

Science Conference Proceedings (OSTI)

Unsulfated Material AOCS Official Method Dc 8-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines unsulfated fatty alcohols in fatty alkyl

115

AOCS Official Method Dc 4-59  

Science Conference Proceedings (OSTI)

Ester Sulfites AOCS Official Method Dc 4-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The determination of ester SO 3 is dependent upon the hydro

116

Catalog of DC Appliances and Power Systems  

E-Print Network (OSTI)

produce a DC-compatible dishwasher that uses 51% less energyCooking Equipments Dishwashers Lighting Electric Other Waterby end-Use ( TWh) Dishwashers DVDs/VCRs DVDs/VCRs Freezers

Garbesi, Karina

2012-01-01T23:59:59.000Z

117

AOCS Official Method Dc 2-59  

Science Conference Proceedings (OSTI)

Moisture by Distillation Method AOCS Official Method Dc 2-59 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines moisture by distillation with

118

Recovery Act State Memos Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, DC Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

119

Development and Demonstration of DC Photovoltaic Applications  

Science Conference Proceedings (OSTI)

This report documents a field demonstration performed at Bowling Green State University (BGSU) as part of an Electric Power Research Institute (EPRI) research project on improving the economics of photovoltaic (PV) power generation with innovative direct current (dc) applications. Unlike conventional dc uses for PV energy, this project aimed to demonstrate the powering of specific loads in grid-connected buildings without interference to the ac distribution system or other building loads.

2009-10-28T23:59:59.000Z

120

Fast flux locked loop  

DOE Patents (OSTI)

A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

2002-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

AC/DC Smart Control and Power Sharing of DC Distribution Systems.  

E-Print Network (OSTI)

?? The purpose of this research is to develop a grid connected DC distribution system to ensure efficient integration of different alternate sources to the… (more)

Elshaer, Mohamed A

2012-01-01T23:59:59.000Z

122

A review of DC micro-grid protection  

Science Conference Proceedings (OSTI)

In this paper, an overview of DC micro-grid is described, which includes the status of DC micro-grid protection and its future development. The paper presents the key techniques of DC micro-grid protection. So far, standards, guidelines and techniques ... Keywords: DC micro-grid, protection, protective devices, structures, technological gaps

Yuhong Xie, Jia Ning, Yanquan Huang, Junbo Jia, Zhihui Jian

2013-06-01T23:59:59.000Z

123

DC-OPF Formulation with Price-Sensitive Demand Bids Junjie Sun and Leigh Tesfatsion  

E-Print Network (OSTI)

maximum willingness to pay as a function of the demanded quantity pS Lj: Dj (pS Lj) = cj - 2 · dj · pS LjDC-OPF Formulation with Price-Sensitive Demand Bids Junjie Sun and Leigh Tesfatsion Last Revised: 19 March 2008 1 Cost and Demand Function Representations Generator i's total cost function: TCi

Tesfatsion, Leigh

124

DC's Marble ceiling : urban height and its regulation in Washington, DC  

E-Print Network (OSTI)

Washington, DC has a unique urban form that is the result of a century-old law. Through the narrow lens of DC's height limit, I survey a range of topics related to urban height, starting with a review of its history of ...

Trueblood, Andrew Tyson

2009-01-01T23:59:59.000Z

125

Brief paper: Optimal switching instants for a switched-capacitor DC/DC power converter  

Science Conference Proceedings (OSTI)

We consider a switched-capacitor DC/DC power converter with variable switching instants. The determination of optimal switching instants giving low output ripple and strong load regulation is posed as a non-smooth dynamic optimization problem. By introducing ... Keywords: Control parametrization enhancing transform, Impulsive dynamical system, Power converter, Semi-infinite programming, Switched linear system

R. C. Loxton; K. L. Teo; V. Rehbock; W. K. Ling

2009-04-01T23:59:59.000Z

126

A single inductor dual input dual output DC-DC converter with hybrid supplies for solar energy harvesting applications  

Science Conference Proceedings (OSTI)

A single inductor dual input dual output (SIDIDO) DC-DC converter is proposed for solar energy harvesting applications. The converter supports hybrid power supplies from both the photovoltaic (PV) cells and the rechargeable battery. Apart from the conventional ... Keywords: DC-DC converter, MPPT, PV cells, dual-input-dual-output, energy harvesting, single inductor

Hui Shao; Chi-Ying Tsui; Wing-Hung Ki

2009-08-01T23:59:59.000Z

127

Good Energies (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

Energies (Washington DC) Energies (Washington DC) Name Good Energies (Washington DC) Address 1250 24th St., NW, Suite 250 Place Washington, District of Columbia Zip 20037 Product Global investor in renewable energy and energy efficiency industries Year founded 2001 Phone number (202) 747-2550 Website http://www.goodenergies.com/ Coordinates 38.90649°, -77.051534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.90649,"lon":-77.051534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors  

SciTech Connect

In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

Shepard, Kenneth L

2013-03-31T23:59:59.000Z

129

Perseus LLC (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

DC) DC) Jump to: navigation, search Logo: Perseus LLC (Washington DC) Name Perseus LLC (Washington DC) Address 2099 Pennsylvania Avenue, N.W., 9th Floor Place Washington, District of Columbia Zip 20006 Product Private equity fund Year founded 1995 Phone number (202) 452-0101 Website http://www.perseusllc.com/ Coordinates 38.901462°, -77.046347° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.901462,"lon":-77.046347,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Halbach array DC motor/generator  

DOE Patents (OSTI)

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

131

Halbach array DC motor/generator  

DOE Patents (OSTI)

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

1998-01-06T23:59:59.000Z

132

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

DOE Green Energy (OSTI)

An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

2011-10-13T23:59:59.000Z

133

SoC Energy Savings = Reduce+Reuse+Recycle: A Case Study Using a 660MHz DC-DC Converter with Integrated Output Filter  

E-Print Network (OSTI)

SoC Energy Savings = Reduce+Reuse+Recycle: A Case Study Using a 660MHz DC-DC Converter will use all 3 of these techniques in the DC-DC buck converter shown in Fig. 1. Energy reduction of the DC-DC converter front-end drivers. Power Converter supplied energy reused energy recycled energy

Lemieux, Guy

134

Fast Molecular Solvation Energetics and Forces Computation  

Science Conference Proceedings (OSTI)

The total free energy of a molecule includes the classical molecular mechanical energy (which is understood as the free energy in vacuum) and the solvation energy, which is caused by the change of the environment of the molecule (solute) from vacuum ... Keywords: error analysis, fast summation, generalized Born, molecular surface

Chandrajit Bajaj; Wenqi Zhao

2009-11-01T23:59:59.000Z

135

Development of a dc-to-ac inverter based on waveshaping  

SciTech Connect

A new topology for utility-interactive, dc-ac inverters is explored. The approach is presently limited by available devices to the single-phase, 2 to 10 kW power levels typical of residential photovoltaic applications. The approach combines two of the three basic inverter operations - waveshaping and regulation - in a single dc-dc converter stage. The output of this stage is a full-wave rectified (unipolar) sine wave. An inversion stage follows, performing the third basic inverter operation. The output is a current sine wave. This approach features unity power factor and less than 2% total current harmonic distortion. A 1-kW prototype was constructed, using a buck (down) converter for the dc-dc stage switching at approximately 20 kHz. Efficiency was generally above 90% with a peak efficiency of 94%. A cost breakdown of the prototype indicated the inverter could be built to meet the DOE cost goals for this class of inverter.

Cox, C.H. III; Landsman, E.E.; Rasmussen, N.E.

1982-08-01T23:59:59.000Z

136

SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles  

DOE Green Energy (OSTI)

The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO

2007-07-01T23:59:59.000Z

137

Custom DC-DC converters for distributing power in SLHC trackers  

E-Print Network (OSTI)

A power distribution scheme based on the use of on-board DC-DC converters is proposed to efficiently distribute power to the on-detector electronics of SLHC trackers. A comparative analysis of different promising converter topologies is presented, leading to the choice of a magneticbased buck converter as a first conversion stage followed by an on-chip switched capacitors converter. An overall efficiency above 80% is estimated for the practical implementation proposed.

Allongue, B; Blanchot, G; Faccio, F; Fuentes, C; Mattavelli, P; Michelis, S; Orlandis, S; Spiazzi, G

2008-01-01T23:59:59.000Z

138

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

139

System Tests with DC-DC Converters for the CMS Silicon Strip Tracker at SLHC  

E-Print Network (OSTI)

The delivery of power is considered to be one of the major challenges for the upgrade of the CMS silicon strip tracker for SLHC. The inevitable increase in granularity and complexity of the device is expected to result in a power consumption comparable or even higher than the power consumption of todays' strip tracker. However, the space available for cables will remain the same. In addition, a further increase of the tracker material budget due to cables and cooling is considered inacceptable, as the performance of the CMS detector must not be compromised for the upgrade. Novel powering schemes such as serial powering or usage of DC-DC converters have been proposed to solve the problem. To test the second option, substructures of the current CMS silicon strip tracker have been operated for the first time with off-the-shelf DC-DC buck converters as well as with first prototypes of custom-designed DC-DC converters. The tests are described and the results are discussed.

Klein, K; Karpinski, W; Merz, J; Sammet, J

2008-01-01T23:59:59.000Z

140

PowerCentsDC Program Final Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

initiated PowerCentsDC to test the reactions and impacts on consumer behavior of smart prices, smart meters, and smart thermostats in the District of Columbia. PowerCentsDC Program...

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Definition: DC Resistivity Survey (Wenner Array) | Open Energy...  

Open Energy Info (EERE)

Wenner Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Wenner Array) The Wenner array is a type of electrode configuration for a DC resistivity survey and...

142

Definition: DC Resistivity Survey (Pole-Dipole Array) | Open...  

Open Energy Info (EERE)

Pole-Dipole Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Pole-Dipole Array) The Pole-Dipole array is a type of electrode configuration for a DC...

143

User Science Exhibition March 28-29 in Washington DC  

NLE Websites -- All DOE Office Websites (Extended Search)

User Science Exhibition March 28-29 in Washington DC User Science Exhibition March 28-29 in Washington DC February 17, 2012 by Francesca Verdier (0 Comments) This March 28 and 29...

144

D.C. WRRC Report No. GLOSSARY OF USEFUL  

E-Print Network (OSTI)

#12;#12;D.C. WRRC Report No. GLOSSARY OF USEFUL WATER RESEARCH TERMS The D.C. Water Resources PREFACE The glossary of water research terms was prepared from a compilation of glossaries from various

District of Columbia, University of the

145

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

and S.P. Jamieson, DC Microgrids: Benefits and Barriers.of direct-DC and DC microgrids in residential and commercial

Garbesi, Karina

2012-01-01T23:59:59.000Z

146

Fast Breeder Reactor studies  

Science Conference Proceedings (OSTI)

This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

1980-07-01T23:59:59.000Z

147

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK  

E-Print Network (OSTI)

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK Geoff Walker Dept of Computer Science vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker

Walker, Geoff

148

EE443L Lab 2: Modeling a DC Motor Introduction  

E-Print Network (OSTI)

: In this lab we will develop and validate a basic model of a permanent magnet DC motor (Yaskawa Electric MINI'll discuss a permanent magnet DC motor whose stator consists of a permanent magnet. In this case, we can take in the empty blocks. Figure 2: A block diagram of a permanent magnet DC motor. Prelab Questions: 1) From your

Wedeward, Kevin

149

Design of a step-down DC-DC controller integrated circuit with adaptive dead-time control  

E-Print Network (OSTI)

A constant-frequency peak current mode synchronous step-down DC-DC controller integrated circuit has been designed with adaptive dead-time control. The adaptive dead-time control circuitry is implemented as digital ...

Li, Zhipeng, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

150

Notices 888 First Street, NE., Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 Federal Register 11 Federal Register / Vol. 76, No. 122 / Friday, June 24, 2011 / Notices 888 First Street, NE., Washington, DC 20426. The filings in the above-referenced proceeding are accessible in the Commission's eLibrary system by clicking on the appropriate link in the above list. They are also available for review in the Commission's Public Reference Room in Washington, DC. There is an eSubscription link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Dated: June 20, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011-15859 Filed 6-23-11; 8:45 am]

151

Notices 888 First Street NE., Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53 Federal Register 53 Federal Register / Vol. 78, No. 56 / Friday, March 22, 2013 / Notices 888 First Street NE., Washington, DC 20426. This filing is accessible on-line at http://www.ferc.gov, using the ''eLibrary'' link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an ''eSubscription'' link on the Web site that enables subscribers to receive email notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please email FERCOnlineSupport@ferc.gov, or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Comment Date: 5:00 p.m. Eastern Time on April 2, 2013. Dated: March 15, 2013. Kimberly D. Bose, Secretary. [FR Doc. 2013-06602 Filed 3-21-13; 8:45 am] BILLING CODE 6717-01-P

152

DC side filters for multiterminal HVDC systems  

SciTech Connect

Multiterminal HVDC systems present challenges in the specification and design of suitable dc side filtering. This document examines the existing experience and addresses the particular technical problems posed by multiterminal systems. The filtering requirements of small taps are discussed, as is the potential use of active filters. Aspects of calculation and design are considered and recommendations made to guide the planners and designers of future multiterminal schemes.

Shore, N.L.; Adamson, K.; Bard, P. [and others

1996-10-01T23:59:59.000Z

153

A fully integrated switched-capacitor DC-DC converter with dual output for low power application  

Science Conference Proceedings (OSTI)

This paper presents a fully integrated on-chip switched-capacitor (SC) DC-DC converter that supports two regulated power supply voltages of 2.2V and 3.2V from 5V input supply and delivers the maximum load currents up to 8mA at both of the outputs. The ... Keywords: dc-dc converter, dual output, switched-capacitor

Heungjun Jeon; Yong-Bin Kim

2012-05-01T23:59:59.000Z

154

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

155

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

156

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

157

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

158

AC-to-DC Power Transmission Line Conversion  

Science Conference Proceedings (OSTI)

System planners have grown more interest in the prospect of converting ac transmission lines to dc as transfer constraints become more severe and they increasingly recognize dc as a means to improve ac system performance. Two factors have influenced the economic case for conversion. The first is development of a new (tripole) dc configuration that allows dc to make full use of all three ac phase positions without the need for earth return. The second is the realization that converting an ac line to dc ma...

2010-11-10T23:59:59.000Z

159

Program on Technology Innovation: A Superconducting DC Cable  

Science Conference Proceedings (OSTI)

Shortly after the beginning of the twentieth century, dc power transmission was replaced by ac in order to achieve efficient transmission of electric power over long distances with available conductors and at safe distribution voltages. However, dc power was not completely abandoned, and the advent of solid-state power electronic ac-to-dc conversion equipment has reinvigorated its application. High-voltage dc power is more desirable for long-range transmission than ac in many ways: dc uses two wires rath...

