Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AVTA: Hasdec DC Fast Charging Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Hasdec DC fast charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

2

Method to Improve Total Dose Radiation Hardness in a CMOS dc-dc Boost  

E-Print Network [OSTI]

in a wide range of radiation environment, with increasing total dose radiation, The efticieney also greatlyMethod to Improve Total Dose Radiation Hardness in a CMOS dc-dc Boost Converter Huadian Pan to natural radiation in space. Among the effects of ionizing radiation are shiftsin threshold voltageand

Wilamowski, Bogdan Maciej

3

A Fast Delivery Protocol for Total Order Broadcasting  

SciTech Connect (OSTI)

The conclusions of this report are: (1) Fast delivery protocol reduces the latency of message ordering for idle systems and keep comparable performances with communication history algorithms for busy systems; (2) The protocol optimizes the total ordering process by waiting for messages only from a subset of the machines in the group; and (3) The fast acknowledgment aggressively acknowledges total order messages to reduce the latency for idle system, and it is smart enough to hold the acknowledgments when the network communication is heavy.

Ou, Li [Tennessee Technological University; He, X. [Tennessee Technological University; Engelmann, Christian [ORNL; Scott, Stephen L [ORNL

2007-01-01T23:59:59.000Z

4

Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

5

Room-Temperature Operation of DC Axially Discharged Fast Axial-Flow CO Laser  

Science Journals Connector (OSTI)

A compact CO laser with a DC axially discharged fast-axial flow has been operated at room temperature (270 – 300 K), achieving ~ 165 W per unit discharge length in CW mode under xenon (Xe) gas addition. A maximum power of 385 W per unit gain length (1 m) has been similarly achieved with Xe gas at 235 – 275 K. Dependence of output power on gas-flow velocity v , discharge current I dis, and gas composition is examined experimentally and theoretically explained, and dependence of oscillation lines on v is also investigated. Moreover, the effect of gas-flow velocity on gas temperature is also examined.

Yutaka Kodama; Heihachi Sato

1996-01-01T23:59:59.000Z

6

Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response  

Science Journals Connector (OSTI)

Abstract In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50 kW which allows a typical passenger vehicle to be 80% charged in 10–15 min, compared with 6–8 h for a 6.6 kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges. Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system.

Donald McPhail

2014-01-01T23:59:59.000Z

7

Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models  

SciTech Connect (OSTI)

An extensive experimental and theoretical study of the fast-neutron interaction with {sup 58}Ni was undertaken. The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 Mev intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to {approx} 4.8 Mev. The measured results, combined with lower-energy values previously obtained at this laboratory and with relevant values available in the literature, were interpreted in terms of optical-statistical, dispersive-optical and coupled-channels models using both vibrational and rotational coupling schemes. The physical implications of the experimental results and their interpretation are discussed. The considerations are being extended to collective vibrational nuclei generally, exploring the potential for utilizing electro-magnetic matrix elements, deduced from experiment or predicted by the shell model, to determine the strengths of the neutron interaction. Detailed aspects of this work are given in the Laboratory Report, ANL/NDM-120 (in press). 9 refs., 10 figs.

Smith, A.B.; Guenther, P.T.; Whalen, J.F.; Lawson, R.D.; Chiba, S.

1991-01-01T23:59:59.000Z

8

FAST  

Energy Science and Technology Software Center (OSTI)

002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0  https://software.sandia.gov/trac/fast 

9

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

10

Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA  

E-Print Network [OSTI]

Energetics, Rochester, New York 14623, USA 3 Los Alamos National Laboratory, Los Alamos, New Mexico 87545Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA N 19, 093101 (2012) Target normal sheath acceleration sheath fields for arbitrary electron energy

11

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

12

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

13

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

14

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

15

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

16

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

17

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

18

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

19

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

20

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

22

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

23

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

24

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

25

Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants  

DOE Patents [OSTI]

A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

2014-09-09T23:59:59.000Z

26

Washington, DC'  

Office of Legacy Management (LM)

of. Energy of. Energy Washington, DC' 26585 , The Honorable Gene Eriquez .~ City Hall I55 Deer Hill Avenue + Danbury/Connecticut 06180 .. -r. - Dear Mayor Eriquez: Secretary of Energy Hazel O!Leary has .announced a knew approach -to openness in. the Department of Energy (DOE) and its communications with the public. In support of th,is initiative, we are,pleased to forward the enclosed information, related to the former Sperry Products,'.Inc. site in your jurisdiction ,that performed,work for DOE or its predecessor agencies. Th,is informatipn is provided,for your information, use, and retenti~oh. DOE's Formeily Utilized Sites Remedial Action Program is responsible for. identification of sites used by'DOE's predecessor agencies, determining their current radiological condition and,

27

Bi-directional dc-dc Converter  

Broader source: Energy.gov (indexed) [DOE]

Nov Dec Phase II, Timeline 2009 Jan Feb Mar Apr May Jun Jul Aug Sep Vehicle Interface, FMEA and MTBF Dc-dc Fabrication Validation Data Performance Validation BOM and Cost analysis...

28

Bi-directional dc-dc Converter  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

29

Bi-directional dc-dc Converter  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

30

RES D.C.  

Broader source: Energy.gov [DOE]

RES DC, hosted by the National Center for American Indian Enterprise Development (The National Center), will feature access to respected tribal leaders, members of congress, federal agency...

31

Multiplatform Dynamic System Simulation of a DC-DC Converter.  

E-Print Network [OSTI]

??The work presented in this paper focuses on the usability testing for the Open-Modelica. The modeling and simulation of the BMR450 DC-DC converter is also… (more)

Song, Wenpeng

2012-01-01T23:59:59.000Z

32

A nonlinear robust HVDC control for a parallel AC/DC power system  

E-Print Network [OSTI]

A nonlinear robust HVDC control for a parallel AC/DC power system Hongzhi Cai a , Zhihua Qu b. Keywords: Robust control; HVDC; Power system; Stability; Lyapunov method 1. Introduction It has been recognized that, through an HVDC transmission line, fast electronic control can be applied on the DC power

Qu, Zhihua

33

Washington. DC,20585  

Office of Legacy Management (LM)

Washington. DC,20585 Washington. DC,20585 MAY' i 1995 .- The Honorable Freeman R. Bosley, Jr. ' r City Hall 1200 Narket Street St. Louis, Missouri 63103 Dear Mayor Bosley: ,'~ ,. : !' Secretary of Energy Hazel O'Leary'has announced a new approach to'openness'in " the Department of,Energy"(DOE) and its communications with the pu~blic. In 'support of this initiative, we are pleased to forward the enclosed information rel,ated to the former Petrolite Corp. site in your jurisdiction that,performed, work for DDE or,i.ts predecessor agencies. your information, use, and retention. This information is provided for DDE's Formerly Utilized Sites Remedial Action Program is responsible for identification of sites used by DDE's predecessor agencies, determining their

34

I ' Washington, DC'  

Office of Legacy Management (LM)

' Washington, DC' ' Washington, DC' 20585 The.Honorable Don Trotter, 102' Public Square Clarksville, Tennessee '37040 '_ _' ' Dear Mayor Trotter: '. Secretary of Energy Hazel .O'Leary has announced a new the Department of Energy (DOE) and its communications support of this initiative, we are pleased to forward related to the Clarksville Foundry.& Machine Co. site approach to openness in with the publ,ic'. In " the~enclosed~information in your'jurisdiction that performed work for DOE or its predecessor'agencies. This information. is provided, for.your information, use, and retention. remedial action conservative' set of technical investigations to assure environment. If'you have any questions, please feel free~to call DrI W. Alexander Uilliams 301-427-1719 of my staff.

35

Departmentaf Energy Washington, DC  

Broader source: Energy.gov (indexed) [DOE]

Departmentaf Departmentaf Energy Washington, DC 20585 MAR 4 1998 MEMORANDUM FOR: James H. Chafin, AL Robert Fisher, CH Steven Hamel, OR William Daubenspeck, LL James Hanley, SAN Robert Southworth, RL Harold Dixon, SR \ Lisa Jarr, FETC"/"',,,-' ( ~ ( ) ( I C{ \'"~V FROM: Paul A. Gottlieb'<,. ~ ' \ Assistant General Counsel . for Technology Transfer / and Intellectual Property SUBJECT: U.S. Competitiveness Provision. Except for the cases discussed further below, attached is the U.S. Competitiveness provision which you should begin providing as our initial negotiating position to inventors/contractors requesting identified and, advance patent waivers. Of course, it is not· expected that every inventor/contractor will agree to the exact language in the provision, in which case modifications to the provision can be made. In those cases where substantial changes are contemplated,

36

Washington, DC,20585  

Office of Legacy Management (LM)

>/gGq ' >/gGq ' ,, ' .. Department of Edgy Washington, DC,20585 ,I ' , APR 0 4 1995 The Honorable Patrick Ungaro 26 S. Phelps Street Youngstown, Ohio 44503 .' Dear );layor.Ungaro: Secretary of'Energy Hazel O'Leary has announced a new approach to openness in the Oepartment of Energy (DOE) and its coannunications with the public. In support of this initiative, we are pleased to forward the,enclosed information related to the former Ajax-Hagnethermic C,orp. site in your jurisdiction that performed work for DOE's predecessoragencies. This information is~provided for your information, use, and retention. DOE's Formerly Utilized Sites Remedial Action Program is responsible for identificationof sites used by DOE's predecessor agencies, determining their current radiological condition and, where it has authority, performing-

37

D.C.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future scientists advance to national Future scientists advance to national level April 3, 2012 Science Bowl winners represent NM in Washington, D.C. A team from Los Alamos bested 39 other teams from around New Mexico in the 10- hour New Mexico Regional Science Bowl, held recently at Albuquerque Academy. The team went on to represent New Mexico in the 22nd Annual Department of Energy (DOE) National Science Bowl. In addition to their travel expenses, the team also won $5,000 for their school. The team consists of students, Alexander Wang, Micha Ben-Naim, Scott Carlsten, Lorenzo Venneri and Kevin Gao, and Coach, Paolo Venneri. - 2 - Albuquerque Academy took second place and La Cueva High School in Albuquerque placed third in the "Jeopardy!"-style event. During the competition, students are asked

38

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

39

Triple voltage dc-to-dc converter and method  

DOE Patents [OSTI]

A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

Su, Gui-Jia (Knoxville, TN)

2008-08-05T23:59:59.000Z

40

INL Efficiency and Security Testing of EVSE, DC Fast Chargers...  

Broader source: Energy.gov (indexed) [DOE]

on where and when you measure it: 23% to 99.7% 5 EVSE Testing - Conductive Li-Ion ESS Controls System Load Bank Smart Grid Emulator Charger ACDC J1772 Conductive EVSE...

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DC Fast Charge Impacts on Battery Life and Vehicle Performance  

Broader source: Energy.gov (indexed) [DOE]

* Cost * Infrastructure * Risk Aversion * Constant Advances in Technology Budget * DOE Funding: 1.1M * Spent to date: 0.7M Partners * Idaho National Laboratory - Lead Lab *...

42

DC Fast Charging Effects on Battery Life and EVSE Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

(50kW, 3.3kW) 5 Approach - EVSE Testing * Conduct functionality, efficiency, and cyber security testing of Smart Grid Capable EVSE in support of FOA-554 - Functionality and...

43

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

44

Catalog of DC Appliances and Power Systems  

E-Print Network [OSTI]

Appliance Efficient DC compatible replacement technology variable-speed compressor and fans run by brushless DC motor in place of single-speed compressors

Garbesi, Karina

2012-01-01T23:59:59.000Z

45

Dc's blog | OpenEI Community  

Open Energy Info (EERE)

The U.S. Department of Energy put out this short inspirational video about Women in Science, Technology, Engineering, and Mathematics (STEM). Dc's picture Submitted by Dc(55)...

46

Catalog of DC Appliances and Power Systems  

E-Print Network [OSTI]

by DC-indifferent electric resistance heating or by DC-and LED lamps Electric resistance heater Incandescentfluorescent or LED) Electric resistance Cooling Motors

Garbesi, Karina

2012-01-01T23:59:59.000Z

47

Light-weight DC to very high voltage DC converter  

DOE Patents [OSTI]

A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

Druce, Robert L. (Union City, CA); Kirbie, Hugh C. (Dublin, CA); Newton, Mark A. (Livermore, CA)

1998-01-01T23:59:59.000Z

48

Light-weight DC to very high voltage DC converter  

DOE Patents [OSTI]

A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

Druce, R.L.; Kirbie, H.C.; Newton, M.A.

1998-06-30T23:59:59.000Z

49

Fast valve  

DOE Patents [OSTI]

A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

Van Dyke, W.J.

1992-04-07T23:59:59.000Z

50

Fast valve  

DOE Patents [OSTI]

A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

Van Dyke, William J. (Grafton, VA)

1992-01-01T23:59:59.000Z

51

Nuclear magnetic resonance experiments with dc SQUID amplifiers  

SciTech Connect (OSTI)

The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

Heaney, M.B. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

52

Analysis of a transformer-less, multi-level DC-DC converter for HVDC operation  

SciTech Connect (OSTI)

HVDC systems require DC step up and DC step down units. The traditional approach is the application of twelve-pulse thyristor bridges with transformers. The developments of fast switching IGBT devices permit the development of transformer-less, multi-level converters. A multi-level circuit was suggested by Limpaecher. This paper presents a detailed simulation of the proposed circuit together with the analysis of its performance. The converter consists of a set of capacitors, air core inductors and solid state switches arranged in a ladder network. In the step-up mode, the closing of solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches connect the capacitors in series and discharge them through an air-core inductor to the load. In the step-down mode the capacitors are charged in series and discharged in parallel. The circuit has three modes of operation in each cycle: charge, inversion, and discharge. The circuit operation is analyzed in each mode using SPICE simulations. The selection of the components is discussed and output voltage regulation is analyzed. The results show that the proposed circuit promises significant reduction of losses, because of the zero current switching. The investment cost is reduced because of the elimination of transformers.

Karady, G.G.; Devarajan, S. [Arizona State Univ., Tempe, AZ (United States)

1998-12-31T23:59:59.000Z

53

High efficiency resonant dc/dc converter for solar power applications .  

E-Print Network [OSTI]

??This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage… (more)

Inam, Wardah

2013-01-01T23:59:59.000Z

54

DC systems with transformerless converters  

SciTech Connect (OSTI)

A technical and economic feasibility study of HVDC systems without converter transformers is presented. The presentation includes proposed solutions to the drawback related to the absence of galvanic separation between the ac and dc systems, if the converter transformers are eliminated. The results show that HVDC systems without converter transformers are both technically and economically feasible. The cost savings can be substantial.

Vithayathil, J.J.; Mittlestadt, W. [Bonneville Power Administration, Portland, OR (United States)] [Bonneville Power Administration, Portland, OR (United States); Bjoerklund, P.E. [ABB Power Systems AB, Ludvika (Sweden)] [ABB Power Systems AB, Ludvika (Sweden)

1995-07-01T23:59:59.000Z

55

NASA DC-8 Airborne Scanning Lidar System  

Science Journals Connector (OSTI)

A scanning lidar system is being developed for installation on the NASA DC-8 atmospheric research aircraft to support...in-situ aerosol and gas measurements. Design and objectives of the DC-8 scanning lidar are p...

Norman B. Nielsen; Edward E. Uthe…

1997-01-01T23:59:59.000Z

56

ARM - Campaign Instrument - dc8-nasa  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentsdc8-nasa Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA DC-8 (DC8-NASA) Instrument...

57

DC-DC converter current source fed naturally commutated brushless DC motor drive  

E-Print Network [OSTI]

, thereby generating switching losses and entail the use of large heatsinks. VSI needs a huge dc link capacitor that is inherently unreliable and is one of the most expensive components of a drive. Hence, a Current Source Inverter (CSI) is used to replace...

Khopkar, Rahul Vijaykumar

2004-11-15T23:59:59.000Z

58

Catalog of DC Appliances and Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalog of DC Appliances and Power Systems Catalog of DC Appliances and Power Systems Title Catalog of DC Appliances and Power Systems Publication Type Report LBNL Report Number LBNL-5364E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, and Hongxia Shen Document Number LBNL-5364E Date Published October Publisher Lawrence Berkeley National Laboratory Abstract This document catalogs the characteristics of current and potential future direct current (DC) products and power systems. It is part of a larger U.S. Department of Energy-funded project, "Direct-DC Power Systems for Energy Efficiency and Renewable Energy Integration with a Residential and Small Commercial Focus". That project is investigating the energy-savings potential, benefits, and barriers of using DC generated by on-site renewable energy systems directly in its DC form, rather than converting it first to alternating current (AC) for distribution to loads. Two related reports resulted from this work: this Catalog and a companion report that addresses direct-DC energy savings in U.S. residential buildings.Interest in 'direct-DC' is motivated by a combination of factors: the very rapid increase in residential and commercial photovoltaic (PV) power systems in the United States; the rapid expansion in the current and expected future use of energy efficient products that utilize DC power internally; the demonstrated energy savings of direct-DC in commercial data centers; and the current emergence of direct-DC power standards and products designed for grid-connected residential and commercial products. Based on an in-depth study of DC appliances and power systems, we assessed off-grid markets for DC appliances, the DC compatibility of mainstream electricity end-uses, and the emerging mainstream market for direct-DC appliances and power systems.

59

Ecological benefits of dc power transmission  

SciTech Connect (OSTI)

The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

Kutuzova, N. B. [JSC 'NIIPT' (Russian Federation)

2011-05-15T23:59:59.000Z

60

Design and development of a DC-DC converter for a fuel cell inverter system  

E-Print Network [OSTI]

This thesis outlines the design and development of a DC-DC converter for a fuel cell inverter application. The proposed DC-DC converter was designed and tested at Texas A&M to meet the specifications laid down for the '2001 Future Energy Challenge...

Gopinath, Rajesh

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DC Distribution: The Power To Change Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DC Distribution: The Power To Change Buildings DC Distribution: The Power To Change Buildings Speaker(s): Brian Patterson Dennis Symanski Liang Downey Date: July 14, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This seminar presents an overview of the effort to create new applications standards to drive the distribution and use of native direct current (dc) in net zero energy commercial and residential buildings. From the early days of electric power generation, distribution and use there's been a debate over which form of power, AC or DC, is best. Edison set the stage for this argument in the late 1800's with his invention of DC powered lighting systems. Tesla's system of AC dynamos, transformers and motors all but stopped the growing use of DC by the turn of the century. With the

62

Map Locating Berkeley Lab Washington, DC Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASHINGTON, DC PROJECTS OFFICE WASHINGTON, DC PROJECTS OFFICE Map LEGEND: A:Berkeley Lab DC Office; PNNL; NREL; ORNL | B: EPA Waterside Mall C: Metrorail Station: Smithsonian | D: Metrorail Station: L'Enfant Plaza Notice: Due to security requirements in the building, all visitors to the Berkeley Lab DC Projects Office must check in at the ground floor entrance. If you do not have a DOE access badge, you will need to obtain a building visitor badge. To expedite this process, visitors are encouraged to RSVP to their meeting host or call (202) 488-2250 ahead of time. Metal detectors and x-ray screening of personal items are required for all visitors and staff entering the building. Directions to the Lab's Washington, DC Projects Office 901 D Street, SW Suite 950 Washington, DC 20024 Phone/Fax: (202) 488-2250

63

Active dc filter for HVDC systems  

SciTech Connect (OSTI)

This article is a case history of the installation of active dc filters for high-performance, low-cost harmonics filtering at the Lindome converter station in the Konti-Skan 2 HVDC transmission link between Denmark and Sweden. The topics of the article include harmonics, interference, and filters, Lindome active dc filter, active dc filter design, digital signal processor, control scheme, protection and fault monitoring, and future applications.

Zhang, W. (Royal Inst. of Tech., Stockholm (Sweden)); Asplund, G.

1994-01-01T23:59:59.000Z

64

26 Tesla DC Magnet for Neutron Scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially-manufactured superconducting magnets and limited to 17 T. A few pulsed magnet systems have been...

65

Glass Ceramic Dielectrics for DC Bus Capacitors  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

66

Reliability Assessment of Fault-Tolerant Dc-Dc Converters for Photovoltaic Applications  

E-Print Network [OSTI]

Reliability Assessment of Fault-Tolerant Dc-Dc Converters for Photovoltaic Applications Sairaj V in photovoltaic energy processing applications is presented. The proposed approach acknowledges the influence through several case studies. Index Terms-- Markov reliability modeling, photovoltaic systems, power

Liberzon, Daniel

67

Radio frequency dc-dc converters : device characterization, topology evaluation, and design  

E-Print Network [OSTI]

High frequency power conversion is attractive for the opportunities it affords for improved performance. Dc-dc converters operating at high frequencies use smaller-valued energy storage elements, which tend to be physically ...