2009-12-15T23:59:59.000Z

160

Wide input range DC-DC converter with digital control scheme  

E-Print Network (OSTI)

In this thesis analysis and design of a wide input range DC-DC converter is proposed along with a robust power control scheme. The proposed converter and its control is designed to be compatible to a fuel cell power source, which exhibits 2:1 voltage variation as well as a slow transient response. The proposed approach consists of two stages: a primary three-level boost converter stage cascaded with a high frequency, isolated boost converter topology, which provides a higher voltage gain and isolation from the input source. The function of the first boost converter stage is to maintain a constant voltage at the input of the cascaded DC-DC converter to ensure optimal performance characteristics with high efficiency. At the output of the first boost converter a battery or ultracapacitor energy storage is connected to take care of the fuel cell slow transient response (200 watts/min). The robust features of the proposed control system ensure a constant output DC voltage for a variety of load fluctuations, thus limiting the power being delivered by the fuel cell during a load transient. Moreover, the proposed configuration simplifies the power control management and can interact with the fuel cell controller. The simulation results and the experimental results confirm the feasibility of the proposed system.

Harfman Todorovic, Maja

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Title Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Publication Type Report LBNL Report Number LBNL-5193E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, Alan H. Sanstad, and Gabriel Burch Document Number LBNL-5193E Pagination 59 Date Published October Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the 'direct-DC house' with respect to today's typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector-because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation-this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

162

Energy Incentive Programs, Washington DC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington DC Washington DC Energy Incentive Programs, Washington DC October 29, 2013 - 11:29am Addthis Updated August 2013 What public-purpose-funded energy efficiency programs are available in the District of Columbia? In 2008, the Council of the District of Columbia passed the Clean and Affordable Energy Act (CAEA), establishing the DC Sustainable Energy Utility (DC SEU), whose mission is to provide energy assistance to low-income residents and support energy efficiency and renewable energy programs. The DC SEU, funded by the Sustainable Energy Trust Fund (also created by the CAEA) and under contract to the District Department of the Environment (DDOE), helps District residents, businesses, and institutions save energy and money. The DC SEU provides comprehensive energy services to targeted, prioritized

163

Solving the Fast Clock Problem  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study troubleshoots then solves the problem of digital clocks running fast.

2003-12-31T23:59:59.000Z

164

little book of fast facts  

E-Print Network (OSTI)

The little book of fast facts #12;The Big Picture little book of fast facts Big Picture own sprinkling of `fast facts', fascinating snippets of information on the topic. In this book, we@wellcome.ac.uk. Find out more at www.wellcome.ac.uk/bigpicture. #12;LITTLE BOOK OF FAST FACTS Contents 2 The brain 16

Newcastle upon Tyne, University of

165

System Integration Issues of DC to DC converters in the sLHC Trackers  

E-Print Network (OSTI)

The upgrade of the trackers at the sLHC experiments requires implementing new powering schemes that will provide an increased power density with reduced losses and material budget. A scheme based on buck and switched capacitors DC to DC converters has been proposed as an optimal solution. The buck converter is based on a power ASIC, connected to a custom made air core inductor. The arrangement of the parts and the board layout of the power module are designed to minimize the emissions of EMI in a compact volume, enabling its integration on the tracker modules and staves.

Allongue, B; Faccio, F; Fuentes, c; Michelisa, S; Orlandia, S

2009-01-01T23:59:59.000Z

166

Connectivity and Bidirectional Energy Transfer in DC Microgrid Featuring Different Voltage Characteristics  

Science Conference Proceedings (OSTI)

In this paper, the connectivity issues related to linking two DC buses featuring different voltage characteristics, in terms of voltage level and ripple, in a DC micro grid are identified, analyzed and discussed. A controlled DC-DC converter was used ... Keywords: Bidirectional energy transfer, buck-boost converter, DC distribution systems, DC microgrids, voltage ripple

Mustafa Farhadi, Ahmed Mohamed, Osama Mohammed

2013-04-01T23:59:59.000Z

167

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

168

United States, France and Japan Increase Cooperation on Sodium-Cooled Fast  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States, France and Japan Increase Cooperation on United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes February 1, 2008 - 11:13am Addthis WASHINGTON, DC -The U.S Department of Energy (DOE), the French Atomic Energy Commission (CEA) and Japan Atomic Energy Agency (JAEA) today expanded cooperation to coordinate Sodium-Cooled Fast Reactor Prototype development through a Memorandum of Understanding (MOU) signed by DOE Assistant Secretary for Nuclear Energy Dennis R. Spurgeon, CEA Chairman Alain Bugat and JAEA President Toshio Okazaki. The MOU establishes a collaborative framework with the ultimate goal of deploying sodium-cooled fast reactor prototypes. A sodium-cooled fast reactor uses liquid sodium

169

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

170

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

171

Fast Turbulent Reconnection  

E-Print Network (OSTI)

Reconnection is the process by which magnetic fields in a conducting fluid change their topology. This process is essential for understanding a wide variety of astrophysical processes, including stellar and galactic dynamos and astrophysical turbulence. To account for solar flares, solar cycles and the structure of the galactic magnetic field reconnection must be fast, propagating with a speed close to the Alfven speed. We show that the presence of a random magnetic field component substantially enhances the reconnection rate and enables fast reconnection, i.e. reconnection that does not depend on fluid resistivity. The enhancement of the reconnection rate is achieved via a combination of two effects. First of all, only small segments of magnetic field lines are subject to direct Ohmic annihilation. Thus the fraction of magnetic energy that goes directly into fluid heating goes to zero as fluid resistivity vanishes. However, the most important enhancement comes from the fact that unlike the laminar fluid case where reconnection is constrained to proceed line by line, the presence of turbulence enables many magnetic field lines to enter the reconnection zone simultaneously. A significant fraction of magnetic energy goes into MHD turbulence and this enhances reconnection rates through an increase in the field stochasticity. In this way magnetic reconnection becomes fast when field stochasticity is accounted for. As a consequence solar and galactic dynamos are also fast, i.e. do not depend on fluid resistivity.

A. Lazarian; E. Vishniac

2000-02-03T23:59:59.000Z

172

The Integral Fast Reactor  

SciTech Connect

Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

Till, C.E.; Chang, Y.I. (Argonne National Lab., IL (USA)); Lineberry, M.J. (Argonne National Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

173

Washington DC's First Electric Vehicle Charging Station | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station November 17, 2010 - 11:28am Addthis Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Shannon Brescher Shea Communications Manager, Clean Cities Program It's always exciting to attend a grand opening, especially when it represents a "first" for an entire region. Yesterday, the U.S. Department of Energy and the city of Washington, DC joined together to

174

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

175

On DC. optimization algorithms for solving minmax flow problems ?  

E-Print Network (OSTI)

Jun 17, 2011 ... Email: ldmuu@math.ac.vn. Le Quang Thuy ..... programming and DCA revisited with DC models of real world nonconvex optimization problems ...

176

On DC. optimization algorithms for solving minmax flow problems  

E-Print Network (OSTI)

Jun 16, 2011 ... math.ac.vn) ... (Difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, ...

177

UNITED STATES OFFICE OF PERSONNEL MANAGEMENT Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF PERSONNEL MANAGEMENT Washington, DC 20415 The Director November 8, 2010 MEMORANDUM FOR HEADS OF DEPARTMENTS AND AGENCIES FROM: JOHN BERRY ( . .. (t"t-.. DIRECTOR...

178

Simultaneous distribution of AC and DC power - Energy ...  

... Alternating Current) as well as the elimination of equipment normally used to reconvert AC back to DC for components of HVAC systems, ...

179

DC Hazardous Waste Management (District of Columbia) | Open Energy...  

Open Energy Info (EERE)

District of Columbia Applies to Municipality District of Columbia Name DC Hazardous Waste Management (District of Columbia) Policy Type Environmental Regulations Affected...

180

Calibrated Broadband DC-Coupled High Impedance Pickoff ...  

Craig E. Deibele, Brian Link, and Vladimir V. Peplov, Calibrated Broadband DC-Coupled High Impedance Pickoff Circuit for Remote Monitoring

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AC vs DC Wizard Version 1.0  

Science Conference Proceedings (OSTI)

AC vs DC Wizard compares the use of HVDC to HVAC in both new and existing overhead lines and in new underground cable ...

2012-12-04T23:59:59.000Z

182

DC Resistivity Survey (Gradient Array) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Gradient Array) edit Details Activities (0) Areas (0) Regions (0)...

183

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) edit Details Activities (1) Areas (1) Regions (0)...

184

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Jump...

185

DOE Solar Decathlon: Team Capitol DC: The Catholic University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capitol DC: The Catholic University of America, George Washington University, and American University Team website: www.teamcapitoldc.org Photo of members of the Catholic...

186

Microsoft PowerPoint - NETL Pittsburgh, PA to Washington, DC...  

NLE Websites -- All DOE Office Websites (Extended Search)

PA. 2. Merge RIGHT via Exit 161 onto I-70 EAST toward BREEZEWOODUS-30 BALTIMOREWASHINGTON, DC (follow US-30 through Breezewood). , ( g ) 3. At FREDERICKSBURG, merge...

187

Embassy of Cuba in Washington, DC: Image, Site, Program.  

E-Print Network (OSTI)

??This thesis postulates the design of an official Embassy of Cuba in Washington, DC, following the resumption of diplomatic relations between the two countries. An… (more)

Fishman, Ian C

2008-01-01T23:59:59.000Z

188

Washington DC Reliability Requirements and the Need to Operate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005)...

189

Participatory Music Making and Affinity in Washington, DC Irish Sessions.  

E-Print Network (OSTI)

??The Washington, DC metropolitan area hosts a vibrant Irish music scene. Like those in many Irish sessions found throughout the world, the District's network of… (more)

Flynn, Erin Michele

2011-01-01T23:59:59.000Z

190

Communications: NREL Letterhead Template for DC General Use ...  

What NREL technology (ies) are you interested in? What type of license ... Communications: NREL Letterhead Template for DC General Use - Black and White

191

Communications: NREL Letterhead Template for DC General Use ...  

What NREL technology are you interested in? Why? 2. ... Communications: NREL Letterhead Template for DC General Use - Black and White Subject:

192

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

193

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

194

National Press Club Washington, D.C.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Is the Energy Race our new Is the Energy Race our new "Sputnik" Moment? National Press Club Washington, D.C. 29 November, 2010 1 October 4, 1957, the Soviet Union placed a 184 pound satellite into orbit. "The Soviet Union now has - in the combined category of scientists and engineers - a greater number than the United States. And it is producing graduates in these fields at a much faster rate ... This trend is disturbing. Indeed, according to my scientific advisers, this is for the American people the most critical problem of all. My scientific advisers place this problem above all other immediate tasks of producing missiles, of developing new techniques in the Armed Services. We need scientists in the ten years ahead..." On November 13, 1957, President Eisenhower

195

Department.,of Energy Washington; DC'  

Office of Legacy Management (LM)

,of Energy ,of Energy Washington; DC' 20585 JAN 1 1 1995 / .,, .- L ., The Honorable Thomas Menino ', 1 City Hall Square Boston, Massachusetts 02201 ,'. " p' ifi.. ' . .' b I,' \ Dear.Mayor.Me$ino: DOE's Formerly Util,ized for identification of sites.used by*DOEfs predecessor' agencies, determining, their current radiological condition and, where it has authority, performing remedial action to cleanup sites to meet current radiologicalprotection requirements.~ A conservative set of.technical evaluation guidelines4s used in these investigat~ions' toTassure protection of public health, safety and the .environment. Where DOE does not have authority.for proceeding, the available site information is forwarded to the appropriate Federal or State Agency,. DOE studied the historical records of the former ,Tracerlab, Inc. sitei'and it

196

Dissipative Cryogenic Filters with Zero DC Resistance  

SciTech Connect

The authors designed, implemented and tested cryogenic RF filters with zero DC resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in {radical}{omega}, as typical for skin depth based RF filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.

Bluhm, Hendrik; Moler, Kathryn A.; /Stanford U., Appl. Phys. Dept

2008-04-22T23:59:59.000Z

197

Timed fast charger  

Science Conference Proceedings (OSTI)

In a charger for rechargeable electrochemical cells, a transformer charging circuit supplies a charging current to the battery at a fast charge rate for a predetermined time followed by a continuous slow charge rate. A normally closed automatic reset thermostat in series with the rectifier diodes in the charging circuit, and thermally coupled to them, opens after a period of time, dependent upon the heat generated by the rectifier diodes and upon the thermal mass of the thermostat and diodes, and terminates the fast charge current. A resistor, shunted across the thermostat and thermally coupled to it, establishes a slow charge rate current path when the thermostat opens. Heat generated in the resistor causes the thermostat to remain open as long as the battery is connected and ac power is supplied to the transformer primary winding.

Mullersman, F.H.

1981-10-27T23:59:59.000Z

198

Fast Simulation and Modeling  

Science Conference Proceedings (OSTI)

The "Fast Simulation and Modeling" (FSM) project of the IntelliGrid Consortium is developing a high-performance "look-ahead" capability for a self-healing grid8212one capable of automatically anticipating and responding to power system disturbances while continually optimizing its own performance. This project's roadmap assesses individual software solutions and equipment components that vendors will provide during the next 5 to 15 years and that electric power companies will adopt to realize FSM's self-...

2007-12-19T23:59:59.000Z

199

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

200

Development of a Novel Bi-Directional Isolated Multiple-Input DC-DC Converter  

DOE Green Energy (OSTI)

There is vital need for a compact, lightweight, and efficient energy-storage system that is both affordable and has an acceptable cycle life for the large-scale production of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Most of the current research employs a battery-storage unit (BU) combined with a fuel cell (FC) stack in order to achieve the operating voltage-current point of maximum efficiency for the FC system. A system block diagram is shown in Fig.1.1. In such a conventional arrangement, the battery is sized to deliver the difference between the energy required by the traction drive and the energy supplied by the FC system. Energy requirements can increase depending on the drive cycle over which the vehicle is expected to operate. Peak-power transients result in an increase of losses and elevated temperatures which result in a decrease in the lifetime of the battery. This research will propose a novel two-input direct current (dc) dc to dc converter to interface an additional energy-storage element, an ultracapacitor (UC), which is shown in Fig.1.2. It will assist the battery during transients to reduce the peak-power requirements of the battery.

Li, H.

2005-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Read-out electronics for DC squid magnetic measurements  

DOE Patents (OSTI)

Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

2002-01-01T23:59:59.000Z

202

Dynamic microscopic theory of fusion using DC-TDHF  

Science Conference Proceedings (OSTI)

The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy systems.

Umar, A. S.; Oberacker, V. E.; Keser, R.; Maruhn, J. A.; Reinhard, P.-G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); RTE University, Science and Arts Faculty, Department of Physics, 53100, Rize (Turkey); Institut fuer Theoretische Physik, Goethe-Universitaet, D-60438 Frankfurt am Main (Germany); Institut fur Theoretische Physik, Universitat Erlangen, D-91054 Erlangen (Germany)

2012-10-20T23:59:59.000Z

203

Historical Material Analysis of DC745U Pressure Pads  

SciTech Connect

As part of the Enhance Surveillance mission, it is the goal to provide suitable lifetime assessment of stockpile materials. This report is an accumulation of historical publication on the DC745U material and their findings. It is the intention that the B61 LEP program uses this collection of data to further develop their understanding and potential areas of study. DC745U is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and methyl-vinyl siloxane repeat units. Originally, this material was manufactured by Dow Corning as Silastic{reg_sign} DC745U at their manufacturing facility in Kendallville, IN. Recently, Dow Corning shifted this material to the Xiameter{reg_sign} brand product line. Currently, DC745U is available through Xiameter{reg_sign} or Dow Corning's distributor R. D. Abbott Company. DC745U is cured using 0.5 wt% vinyl-specific peroxide curing agent known as Luperox 101 or Varox DBPH-50. This silicone elastomer is used in numerous parts, including two major components (outer pressure pads and aft cap support) in the W80 and as pressure pads on the B61. DC745U is a proprietary formulation, thus Dow Corning provides limited information on its composition and properties. Based on past experience with Dow Corning, DC745U is at risk of formulation changes without notification to the costumer. A formulation change for DC745U may have a significant impact because the network structure is a key variable in determining material properties. The purpose of this report is to provide an overview of historical DC745U studies and identify gaps that need to be addressed in future work. Some of the previous studies include the following: 1. Spectroscopic characterization of raw gum stock. 2. Spectroscopic, thermal, and mechanical studies on cured DC745U. 3. Nuclear Magnetic Resonance (NMR) and solvent swelling studies on DC745U with different crosslink densities. 4. NMR, solvent swelling, thermal, and mechanical studies on thermally aged DC745U. 5. NMR, solvent swelling, thermal, and mechanical studies on radiolytically aged DC745U. Each area is reviewed and further work is suggested to improve our understanding of DC745U for systems engineering, surveillance, aging assessments, and lifetime assessment.

Ortiz-Acosta, Denisse [Los Alamos National Laboratory

2012-07-30T23:59:59.000Z

204

Definition: DC Resistivity Survey (Dipole-Dipole Array) | Open Energy  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Dipole-Dipole Array) The Dipole-Dipole array is a type of electrode configuration for a Direct-Current Resistivity Survey and is defined by its electrode array geometry.[1] View on Wikipedia Wikipedia Definition References ↑ http://appliedgeophysics.berkeley.edu/dc/EM46.pdf Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:DC_Resistivity_Survey_(Dipole-Dipole_Array)&oldid=596974" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

205

Energy Recovery from High-frequency Clocks using DC-DC Converters M. Alimadadi, S. Sheikhaei, G. Lemieux, S. Mirabbasi, W. Dunford, P. Palmer.  

E-Print Network (OSTI)

Energy Recovery from High-frequency Clocks using DC-DC Converters M. Alimadadi, S. Sheikhaei, G Power Supply) PWM Controller PWM clock Rload Figure 1. Recycling clock energy with a DC-DC converter a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every

Lemieux, Guy

206

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

207

Innovative design of uranium startup fast reactors  

E-Print Network (OSTI)

Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

Fei, Tingzhou

2012-01-01T23:59:59.000Z

208

Fast quench reactor method  

DOE Patents (OSTI)

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

209

FAST NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

Snell, A.H.

1957-12-01T23:59:59.000Z

210

Fast neutron dosimetry  

Science Conference Proceedings (OSTI)

This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

DeLuca, P.M. Jr.; Pearson, D.W.

1992-01-01T23:59:59.000Z

211

Counterrotating brushless dc permanent magnet motor  

DOE Patents (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-12-31T23:59:59.000Z

212

Counterrotating brushless dc permanent magnet motor  

DOE Patents (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-01-01T23:59:59.000Z

213

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

214

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

Torchiere Source: [6]. Energy AC-DC Savings Conv.Effand fans unchanged Energy AC-DC Savings Conv.Eff Solar WaterFigure 10. Appliances energy savings versus direct-DC energy

Garbesi, Karina

2012-01-01T23:59:59.000Z

215

Application to Export Electric Energy OE Docket No. EA-351 DC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 DC Energy Dakota, LLC Application to Export Electric Energy OE Docket No. EA-351 DC Energy Dakota, LLC Application from DC Energy Dakota, LLC to export electric energy to Canada...

216

News From the D.C. Office: Energy-Saving Office Equipment, Part...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial view of Washington D.C. News From the D.C. Office Energy-Saving Office Equipment, Part 1 More on the DC Office efficiency up-grade: Lighting, Office Equipment: Part 2...

217

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

brushless DC permanent magnet motor EV electric vehicle BtuBrushless DC permanent magnet motors can save 5-15% of theBrushless DC permanent magnet motor; VSD: Variable-speed

Garbesi, Karina

2012-01-01T23:59:59.000Z

218

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions.      ...

219

Fast Fourier transform telescope  

Science Conference Proceedings (OSTI)

We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

Tegmark, Max; Zaldarriaga, Matias [Department of Physics and MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Astrophysics, Harvard University, Cambridge, Massachusetts 02138 (United States)

2009-04-15T23:59:59.000Z

220

DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Dipole-Dipole Array) Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

222

Experimental power reactor dc generator energy storage study  

DOE Green Energy (OSTI)

This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection.

Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

1978-08-25T23:59:59.000Z

223

We Have a Winner - DC High School Regional Science Bowl Competition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday...

224

DC Regional Middle School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Washington DC Regions DC Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches...

225

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

The Feasibility of Small-Scale Residential DC Distributionof a DC microgrid for residential houses. In Transmission &energy storage with PV for residential and commercial use.

Garbesi, Karina

2012-01-01T23:59:59.000Z

226

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

227

Fast Track Special Project Proposal  

Science Conference Proceedings (OSTI)

A fast track special project is defined as a one-time Division directed endeavor that creates ... project will not result in future operating expenses. ... Cost Analysis

228

Product characterization of fast pyrolysis.  

E-Print Network (OSTI)

??Pyrolysis is an important step in the thermal conversion of biomass. During this study, the influence of temperature, heating rate and holding time on fast… (more)

Gout, J.

2010-01-01T23:59:59.000Z

229

A Multiphase, Modular, Bidirectional, Triple-Voltage DC-DC Converter Power Systems  

Science Conference Proceedings (OSTI)

Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage [14 V, 42 V, and high voltage (HV)] nets. These will be necessary to accommodate existing 14-V loads as well as efficiently handle new heavy loads at the 42-V net and a traction drive on the HV bus. A low-cost DC-DC converter was proposed for connecting the three voltage nets. It minimizes the number of switches and their associated gate driver components by using two half-bridges and a high-frequency transformer. Another salient feature is that the half bridge on the 42-V bus is also utilized to provide the 14-V bus by operating at duty ratios around an atypical value of 1/3. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft switching. The use of half bridges makes the topology well suited for interleaved multiphase modular configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with an atypical duty ratio on the transformer and a preferred multiphase configuration to minimize capacitor ripple currents.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2008-01-01T23:59:59.000Z

230

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

231

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

232

Fault Detection and Isolation in Low-Voltage DC Distribution ...  

A University of Colorado research team led by Jae-Do Park has developed a fault detection and isolation scheme for a low-voltage DC-bus microgrid system, ...

233

Washington DC Reliability Requirements and the Need to Operate Mirant's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington DC Reliability Requirements and the Need to Operate Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005) Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005) Pursuant to Docket No. EO-05-01: Oak Ridge National Laboratory provided an analysis of the Mirant Potomac River Generation Station in 2005 and discussed the reliability requirements of the local area and the potential impacts on reliability of changing operation of the Potomac River Generating Station in this paper. Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability.pdf

234

Categorical Exclusion Determinations: Washington, D.C. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, D.C. Washington, D.C. Categorical Exclusion Determinations: Washington, D.C. Location Categorical Exclusion Determinations issued for actions in Washington, D.C. DOCUMENTS AVAILABLE FOR DOWNLOAD June 11, 2013 CX-010460: Categorical Exclusion Determination Novel Low Cost Environmentally Friendly Synthetic Approaches toward Core-Shell Structured Micro CX(s) Applied: B3.6 Date: 06/11/2013 Location(s): District of Columbia Offices(s): National Energy Technology Laboratory March 28, 2013 CX-010567: Categorical Exclusion Determination Lawrence Berkeley National Laboratory - Rapid Automated Modeling and Simulation of Existing Buildings for Energy Efficiency CX(s) Applied: B3.6 Date: 02/28/2013 Location(s): California, District of Columbia Offices(s): Advanced Research Projects Agency-Energy

235

Microsoft PowerPoint - NETL Morgantown, WV to Washington, DC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Morgantown, WV Site to Washington, DC Headquarters 1. Take I-68 EAST toward CUMBERLAND, MD. 2 M t I 70 EASTUS 40 EUS 522 S E it EXIT 82AB t d HAGERSTOWN 2. Merge onto I-70 EAST...

236

Microsoft PowerPoint - Washington, DC to NETL Pittsburgh Directions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pittsburgh, PA Site 1. Leave WASHINGTON, DC on I-270 NORTH. 2. Take the I-70 WEST exit toward HAGERSTOWN. Merge onto I-70 WEST. 3. At HANCOCK, MD exit RIGHT onto I-70 WEST I-76...

237

Microsoft PowerPoint - NETL Pittsburgh, PA to Washington, DC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC Headquarters 1. COCHRANS MILL RD. becomes BROWNSVILLE RD. 2. Stay STRAIGHT to go onto CURRY HOLLOW RDYELLOW BELT. 3 T k th PA 51 SOUTH t d CLAIRTON 3. Take the...

238

Local Economic Investment and Crime: Neighborhood Change in Washington, DC.  

E-Print Network (OSTI)

??The purpose of this analysis is to shed light on the relationship between large-scale economic investment and crime in Washington, DC neighborhood clusters (N=39) from… (more)

Matsuda, Mauri

2009-01-01T23:59:59.000Z

239

EETD Researchers Contribute to Efficient DC-Power Data Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Calit2) at UC San Diego is operating a set of servers in a campus data center on 380-volt DC (direct current) power. The new modular data center on campus has sensors and other...

240

Halbach array DC motor/generator - Energy Innovation Portal  

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are ...

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Properties of dc magnetron reactively sputtered TiN  

Science Conference Proceedings (OSTI)

Titanium nitride is of interest for IC fabrication because of its excellent performance as a metallic diffusion barrier. TiN films have been deposited in a batch sputtering system equipped with dc magnetron cathodes

Jim Stimmell

1986-01-01T23:59:59.000Z

242

Anisotropy and Forming Limit Diagram Comparison of DC and CC ...  

Science Conference Proceedings (OSTI)

Presentation Title, Anisotropy and Forming Limit Diagram Comparison of DC and CC ... Advanced Experimental Grid Pattern Techniques Coupled with FE-analysis ... Effect of Exploitation Overhead Power Lines on the Evolution of Mechanical ...

243

Radiofrequency amplifier based on a dc superconducting quantum interference device  

DOE Patents (OSTI)

A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

Hilbert, C.; Martinis, J.M.; Clarke, J.

1984-04-27T23:59:59.000Z

244

Radiofrequency amplifier based on a dc superconducting quantum interference device  

DOE Patents (OSTI)

A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

Hilbert, Claude (Berkeley, CA); Martinis, John M. (Berkeley, CA); Clarke, John (Berkeley, CA)

1986-01-01T23:59:59.000Z

245

DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) |  

Open Energy Info (EERE)

DC Resistivity Survey (Schlumberger Array) At Coso DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes 18 USGS Schlumberger soundings and 6 Schlumberger soundings by Furgerson (1973) were plotted and automatically processed and interpreted References Jackson, D.B. ODonnell, J.E.; Gregory, D. I. (1 January 1977) Schlumberger soundings, audio-magnetotelluric soundings and telluric mapping in and around the Coso Range, California Retrieved from "http://en.openei.org/w/index.php?title=DC_Resistivity_Survey_(Schlumberger_Array)_At_Coso_Geothermal_Area_(1977)&oldid=591389

246

DC Drive Ride-Through Technology Alternatives and Development  

Science Conference Proceedings (OSTI)

Adjustable speed drive (ASD) ride-through issues have caused increased concerns due to drive susceptibility to power disturbances and the costly results of process disruptions. Losses incurred due to DC drive trips can be avoided for critical production processes by employing ride-through alternatives. The purpose of this study is to determine the DC drive ride-through requirements of industrial customers and match those ride-through needs with possible solutions.

1998-12-19T23:59:59.000Z

247

Effect of DC Load Currents on Solid State Residential Meters  

Science Conference Proceedings (OSTI)

This report presents results of an extensive laboratory assessment of the impact of DC load currents (including half-wave rectified loads) on the metrological accuracy of residential solid state electricity meters. Sampled surveys were conducted to determine whether products producing DC currents are prevalent in residential premises. In addition, regulations and codes were studied to determine whether such products could naturally appear in the marketplace going forward. Two each of six brands of socket...

2011-12-22T23:59:59.000Z

248

DOE - Office of Legacy Management -- National Bureau of Standards - DC 01  

Office of Legacy Management (LM)

Bureau of Standards - DC Bureau of Standards - DC 01 FUSRAP Considered Sites Site: NATIONAL BUREAU OF STANDARDS (DC.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Van Ness Street , Washington , D.C. DC.01-1 Evaluation Year: 1987 DC.01-2 DC.01-3 Site Operations: Performed quality analysis lab work for the MED during the 1940s; decontamination efforts were completed in 1952 and the building was demolished in 1976 DC.01-3 Site Disposition: Eliminated - Radiation levels Below criteria DC.01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium DC.01-4 Radiological Survey(s): Yes DC.01-1 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to NATIONAL BUREAU OF STANDARDS

249

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

250

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

251

From MC/DC to RC/DC: formalization and analysis of control-flow testing criteria  

Science Conference Proceedings (OSTI)

This chapter describes an approach to the formalization of existing criteria used in computer systems software testing and proposes a Reinforced Condition/Decision Coverage (RC/DC) criterion. This criterion has been developed from the well-known Modified ...

Sergiy A. Vilkomir; Jonathan P. Bowen

2008-01-01T23:59:59.000Z

252

Enhancement of AC/DC system performance by modulation of a proposed multiterminal DC system in the Southwestern U. S  

SciTech Connect

Modulation of power transmitted over a proposed multiterminal dc system to provide effective stability enhancement of a large ac system in the Southwestern U.S. is demonstrated in this paper. This proposed multiterminal dc system connecting the Phoenix, Mead and Los Angeles areas could be in parallel with an Extra High-Voltage (EHV) ac transmission network which could be operating at heavy loading conditions. Studies indicated that the utilization of large power and reactive power modulation on the dc system can provide transient stability enhancements and ac system damping. The resultant system damping can be significantly improved when compared to the performance of the ac system prior to the addition of the dc system. The application of modulation permits the release of converter station vars to support the ac system voltage and thus reduces the required capability of voltage support devices.