Leitermann, Olivia

2008-01-01T23:59:59.000Z

68

DC to DC power conversion module for the all-electric ship  

E-Print Network [OSTI]

The MIT end to end electric ship model is being developed to study competing electric ship designs. This project produced a model of a Power Conversion Module (PCM)- 4, DC-to-DC converter which interfaces with the MIT ...

Gray, Weston L

2011-01-01T23:59:59.000Z

69

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

70

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

71

Washington, DC~ZO585  

Office of Legacy Management (LM)

jpfl.3%2' jpfl.3%2' ) .,Departhent of Eikrgj! : Washington, DC~ZO585 .-, , , Lf; I: ~.1,' .Yj4 , The Honorable Louis Barlup 55 ,E. Main Street Waynesboro;,Pennsy,lvania 17268 '~ Dear Mayor Barl,up:' Secretary of Energy Hazel O'Leary has'announced' a new approach to openness,in the Department of Energy-(DOE) and its communications with the public. In support-of this initiative, we are pleased.to forward the enclosed information related to the former Landis Machine Tool Co. site in your jurisdiction that performed work for DOE or its predecessor agencies. This information:is provided for your information< use, and retention. DOE's Formerly Utilized Sites Remedial Action Program is responsible for identification of sites used by DOE's predecessor agencies, determining their

72

High voltage DC power supply  

DOE Patents [OSTI]

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

Droege, T.F.

1989-12-19T23:59:59.000Z

73

High voltage DC power supply  

DOE Patents [OSTI]

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

Droege, Thomas F. (Batavia, IL)

1989-01-01T23:59:59.000Z

74

DOE - Office of Legacy Management -- Naval Research Laboratory - DC 02  

Office of Legacy Management (LM)

Research Laboratory - DC 02 Research Laboratory - DC 02 FUSRAP Considered Sites Site: NAVAL RESEARCH LABORATORY (DC.02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.02-4 Evaluation Year: 1987 DC.02-4 Site Operations: Research and development on thermal diffusion. DC.02-4 Site Disposition: Eliminated - No Authority - AEC licensed - Military facility DC.02-4 DC.02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium DC.02-2 DC.02-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to DOD DC.02-4 Also see Documents Related to NAVAL RESEARCH LABORATORY DC.02-1 - AEC Memorandum and Source Material License No. C-3393;

75

Fast company | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fast company Fast company High performance computing accelerates scientific advances EMSL's NWChem software is being used for applications in biology such as modeling metabolic...

76

Washington, DC | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Washington, DC Washington, DC Last updated on 2013-08-02 Current News In December, the DC CCCB voted 7-1 to adopt the 2012 IECC. The code will now enter administrative review and legislative process with likely adoption in the second half of 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Based on 2008 DC Construction Code with several amendments. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the District of Columbia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 12/26/2009 Adoption Date 12/26/2008 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No DC DOE Determination Letter, May 31, 2013

77

Method of measuring the dc electric field and other tokamak parameters  

DOE Patents [OSTI]

A method including externally imposing an impulsive momentum-space flux to perturb hot tokamak electrons thereby producing a transient synchrotron radiation signal, in frequency-time space, and the inference, using very fast algorithms, of plasma parameters including the effective ion charge state Z.sub.eff, the direction of the magnetic field, and the position and width in velocity space of the impulsive momentum-space flux, and, in particular, the dc toroidal electric field.

Fisch, Nathaniel J. (Princeton, NJ); Kirtz, Arnold H. (Princeton Junction, NJ)

1992-01-01T23:59:59.000Z

78

Energy savings from direct-DC in U.S. residential buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

savings from direct-DC in U.S. residential buildings savings from direct-DC in U.S. residential buildings Title Energy savings from direct-DC in U.S. residential buildings Publication Type Journal Article Year of Publication 2013 Authors Vossos, Vagelis, Karina Garbesi, and Hongxia Shen Journal Energy and Buildings Volume Volume 68, Part A Pagination 223-231 Date Published 09/2013 Keywords Direct current (DC), energy conservation, Photovoltaics (PV), residential buildings Abstract An increasing number of energy-efficient appliances operate on direct current (DC) internally, offering the potential to use DC directly from renewable energy systems, thereby avoiding the energy losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of a 'direct-DC house' compared to that of a typical net-metered house with AC distribution, assuming identical DC-internal loads. The model comparisons were run for 14 cities in the United States, using hourly, simulated PV-system output and residential loads. The model tested the effects of climate and battery storage. A sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect potential energy savings. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate.

79

A Review of DC Micro-grid Protection  

Science Journals Connector (OSTI)

In this paper, an overview of DC micro-grid is described, which includes the status of DC micro-grid protection and its future development. The paper presents the key techniques of DC micro-grid protection. So fa...

Yuhong Xie; Jia Ning; Yanquan Huang…

2013-01-01T23:59:59.000Z

80

FLUXCAP: A flux-coupled ac/dc magnetizing device  

E-Print Network [OSTI]

We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

Gopman, Daniel B; Kent, Andrew D

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Research on Energy Efficiency of DC Distribution System  

Science Journals Connector (OSTI)

Abstract Energy efficiency of DC distribution systems is researched in this paper. Efficiency calculation models of feeders and loads are established, efficiencies of AC/DC, DC/DC and DC/AC are analyzed. Moreover, energy efficiencies of an AC system and two DC systems, monopole and bipolar, are calculated and compared. The efficiency improvement of office building supplied by DC power system compared to supply by AC power system is demonstrated. From analysis, it is showed that the energy efficiency is higher in DC distribution system than AC distribution system.

Zifa Liu; Mengyu Li

2014-01-01T23:59:59.000Z

82

News From the D.C. Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office The federal government is the largest single purchaser in the world for many energy-related products. Federal buying power-along with that of state and local agencies-represents a largely untapped resource to increase the energy efficiency of consumer products and commercial equipment. LBL is helping the DOE Federal Energy Management Program (FEMP) develop and lead a government-wide initiative to capture this market-transforming opportunity. Jeff Harris and others in LBL's D.C. office are heading FEMP's efforts to identify how future federal purchases can be more energy-efficient. The U.S. government spends more than $70 billion a year to purchase supplies and equipment, of which an estimated $10-20 billion are energy-

83

D.C. | OpenEI Community  

Open Energy Info (EERE)

94 94 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234494 Varnish cache server D.C. Home Kyoung's picture Submitted by Kyoung(155) Contributor 6 September, 2012 - 08:51 GRR Update Meeting scheduled for 9/13 in D.C. D.C. GRR meeting update The next Geothermal Regulatory Roadmap update meeting will be held in Washington, D.C. on Thursday, September 13 from 2-4 p.m. Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

84

DC readout experiment in Enhanced LIGO  

E-Print Network [OSTI]

The two 4 km long gravitational wave detectors operated by the Laser Interferometer Gravitational-wave Observatory (LIGO) were modified in 2008 to read out the gravitational wave channel using the DC readout form of homodyne ...

Fricke, Tobin T

85

Sandia National Laboratories: DC power optimizers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DC power optimizers Sandia R&D Funded under New DOE SunShot Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar,...

86

Edison Revisited: Should we use DC circuits for lighting in commercial buildings?  

Science Journals Connector (OSTI)

We examine the economic feasibility of using dedicated DC circuits to operate lighting in commercial buildings. We compare light-emitting diodes (LEDs) and fluorescents that are powered by either a central DC power supply or traditional AC grid electricity, with and without solar photovoltaics (PV) and battery back-up. Using DOE performance targets for \\{LEDs\\} and solar PV, we find that by 2012 \\{LEDs\\} have the lowest levelized annualized cost (LAC). If a DC voltage standard were developed, so that each LED fixture's driver could be eliminated, \\{LACs\\} could decrease, on average, by 5% compared to AC \\{LEDs\\} with a driver in each fixture. DC circuits in grid-connected PV-powered LED lighting systems can lower the total unsubsidized capital costs by 4–21% and \\{LACs\\} by 2–21% compared to AC grid-connected PV LEDs. Grid-connected PV \\{LEDs\\} may match the LAC of grid-powered fluorescents by 2013. This outcome depends more on manufacturers' ability to produce \\{LEDs\\} that follow DOE's lamp production cost and efficacy targets, than on reducing power electronics costs for DC building circuits and voltage standardization. Further work is needed to better understand potential safety risks with DC distribution and to remove design, installation, permitting, and regulatory barriers.

Brinda A. Thomas; Inęs L. Azevedo; Granger Morgan

2012-01-01T23:59:59.000Z

87

AC Loss of Ripple Current in Superconducting DC Power Transmission Cable  

Science Journals Connector (OSTI)

Abstract As a method of largely reducing the transmission loss in the electric power grid, superconducting direct current (DC) power transmission cable has been investigated. Using superconducting DC power transmission cables, large amounts of current and energy can be transferred compared to conventional copper cables. In this case, an alternating current (AC) is converted to DC and superposed AC which is known as ripple current, and the energy loss by the ripple current is generated. Therefore it is desired to estimate the energy loss density for the case of DC current and superposed AC current for a design of DC transmission cable system. In this study, the hysteresis loss for DC current of 2 kA rectified from 60 Hz alternating current is calculated using the Bean model, and coupling loss was also estimated. The diameter of the cable was 40 mm. The ripple currents generated by multi-pulse rectifiers, 6-pulse, 12-pulse, and 24-pulse were considered. It is found that the total AC loss including the hysteresis loss and the coupling loss is considerably smaller than the supposed heat loss of 0.5 W/m which is obtained with a newly developed cable.

K. Yoshitomi; E.S. Otabe; V.S. Vyatkin; M. Kiuchi; T. Matsushita; M. Hamabe; S. Yamaguchi; R. Inada

2014-01-01T23:59:59.000Z

88

Recovery Act State Memos Washington, DC  

Broader source: Energy.gov (indexed) [DOE]

Washington, DC Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

89

Fast-Neutron Handbook  

Science Journals Connector (OSTI)

... FAST neutron physics, in the present context, concerns the study of interactions of atomic nuclei with neutrons ...

J. H. MONTAGUE

1961-06-10T23:59:59.000Z

90

Fast flux locked loop  

DOE Patents [OSTI]

A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

2002-09-10T23:59:59.000Z

91

DC's Marble ceiling : urban height and its regulation in Washington, DC  

E-Print Network [OSTI]

Washington, DC has a unique urban form that is the result of a century-old law. Through the narrow lens of DC's height limit, I survey a range of topics related to urban height, starting with a review of its history of ...