Lee, R.L.; Zollman, D.; Tang, J.F.; Hsu, J.C.; Hunt, J.R.; Burton, R.S.; Fletcher, D.E.

1986-01-01T23:59:59.000Z

253

Data:Eec988f9-dc0d-45ef-9789-a7781dc1934b | Open Energy Information  

Open Energy Info (EERE)

f9-dc0d-45ef-9789-a7781dc1934b f9-dc0d-45ef-9789-a7781dc1934b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: El Paso Electric Co (New Mexico) Effective date: 2010/01/01 End date if known: Rate name: LGS (Large General Service Secondary) Sector: Commercial Description: This rate is available to all Customers for lighting,power, and heating service. All service will be taken at one point of delivery designated by the Company and at one of the Company's standard types of service. Service under this rate shall be limited to Customers whose expected monthly demand will exceed 800 kilowatts (kW).

254

Microsoft Word - article_dc.doc  

Gasoline and Diesel Fuel Update (EIA)

of 15 of 15 U.S. Coal Supply and Demand: 2007 Review by Fred Freme U.S. Energy Information Administration Overview Coal production in the United States in 2007 totaled 1,145.6 million short tons according to preliminary data from the Energy Information Administration (Table 1), a decrease of 1.5 percent, or 17.2 million short tons from the 2006 record level of 1,162.7 million short tons. Although coal production declined in 2007, U.S. total coal consumption increased for the year. Coal consumption in 2007 in the electric power sector was higher by 1.9 percent, while coking coal consumption decreased by 1.1 percent and the other industrial sector declined by 5.0 percent. (Note: All percentage change calculations are done at the short- tons level.) U.S. coal exports were significantly

255

A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells  

DOE Green Energy (OSTI)

A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

Jason Lai

2009-03-03T23:59:59.000Z

256

Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction  

Science Conference Proceedings (OSTI)

Nonconvex nonsmooth regularization has advantages over convex regularization for restoring images with neat edges. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonconvex nonsmooth minimization. ... Keywords: continuation methods, fast fourier transform, global minimization, image reconstruction, image restoration, nonconvex nonsmooth, nonconvex nonsmooth regularization, total variation.

Mila Nikolova; Michael K. Ng; Chi-Pan Tam

2010-12-01T23:59:59.000Z

257

Novel Approach for fast Compressed Hybrid color image Cryptosystem  

Science Conference Proceedings (OSTI)

In this Paper, the issues pertaining with efficient, fast, cost effective and secured image transmission are addressed in totality. The proposed model employs Compressed Hybrid Cryptosystem constitutes compression, encryption and secured session key ... Keywords: Cat map, Chaotic map, Curvelet transform, ECDLP, Elliptic Curve Cryptography, Standard map

Kamlesh Gupta; Sanjay Silakari

2012-07-01T23:59:59.000Z

258

A frequency domain model for 3 kV dc traction dc-side resonance identification  

SciTech Connect

Frequency-dependent effects in railway traction power systems arise from the impedance of substation and locomotive line filters and the traction line. Harmonic noise from traction drives and substations can excite resonances and produce overcurrent or overvoltage conditions at critical points in the network. In this paper, the harmonic feeding impedances of a 3 kV DC traction system seen from the rectifier substation, locomotive drive converter and pantograph terminals are presented. Several substation and locomotive filters are considered with a frequency-dependent traction line. Resonances attributed to the substation filter, locomotive filter and traction line are separate and distinct, the line introducing poles and zeros in the audio frequency (AF) range which vary in frequency and magnitude with locomotive position.

Hill, R.J. [Univ. of Bath (United Kingdom). School of Electronic and Electrical Engineering; Fracchia, M.; Pozzobon, P.; Sciutto, G. [Univ. degli Studi di Genova (Italy). Dipt. di Ingegneria Elettrica

1995-08-01T23:59:59.000Z

259

Randomized PWM for conductive EMI reduction in DC-DC choppers  

E-Print Network (OSTI)

In this paper, a comparative investigation of different random modulation schemes against the normal pulsewidth modulation (PWM) for the DC motor drive with step-down chopper (buck) and half-bridge configuration is presented. For this purpose, an experimental setup with DSP2 board has been developed. The board consists of the signal processor TMS320C32 which is suitable for verifying the different modulations strategies. The effectiveness of randomization on spreading the dominating frequencies that normally exist in constantfrequency PWM schemes is evaluated by the power spectral density (PSD) estimations in the low-frequency range. Finally, one universal demo board with two power converters configuration (driven by the micro controller PICF16F876) has been used in EMI measurements to comply with the CISPR 25 (or EN 55025) regulations. 1

Franc Mihali?; Dejan Kos

2005-01-01T23:59:59.000Z

260

Multi-port DC-DC Power Converter for Renewable Energy Application  

E-Print Network (OSTI)

In recent years, there has been lots of emphasis put on the development of renewable energy. While considerable improvement on renewable energy has been made, there are some inherent limitations for these renewable energies. For example, for solar and wind power, there is an intermittent nature. For the fuel cell, the dynamics of electro-chemical reaction is quite slow compared to the electric load. This will not be acceptable for modern electric application, which requires constant voltage of constant frequency. This work proposed and evaluated a new power circuit that can deal with the problem of the intermittent nature and slow response of the renewable energy. The proposed circuit integrates different renewable energy sources as well as energy storage. By integrating renewable energy sources with statistical tendency to compensate each other, the effect of the intermittent nature can be greatly reduced. This integration will increase the reliability and utilization of the overall system. Moreover, the integration of energy storage solves the problem of the slow response of renewable energy. It can provide the extra energy required by load or absorb the excessive energy provided by the energy sources, greatly improving the dynamics of overall system. To better understand the proposed circuit, "Dual Active Bridge" and "Triple Active Bridge" were reviewed first. The operation principles and the modeling were presented. Analysis and design of the overall system were discussed. Controller design and stability issues were investigated. Furthermore, the function of the central controller was explained. In the end, different simulations were made and discussed. Results from the simulations showed that the proposed multi-port DC-DC power converter had satisfactory performance under different scenarios encountered in practical renewable energy application. The proposed circuit is an effective solution to the problem due to the intermittent nature and slow response of the renewable energy.

Chou, Hung-Ming

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Study on Online Insulation Monitoring System for Working DC Power of Power Plants and Substations  

Science Conference Proceedings (OSTI)

The measurement of insulation resistance between DC power supply and ground is important in a DC operating power supply system. We proved a new model for measuring insulating resistance between ground and DC system. A lots of actual application shows ... Keywords: Insulation resistance, DC power system, Insulation monitor, Leakage current

Yunqing Liu; Xichao Wang

2010-06-01T23:59:59.000Z

262

Q&A: Kristen Psaki of WeatherizeDC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC April 15, 2010 - 3:45pm Addthis Roughly 20 percent of carbon emissions come from inefficient homes. The DC Project says it has found a way to mitigate emissions and create jobs, a winning combination. WeatherizeDC is the non-profit's effort to use a community engagement model to help DC residents find green jobs and live a more energy efficient lifestyle. Energy Empowers recently spoke with DC Project co-founder and creative director Kristen Psaki about WeatherizeDC's approach to climate change. WeatherizeDC is a nonprofit community engagement program. What's the background of it, the story of how and why it was founded? The DC Project was founded over a year ago in January 2009.

263

Q&A: Kristen Psaki of WeatherizeDC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC April 15, 2010 - 3:45pm Addthis Roughly 20 percent of carbon emissions come from inefficient homes. The DC Project says it has found a way to mitigate emissions and create jobs, a winning combination. WeatherizeDC is the non-profit's effort to use a community engagement model to help DC residents find green jobs and live a more energy efficient lifestyle. Energy Empowers recently spoke with DC Project co-founder and creative director Kristen Psaki about WeatherizeDC's approach to climate change. WeatherizeDC is a nonprofit community engagement program. What's the background of it, the story of how and why it was founded? The DC Project was founded over a year ago in January 2009.

264

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

265

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

266

FM DANTE fast imaging and variations: emerging rf-based ultrafast imaging techniques  

Science Conference Proceedings (OSTI)

Keywords: DANTE fast imaging, NMR, burst imaging, fast chemical shift imaging, fast imaging, fast spectroscopic imaging, fast susceptibility imaging

Z. H. Cho; Y. M. Ro; I. K. Hong

1998-01-01T23:59:59.000Z

267

Photo of the Week: National Science Bowl Participants on the Fast Track to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Science Bowl Participants on the Fast National Science Bowl Participants on the Fast Track to a Future in STEM Photo of the Week: National Science Bowl Participants on the Fast Track to a Future in STEM May 2, 2013 - 10:48am Addthis After months of training and preparation, regional Science Bowl champions gathered in Washington, D.C. to compete for the national title at the 2013 National Science Bowl. Some of the nation's best and brightest high school and middle school students spent the past few days showing off their science, technology and engineering skills by completing a series of tasks, including the construction of a miniature electric car, using only household items and a lithium-ion battery. In this photo, Yaniel Ramirez from Colegio Catolico Notre Dame in Caguas, Puerto Rico launches his team's electric car down the test track. Learn more about the 2013 National Science Bowl. | Photo by Jack Dempsey, Department of Energy.

268

Modeling and Analysis of the Role of Fast-Response Energy Storage in the Smart Grid  

E-Print Network (OSTI)

The large short time-scale variability of renewable energy resources presents significant challenges to the reliable operation of power systems. This variability can be mitigated by deploying fast-ramping generators. However, these generators are costly to operate and produce environmentally harmful emissions. Fast-response energy storage devices, such as batteries and flywheels, provide an environmentally friendly alternative, but are expensive and have limited capacity. To study the environmental benefits of storage, we introduce a slotted-time dynamic residual dc power flow model with the prediction error of the difference between the generation (including renewables) and the load as input and the fast-ramping generation and the storage (charging/discharging) operation as the control variables used to ensure that the demand is satisfied (as much as possible) in each time slot. We assume the input prediction error sequence to be i.i.d. zero-mean random variables. The optimal power flow problem is then formu...

Su, Han-I

2011-01-01T23:59:59.000Z

269

Boosted Fast Flux Loop Alternative Cooling Assessment  

Science Conference Proceedings (OSTI)

The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and Al-Hf alloy heat sink system is capable of maintaining all system components below their maximum temperature limits. The maximum temperature of this conduction cooling system, 224.2°C (435.6 °F) occurs in a small, localized region in the heat sink structure near the core mid-plane. The total coolant flow rate requirement for this configuration is 207 L/min (54.7 gpm). The calculated Flow Instability Ratio and Departure from Nucleate Boiling Ratio for this configuration under nominal conditions are 6.5 and 8.0, respectively, which safely exceed the minimum values of 2.0. Materials and fabrication issues inspection revealed that the neutron absorber would probably best be made from powdered Al3Hf mixed with aluminum powder and extruded or hot isostatically pressed. Although Al3Hf has not been specifically studied extensively, its mechanical and chemical properties should be very much like Al3Zr, which has been studied. Its behavior under irradiation should be very satisfactory, and resistance to corrosion will be investigated to a limited extent in planned miniplate irradiation tests in ATR. Pressurized water systems needed to effect heat removal are already available in the ATR complex, and mixed gas temperature control systems needed to trim experiment temperatures have been engineered and need only be fabricated and installed. In sum, it appears the alternately cooled configuration arrived at can be very successful. The cost estimate for this configuration indicates to

Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

2007-08-01T23:59:59.000Z

270

Microsoft Word - article_dc.doc  

Gasoline and Diesel Fuel Update (EIA)

15 15 U.S. Coal Supply and Demand: 2009 Review By Fred Freme U.S. Energy Information Administration Overview Coal production in the United States in 2009 decreased to a level of 1,072.8 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), a decline of 8.5 percent, or 99.1 million short tons below the 2008 record level of 1,171.8 million short tons (Table 1). In 2009 U.S. coal consumption decreased in all sectors while total coal stocks increased for the year. Coal consumption in the electric power sector in 2009 was lower by 10.0 percent, while coking coal consumption decreased by 30.6 percent and the other industrial sector declined by 16.6 percent. The commercial and institutional sector (which prior to

271

Manhattan Project: Fast Neutron Experiment  

Office of Scientific and Technical Information (OSTI)

An experiment to determine the cross section of uranium-235 for fast neutrons. The target is the small pile of cubes of uranium hydride. The uranium target is surrounded by larger...

272

Argonne TTRDC - TTR Goes to D.C.  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Through-the-Road Hybrid goes to Washington, D.C., Auto Show Argonne's Through-the-Road Hybrid goes to Washington, D.C., Auto Show Argonne's Through the Road Vehicle Argonne's Through-the-Road Hybrid Vehicle Argonne's Through-the-Road hybrid vehicle (TTR) will be on display at the Washington Auto Show at Walter E. Washington Convention Center, February 4-8, 2009, in Washington, D.C. The TTR will be in the combined U.S. Department of Energy, Environmental Protection Agency, and Department of Transportation exhibit booth that features advanced vehicle technologies that are safe, clean, and efficient. Due to power-split limitations, no plug-in hybrid electric vehicle (PHEV) exists that can complete an Urban Dynamometer Driving Schedule (UDDS) cycle without starting the engine. Argonne created the TTR, an in-house PHEV development platform with an open

273

DOE Solar Decathlon: News Blog » Team Capitol DC  

NLE Websites -- All DOE Office Websites (Extended Search)

Capitol DC Capitol DC Below you will find Solar Decathlon news from the Team Capitol DC archive, sorted by date. Hangout With Solar Decathlon 2013 Teams on Sept. 18! Wednesday, September 11, 2013 By Rebecca Matulka Editor's Note: This entry has been cross-posted from DOE's Energy Blog. Photo of a Solar Decathlon house at night. Superimposed is the following text: "Solar Decathlon 2013: The Path to a Brighter Future. Energy.gov/live. Wednesday, Sept. 18, at p.m. ET. #askSD." Mark your calendars for a Google+ Hangout on Solar Decathlon 2013: The Path to a Brighter Future on Wednesday, Sept. 18, at 2 p.m. ET. For more than 10 years, the U.S. Department of Energy Solar Decathlon has been preparing the next wave of energy leaders-providing hands-on experience in designing and building energy-efficient, solar-powered

274

2012 Race to DC | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

12 Race to DC 12 Race to DC Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process ENERGY STAR Challenge for Architects 2013 Race to Denver 2012 Race to DC 2011 Race to New Orleans 2010 Race to Miami 2009 Race to San Francisco 2008 Race to Boston 2007 Race to San Antonio

275

Energy Department Completes Cool Roof Installation on DC Headquarters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

276

News From the D.C. Office: Efficient Office Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Efficient Office Equipment: Update and a Look Ahead An extended version of this article is available here. We are now well aware of the large amount of energy consumed by "plug-in loads" such as personal computers (PCs) and other office electronics. Office equipment is often cited as the fastest-growing end-use of electricity in the fastest-growing sector of demand (commercial buildings). According to Dataquest figures, world growth of PCs will average 14 to 15 percent per year through 1999. Only ten years ago, office equipment was not even part of the "map" of non-residential energy end-uses. There were virtually no data on office equipment energy use, nor an awareness of the

277

SAIL Venture Partners (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

DC) DC) Name SAIL Venture Partners (Washington DC) Address 2900 S. Quincy St, Suite 375 Place Arlington, Virginia Zip 22206 Product Venture capital fund focusing on clean energy Year founded 2002 Phone number (703) 379-2713 Website http://www.sailvc.com/ Coordinates 38.839975°, -77.087781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.839975,"lon":-77.087781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

NREL: Energy Analysis - Washington D.C. Office Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington D.C. Office Washington D.C. Office The following SEAC staff are based in our Washington D.C. Office. They support a variety of programs and activities, and often are the liaison between the U.S. Department of Energy and staff based in Golden, Colorado. Team Lead: Margaret Mann (Golden) Administrative Support: JoAnn Weaver (Golden) Thomas Jenkin Austin Brown David J. Feldman Tom Schneider Robert Margolis Kathleen Nawaz Monisha Shah Photo of Austin Brown. Austin Brown Senior Analyst (Strategic Planning) Areas of expertise Crosscutting low-carbon strategies Clean transportation technologies and policies Primary research interests Clean energy research portfolio planning Energy and society Sustainable transportation systems More information on Austin Brown Photo of David J. Feldman

279

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

280

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

282

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

283

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

284

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

285

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

286

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

287

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

288

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

289

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

290

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

291

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

292

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

293

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

294

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

295

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

296

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

297

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

298

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

299

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

300

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

302

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

303

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

304

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

305

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

306

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

307

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

308

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

309

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

310

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

311

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

312

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

313

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

314

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

315

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

316

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

317

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

318

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

319

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

320

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

322

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

323

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

324

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

325

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

326

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

327

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

328

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

329

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

330

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

331

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

332

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

333

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

334

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

335

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

336

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

337

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

338

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

339

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

340

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

342

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

343

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

344

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

345

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

346

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

347

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

348

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

349

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

350

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

351

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

352

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

353

High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1995-01-01T23:59:59.000Z

354

High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

Shimer, D.W.; Lange, A.C.