Trueblood, Andrew Tyson

2009-01-01T23:59:59.000Z

92

FC/Battery Power Management for Electric Vehicle Based Interleaved dc-dc Boost Converter Topology  

E-Print Network [OSTI]

FC/Battery Power Management for Electric Vehicle Based Interleaved dc- dc Boost Converter Topology power systems in electric vehicle application, in order to decrease the FC current ripple. Therefore the performance of the FC system during transient and instantaneous peak power demands in electric vehicle

Paris-Sud XI, Université de

93

5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive  

E-Print Network [OSTI]

automobile, there are many electrical loads grouped into two main categories depending on the voltages5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications Faisal H. Khan1,2 Leon M. Tolbert2 fkhan3@utk.edu tolbert@utk.edu 1 Electric Power Research Institute (EPRI) 2

Tolbert, Leon M.

94

Pulsed dc self-sustained magnetron sputtering  

SciTech Connect (OSTI)

The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of {approx}0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of {approx}560 W/cm{sup 2}. The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range) and deposition rates were observed for both dc and pulsed dc self-sustained sputtering processes. The pulse characteristics of the voltage and current of the magnetron source during pulsed dc-SSS operation are shown. The presented results illustrate that a stable pulsed dc-SSS process can be obtained at a pulsing frequency in the range of 60-90 kHz and duty factor of 80%-90%.

Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J. [Faculty of Microsystems, Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Silicon Quest International, Santa Clara, California (United States)

2008-09-15T23:59:59.000Z

95

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

96

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

97

Good Energies (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

Energies (Washington DC) Energies (Washington DC) Name Good Energies (Washington DC) Address 1250 24th St., NW, Suite 250 Place Washington, District of Columbia Zip 20037 Product Global investor in renewable energy and energy efficiency industries Year founded 2001 Phone number (202) 747-2550 Website http://www.goodenergies.com/ Coordinates 38.90649°, -77.051534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.90649,"lon":-77.051534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

New Experimental Data in DC745U  

SciTech Connect (OSTI)

The objectives of this project are: (1) study the molecular and mechanical properties of DC745U - (a) DC745U is a silicone elastomer used in several weapons systems, (b) depending on their chemistry and formulation, polymers can be susceptible to damage and failures due to weak chemical linkages and physical interactions, (c) inefficient production processes can generate heterogeneities throughout the material that can contribute negatively to the overall performance and lifetime of the polyer, (d) aging, long-term thermal and radioactive conditions, and mechanical strains can affect the materials network structure and contribute to the degradation of the production; (2) characterization of DC745U materials cured under different conditions to determine possible differences to the polymer structure; and (3) this work is relevant to mission-critical programs and for supporting programmatic work for weapon research.

Ortiz-Acosta, Denisse [Los Alamos National Laboratory; Cady, Carl [Los Alamos National Laboratory; Densmore, Crystal [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

99

DC transformer for DC/DC connection in HVDC network M. Jimenez Carrizosa1, A. Benchaib2, P. Alou3, G. Damm4  

E-Print Network [OSTI]

DC transformer for DC/DC connection in HVDC network M. Jim´enez Carrizosa1, A. Benchaib2, P. Alou3>>, >, HVDC>>, > . Abstract This paper presents the modeling and control for the integration of an offshore wind farm in a High Voltage Direct Current (HVDC). Until developed of VSC (voltage

Paris-Sud XI, Université de

100

Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors  

SciTech Connect (OSTI)

In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

Shepard, Kenneth L

2013-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

102

Perseus LLC (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

DC) DC) Jump to: navigation, search Logo: Perseus LLC (Washington DC) Name Perseus LLC (Washington DC) Address 2099 Pennsylvania Avenue, N.W., 9th Floor Place Washington, District of Columbia Zip 20006 Product Private equity fund Year founded 1995 Phone number (202) 452-0101 Website http://www.perseusllc.com/ Coordinates 38.901462°, -77.046347° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.901462,"lon":-77.046347,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

FEDERAL ENERGY WASHINGTON, D.C. 20426  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT judge, the Federal Energy Regulatory Commission today ordered an expedited fact-finding hearing of the discussions. #12;Chairman Curt L. HĂ©bert, Jr. stated as follows: "At some point, regulatory and R-01-33 (more

Laughlin, Robert B.

104

Halbach array DC motor/generator  

DOE Patents [OSTI]

A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

105

A Three-Phase Bidirectional DC-DC Converter for Automotive Applications  

SciTech Connect (OSTI)

This paper presents a three-phase soft-switching, bidirectional dc-dc converter for high-power automotive applications. The converter employs dual three-phase active bridges and operates with a novel asymmetrical but fixed duty cycle for the top and bottom switches of each phase leg. Simulation and experimental data on a 6-kW prototype are included to verify the novel operating and power flow control principles.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2008-01-01T23:59:59.000Z

106

Federal Government Congressional Budget Office, Budget Analysis Division Washington, DC  

E-Print Network [OSTI]

Administration, Center for Drug Evaluation and Research Washington, DC Federal Energy Regulatory CommissionFederal Government Congressional Budget Office, Budget Analysis Division Washington, DC Department Environmental Protection Agency, Office of Transportation & Air Quality Ann Arbor, MI Federal Drug

Shyy, Wei

107

National Small Business Federal Contracting Summit-DC Fall Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Small Business Federal Contracting Summit-DC Fall Conference National Small Business Federal Contracting Summit-DC Fall Conference November 6, 2014 8:00AM to 4:00PM EST...

108

DC High School Science Bowl Regionals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DC High School Science Bowl Regionals DC High School Science Bowl Regionals February 22, 2014 1:15PM to 8:15PM EST Department of Energy headquarters - 1000 Independence Ave SW,...

109

Fast reactor safety  

Science Journals Connector (OSTI)

... SIR, - In his article on fast reactor safety (26 July, page 270) Norman Dombey claims to introduce to non-specialists ... , page 270) Norman Dombey claims to introduce to non-specialists some features of fast reactors that are not available outside the technical literature. The non-specialist would do well ...

R.D. SMITH

1979-08-23T23:59:59.000Z

110

A Cascade Multilevel Inverter Using a Single DC Source  

E-Print Network [OSTI]

A Cascade Multilevel Inverter Using a Single DC Source Zhong Du1, Leon M. Tolbert2 3, John N inverter can be implemented using only a single DC power source and capacitors. A standard cascade multilevel inverter requires DC sources for 2 + 1 levels. Without requiring transformers, the scheme proposed

Tolbert, Leon M.

111

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Title Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Publication Type Report LBNL Report Number LBNL-5193E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, Alan H. Sanstad, and Gabriel Burch Document Number LBNL-5193E Pagination 59 Date Published October Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the 'direct-DC house' with respect to today's typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector-because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation-this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

112

Notices 888 First Street, NE., Washington, DC  

Broader source: Energy.gov (indexed) [DOE]

11 Federal Register 11 Federal Register / Vol. 76, No. 122 / Friday, June 24, 2011 / Notices 888 First Street, NE., Washington, DC 20426. The filings in the above-referenced proceeding are accessible in the Commission's eLibrary system by clicking on the appropriate link in the above list. They are also available for review in the Commission's Public Reference Room in Washington, DC. There is an eSubscription link on the Web site that enables subscribers to receive e-mail notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Dated: June 20, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011-15859 Filed 6-23-11; 8:45 am]

113

Notices 888 First Street NE., Washington, DC  

Broader source: Energy.gov (indexed) [DOE]

53 Federal Register 53 Federal Register / Vol. 78, No. 56 / Friday, March 22, 2013 / Notices 888 First Street NE., Washington, DC 20426. This filing is accessible on-line at http://www.ferc.gov, using the ''eLibrary'' link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an ''eSubscription'' link on the Web site that enables subscribers to receive email notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service, please email FERCOnlineSupport@ferc.gov, or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Comment Date: 5:00 p.m. Eastern Time on April 2, 2013. Dated: March 15, 2013. Kimberly D. Bose, Secretary. [FR Doc. 2013-06602 Filed 3-21-13; 8:45 am] BILLING CODE 6717-01-P

114

DC side filters for multiterminal HVDC systems  

SciTech Connect (OSTI)

Multiterminal HVDC systems present challenges in the specification and design of suitable dc side filtering. This document examines the existing experience and addresses the particular technical problems posed by multiterminal systems. The filtering requirements of small taps are discussed, as is the potential use of active filters. Aspects of calculation and design are considered and recommendations made to guide the planners and designers of future multiterminal schemes.

Shore, N.L.; Adamson, K.; Bard, P. [and others] [and others

1996-10-01T23:59:59.000Z

115

Energy Incentive Programs, Washington DC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Washington DC Washington DC Energy Incentive Programs, Washington DC October 29, 2013 - 11:29am Addthis Updated August 2013 What public-purpose-funded energy efficiency programs are available in the District of Columbia? In 2008, the Council of the District of Columbia passed the Clean and Affordable Energy Act (CAEA), establishing the DC Sustainable Energy Utility (DC SEU), whose mission is to provide energy assistance to low-income residents and support energy efficiency and renewable energy programs. The DC SEU, funded by the Sustainable Energy Trust Fund (also created by the CAEA) and under contract to the District Department of the Environment (DDOE), helps District residents, businesses, and institutions save energy and money. The DC SEU provides comprehensive energy services to targeted, prioritized

116

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

117

New leading/trailing edge modulation strategies for two-stage AC/DC PFC adapters to reduce DC-link capacitor ripple current  

E-Print Network [OSTI]

AC/DC adapters mostly employ two-stage topology: Power Factor Correction (PFC) pre-regulation stage followed by an isolated DC/DC converter stage. Low power AC/DC adapters require a small size to be competitive. Among their components, the bulk DC...

Sun, Jing

2007-09-17T23:59:59.000Z

118

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

119

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

120

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

122

United States, France and Japan Increase Cooperation on Sodium-Cooled Fast  

Broader source: Energy.gov (indexed) [DOE]

United States, France and Japan Increase Cooperation on United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes February 1, 2008 - 11:13am Addthis WASHINGTON, DC -The U.S Department of Energy (DOE), the French Atomic Energy Commission (CEA) and Japan Atomic Energy Agency (JAEA) today expanded cooperation to coordinate Sodium-Cooled Fast Reactor Prototype development through a Memorandum of Understanding (MOU) signed by DOE Assistant Secretary for Nuclear Energy Dennis R. Spurgeon, CEA Chairman Alain Bugat and JAEA President Toshio Okazaki. The MOU establishes a collaborative framework with the ultimate goal of deploying sodium-cooled fast reactor prototypes. A sodium-cooled fast reactor uses liquid sodium

123

Fun D.C. Jobs for Physicists  

SciTech Connect (OSTI)

Physicists make valuable contributions in a wide variety of careers, including those in Washington. Many national challenges, including energy, innovation, and security, create a demand for technically-competent individuals across government. Clark will discuss some of the many programs in D.C. designed to attract the best and brightest minds, from grad-students to professors, from short-term assignments to whole new careers. These are great opportunities to use your expertise and enrich your knowledge of the broader scientific enterprise, all while serving society.

Clark Cully

2009-09-30T23:59:59.000Z

124

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

125

A miniature transformer/dc?dc converter for implantable medical devices  

Science Journals Connector (OSTI)

This paper presents a new technique for the design of a miniature dc?dc converter used in energy producing implantable devices such as defibrillators and advanced pacemakers. This converter is inserted in such a device and is used to boost the voltage from a low voltage implanted battery to high voltage energy storage capacitors in a short period of time. The stored energy is then delivered when needed through an energy delivery circuit in order to stimulate or defibrillate the heart. The converter takes the form of a flyback topology which includes a miniature transformer and a specialized control circuit. The transformer was designed using a new numerical synthesis method which utilizes finite elements and dynamic programming for predicting the geometries of the transformer’s magnetic circuit. The final transformer design satisfied the performance criteria and provided means for selecting the converter components. The obtained performance results for the transformer and the dc?dc converter were in excellent agreement with laboratory performance tests.

Osama A. Mohammed; W. Kinzy Jones

1988-01-01T23:59:59.000Z

126

Wide input range DC-DC converter with digital control scheme  

E-Print Network [OSTI]

boost converter a battery or ultracapacitor energy storage is connected to take care of the fuel cell slow transient response (200 watts/min). The robust features of the proposed control system ensure a constant output DC voltage for a variety of load...

Harfman Todorovic, Maja

2006-04-12T23:59:59.000Z

127

Washington DC's First Electric Vehicle Charging Station | Department of  

Broader source: Energy.gov (indexed) [DOE]

Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station November 17, 2010 - 11:28am Addthis Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Shannon Brescher Shea Communications Manager, Clean Cities Program It's always exciting to attend a grand opening, especially when it represents a "first" for an entire region. Yesterday, the U.S. Department of Energy and the city of Washington, DC joined together to

128

DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

129

DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...  

Open Energy Info (EERE)

Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity profiles, each approximately 1.3 km in length. Equilibrium...

130

Low Cost, High Temperature, High Ripple Current DC Bus Capacitors  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

131

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

132

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

133

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

134

Detailed design of a 13 kA 13 kV dc solid-state turn-off switch  

SciTech Connect (OSTI)

An experimental facility for the study of electromagnetic effects in the First Wall-Blanket-shield (FWBS) systems of fusion reactors has been constructed at Argonne National Laboratory (ANL). In a test volume of 0.76 m/sup 3/, a vertical, pulsed 5 kG dipole field (B < 320 kGs/sup -1/) is perpendicular to a 10 kG solenoid field. Power supplies of 2.75 MW at 550 V dc and 5.5 MW at 550 V dc and a solid-state switch rated at 13 kA and 13 kV (169 MW) control the pulsed magnetic fields. The total stored energy in the coils is 2.6 MJ. This paper describes the design and construction features of the solid-state switching circuit which turns off a dc of 13 kA in approximately 82 ..mu..s and holds off voltages of < 13 kV.

Praeg, W.F.

1985-01-01T23:59:59.000Z

135

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

136

Department.,of Energy Washington; DC'  

Office of Legacy Management (LM)

,of Energy ,of Energy Washington; DC' 20585 JAN 1 1 1995 / .,, .- L ., The Honorable Thomas Menino ', 1 City Hall Square Boston, Massachusetts 02201 ,'. " p' ifi.. ' . .' b I,' \ Dear.Mayor.Me$ino: DOE's Formerly Util,ized for identification of sites.used by*DOEfs predecessor' agencies, determining, their current radiological condition and, where it has authority, performing remedial action to cleanup sites to meet current radiologicalprotection requirements.~ A conservative set of.technical evaluation guidelines4s used in these investigat~ions' toTassure protection of public health, safety and the .environment. Where DOE does not have authority.for proceeding, the available site information is forwarded to the appropriate Federal or State Agency,. DOE studied the historical records of the former ,Tracerlab, Inc. sitei'and it

137

National Press Club Washington, D.C.  

Broader source: Energy.gov (indexed) [DOE]

Is the Energy Race our new Is the Energy Race our new "Sputnik" Moment? National Press Club Washington, D.C. 29 November, 2010 1 October 4, 1957, the Soviet Union placed a 184 pound satellite into orbit. "The Soviet Union now has - in the combined category of scientists and engineers - a greater number than the United States. And it is producing graduates in these fields at a much faster rate ... This trend is disturbing. Indeed, according to my scientific advisers, this is for the American people the most critical problem of all. My scientific advisers place this problem above all other immediate tasks of producing missiles, of developing new techniques in the Armed Services. We need scientists in the ten years ahead..." On November 13, 1957, President Eisenhower

138

Dissipative Cryogenic Filters with Zero DC Resistance  

SciTech Connect (OSTI)

The authors designed, implemented and tested cryogenic RF filters with zero DC resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in {radical}{omega}, as typical for skin depth based RF filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.

Bluhm, Hendrik; Moler, Kathryn A.; /Stanford U., Appl. Phys. Dept

2008-04-22T23:59:59.000Z

139

Life cycle considerations in propulsion alternatives for fast vessels  

SciTech Connect (OSTI)

Fast vessels are being built and operated for a large range of passenger-carrying applications. Fast cargo-carrying vessels are being considered in a variety of sizes as well. A major decision in design and construction of these vessels is the propulsion system; this decision has major impacts on the operation economics as well as the operational capabilities of the vessels. Factors involved in consideration of propulsion alternatives for fast vessels are examined, with emphasis upon the total life cycle operating implications of these factors. A methodology for considering the factors is suggested, and an example is presented with results of the consideration tradeoffs.

Luck, D.L. [General Electric Co., Evendale, OH (United States). GE Marine and Industrial Engines

1996-07-01T23:59:59.000Z

140

D.C. Water Resources Research Center Annual Technical Report  

E-Print Network [OSTI]

years. We are in negotiation with BenTen Inc., a Japanese water purification system manufacturerD.C. Water Resources Research Center Annual Technical Report FY 2007 D.C. Water Resources Research of the District of Columbia (DC) Water Resources Research Institute (the Institute) for the period of March 1

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

142

Stabilization of unstable periodic orbits in dc drives  

E-Print Network [OSTI]

Electric drive using dc shunt motor or permanent magnet dc (PMDC) motor as prime mover exhibits bifurcation and chaos. The characteristics of dc shunt and PMDC motors are linear in nature. These motors are controlled by pulse width modulation (PWM) technique with the help of semiconductor switches. These switches are nonlinear element that introduces nonlinear characteristics in the drive. Any nonlinear system can exhibit bifurcation and chaos. dc shunt or PMDC drives show normal behavior with certain range of parameter values. It is also observed that these drive show chaos for significantly large ranges of parameter values. In this paper we present a method for controlling chaos applicable to dc shunt and PMDC drives. The results of numerical investigation are presented.

Krishnendu Chakrabarty; Urmila Kar

2014-02-22T23:59:59.000Z

143

Definition: DC Resistivity Survey (Dipole-Dipole Array) | Open Energy  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Dipole-Dipole Array) The Dipole-Dipole array is a type of electrode configuration for a Direct-Current Resistivity Survey and is defined by its electrode array geometry.[1] View on Wikipedia Wikipedia Definition References ↑ http://appliedgeophysics.berkeley.edu/dc/EM46.pdf Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:DC_Resistivity_Survey_(Dipole-Dipole_Array)&oldid=596974" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

144

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

145

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

146

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

147

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

148

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

149

Counterrotating brushless dc permanent magnet motor  

SciTech Connect (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-12-31T23:59:59.000Z

150

Counterrotating brushless dc permanent magnet motor  

SciTech Connect (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-01-01T23:59:59.000Z

151

We Have a Winner - DC High School Regional Science Bowl Competition...  

Office of Environmental Management (EM)

We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday...

152

DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Dipole-Dipole Array) Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

153

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

154

Implementing the DC Mode in Cosmological Simulations with Supercomoving Variables  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

As emphasized by previous studies, proper treatment of the density fluctuation on the fundamental scale of a cosmological simulation volume - the 'DC mode' - is critical for accurate modeling of spatial correlations on scales ~> 10% of simulation box size. We provide further illustration of the effects of the DC mode on the abundance of halos in small boxes and show that it is straightforward to incorporate this mode in cosmological codes that use the 'supercomoving' variables. The equations governing evolution of dark matter and baryons recast with these variables are particularly simple and include the expansion factor, and hence the effect of the DC mode, explicitly only in the Poisson equation.

Gnedin, Nickolay Y.; Kravtsov, Andrey V.; Rudd, Douglas H.

2011-06-02T23:59:59.000Z

155

Fast Ignitor coupling physics  

SciTech Connect (OSTI)

The Fast Ignitor is an alternate approach to ICF in which short pulse lasers are used to initiate burn at the surface of the compressed DT fuel. The aim is to avoid the need for careful central focusing of final shocks, and possibly to lower substantially the energy requirements for ignition. Ultimately, both goals may prove crucial to Science Based Stockpile Stewardship (SBSS). This will be the case should either emerging energetic needs, or finding difficulties render the presently planned radiative fusion approach to ignition with the NIF impractical. Ignition is a first step towards the achievement of substantial energy and neutron outputs for such Stewardship.