1995-05-23T23:59:59.000Z

355

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

356

Performance Evaluation of a Multi-Port DC-DC Current Source Converter for High Power Applications  

E-Print Network (OSTI)

With the ever-growing developments of sustainable energy sources such as fuel cells, photovoltaics, and other distributed generation, the need for a reliable power conversion system that interfaces these sources is in great demand. In order to provide the highest degree of flexibility in a truly distributed network, it is desired to not only interface multiple sources, but to also interface multiple loads. Modern multi-port converters use high frequency transformers to deliver the different power levels, which add to the size and complexity of the system. The different topological variations of the proposed multi-port dc-dc converter have the potential to solve these problems. This thesis proposes a unique dc-dc current source converter for multi-port power conversion. The presented work will explain the proposed multi-port dc-dc converter's operating characteristics, control algorithms, design and a proof of application. The converter will be evaluated to determine its functionality and applicability. Also, it will be shown that our converter has advantages over modern multi-port converters in its ease of scalability from kW to MW, low cost, high power density and adaption to countless combinations of multiple sources. Finally we will present modeling and simulation of the proposed converter using the PSIM software. This research will show that this new converter topology is unstable without feedback control. If the operating point is moved, one of the source ports of the multiport converter becomes unstable and dies off supplying very little or no power to the load while the remaining source port supplies all of the power the load demands. In order to prevent this and add stability to the converter a simple yet unique control method was implemented. This control method allowed for the load power demanded to be shared between the two sources as well as regulate the load voltage about its desired value.

Yancey, Billy Ferrall

2010-05-01T23:59:59.000Z

357

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

358

Active dc filter for HVDC system--A test installation in the Konti-Skan DC link at Lindome converter station  

Science Conference Proceedings (OSTI)

The purpose of introducing active dc filters is to meet the more and more stringent requirement from power utilities on limiting telephone interference caused by harmonic currents from HVdc transmission lines, without unnecessarily increasing the cost of HVdc stations. An active dc filter installed in the Konti-Skan HVdc link is described. The active dc filter is connected at the bottom of an existing passive dc filter at the Lindome station. The active dc filter includes optic harmonic current measuring unit, control system, protection and supervision system, PWM power amplifier, high-frequency transformer, surge arrester, and coupling apparatuses. The active dc filter has small physical size and occupies small ground area. The performance of the active dc filter for eliminating the disturbing harmonics is excellent. To achieve comparable results by passive filters would require something like ten times more high voltage equipment.

Zhang, Wenyan; Asplund, G. (ABB Power Systems, Ludvika (Sweden). HVDC Division); Aberg, A. (ABB Corporate Research, Lund (Sweden). Dept. of Man-Machine Communication); Jonsson, U. (Svenska Kraftnaet, Vaellingby (Sweden)); Loeoef, O. (Vattenfall AB, Trollhaettan (Sweden). Region Vaestsverige)

1993-07-01T23:59:59.000Z

359

International Fertilizer Development Center (IFDC) Employment Opportunity in Washington, DC  

E-Print Network (OSTI)

International Fertilizer Development Center (IFDC) Employment Opportunity in Washington, DC Science and Technology Officer - VFRC IFDC has launched the Virtual Fertilizer Research Center (VFRC), a global research, website, other media) 5. Liaison with VFRC BoA Science Committee, IFDC RDD and other technical bodies

Ma, Lena

360

1730 RHODE ISLAND AVENUE, NW WASHINGTON, DC 20036  

E-Print Network (OSTI)

1730 RHODE ISLAND AVENUE, NW SUITE 700 WASHINGTON, DC 20036 WWW.ENERGYRECOVERYCOUNCIL.ORG renewable energy from waste Testimony of Ted Michaels President, Energy Recovery Council Before the Connecticut the reclassification of trash-to-energy facilities as Class 1 renewable energy sources. Chairman Meyer, Chairman Roy

Columbia University

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electrostatic coalescence system with independent AC and DC hydrophilic electrodes  

DOE Patents (OSTI)

An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

Hovarongkura, A. David (Arlington, VA); Henry, Jr., Joseph D. (Morgantown, WV)

1981-01-01T23:59:59.000Z

362

Naval Research Laboratory Washington, DC 20375-5320  

E-Print Network (OSTI)

Laboratory, Washington, DC M. Wolford, Science Applications International, Corporation, McLean, VA F. Hegeler resolution along the laser axis to account for the change in gain from mirror to front window. The code) Pulsed Power System Amplifier Window BZ Laser Input Electron Beam Foil Support (Hibachi) Cathode Laser

363

Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator  

E-Print Network (OSTI)

Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutr...

Lee, Seung Kyu; Kim, Gi-Dong; Kim, Yong-Kyun

2011-01-01T23:59:59.000Z

364

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

365

The 100,000 amp dc power supply for a staged hadron collider superferric magnet  

SciTech Connect

A 1.5 volt 100,000 amp DC switcher power supply was developed for testing a superferric magnet string at FNAL. This supply was used during testing as both the ramping supply and holding supply powering a single magnet load with a total load resistance of 0.7{micro} Ohms. The supply consists of ten paralleled switcher cells, powered by a 400 volt/600 Amp DC power supply. Each cell consists of an IGBT H-bridge driving a step-down transformer at a switching frequency of 2 kHz. The transformer has an effective turns ratio of 224:1. The secondary consists of 32 parallel single-turn full wave rectifier windings. The rectification is done with 64 Shottky diodes. Each cell is rated at 1.5 volts/10,000 amps. During this test each cell was operated as a constant power source without load current or field feedback. This paper will describe the design of the switcher cell and control system used during testing. We will also describe the next level of improvements to the current feedback system to improve the ramp control.

Hays, Steven L.; Claypool, Bradley; Foster, G.William; /Fermilab

2005-09-01T23:59:59.000Z

366

Overview of tritium fast-fission yields  

SciTech Connect

Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors.

Tanner, J.E.

1981-03-01T23:59:59.000Z

367

FAST Program Computer Based Training  

Science Conference Proceedings (OSTI)

FAST CBT is a computer based training module that allows users to access training when desired and review it at their own pace. It provides graphics and interactive features to enhance learning. This computer based training module was created to help instruct users on an existing EPRI engineering computer program Product ID# 1004565 (FAST 1.0 Flow Path Analysis for Steam Turbines, Version 1.0). Users of this training will consist mainly of steam turbine performance engineers and outage managers. A subjec...

2010-11-17T23:59:59.000Z

368

FastJet user manual  

E-Print Network (OSTI)

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

Matteo Cacciari; Gavin P. Salam; Gregory Soyez

2011-11-25T23:59:59.000Z

369

TotalProf: a fast and accurate retargetable source code profiler  

Science Conference Proceedings (OSTI)

Profilers play an important role in software/hardware design, optimization, and verification. Various approaches have been proposed to implement profilers. The most widespread approach adopted in the embedded domain is Instruction Set Simulation (ISS) ... Keywords: architecture description language, instruction set simulation, performance estimation, source code profiling

Lei Gao; Jia Huang; Jianjiang Ceng; Rainer Leupers; Gerd Ascheid; Heinrich Meyr

2009-10-01T23:59:59.000Z

370

DC powerline communication system using a transmission line transformer for high degree of freedom applications  

E-Print Network (OSTI)

A new type of powerline communication is developed to reduce cable requirements for robotic, electromechanical, and vehicular systems. A DC power bus line connecting a DC power supply to motor drives and sensor units is ...

Wade, Eric R. (Eric Randolph), 1978-

2004-01-01T23:59:59.000Z

371

If you reside in WASHINGTON, DC - MD -VA - WV your salary will...  

National Nuclear Security Administration (NNSA)

If you are employed in the WASHINGTON, DC Metropolitan Area (D.C., Baltimore, Northern VA, Eastern WV, and Southern PA) your salary will range from: Pay Band Pay Plan(s) Minimum...

372

News From the D.C. Office: Federal Procurement of Efficient Chillers  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. News From the D.C. Office Federal Procurement of Efficient Chillers The replacement of large electric chillers in government facilities, driven by...

373

MPACT Fast Neutron Multiplicity System Design Concepts  

Science Conference Proceedings (OSTI)

This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most detecting volume. However, operational limitations guide a) the maximum acceptable size of each detector cell (due to PSD performance and maximum-acceptable per-channel data throughput rates, limited by pulse pile-up and the processing rate of the electronics components of the system) and b) the affordability of a system due to the number of total channels of data to be collected and processed. As a first estimate, it appears that a system comprised of two rows of detectors 5" Ø ? 3" would yield a working prototype system with excellent performance capabilities for assaying Pu-containing items and capable of handling high signal rates likely when measuring items with Pu and other actinides. However, it is still likely that gamma-ray shielding will be needed to reduce the total signal rate in the detectors. As a first step prior to working with these larger-sized detectors, it may be practical to perform scoping studies using small detectors, such as already-on-hand 3" Ø ? 3" detectors.

D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

2012-10-01T23:59:59.000Z

374

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

375

Building Scale DC Microgrids Chris Marnay, Steven Lanzisera, Michael Stadler, and Judy Lai  

E-Print Network (OSTI)

of building loads are either native DC, such as electronics and compact fluorescent and light emitting diode

376

Accurate Load and Generation Scheduling for Linearized DC Models with Contingencies  

SciTech Connect

The power restoration timeline suggested by the DC power flow and the Angle Constrained DC power flow is shown. Unfortunately, the suggested generator dispatch does not always lead to feasible AC power flow solutions. Even when the AC solution is feasible, the inaccuracies of the DC power flow can lead to significant line overloads.

Bent, Russell W. [Los Alamos National Laboratory; Coffrin, Carleton J. [Los Alamos National Laboratory; van Hentenryc, Pascal [NICTA

2012-07-13T23:59:59.000Z

377

Solar Decathlon at Home in the D.C. Community | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community Addthis A New Energy-Efficient Home in the D.C. Community 1 of 27 A New Energy-Efficient Home...

378

H? robust control of DC-AC interfaced microsource in microgrids  

Science Conference Proceedings (OSTI)

This paper focuses on the direct current -- alternating current (DC-AC) interfaced microsource based H ¿ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the ... Keywords: DC-AC interfaced microsource, H? robust control, Microgrid, f-v droop characteristic, smooth switching

Chun-Xia Dou; Fang Zhao; Xing-Bei Jia; Dong-Le Liu

2013-02-01T23:59:59.000Z

379

Speed control of DC motor based on neural net and fuzzy logic  

Science Conference Proceedings (OSTI)

This paper presented the speed control of DC motor based on neural net and fuzzy logic. To bypass the difficulties caused by system constraints and modelling uncertainties of the speed control of DC motor a neural network approach for on-line speed control ... Keywords: DC motor, fuzzy logic, neural network, speed control

Zahra Moravej

2005-09-01T23:59:59.000Z

380

High energy electron fluxes in dc-augmented capacitively coupled plasmas I. Fundamental characteristics  

E-Print Network (OSTI)

as max=-Vdc+Vrf+Vrf0, for a voltage on the dc electrode of Vdc, rf voltage of Vrf, and dc bias on the rf electrode of Vrf0. The dc current from the biased electrode must return to ground through surfaces other

Kushner, Mark

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

VOLTAGE COLLAPSE AND TRANSIENT ENERGY FUNCTION ANALYSES OF AC/DC SYSTEMS  

E-Print Network (OSTI)

VOLTAGE COLLAPSE AND TRANSIENT ENERGY FUNCTION ANALYSES OF AC/DC SYSTEMS by Claudio A. Ca AND TRANSIENT ENERGY FUNCTION ANALYSES OF AC/DC SYSTEMS by Claudio A. Ca~nizares A dissertation submitted . . . . . . . . . . . . . 4 1.3.2 AC/DC Transient Energy Functions . . . . . . . . . . . . . . 6 2 System Modelling 8 2

Cañizares, Claudio A.

382

Current Trends, DC, 3/24-28/03Progress towards Energy Supported by  

E-Print Network (OSTI)

Current Trends, DC, 3/24-28/03Progress towards Energy Supported by Columbia U Comp-X GA INEL JHU-term research plan #12;Current Trends, DC, 3/24-28/03Progress towards Energy Spherical Torus Offers High Trends, DC, 3/24-28/03Progress towards Energy NSTX Is to Prove Scientific Principle (PoP) of the Extended

Princeton Plasma Physics Laboratory

383

Design of Electric Vehicles DC Traction Motor Drive System Based on Optimal Control  

Science Conference Proceedings (OSTI)

The traditional electric vehicle DC motor drive system can not automatically weaken magnetic field. This paper designs DC motor drive system which control optimally the motor to meet the requirement. The study results show that: the drive system can ... Keywords: electric vehicles, DC motor, controller, optimal control

Yan Jun

2012-12-01T23:59:59.000Z

384

EE443L: Intermediate Control Lab Lab2: Modeling a DC motor  

E-Print Network (OSTI)

will develop and validate a basic model of a permanent magnet DC motor (Yaskawa Electric, Mini-series, Minertia of a permanent magnet DC motor, the field current is constant (i.e. a constant magnetic field). It can be shownEE443L: Intermediate Control Lab Lab2: Modeling a DC motor Introduction: In this lab we

Wedeward, Kevin

385

Aalborg Universitet Supervisory Control of an Adaptive-Droop Regulated DC Microgrid with Battery  

E-Print Network (OSTI)

Aalborg Universitet Supervisory Control of an Adaptive-Droop Regulated DC Microgrid with Battery Control of an Adaptive-Droop Regulated DC Microgrid with Battery Management Capability. I E E E, 2013 #12;1 Supervisory Control of an Adaptive-Droop Regulated DC Microgrid with Battery Management

Vasquez, Juan Carlos

386

Solar Decathlon at Home in the D.C. Community | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community Addthis A New Energy-Efficient Home in the D.C. Community 1 of 27 A New Energy-Efficient Home in the...