Mason, R.J. [Los Alamos National Lab., NM (United States); Tabak, M. [Lawrence Livermore National Lab., CA (United States)

1997-10-01T23:59:59.000Z

156

DOE - Office of Legacy Management -- National Bureau of Standards - DC 01  

Office of Legacy Management (LM)

Bureau of Standards - DC Bureau of Standards - DC 01 FUSRAP Considered Sites Site: NATIONAL BUREAU OF STANDARDS (DC.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Van Ness Street , Washington , D.C. DC.01-1 Evaluation Year: 1987 DC.01-2 DC.01-3 Site Operations: Performed quality analysis lab work for the MED during the 1940s; decontamination efforts were completed in 1952 and the building was demolished in 1976 DC.01-3 Site Disposition: Eliminated - Radiation levels Below criteria DC.01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium DC.01-4 Radiological Survey(s): Yes DC.01-1 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to NATIONAL BUREAU OF STANDARDS

157

Washington DC Reliability Requirements and the Need to Operate Mirant's  

Broader source: Energy.gov (indexed) [DOE]

Washington DC Reliability Requirements and the Need to Operate Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005) Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005) Pursuant to Docket No. EO-05-01: Oak Ridge National Laboratory provided an analysis of the Mirant Potomac River Generation Station in 2005 and discussed the reliability requirements of the local area and the potential impacts on reliability of changing operation of the Potomac River Generating Station in this paper. Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability.pdf

158

Categorical Exclusion Determinations: Washington, D.C. | Department of  

Broader source: Energy.gov (indexed) [DOE]

Washington, D.C. Washington, D.C. Categorical Exclusion Determinations: Washington, D.C. Location Categorical Exclusion Determinations issued for actions in Washington, D.C. DOCUMENTS AVAILABLE FOR DOWNLOAD June 11, 2013 CX-010460: Categorical Exclusion Determination Novel Low Cost Environmentally Friendly Synthetic Approaches toward Core-Shell Structured Micro CX(s) Applied: B3.6 Date: 06/11/2013 Location(s): District of Columbia Offices(s): National Energy Technology Laboratory March 28, 2013 CX-010567: Categorical Exclusion Determination Lawrence Berkeley National Laboratory - Rapid Automated Modeling and Simulation of Existing Buildings for Energy Efficiency CX(s) Applied: B3.6 Date: 02/28/2013 Location(s): California, District of Columbia Offices(s): Advanced Research Projects Agency-Energy

159

Electric Compressor With High-Speed Brushless DC Motor  

Science Journals Connector (OSTI)

Moving Magnet Technologies (MMT) from Besançon in France has developed a highly efficient brushless DC motor that is especially suitable for use in ... The following report presents technical details of the electric

Dr.-Ing. Stephan Biwersi; Dipl.-Ing. Stephan Tavernier; M.Sc. Samuel Equoy

2012-12-01T23:59:59.000Z

160

A Multilevel Voltage-Source Inverter with Separate DC Sources  

Office of Scientific and Technical Information (OSTI)

directly to a 13 kV power line. The corresponding parameters have been mentioned in Section IILC. The capacitances for the ten FBI units' dc capacitors are C,, C2, -,...

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) |  

Open Energy Info (EERE)

DC Resistivity Survey (Schlumberger Array) At Coso DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes 18 USGS Schlumberger soundings and 6 Schlumberger soundings by Furgerson (1973) were plotted and automatically processed and interpreted References Jackson, D.B. ODonnell, J.E.; Gregory, D. I. (1 January 1977) Schlumberger soundings, audio-magnetotelluric soundings and telluric mapping in and around the Coso Range, California Retrieved from "http://en.openei.org/w/index.php?title=DC_Resistivity_Survey_(Schlumberger_Array)_At_Coso_Geothermal_Area_(1977)&oldid=591389

162

Fast SCR Thyratron Driver  

SciTech Connect (OSTI)

As part of an improvement project on the linear accelerator at SLAC, it was necessary to replace the original thyratron trigger generator, which consisted of two chassis, two vacuum tubes, and a small thyratron. All solid-state, fast rise, and high voltage thyratron drivers, therefore, have been developed and built for the 244 klystron modulators. The rack mounted, single chassis driver employs a unique way to control and generate pulses through the use of an asymmetric SCR, a PFN, a fast pulse transformer, and a saturable reactor. The resulting output pulse is 2 kV peak into 50 {Omega} load with pulse duration of 1.5 {mu}s FWHM at 180 Hz. The pulse risetime is less than 40 ns with less than 1 ns jitter. Various techniques are used to protect the SCR from being damaged by high voltage and current transients due to thyratron breakdowns. The end-of-line clipper (EOLC) detection circuit is also integrated into this chassis to interrupt the modulator triggering in the event a high percentage of line reflections occurred.

Nguyen, M.N.; /SLAC

2007-06-18T23:59:59.000Z

163

Modeling and Simulation of Series DC Motors in Electric Car  

Science Journals Connector (OSTI)

Abstract The objective of this paper is assessing use of series DC motor in electric car with its rotation speed controller, and evaluating its performances when different running cases of electric car with different loads. The mathematical equations model of series DC motor and electronic inverter in dynamic state with reference frame d – q were considered. Computer model of these equations was implemented using MATLAB/SIMPOWER facilities obtaining a complete model for motor and controller. Series DC motor is considered and its parameters were used for simulation. The electronic controller operates based on PWM control technique. Simulation of series DC motor performances was conducted within presumptions of changing car load and different resistant torques. Changing loads was realised changing number of passengers when electric car is running on normal streets, when running on streets with slope, when car is accelerate to reach a stead speed and when car is changing speed rigidly and suddenly running on country road having some holes and small slopes. Some conclusions and remarks about performances and behaviour of series DC motor were concluded. The simulated series DC motor was tested and mounted experimentally in a small truck car in Faculty of Mechanical & Electrical Engineering at Damascus University.

Zeina Bitar; Samih Al Jabi; Imad Khamis

2014-01-01T23:59:59.000Z

164

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-DistribuciĂłn del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

165

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

166

FastRoute: An efficient and high-quality global , Yanheng Zhang3  

E-Print Network [OSTI]

measured at the edges of global routing grids but also minimize the total wirelength and via usage, which1 FastRoute: An efficient and high-quality global router Min Pan1 , Yue Xu2 , Yanheng Zhang3--Modern large-scale circuit designs have created great demand for fast and high-quality global routing

Chu, Chris C.-N.

167

SUPPRESSION OF CHAOS AT SLOW VARIABLES BY RAPIDLY MIXING FAST DYNAMICS THROUGH LINEAR  

E-Print Network [OSTI]

SUPPRESSION OF CHAOS AT SLOW VARIABLES BY RAPIDLY MIXING FAST DYNAMICS THROUGH LINEAR ENERGY- dictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy prohibitively expensive in real-world applications, which led to the development of multiscale computational

Abramov, Rafail

168

Data:Eec988f9-dc0d-45ef-9789-a7781dc1934b | Open Energy Information  

Open Energy Info (EERE)

f9-dc0d-45ef-9789-a7781dc1934b f9-dc0d-45ef-9789-a7781dc1934b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: El Paso Electric Co (New Mexico) Effective date: 2010/01/01 End date if known: Rate name: LGS (Large General Service Secondary) Sector: Commercial Description: This rate is available to all Customers for lighting,power, and heating service. All service will be taken at one point of delivery designated by the Company and at one of the Company's standard types of service. Service under this rate shall be limited to Customers whose expected monthly demand will exceed 800 kilowatts (kW).

169

A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells  

SciTech Connect (OSTI)

A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

Jason Lai

2009-03-03T23:59:59.000Z

170

Microsoft Word - article_dc.doc  

Gasoline and Diesel Fuel Update (EIA)

of 15 of 15 U.S. Coal Supply and Demand: 2007 Review by Fred Freme U.S. Energy Information Administration Overview Coal production in the United States in 2007 totaled 1,145.6 million short tons according to preliminary data from the Energy Information Administration (Table 1), a decrease of 1.5 percent, or 17.2 million short tons from the 2006 record level of 1,162.7 million short tons. Although coal production declined in 2007, U.S. total coal consumption increased for the year. Coal consumption in 2007 in the electric power sector was higher by 1.9 percent, while coking coal consumption decreased by 1.1 percent and the other industrial sector declined by 5.0 percent. (Note: All percentage change calculations are done at the short- tons level.) U.S. coal exports were significantly

171

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

172

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

173

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

174

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

175

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

176

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

177

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

178

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

179

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

180

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

182

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

183

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

184

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

185

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

186

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

187

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

188

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

189

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

190

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

191

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

192

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

193

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

194

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

195

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

196

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

197

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

198

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

199

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

200

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

202

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

203

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

204

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

205

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

206

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

207

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

208

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

209

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

210

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

211

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

212

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

213

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

214

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

215

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

216

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

217

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

218

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

219

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

220

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

222

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

223

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

224

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

225

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

226

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

227

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

228

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

229

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

230

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

231

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

232

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

233

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

234

Theory of Fast Electron Transport for Fast Ignition  

E-Print Network [OSTI]

Fast Ignition Inertial Confinement Fusion is a variant of inertial fusion in which DT fuel is first compressed to high density and then ignited by a relativistic electron beam generated by a fast (laser pulse, which is usually brought in to the dense plasma via the inclusion of a re-entrant cone. The transport of this beam from the cone apex into the dense fuel is a critical part of this scheme, as it can strongly influence the overall energetics. Here we review progress in the theory and numerical simulation of fast electron transport in the context of Fast Ignition. Important aspects of the basic plasma physics, descriptions of the numerical methods used, a review of ignition-scale simulations, and a survey of schemes for controlling the propagation of fast electrons are included. Considerable progress has taken place in this area, but the development of a robust, high-gain FI `point design' is still an ongoing challenge.

Robinson, A P L; Davies, J R; Gremillet, L; Honrubia, J J; Johzaki, T; Kingham, R J; Sherlock, M; Solodov, A A

2013-01-01T23:59:59.000Z

235

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

236

Q&A: Kristen Psaki of WeatherizeDC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC April 15, 2010 - 3:45pm Addthis Roughly 20 percent of carbon emissions come from inefficient homes. The DC Project says it has found a way to mitigate emissions and create jobs, a winning combination. WeatherizeDC is the non-profit's effort to use a community engagement model to help DC residents find green jobs and live a more energy efficient lifestyle. Energy Empowers recently spoke with DC Project co-founder and creative director Kristen Psaki about WeatherizeDC's approach to climate change. WeatherizeDC is a nonprofit community engagement program. What's the background of it, the story of how and why it was founded? The DC Project was founded over a year ago in January 2009.

237

Q&A: Kristen Psaki of WeatherizeDC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC Q&A: Kristen Psaki of WeatherizeDC April 15, 2010 - 3:45pm Addthis Roughly 20 percent of carbon emissions come from inefficient homes. The DC Project says it has found a way to mitigate emissions and create jobs, a winning combination. WeatherizeDC is the non-profit's effort to use a community engagement model to help DC residents find green jobs and live a more energy efficient lifestyle. Energy Empowers recently spoke with DC Project co-founder and creative director Kristen Psaki about WeatherizeDC's approach to climate change. WeatherizeDC is a nonprofit community engagement program. What's the background of it, the story of how and why it was founded? The DC Project was founded over a year ago in January 2009.