387

Multilevel cascade voltage source inverter with seperate DC sources  

SciTech Connect

A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)

1997-01-01T23:59:59.000Z

388

Multilevel cascade voltage source inverter with seperate DC sources  

DOE Patents (OSTI)

A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

Peng, Fang Zheng (Knoxville, TN); Lai, Jih-Sheng (Blacksburg, VA)

2002-01-01T23:59:59.000Z

389

Multilevel cascade voltage source inverter with separate DC sources  

DOE Patents (OSTI)

A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

Peng, F.Z.; Lai, J.S.

1997-06-24T23:59:59.000Z

390

Total aerosol effect: forcing or radiative flux perturbation?  

Science Conference Proceedings (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

391

dc-plasma-sprayed electronic-tube device  

DOE Patents (OSTI)

An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

Meek, T.T.

1982-01-29T23:59:59.000Z

392

Program on Technology Innovation: Superconducting DC Cable Workshop  

Science Conference Proceedings (OSTI)

This report is a summary of discussions and conclusion from a workshop on the technology of superconducting DC transmission cables. The workshop was held at EPRI in Palo Alto, California on October 12, 13, and 14, 2005. The purpose of the meeting was to bring a small group of experts in technologies relevant to the development of such a cable and to enumerate potential issues, technical challenges, and a timetable for development. The first half of the workshop consisted of short technical presentations,...

2006-03-31T23:59:59.000Z

393

The Use of DC Glow Discharges as Undergraduate Educational Tools  

SciTech Connect

Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

2012-10-09T23:59:59.000Z

394

Basic DC Meter Design ECE 2100 Circuit Analysis Laboratory  

E-Print Network (OSTI)

Basic DC Meter Design ECE 2100 Circuit Analysis Laboratory updated 8 January 2008 Pre-Laboratory Assignment 1. Design an ammeter with full scale current IFS equal to 5 mA using a meter movement rated at 0.5 mA and 100 mV. 2. Design a voltmeter with a full scale voltage VFS equal to 10 V using the meter

Miller, Damon A.

395

Fast and informative flow simulation in a building by using fast...  

NLE Websites -- All DOE Office Websites (Extended Search)

and informative flow simulation in a building by using fast fluid dynamics model on graphics processing unit Title Fast and informative flow simulation in a building by using...

396

Summary of electric vehicle dc motor-controller tests  

DOE Green Energy (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

397

Maryland DC Virginia Solar Energy Industries Association MDV SEIA | Open  

Open Energy Info (EERE)

DC Virginia Solar Energy Industries Association MDV SEIA DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place Bethesda, Maryland Zip 20814-3954 Sector Solar Product Trade associaton to promote solar equipment in the Mid-Atlantic region in US. Coordinates 40.020185°, -81.073819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.020185,"lon":-81.073819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

ReHABit : claiming endangered structures in Washington DC to rethink subsidized housing; Claiming endangered structures in Washington DC to rethink subsidized housing.  

E-Print Network (OSTI)

??There is an affordable housing crisis today in Washington D.C. that is the result of a uniquely complicated history of a capital city and a… (more)

Fowlkes, Catherine Kuhnle

2007-01-01T23:59:59.000Z

399

Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination  

DOE Green Energy (OSTI)

DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

Lai, Jih-Sheng (Blacksburg, VA); Liu, Changrong (Sunnyvale, CA); Ridenour, Amy (Salem, VA)

2009-04-14T23:59:59.000Z

400

Optimization of DC-DC Converters for Improved Electromagnetic Compatibility With High Energy Physics Front-End Electronics  

E-Print Network (OSTI)

The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.

Fuentes, C; Michelis, S; Blanchot, G; Allongue, B; Faccio, F; Orlandi, S; Kayal, M; Pontt, J

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Data:D28923dc-45dc-45e5-b62b-3ca789517591 | Open Energy Information  

Open Energy Info (EERE)

923dc-45dc-45e5-b62b-3ca789517591 923dc-45dc-45e5-b62b-3ca789517591 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL TIME OF DAY SERVICE Low Wattage (A22) Sector: Commercial Description: Customer Charge per Month (Please see page 5-24.1) Available to any non-residential customer for single or three phase electric service supplied through one meter. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider. ENVIRONMENTAL IMPROVEMENT RIDER Bills are subject to the adjustments provided for in the Environmental Improvement Rider.

402

A high efficiency, soft switching dc-dc converter with adaptive current-ripple control for portable applications  

E-Print Network (OSTI)

Abstract—A novel control scheme for improving the power efficiency of low-voltage dc–dc converters for battery-powered, portable applications is presented. In such applications, light-load efficiency is crucial for extending battery life, since mobile devices operate in stand-by mode for most of the time. The proposed technique adaptively reduces the inductor current ripple with decreasing load current while soft switching the converter to also reduce switching losses, thereby significantly improving light-load efficiency and therefore extending the operation life of battery-powered devices. A load-dependent, mode-hopping strategy is employed to maintain high efficiency over a wide load range. Hysteretic (sliding-mode) control with user programmable hysteresis is implemented to adaptively regulate the current ripple and therefore optimize conduction and switching losses. Experimental results show that for a 1-A, 5- to 1.8-V buck regulator, the proposed technique achieved 5 % power efficiency improvement (from 72 % to 77%) at 100 mA of load current and a 1.5% improvement (from 84 % to 85.5%) at 300 mA, which constitute light-load efficiency improvements, when compared to the best reported, state-of-the-art techniques. As a result, the battery life in a typical digital signalr processing microprocessor application is improved by 7%, which demonstrates the effectiveness of the proposed solution. Index Terms—Battery life, buck converter, dc–dc converter, efficiency, hysteretic control, sliding-mode control, soft switching, switching regulator.

Siyuan Zhou; Student Member; Gabriel A. Rincón-mora; Senior Member

2006-01-01T23:59:59.000Z

403

DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Totaling $12.4 Million Aimed at Increasing Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection August 1, 2011 - 1:00pm Addthis Washington, DC - A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE). The selections include $10.3 million for eight projects that will reduce the environmental risks of shale gas development while accelerating the application of new exploration and production technologies; and $2.1

404

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

405

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

406

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

407

FAST Simulation of Seismic Wind Turbine Response  

DOE Green Energy (OSTI)

This paper discusses recent additions to the computer simulation code FAST that allow a user to consider seismic loads.

Prowell, I.; Elgamal, A.; Jonkman, J.

2010-03-01T23:59:59.000Z

408

Fast Reactor Curriculum Workshop - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast Reactor Curriculum Workshop Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear...

409

Fast quench reactor and method  

DOE Patents (OSTI)

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

410

Fast quench reactor and method  

DOE Patents (OSTI)

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

411

DC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional High DC Regions » DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jamie T. Scipio Email: jamie.scipio@hq.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 12

412

News From the D.C. Office: Energy-Saving Office Equipment Part 2  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Energy-Saving Office Equipment Part 2: Making the "Virtual Office" Real More on the DC Office efficiency up-grade: Lighting, Office Equipment: Part 1 Regular readers of the Center for Building Science News know that energy-efficient lighting and office equipment can have significant environmental and economic benefits. Previous articles ("Monitored Savings from Energy-Efficient Lighting in D.C. Office" [Spring 1997, p. 3] and "Energy-Saving Office equipment" [Summer 1997, p. 3]) discussed these features of Berkeley Lab's Washington, D.C. office. The D.C. office also serves as a demonstration site for telecommunications technologies, which have energy and environmental benefits of their own.

413

Energy Challenge Two: The WeatherizeDC Campaign | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Challenge Two: The WeatherizeDC Campaign Energy Challenge Two: The WeatherizeDC Campaign Energy Challenge Two: The WeatherizeDC Campaign June 14, 2010 - 9:15am Addthis John Lippert In my quest to learn what other local groups are doing to help the environment and hopefully avoid reinventing the wheel, I attended a meeting of the Greenbelt Climate Action Network, a local chapter of the grassroots, nonprofit organization Chesapeake Climate Action Network. There I met two WeatherizeDC field organizers who described the work they are doing. Terrance and Heather explained that WeatherizeDC is a campaign of The DC Project, a nonprofit based in Washington, D.C., founded by former leaders of the Obama for America campaign around a mission to advance economic and environmental justice by creating clean energy career opportunities for

414

DC Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional Middle DC Regions » DC Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Chester Scott Email: chester.scott@hq.doe.gov Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 12

415

Solar Decathlon at Home in the D.C. Community | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community Addthis A New Energy-Efficient Home in the D.C. Community 1 of 27 A New Energy-Efficient Home in the D.C. Community On December 4, 2012, the Empowerhouse team, along with partners and community members, completed the installation of a permanent, two-family home in Washington, D.C. The home was originally showcased as part of the U.S Department of Energy's Solar Decathlon 2011. Image: Sarah Gerrity Date taken: 2012-12-04 12:22 2 of 27 The house is located in the D.C. neighborhood of Deanwood, which is just 10 miles from the National Mall. By installing the house nearby, the team was able to minimize shipping costs, therefore reducing the house's carbon footprint. Image: Sarah Gerrity

416

Dynamics of Fast Reactions in Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

in "Ionic Liquids IIIA: Properties and Structure" Rogers, R. D. and Seddon, K. R., Eds.; ACS Symp. Ser. 901, Ch. 8, American Chemical Society, Washington, DC, 2005, pp. x-x., in...

417

Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator  

E-Print Network (OSTI)

Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutron source. In the results, the designed and fabricated stilbene neutron diagnostic system performed well in discriminating neutrons from gamma-rays under the high magnetic field conditions during KSTAR operation. Fast neutrons of 2.45 MeV were effectively measured and evaluated during the 2011 KSTAR campaign.

Seung Kyu Lee; Byoung-Hwi Kang; Gi-Dong Kim; Yong-Kyun Kim

2011-12-27T23:59:59.000Z

418

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

419

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

420

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

422

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

423

New approach to timing: the fast--fast system  

SciTech Connect

A dual channel constant fraction timing discriminator incorporating multiple energy windows and coincidence logic has been developed. Incorporation of energy discrimination and fast coincidence logic into the timing channel has distinct advantages in terms of system simplicity, stability and data rates. A prototype applying the F$sup 2$ approach has been constructed and tested. The system gives a $sup 60$Co FWHM of approximately 210 psec at a singles rate of greater than 7.5 x 10$sup 5$ sec$sup -1$ (approximately 1200 coincidences/sec). (auth)

Hardy, W.H. II; Lynn, K.G.

1975-01-01T23:59:59.000Z

424

DC Resistivity Survey (Schlumberger Array) | Open Energy Information  

Open Energy Info (EERE)

Schlumberger Array) Schlumberger Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Schlumberger Array) Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

425

DC Resistivity Survey (Wenner Array) | Open Energy Information  

Open Energy Info (EERE)

Wenner Array) Wenner Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Wenner Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

426

DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

Pole-Dipole Array) Pole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Pole-Dipole Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

427

The dc modeling program (DCMP): Version 2. 0  

Science Conference Proceedings (OSTI)

In this project one of the main objectives was the refinement of tools for the study of HVDC systems. The original software was prepared in project RP1964-2 (EL-4365) as power flow and stability program models for HVDC systems. In this project new modeling capabilities were added to both the power flow and stability models. Additionally, the HVDC specific model capabilities were integrated into a new program, termed the Standalone program, for use in the development and testing of HVDC models. This manual provides technical background for programmers and those interested in understanding, augmenting or transporting the dc models.

Chapman, D.G. (Manitoba HVDC Research Centre, Winnipeg, MB (Canada))

1990-08-01T23:59:59.000Z

428

Hardwired Control Changes For NSTX DC Power Feeds  

SciTech Connect

The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The original TFTR Hardwired Control System (HCS) with electromechanical relays was used for NSTX DC Power loop control and protection during NSTX operations. As part of the NSTX Upgrade, the HCS is being changed to a PLC-based system with the same control logic. This paper gives a description of the changeover to the new PLC-based system __________________________________________________

Ramakrishnan, S.

2013-06-28T23:59:59.000Z

429

Feasibility of dc transmission with forced commutation to remote loads  

SciTech Connect

Previous researchers have analysed the forced commutated HVDC inverter and have concluded that it could be used to meet the reactive power at the inverter terminals. This investigation is a further technical appraisal involving a two terminal transmission scheme to a remote load with no ac generation at the load. Several possible inverter configurations are discussed. An electromagnetic transients program is used to model the system and simulate such aspects as start up, ac and dc faults and speed of response to voltage and frequency controls. The results indicate that such a scheme is indeed technically feasible and may be quite attractive from an economic and reliability point of view.

Turanli, H.M.; Menzies, R.W.; Woodford, D.A.

1984-06-01T23:59:59.000Z

430

dc-to-ac power converter for fuel cell system  

SciTech Connect

As the interface between fuel cells and the utility line, a self-commutated inverter is preferred to a line-commutated inverter because of its easy controllability. Using the gate turn off (GTO) thyristors, this inverter can have high efficiency and simple circuit configurations. This paper describes the design features and test results of the dc-to-ac power converter, which is principally composed of four-phase transistor chopper and 12-pulse GTO inverter, for a 50kW experimental fuel cell power system. Furthermore, new GTO inverter which improves the circuit efficiency is presented. Special emphasis is placed on a detailed analysis and evaluation of this GTO inverter.

Kawabata, T.; Asaeda, T.; Hamasaki, Y.; Yutani, T.