238

A frequency domain model for 3 kV dc traction dc-side resonance identification  

SciTech Connect (OSTI)

Frequency-dependent effects in railway traction power systems arise from the impedance of substation and locomotive line filters and the traction line. Harmonic noise from traction drives and substations can excite resonances and produce overcurrent or overvoltage conditions at critical points in the network. In this paper, the harmonic feeding impedances of a 3 kV DC traction system seen from the rectifier substation, locomotive drive converter and pantograph terminals are presented. Several substation and locomotive filters are considered with a frequency-dependent traction line. Resonances attributed to the substation filter, locomotive filter and traction line are separate and distinct, the line introducing poles and zeros in the audio frequency (AF) range which vary in frequency and magnitude with locomotive position.

Hill, R.J. [Univ. of Bath (United Kingdom). School of Electronic and Electrical Engineering] [Univ. of Bath (United Kingdom). School of Electronic and Electrical Engineering; Fracchia, M.; Pozzobon, P.; Sciutto, G. [Univ. degli Studi di Genova (Italy). Dipt. di Ingegneria Elettrica] [Univ. degli Studi di Genova (Italy). Dipt. di Ingegneria Elettrica

1995-08-01T23:59:59.000Z

239

Fast Ignition Program Presented at  

E-Print Network [OSTI]

Laser drive Direct Laser drive #12;Fast Ignition may allow longer wavelength laser implosion systemsFast Ignition Program Presented at FESAC Development Path Panel General Atomics January 14, 2003 E. Michael Campbell ·Promise ·Status ·Challenges ·Implementation ·Plan #12;The original FI concept uses laser

240

Photo of the Week: National Science Bowl Participants on the Fast Track to  

Broader source: Energy.gov (indexed) [DOE]

National Science Bowl Participants on the Fast National Science Bowl Participants on the Fast Track to a Future in STEM Photo of the Week: National Science Bowl Participants on the Fast Track to a Future in STEM May 2, 2013 - 10:48am Addthis After months of training and preparation, regional Science Bowl champions gathered in Washington, D.C. to compete for the national title at the 2013 National Science Bowl. Some of the nation's best and brightest high school and middle school students spent the past few days showing off their science, technology and engineering skills by completing a series of tasks, including the construction of a miniature electric car, using only household items and a lithium-ion battery. In this photo, Yaniel Ramirez from Colegio Catolico Notre Dame in Caguas, Puerto Rico launches his team's electric car down the test track. Learn more about the 2013 National Science Bowl. | Photo by Jack Dempsey, Department of Energy.

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Using k-alpha emission to determine fast electron spectra using the Hybrid code ZEPHYROS  

E-Print Network [OSTI]

A high intensity laser-solid interaction invariably drives a non-thermal fast electron current through the target, however characterizing these fast electron distributions can prove difficult. An understanding of how these electrons propagate through dense materials is of fundamental interest and has applications relevant to fast ignition schemes and ion acceleration. Here, we utilize an upgraded version of the Hybrid code ZEPHYROS to demonstrate how the resulting k-alpha emission from such an interaction can be used as a diagnostic to obtain the characteristic temperature, divergence and total energy of the fast electron population.

White, Thomas; Gregori, Gianluca

2014-01-01T23:59:59.000Z

242

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

243

Energy Department Completes Cool Roof Installation on DC Headquarters  

Broader source: Energy.gov (indexed) [DOE]

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

244

News From the D.C. Office: Efficient Office Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Efficient Office Equipment: Update and a Look Ahead An extended version of this article is available here. We are now well aware of the large amount of energy consumed by "plug-in loads" such as personal computers (PCs) and other office electronics. Office equipment is often cited as the fastest-growing end-use of electricity in the fastest-growing sector of demand (commercial buildings). According to Dataquest figures, world growth of PCs will average 14 to 15 percent per year through 1999. Only ten years ago, office equipment was not even part of the "map" of non-residential energy end-uses. There were virtually no data on office equipment energy use, nor an awareness of the

245

Argonne TTRDC - TTR Goes to D.C.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's Through-the-Road Hybrid goes to Washington, D.C., Auto Show Argonne's Through-the-Road Hybrid goes to Washington, D.C., Auto Show Argonne's Through the Road Vehicle Argonne's Through-the-Road Hybrid Vehicle Argonne's Through-the-Road hybrid vehicle (TTR) will be on display at the Washington Auto Show at Walter E. Washington Convention Center, February 4-8, 2009, in Washington, D.C. The TTR will be in the combined U.S. Department of Energy, Environmental Protection Agency, and Department of Transportation exhibit booth that features advanced vehicle technologies that are safe, clean, and efficient. Due to power-split limitations, no plug-in hybrid electric vehicle (PHEV) exists that can complete an Urban Dynamometer Driving Schedule (UDDS) cycle without starting the engine. Argonne created the TTR, an in-house PHEV development platform with an open

246

DOE Solar Decathlon: News Blog » Team Capitol DC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capitol DC Capitol DC Below you will find Solar Decathlon news from the Team Capitol DC archive, sorted by date. Hangout With Solar Decathlon 2013 Teams on Sept. 18! Wednesday, September 11, 2013 By Rebecca Matulka Editor's Note: This entry has been cross-posted from DOE's Energy Blog. Photo of a Solar Decathlon house at night. Superimposed is the following text: "Solar Decathlon 2013: The Path to a Brighter Future. Energy.gov/live. Wednesday, Sept. 18, at p.m. ET. #askSD." Mark your calendars for a Google+ Hangout on Solar Decathlon 2013: The Path to a Brighter Future on Wednesday, Sept. 18, at 2 p.m. ET. For more than 10 years, the U.S. Department of Energy Solar Decathlon has been preparing the next wave of energy leaders-providing hands-on experience in designing and building energy-efficient, solar-powered

247

2012 Race to DC | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12 Race to DC 12 Race to DC Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process ENERGY STAR Challenge for Architects 2013 Race to Denver 2012 Race to DC 2011 Race to New Orleans 2010 Race to Miami 2009 Race to San Francisco 2008 Race to Boston 2007 Race to San Antonio

248

SAIL Venture Partners (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

DC) DC) Name SAIL Venture Partners (Washington DC) Address 2900 S. Quincy St, Suite 375 Place Arlington, Virginia Zip 22206 Product Venture capital fund focusing on clean energy Year founded 2002 Phone number (703) 379-2713 Website http://www.sailvc.com/ Coordinates 38.839975°, -77.087781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.839975,"lon":-77.087781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

NREL: Energy Analysis - Washington D.C. Office Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Washington D.C. Office Washington D.C. Office The following SEAC staff are based in our Washington D.C. Office. They support a variety of programs and activities, and often are the liaison between the U.S. Department of Energy and staff based in Golden, Colorado. Team Lead: Margaret Mann (Golden) Administrative Support: JoAnn Weaver (Golden) Thomas Jenkin Austin Brown David J. Feldman Tom Schneider Robert Margolis Kathleen Nawaz Monisha Shah Photo of Austin Brown. Austin Brown Senior Analyst (Strategic Planning) Areas of expertise Crosscutting low-carbon strategies Clean transportation technologies and policies Primary research interests Clean energy research portfolio planning Energy and society Sustainable transportation systems More information on Austin Brown Photo of David J. Feldman

250

Microsoft Word - article_dc.doc  

Gasoline and Diesel Fuel Update (EIA)

15 15 U.S. Coal Supply and Demand: 2009 Review By Fred Freme U.S. Energy Information Administration Overview Coal production in the United States in 2009 decreased to a level of 1,072.8 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), a decline of 8.5 percent, or 99.1 million short tons below the 2008 record level of 1,171.8 million short tons (Table 1). In 2009 U.S. coal consumption decreased in all sectors while total coal stocks increased for the year. Coal consumption in the electric power sector in 2009 was lower by 10.0 percent, while coking coal consumption decreased by 30.6 percent and the other industrial sector declined by 16.6 percent. The commercial and institutional sector (which prior to

251

Graphite electrode DC arc furnace. Innovative technology summary report  

SciTech Connect (OSTI)

The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

NONE

1999-05-01T23:59:59.000Z

252

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

253

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network [OSTI]

metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

Olander, Donald R.

2013-01-01T23:59:59.000Z

254

Fast Pulsing Neutron Generators for Security Application  

E-Print Network [OSTI]

FAST PULSING NEUTRON GENERATORS FOR SECURITY APPLICATION* Q.time/fast pulsing neutron generator is needed primarily forA compact neutron generator, currently being developed in

Ji, Q.

2010-01-01T23:59:59.000Z

255

High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents [OSTI]

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

Shimer, D.W.; Lange, A.C.

1995-05-23T23:59:59.000Z

256

High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents [OSTI]

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1995-01-01T23:59:59.000Z

257

Active dc filter for HVDC system--A test installation in the Konti-Skan DC link at Lindome converter station  

SciTech Connect (OSTI)

The purpose of introducing active dc filters is to meet the more and more stringent requirement from power utilities on limiting telephone interference caused by harmonic currents from HVdc transmission lines, without unnecessarily increasing the cost of HVdc stations. An active dc filter installed in the Konti-Skan HVdc link is described. The active dc filter is connected at the bottom of an existing passive dc filter at the Lindome station. The active dc filter includes optic harmonic current measuring unit, control system, protection and supervision system, PWM power amplifier, high-frequency transformer, surge arrester, and coupling apparatuses. The active dc filter has small physical size and occupies small ground area. The performance of the active dc filter for eliminating the disturbing harmonics is excellent. To achieve comparable results by passive filters would require something like ten times more high voltage equipment.

Zhang, Wenyan; Asplund, G. (ABB Power Systems, Ludvika (Sweden). HVDC Division); Aberg, A. (ABB Corporate Research, Lund (Sweden). Dept. of Man-Machine Communication); Jonsson, U. (Svenska Kraftnaet, Vaellingby (Sweden)); Loeoef, O. (Vattenfall AB, Trollhaettan (Sweden). Region Vaestsverige)

1993-07-01T23:59:59.000Z

258

Portfolio for fast reactor collaboration  

SciTech Connect (OSTI)

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

259

Interfacial effects in fast reactors  

E-Print Network [OSTI]

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01T23:59:59.000Z

260

Investigation of the energy dependence of breakdown properties with a DC spark setup  

E-Print Network [OSTI]

The Compact LInear Collider (CLIC) study is a site independent feasibility study aiming at the development of a realistic technology at an affordable cost for a future linear electron-positron collider. The European Organization for Nuclear Research (CERN) is one of the collaborators for the CLIC study.The CLIC Test Facility (CTF3) positioned at CERN provides testing of this technology, including the testing of the proposed radio-frequency (RF) structures in a two-beam concept to produce the necessary accelerating electric field as high as 100 MV/m to reach the goal of a nominal total energy of 3 TeV. One problem at such high accelerating fields is electrical discharges, i.e. sparks, damaging the inside of the RF structures as well as deflecting the trajectories of accelerated particles. A Direct Current (DC) spark test setup is in use at CERN to aid the understanding of electrical discharges under vacuum conditions, also called vacuum arcs. In contrast to the more complex CTF3 setup, the DC spark setup is si...