1983-10-01T23:59:59.000Z

431

Modeling and Analysis of the Role of Fast-Response Energy Storage in the Smart Grid  

E-Print Network (OSTI)

Abstract—The large short time-scale variability of renewable energy resources presents significant challenges to the reliable operation of power systems. This variability can be mitigated by deploying fast-ramping generators. However, these generators are costly to operate and produce environmentally harmful emissions. Fast-response energy storage devices, such as batteries and flywheels, provide an environmentally friendly alternative, but are expensive and have limited capacity. To study the environmental benefits of storage, we introduce a slotted-time dynamic residual dc power flow model with the prediction error of the difference between the generation (including renewables) and the load as input and the fast-ramping generation and the storage (charging/discharging) operation as the control variables used to ensure that the demand is satisfied (as much as possible) in each time slot. We assume the input prediction error sequence to be i.i.d. zero-mean random variables. The optimal power flow problem is then formulated as an infinite horizon average-cost dynamic program with the cost function taken as a weighted sum of the average fast-ramping generation and the loss of load probability. We find the optimal policies at the two extremes of the cost function weights and propose a two-threshold policy for the general case. We also obtain refined analytical results under the assumption of Laplace distributed prediction error and corroborate this assumption using simulated wind power generation data from NREL. I.

Han-i Su; Abbas El Gamal

2011-01-01T23:59:59.000Z

432

A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths  

SciTech Connect

A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.

Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

2012-05-15T23:59:59.000Z

433

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

434

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

435

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

436

Final Report on Actinide Glass Scintillators for Fast Neutron Detection  

Science Conference Proceedings (OSTI)

This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

Bliss, Mary; Stave, Jean A.

2012-10-01T23:59:59.000Z

437

Edison Revisited: Should we use DC Circuits for Lighting in Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Revisited: Should we use DC Circuits for Lighting in Commercial Edison Revisited: Should we use DC Circuits for Lighting in Commercial Buildings? Speaker(s): Brinda Thomas Date: March 7, 2012 - 12:30pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This seminar summarizes work from a forthcoming Energy Policy paper and thoughts on future work to understand the economics of DC building circuits. We examined the economic feasibility of a general application of DC building circuits to operate commercial lighting systems. We compare light-emitting diodes (LEDs) and fluorescents that are powered by either a central DC power supply or traditional AC grid electricity, with and without solar photovoltaics (PV) and battery back-up. We find that there are limited life-cycle ownership cost and capital cost benefits of DC

438

News From the D.C. Office: Monitored Savings from Energy-Efficient Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Monitored Savings from Energy-Efficient Lighting in D.C. Office More on the DC Office efficiency up-grade: Office Equipment: Part 1, Part 2 Figure 1: Lighting energy use profile for a typical exterior office. Berkeley Lab's office in Washington, D.C. is located a few blocks from DOE headquarters, in a five-year-old office building constructed mainly for lease to Federal agencies and their contractors. Despite its recent vintage, the building's standard lighting specifications were far from today's best, cost-effective practice. In designing the build-out plans for offices and meeting rooms in our 7,500-square-foot suite, we wanted to showcase some of the energy-efficient lighting and office equipment developed for DOE's Building Technologies

439

Applications of fast wave in spherical tokamaks  

SciTech Connect

In spherical tokamaks (ST), the magnetic field strength varies over a wide range across the plasma, and at high betas it deviates significantly from the 1/R dependence of conventional tokamaks. This, together with the high density expected in ST, poses challenging problems for RF heating and current drive. In this paper, the authors investigate the various possible applications of fast waves (FW) in ST. The adjoint technique of calculating current drive is implemented in the raytracing code CURRAY. The applicability of high harmonic and subharmonic FW to steady state ST is considered. They find that high harmonic FW tends to be totally absorbed before reaching the core and may be considered a candidate for off axis current drive while the subharmonic FW tends to be absorbed mainly in the core region and may be considered for central current drive. A difficult problem is the maintenance of current at the startup stage. In the bootstrap ramp-up scenario, the current ramp-up is mainly provided by the bootstrap current. Under this condition, the role of rf becomes mainly the sustainment of plasma through electron heating. Using a slab full-wave code SEMAL, the authors find that the ion-ion-hybrid mode conversion scheme is a promising candidate. The effect of possible existence of edge Alfven resonance and high harmonic cyclotron resonance is investigated and regimes of minimization of edge heating identified.

Chiu, S.C.; Chan, V.S.; Lin-Liu, Y.R.; Miller, R.L.; Prater, R.; Politzer, P.

1997-04-01T23:59:59.000Z

440

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

AC to DC Line Conversion: DConvert Program Version 1.0  

Science Conference Proceedings (OSTI)

The past several years have seen renewed interest in the prospect of converting ac lines to dc operation interest spurred both by the ongoing need to make greater use of existing transmission assets and advances in HVDC converter technology. EPRI has sponsored two major studies dealing with the conversion prospect. The first, 8220Tools for Assessing Conversion of AC Power Transmission Lines to DC,(Product ID # 1020651) and the second, 8220Dc Capability of AC Transmission Lines,(Product ID #1013979). Cont...

2010-10-26T23:59:59.000Z

442

Technology Assessment and Application Guide for Active Power's CoolAir DC  

Science Conference Proceedings (OSTI)

This report describes and documents the construction and performance of a novel battery free backup power product, CoolAir (DC) based upon TACAS (Thermal Compressed Air Storage) technology and manufactured by Active Power of Austin, Texas. Comprised of compressed air tanks, thermal storage unit, high-speed air turbine, flywheel, and power electronics, the CoolAir DC is designed to deliver DC power to devices such as an uninterruptible power supply or adjustable speed drive while producing cool air during...

2005-11-15T23:59:59.000Z

443

Study of power transfer capability of dc systems incorporating ac loads and a parallel ac line  

Science Conference Proceedings (OSTI)

Concepts of maximum power transfer of dc systems and associated ac voltage variations, particularly at inverter stations having low short-circuit ratios, have been extended to include various ac load models and an ac line in parallel with the dc line. The operating capabilities are shown to vary from those predicted from either a Thevenin ac source model or the corresponding short-circuit ratio. The study used an ac/dc load flow program.

Reeve, J.; Uzunovic, E. [Univ. of Waterloo, Ontario (Canada)

1997-01-01T23:59:59.000Z

444

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

445

Reduction of 1/fnoise in high-T dc superconducting quantum ...  

Reduction of 1/fnoise in high-Tc dc superconducting quantum interference devices cooled in an ambient magnetic ?eld E. Dantsker, S. Tanaka, P.-A?.

446

2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data...  

Open Energy Info (EERE)

D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

447

Characterization of Fir-tree Zones in AA1050 DC Cast Ingot  

Science Conference Proceedings (OSTI)

Using combination of electron backscattered diffraction, energy dispersive ... of Fe-bearing intermetallics throughout the fir-tree zones of AA1050 DC ingot were  ...

448

BERAC Meeting November 3-4, 2004 Washington, DC | U.S. DOE Office...  

Office of Science (SC) Website

3-4, 2004 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges Reports Charter...

449

Water | Desire: Design of a Responsible Urban Retreat in Georgetown, Washington, DC.  

E-Print Network (OSTI)

??The design of an urban retreat within an industrial building in Georgetown, DC provides an opportunity to experience water in the built environment. The location… (more)

Zimmerli, Tanya

2013-01-01T23:59:59.000Z

450

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

for Renewables and Efficiency: Net Metering Policies SummaryDC residential distribution. Net-Metering Because the gridgrid-connected [33]. Net metering makes grid-connected PV

Garbesi, Karina

2012-01-01T23:59:59.000Z

451

Fast Start Financing | Open Energy Information  

Open Energy Info (EERE)

Fast Start Financing Fast Start Financing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fast Start Financing Agency/Company /Organization: Government of the Netherlands Partner: United Nations Environment Programme, United Nations Development Programme, United Nations Framework Convention on Climate Change, World Bank Topics: Finance, Market analysis Resource Type: Maps Website: www.faststartfinance.org/home Fast Start Financing Screenshot References: Fast Start Financing [1] Overview "www.faststartfinance.org aims to provide transparency about the amount, direction and use of fast start climate finance, in turn building trust in its delivery and impact. Development of the website was initiated by the government of the Netherlands, with support from the governments of Costa Rica, Colombia,

452

A fast directional continuous spherical wavelet transform  

E-Print Network (OSTI)

A fast algorithm for Antoine and Vandergheynst's (1998) directional continuous spherical wavelet transform (CSWT) is presented. Computational requirements are reduced by a factor of O(\\sqrt{N}), when N is the number of pixels on the sphere. The spherical Mexican hat wavelet Gaussianity analysis of the WMAP 1-year data performed by Vielva et al. (2003) is reproduced and confirmed using the fast CSWT. The proposed extension to directional analysis is inherently afforded by the fast CSWT algorithm.

J. D. McEwen; M. P. Hobson; A. N. Lasenby; D. J. Mortlock

2004-09-13T23:59:59.000Z

453

ENERGY DISTRIBUTION OF FAST NEUTRON BEAM  

DOE Green Energy (OSTI)

Experimental techniques are described for the spectral measurement of a collimated fast-neutron beam. A H/sub 2-/ filled cloud chamber, proton-recording nuclear plates, and threshold fission foils were used as neutron detectors in the measurements. As an application of these techniques, the energy distribution and absolute flux of the fast neutron beam emerging from the Los Alamos fast reactor was measured from 0.1 to 18 Mev. (D.E.B.)

Nereson, N.; Allison, E.; Carlson, J.; Norwood, P.; Squires, D.

1951-02-15T23:59:59.000Z

454

Fast Conversion Algorithms for Orthogonal Polynomials - Computer ...  

E-Print Network (OSTI)

Nov 13, 2008 ... a known conversion algorithm from an arbitrary orthogonal basis to the ... Fast algorithms, transposed algorithms, basis conversion, orthogonal.

455

FOAM:The Fast Ocean Atmosphere Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Models Performance User Resources Publications History Developer's Page FOAM The Fast Ocean Atmosphere Model cup2.jpeg (48474 bytes) Image made by Johan Kellum with Vis5D...

456

Fast Corn Grading System Verification and Modification.  

E-Print Network (OSTI)

??A fast corn grading system can replace the traditional method in unofficial corn grading locations. The initial design of the system proved that it can… (more)

Smith, Leanna Marie

2012-01-01T23:59:59.000Z

457

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network (OSTI)

jet aircraft engines, and nuclear reactor fuel elements. Ancomponents of a nuclear reactor core are susceptible tothe nuclear physics of the thermal and fast neutron reactors

Olander, Donald R.

2013-01-01T23:59:59.000Z

458

Turning Big Data into fast data  

NLE Websites -- All DOE Office Websites (Extended Search)

magazine Latest Issue:April 2013 All Issues submit Turning Big Data into fast data for nuclear weapons simulations at the exascale Solving the roadblock for tomorrow's exascale...

459

Rotor for centrifugal fast analyzers  

DOE Patents (OSTI)

The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

Lee, N.E.

1984-01-01T23:59:59.000Z

460

Rotor for centrifugal fast analyzers  

DOE Patents (OSTI)

The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

Lee, Norman E. (Knoxville, TN)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

On fast reactor kinetics studies  

Science Conference Proceedings (OSTI)

The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

Seleznev, E. F.; Belov, A. A. [Nuclear Safety Inst. of the Russian Academy of Sciences IBRAE (Russian Federation); Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F. [Inst. for Physics and Power Engineering IPPE (Russian Federation)

2012-07-01T23:59:59.000Z

462

Research, Washington, DC (United States) Sandia National Labs.,  

Office of Scientific and Technical Information (OSTI)

584878 SAND--95-2914 GeoEnergy technology 1980-12-31 USDOE Office of Energy 584878 SAND--95-2914 GeoEnergy technology 1980-12-31 USDOE Office of Energy Research, Washington, DC (United States) Sandia National Labs., Albuquerque, NM (United States) English 2010-02-18 Technical Report http://www.osti.gov/geothermal/servlets/purl/584878-P1qAuZ/webviewable/ http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=584878 29 ENERGY PLANNING AND POLICY; RESEARCH PROGRAMS; COAL; PETROLEUM; NATURAL GAS; SYNTHETIC PETROLEUM; GEOTHERMAL ENERGY; ENERGY CONVERSION; PRODUCTION; HEAT EXTRACTION; US DOE; IN-SITU GASIFICATION; ENHANCED RECOVERY; COAL LIQUEFACTION; GEOTHERMAL WELLS Geothermal Legacy 894529 894529 Use of Geothermal Energy for Aquaculture Purposes - Phase III Johnson, W.C.; Smith, K.C. 1981-09-01 USDOE Geo-Heat Center, Klamath Falls, OR English

463

Disc rotors with permanent magnets for brushless DC motor  

DOE Patents (OSTI)

A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

Hawsey, Robert A. (Oak Ridge, TN); Bailey, J. Milton (Knoxville, TN)

1992-01-01T23:59:59.000Z

464

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

465

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

466

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

467

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

468

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

469

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

470

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

471

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

472

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

473

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

474

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

475

Data:32e71087-dc4e-4f67-a64d-c27cf8411705 | Open Energy Information  

Open Energy Info (EERE)

-dc4e-4f67-a64d-c27cf8411705 -dc4e-4f67-a64d-c27cf8411705 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Rockwood, Tennessee (Utility Company) Effective date: 2012/12/01 End date if known: Rate name: Outdoor Lighting HPS 200w Sector: Lighting Description: ROCKWOOD ELECRIC UTILITY can install a private security light on your residential or commercial property under most conditions. All new requests for outdoor lighting require the applicant to sign a minimum two year contract for security lighting service. If you have security concerns and would like to discuss outdoor lighting options, please contact our Engineering Department to look at the situation with you.

476

Data:692a2dc0-44ed-44ef-a5d9-f42dc3f27436 | Open Energy Information  

Open Energy Info (EERE)

dc0-44ed-44ef-a5d9-f42dc3f27436 dc0-44ed-44ef-a5d9-f42dc3f27436 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Tri-County Elec Member Corp (Tennessee) Effective date: 2013/06/01 End date if known: Rate name: 400 Watt MV Sector: Lighting Description: Source or reference: http://www.tcemc.org/index.php/residential-information/ Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

477

Data:5df914dc-748a-4757-980d-c7fa8bd9d9fe | Open Energy Information  

Open Energy Info (EERE)

dc-748a-4757-980d-c7fa8bd9d9fe dc-748a-4757-980d-c7fa8bd9d9fe No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sumter Electric Member Corp Effective date: 2012/01/01 End date if known: Rate name: Outdoor Lighting Off- Roadway HPS 250 W Sector: Lighting Description: * Fixed Monthly Charge does not include monthly pole rate charges Source or reference: http://www.sumteremc.com/pdfs/OL-9.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

478

Data:73d310b4-d5f4-48dc-b4dc-9aca99090e47 | Open Energy Information  

Open Energy Info (EERE)

0b4-d5f4-48dc-b4dc-9aca99090e47 0b4-d5f4-48dc-b4dc-9aca99090e47 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Black Earth, Wisconsin (Utility Company) Effective date: 1999/08/01 End date if known: Rate name: Ms-1 Outdoor Lighting Service: Athletic Field Lighting Sector: Lighting Description: Application: This schedule will be applied to municipal street lighting. The utility will furnish, install, and maintain street lighting units. Fixed Monthly Charge includes Commitment to Community Rider: $1.33 per customer per month. Power Cost Adjustment Clause: Charge per all kWh varies monthly.

479

Directional Detection of Fast Neutrons Using a Time Projection Chamber  

Science Conference Proceedings (OSTI)

Spontaneous fission in Special Nuclear Material (SNM) such as plutonium and highly enriched uranium (HEU) results in the emission of neutrons with energies in the MeV range (hereafter 'fast neutrons'). These fast neutrons are largely unaffected by the few centimeters of intervening high-Z material that would suffice for attenuating most emitted gamma rays, while tens of centimeters of hydrogenous materials are required to achieve substantial attenuation of neutron fluxes from SNM. Neutron detectors are therefore an important complement to gamma-ray detectors in SNM search and monitoring applications. The rate at which SNM emits fast neutrons varies from about 2 per kilogram per second for typical HEU to some 60,000 per kilogram per second for metallic weapons grade plutonium. These rates can be compared with typical sea-level (cosmogenic) neutron backgrounds of roughly 5 per second per square meter per steradian in the relevant energy range [1]. The fact that the backgrounds are largely isotropic makes directional neutron detection especially attractive for SNM detection. The ability to detect, localize, and ultimately identify fast neutron sources at standoff will ultimately be limited by this background rate. Fast neutrons are particularly well suited to standoff detection and localization of SNM or other fast neutrons sources. Fast neutrons have attenuation lengths of about 60 meters in air, and retain considerable information about their source direction even after one or two scatters. Knowledge of the incoming direction of a fast neutron, from SNM or otherwise, has the potential to significantly improve signal to background in a variety of applications, since the background arriving from any one direction is a small fraction of the total background. Imaging or directional information therefore allows for source detection at a larger standoff distance or with shorter dwell times compared to nondirectional detectors, provided high detection efficiency can be maintained. Directional detection of neutrons has been previously considered for applications such as controlled fusion neutron imaging [2], nuclear fuel safety research [3], imaging of solar neutrons and SNM [4], and in nuclear science [5]. The use of scintillating crystals and fibers has been proposed for directional neutron detection [6]. Recently, a neutron scatter camera has been designed, constructed, and tested for imaging of fast neutrons, characteristic for SNM material fission [7]. The neutron scatter camera relies on the measurement of the proton recoil angle and proton energy by time of flight between two segmented solid-state detectors. A single-measurement result from the neutron scatter camera is a ring containing the possible incident neutron direction. Here we describe the development and commissioning of a directional neutron detection system based on a time projection chamber (TPC) detector. The TPC, which has been widely used in particle and nuclear physics research for several decades, provides a convenient means of measuring the full 3D trajectory, specific ionization (i.e particle type) and energy of charged particles. For this application, we observe recoil protons produced by fast neutron scatters on protons in hydrogen or methane gas. Gas pressures of a few ATM provide reasonable neutron interaction/scattering rates.

Bowden, N; Heffner, M; Carosi, G; Carter, D; Foxe, M; Jovanovic, I

2009-06-03T23:59:59.000Z

480

Data:695f5889-8dc6-411a-abc1-5f05ba5d2d6f | Open Energy Information  

Open Energy Info (EERE)

8dc6-411a-abc1-5f05ba5d2d6f 8dc6-411a-abc1-5f05ba5d2d6f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Eastern Illinois Elec Coop Effective date: 2010/08/27 End date if known: Rate name: OPTIONAL INTERRUPTIBLE LARGE POWER SERVICE RATE SCHEDULE NO. 24 Sector: Commercial Description: **THIS IS FOR SINGLE PHASE ONLY Available upon application to any member/owner for all uses, including lighting, heating and power, subject to established rules and regulations of the Cooperative. Member/owner agrees to curtail its total kilowatt load at any time on proper advance notice for the period of time specified.

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Data:0c2dc453-a7cd-4b06-a67c-e8dbfc15a5c4 | Open Energy Information  

Open Energy Info (EERE)

dc453-a7cd-4b06-a67c-e8dbfc15a5c4 dc453-a7cd-4b06-a67c-e8dbfc15a5c4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Duke Energy Indiana Inc Effective date: 2009/09/14 End date if known: Rate name: Low Load Factor - High Efficiency Sector: Industrial Description: Availability Available only for the electrical requirements of a three phase total electric commercial building whose space conditioning requirements are provided by an energy efficient electric space conditioning system. Character of Service Electric energy supplied hereunder shall be alternating current, sixty Hertz, at any standard three phase voltage supplied by Company in the locality for which the service is requested.

482

CMB quadrupole suppression. II. The early fast roll stage  

Science Conference Proceedings (OSTI)

Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.

Boyanovsky, D.; Vega, H. J. de [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Observatoire de Paris, LERMA, Laboratoire Associe au CNRS UMR 8112, 61, Avenue de l'Observatoire, 75014 Paris (France); LPTHE, Universite Pierre et Marie Curie (Paris VI) et Denis Diderot (Paris VII), Laboratoire Associe au CNRS UMR 7589, Tour 24, 5eme. etage, 4, Place Jussieu, 75252 Paris, Cedex 05 (France); Sanchez, N. G. [Observatoire de Paris, LERMA, Laboratoire Associe au CNRS UMR 8112, 61, Avenue de l'Observatoire, 75014 Paris (France)

2006-12-15T23:59:59.000Z

483

FAST User's Guide - Updated August 2005  

DOE Green Energy (OSTI)

The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) Code is a comprehensive aeroelastic simulator capable of predicting both the extreme and fatigue loads of two- and three-bladed horizontal-axis wind turbines (HAWTs). This document covers the features of FAST and outlines its operating procedures.

Jonkman, J. M.; Buhl, M. L. Jr.

2005-10-01T23:59:59.000Z

484

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

485

A Bidirectional, Triple-Voltage DC-DC Converter for Hybrid and Fuel Cell Vehicle Power Systems  

Science Conference Proceedings (OSTI)

Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage (14V, 42V and high voltage (HV)) nets. These will be necessary to accommodate existing 14V loads as well as efficiently handle new heavy loads at the 42V net and an electrical traction drive on the HV bus. A low-cost bi-directional dc-dc converter was proposed in (10) for connecting the three voltage nets. The converter consists of two half-bridges and a high-frequency transformer; thus minimizing the number of switching devices and their associated gate driver components. One salient feature is that the half-bridge on the 42V bus is also utilized to provide the 14V bus by operating its duty ratio around an atypical value of 1/3. This eliminates the need for an additional 14V/42V converter. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft-switching; no extra active switches or passive resonant components are required. The use of half-bridges makes the topology suitable for interleaved multi-phase configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with the atypical duty ratio on the transformer and a preferred multi-phase configuration to minimize capacitor ripple currents.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2007-01-01T23:59:59.000Z

486

A new arrangement of AC/DC converters for high direct-current applications  

Science Conference Proceedings (OSTI)

A novel AC/DC converter designed for high-output direct currents and tight output voltage regulations is introduced. The proposed converter exhibits good efficiency and very low output voltage ripple. In order to verify the performances of the four-stage ... Keywords: AC/DC converter, FFT, electrical distribution systems, high direct-current

Francesco Muzi; Luigi Passacantando

2008-04-01T23:59:59.000Z

487

Improvements in power quality and efficiency with a new AC/DC high current converter  

Science Conference Proceedings (OSTI)

A very flexible AC/DC converter featuring high-output current, reduced voltage ripple and highly adjustable current control is described. The whole system consists of four stages and uses a proper switching technique in conjunction with a feedback control ... Keywords: AC/DC converter, FFT, electrical distribution systems, high direct-current, power quality

Francesco Muzi; Luigi Passacantando

2008-05-01T23:59:59.000Z

488

The GreenIT DC-benchmarking tool: from scientific theory to real life  

Science Conference Proceedings (OSTI)

Energy efficiency is one of the topics in achieving the goal of reducing the CO2 output in the next years. Data centers (DC) are big polluters. GreenIT DC-Benchmarking is the first neutral benchmarking tool that shows the specific energy and ... Keywords: data center benchmarking, energy consumption, energy efficiency & monitoring, key performance indicator, power usage effectiveness (PUE)

Ywes Israel; Thomas Leitert

2012-05-01T23:59:59.000Z

489

EPRI HVDC Reference Book: Chapter 13 - DC Transmission with Voltage Sourced Converters  

Science Conference Proceedings (OSTI)

DC Transmission with voltage sourced converters (VSC) is a relatively new development in DC transmission. This report covers circuits, theory and capabilities of this new development in HVDC transmission. The report will be a Chapter in the comprehensive HVDC reference guide that EPRI is preparing.

2009-12-21T23:59:59.000Z

490

Abstract. Doxycycline (Dc) has been demonstrated to inhibit cell growth and induce apoptosis in tumor cells,  

E-Print Network (OSTI)

Abstract. Doxycycline (Dc) has been demonstrated to inhibit cell growth and induce apoptosis of apoptosis, whereas the role of the caspase-9 was limited. Keywords. Doxycycline, apoptosis, mitochondria by inhibiting bacterial protein syn- thesis. Doxycycline (Dc) is a semi-synthetic tetracycline made by modifying

Tian, Weidong

491

Design and Verification of Smart and Scalable DC Microgrids for Emerging Regions  

E-Print Network (OSTI)

Design and Verification of Smart and Scalable DC Microgrids for Emerging Regions P. Achintya solutions that displace fossil fuels and are financially viable for developing regions. A novel DC microgrid-testing of the technical and economic viability of the microgrid system are presented. I. INTRODUCTION Millions

Sanders, Seth

492

Control of Parallel-Connected Bidirectional AC-DC Converters in Stationary Frame for Microgrid  

E-Print Network (OSTI)

Control of Parallel-Connected Bidirectional AC-DC Converters in Stationary Frame for Microgrid-- With the penetration of renewable energy in modern power system, microgrid has become a popular application worldwide. In this paper, parallel-connected bidirectional converters for AC and DC hybrid microgrid application

Teodorescu, Remus

493

Design and analysis of an electronic ballast with a secondary DC output  

Science Conference Proceedings (OSTI)

An electronic ballast circuit for a high-frequency operated fluorescent lamp, which uses switched-capacitor techniques, is presented in this paper. A part of energy in the electronic ballast is derived to a secondary DC output as a power supply. All ... Keywords: DC power supply, electronic ballast, energy recovery, resonant converter

K. W. E. Cheng; H. Y. Wang; D. K. W. Cheng

2008-11-01T23:59:59.000Z

494

Analog Integrated Circuits and Signal Processing, 42, 231–238, 2005 c ? 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. Cascode Monolithic DC-DC Converter for Reliable Operation at High Input Voltages  

E-Print Network (OSTI)

Abstract. A cascode bridge circuit for monolithic switching DC-DC converters operating at high input voltages is proposed in this paper. The proposed circuit can also be used as an I/O buffer to interface circuits operating at significantly different voltages. The circuit technique permits the full integration of the active and passive devices of a switching DC-DC converter with a high voltage conversion ratio in a standard low voltage CMOS technology. The cascode bridge structure guarantees the reliable operation of deep submicrometer MOSFETs without exposure to high voltage stress while operating at high input and output voltages. With the proposed circuit technique, steady-state voltage differences between the terminals of all of the MOSFETs in a switching DC-DC converter are maintained within a range imposed by a target low voltage CMOS technology. High-to-low DC-DC converters operating at input voltages up to three times as high as the maximum voltage that can be directly applied across the terminals of a MOSFET are described. An efficiency of 79.6 % is achieved for 5.4 volts to 0.9 volts conversion assuming a 0.18 µm CMOS technology. The DC-DC converter operates at a switching frequency of 97 MHz while supplying a DC current of 250 mA to the load. Key Words: low voltage DC-DC converters, monolithic voltage regulators, low voltage CMOS technology, MOSFET reliability issues, high voltage stress 1.

Volkan Kursun; Siva G. Narendra; Vivek K. De; Eby G. Friedman

2004-01-01T23:59:59.000Z

495

NETL: News Release -DOE Selects Projects Totaling $12.4 Million Aimed at  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2011 1, 2011 DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection Focus is on Shale Gas, Enhanced Oil Recovery Washington, D.C. - A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE). MORE INFO Link to RPSEA website The selections include $10.3 million for eight projects that will reduce the environmental risks of shale gas development while accelerating the application of new exploration and production technologies; and $2.1 million for three projects investigating innovative processes for

496

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

497

Data:6648eda2-bf9d-4ea7-8032-842dc3476009 | Open Energy Information  

Open Energy Info (EERE)

eda2-bf9d-4ea7-8032-842dc3476009 eda2-bf9d-4ea7-8032-842dc3476009 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Dakota Valley Elec Coop Inc Effective date: 2013/01/01 End date if known: Rate name: Electric Heat - Multi-Phase and consumer-owned generation Sector: Commercial Description: This rate is applicable to acceptable permanently wired electric heat installations that serve as a major heat source in a house, shop, livestock containment or small commercial building which are multi-phase accounts or accounts served in total or in part by a consumer-owned source of generation including but not limited to diesel, propane, wind or solar powered generators. The electric heating load must be 5-kW or larger and otherwise meet Cooperative requirements for loads metered. The electric heat installation must be wired and metered separately from the multi-phase or single-phase service which serves other non-electric heat loads and separately from the consumer-owned source of generation.

498

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Energy October 2013 October-November Special Focus: Energy Efficiency, Buildings and the Electric Grid An increasing fraction of the most efficient appliances on the market operate on direct current (DC) internally, making it possible to use DC from renewable energy systems directly and avoid the losses inherent in converting power to alternating current (AC) and back, as is current practice. Products are also emerging on the commercial market that take advantage of that possibility. Lawrence Berkeley National Laboratory researchers Vagelis Vossos, Karina Garbesi, and Hongxia Shen investigated the potential savings of direct-DC power distribution in net-metered residences with on-site photovoltaics

499

2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The  

Open Energy Info (EERE)

Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2D Joint Inversion Of DC And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Details Activities (0) Areas (0) Regions (0) Abstract: Audio-magnetotelluric (AMT) and resistivity (dc) surveys are often used in environmental, hydrological and geothermal evaluation. The separate interpretation of those geophysical data sets assuming two-dimensional models frequently produces ambiguous results. The joint inversion of AMT and dc data is advocated by several authors as an efficient method for reducing the ambiguity inherent to each of those

500

Persons Who Received the DC PSC's Emergency Petition and Complaint via  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Persons Who Received the DC PSC's Emergency Petition and Complaint Persons Who Received the DC PSC's Emergency Petition and Complaint via E-mail on August 24, 2005 Persons Who Received the DC PSC's Emergency Petition and Complaint via E-mail on August 24, 2005 Docket No. EO-05-01: In response to your August 29, 2005 letter, attached please find a list of all entities and organizations to whom we served the District of Columbia Public Service Commission's (HOC PSC") Petition and Complaint filed on August 24, 2005, in the above-referenced proceeding. In addition, attached is the Federal Energy Regulatory Conmlission ("FERC") service list which contains some additional entities that have intervened before the FERC and that have apparently viewed the DC PSC's Petition and Complaint. Persons Who Received the DC PSC's Emergency Petition and Complaint via