Hansen, Anita; Calatroni, S

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design and analysis of a zero-voltage switching scheme for a dc- to-dc converter  

E-Print Network [OSTI]

. Singh (Member) (Memberl E. G. guak (Member) A. 3. Pat, ton Head of Department) December 199'2 ABSTRA('T Design and Analysis of a Zero-4'oltage Switching Si. heme for a. Dc-to-Dc Converter. (December Iq'3'd) G. Arun, H. S. , College Of Engg...&rt~RV, Page 40 Voltage across inain switch in a clc cliopper clrive with zeio-voltage s w 1 't C 1 1 i l1 g , &g CHAPTER I INTRODUCTION A. Introduction In general terms, power electronics is concerned wit, h the conversion and control of electrical...

Arun, G.

2012-06-07T23:59:59.000Z

262

Electromagnetic Coupling in a dc Motor and Tachometer Assembly  

E-Print Network [OSTI]

-pole permanent magnet stator devices. A shaft of finite stiffness connects the tachometer and motor armatures machines. The experimental test setup consists of an integrated permanent magnet dc motor-tachometer unit-tachometer shaft or a flexible mechanical coupling, this exercise in servo-control design becomes quite challenging

Awtar, Shorya

263

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,  

E-Print Network [OSTI]

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

Jackson, Robert B.

264

Hybrid Multilevel Inverter with Single DC Haiwen Liu1  

E-Print Network [OSTI]

Hybrid Multilevel Inverter with Single DC Source Haiwen Liu1 , Leon M. Tolbert1, 2 , Burak Ozpineci Knoxville, TN 37932 3. Parker-Hannifin Corp. Olive Branch, MI 38654 Abstract- A hybrid multilevel inverter inverter (one leg for each phase) and H-bridge in series with each inverter leg. The inverter can be used

Tolbert, Leon M.

265

Decomposition of Naphthalene by dc Gliding Arc Gas Discharge  

Science Journals Connector (OSTI)

Decomposition of Naphthalene by dc Gliding Arc Gas Discharge ... In the air and oxygen gliding arc discharges, the naphthalene degradation is mainly governed by reactions with oxygen-derived radicals. ... Therefore, the local electric field strength is relatively low in argon gliding arc plasma. ...

Liang Yu; Xiaodong Li; Xin Tu; Yu Wang; Shengyong Lu; Jianhua Yan

2009-12-11T23:59:59.000Z

266

Fuzzy Estimation of DC Motor Winding Currents Innovatia Software  

E-Print Network [OSTI]

stator windings. an attractive alternative to current estimation using In order to implement an eFuzzy Estimation of DC Motor Winding Currents Dan Simon Innovatia Software 775 Rothrock Circle °ux is rotated in the desired direction of ofuzzy ¯ltering to motor winding current estimation

Simon, Dan

267

Electrostatic coalescence system with independent AC and DC hydrophilic electrodes  

DOE Patents [OSTI]

An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

Hovarongkura, A. David (Arlington, VA); Henry, Jr., Joseph D. (Morgantown, WV)

1981-01-01T23:59:59.000Z

268

Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices  

E-Print Network [OSTI]

Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza and Kristin Deason Sentech, Inc. January 16, 2008 #12;SUMMARY REPORT Hydrogen Storage Systems Analysis Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems

269

EE443L Lab 2: Modeling a DC Motor Introduction  

E-Print Network [OSTI]

and add conversion factors. Copy the LabVIEW VI lab2.vi and its associated subVI Altera the four conversion factors. Motor voltage is measured with a voltage divider to ensure DAQ card analog: The DC motor is a common actuator in control systems that converts electrical energy into rotational

Wedeward, Kevin

270

National Energy Education Summit to Electrify D.C.  

Office of Energy Efficiency and Renewable Energy (EERE)

On January 26, energy educators from across the country will convene in Washington, D.C., to address the need for nationwide energy literacy. Join us for the National Energy Education Summit, hosted by the Council of Energy Research and Education Leaders.

271

High Voltage DC Transmission 2 1.0 Introduction  

E-Print Network [OSTI]

1 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires on use of switching devices collectively referred to in the HVDC community as valves. Valves may be non. Fig. 1 There have been three types of devices for implementing HVDC converter circuits: mercury

McCalley, James D.

272

DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic  

Broader source: Energy.gov (indexed) [DOE]

Totaling $12.4 Million Aimed at Increasing Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection August 1, 2011 - 1:00pm Addthis Washington, DC - A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE). The selections include $10.3 million for eight projects that will reduce the environmental risks of shale gas development while accelerating the application of new exploration and production technologies; and $2.1

273

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Broader source: Energy.gov (indexed) [DOE]

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

274

Dynamic Resistance of YBCO-Coated Conductors in Applied AC Fields with DC Transport Currents and DC Background Fields  

SciTech Connect (OSTI)

In order to predict heat loads in future saturable core fault-current-limiting devices due to ac fringing fields, dynamic resistance in YBCO-coated conductors was measured at 77 K in peak ac fields up to 25 mT at 60 Hz and in dc fields up to 1 T. With the sample orientation set such that the conductor face was either parallel or perpendicular to the ac and dc applied fields, the dynamic resistance was measured at different fractions of the critical current to determine the relationship between the dc transport current and the applied fields. With respect to field orientation, the dynamic resistance for ac fields that were perpendicular to the conductor face was significantly higher than when the ac fields were parallel to the conductor face. It was also observed that the dynamic resistance: (1) increased with increasing fraction of the dc transport current to the critical current, (2) was proportional to the inverse of the critical current, and (3) demonstrated a linear dependence with the applied ac field once a threshold field was exceeded. This functional behavior was consistent with a critical state model for the dynamic resistance, but discrepancies in absolute value of the dynamic resistance suggested that further theoretical development is needed.

Duckworth, Robert C [ORNL] [ORNL; Zhang, Yifei [ORNL] [ORNL; Ha, Tam T [ORNL] [ORNL; Gouge, Michael J [ORNL] [ORNL

2011-01-01T23:59:59.000Z

275

Fast beam studies of free radical photodissociation  

SciTech Connect (OSTI)

The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.

Neumark, D.M. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

276

Train the Teacher - Energy Workshops for DC-area Elementary School...  

Broader source: Energy.gov (indexed) [DOE]

Train the Teacher - Energy Workshops for DC-area Elementary School Teachers Train the Teacher - Energy Workshops for DC-area Elementary School Teachers May 2, 2014 1:00PM to 4:15PM...

277

Policy Flash 2013-76 Term Assignments of Contractors to the DC...  

Broader source: Energy.gov (indexed) [DOE]

6 Term Assignments of Contractors to the DC Area Policy Flash 2013-76 Term Assignments of Contractors to the DC Area Questions concerning this policy flash should be directed to A...

278

A Segmented Drive System with a Small DC Bus Capacitor | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- Washington D.C. apep08su.pdf More Documents & Publications A Segmented Drive Inverter Topology with a Small DC Bus Capacitor A Segmented Drive Inverter Topology with a...

279

D.C. Middle and High School Students Get a Chance to Experience...  

Broader source: Energy.gov (indexed) [DOE]

D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting D.C. Middle and High School Students Get a Chance to Experience the...

280

Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on...  

Office of Environmental Management (EM)

Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on Energy Security 40 Years after the Embargo - As Delivered Energy Secretary Moniz's Remarks at CSIS in Washington D.C....

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DC powerline communication system using a transmission line transformer for high degree of freedom applications  

E-Print Network [OSTI]

A new type of powerline communication is developed to reduce cable requirements for robotic, electromechanical, and vehicular systems. A DC power bus line connecting a DC power supply to motor drives and sensor units is ...

Wade, Eric R. (Eric Randolph), 1978-

2004-01-01T23:59:59.000Z

282

Assessment of Potential for Ion Driven Fast Ignition  

E-Print Network [OSTI]

mm radius ion beams Fast Ignition (laser or fast ion pulse)deg half cone angle Fast Ignition (laser or fast ion pulse)ion beam pulses for fast ignition, laser generated ion beams

2005-01-01T23:59:59.000Z

283

Interviews in Washington, DC for Albert Einstein Fellowship Semi-Finalists  

Broader source: Energy.gov [DOE]

Selected semi-finalists in the Albert Einstein Distinguished Educator Fellowship are invited to DC for interviews.

284

Proceedings of the National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002  

Broader source: Energy.gov [DOE]

Summary of the Proceedings of the National Hydrogen Energy Roadmap Workshop held April 2-3, 2002 in Washington, DC.

285

Secretary Moniz's Remarks at the Powering Africa Summit in Washington, D.C.-- As Delivered  

Broader source: Energy.gov [DOE]

Secretary Moniz's remarks, as delivered, at the Power Africa Summit in Washington, D.C. on January 29, 2015.

286

A Decentralized Protection Scheme for Converters Utilizing a DC-link Inductor  

E-Print Network [OSTI]

- as in HVDC transmission for example - as well as in DC-links for high-power current source inverters

Lipo, Thomas

287

Fast acting inlet guide vanes  

SciTech Connect (OSTI)

A fast acting inlet guide vane (IGV) system was developed for the model Siemens V94.2 gas turbine (GT). This system enables the GT to perform larger and faster load changes in the case of electrical grid disturbances. Disturbances in electrical grids are caused by an unbalance between actual power generation and power consumption resulting in grid frequency deviations. In order to reduce such deviations, it is desirable for a GT (connected to the grid), to increase/reduce load as fast as required. This task is achieved by the fast responding IGV system: Basically, the occurring grid frequency deviation is monitored by the IGV system. Depending on this deviation, the compressor air mass flow is adapted to the changing fuel mass flow (which is set approximately proportional to the frequency deviation by the GT controller). The fast IGV actuator plays a main role in this dynamic response, allowing the vanes to open/close very fast. Tests performed on Poolbeg site (Ireland) proved safe and rapid load changes with a typical load ramp of 50 MW within 3 sec.

Minne, M.; Kull, R.

1998-07-01T23:59:59.000Z

288

Speed control of DC motor based on neural net and fuzzy logic  

Science Journals Connector (OSTI)

This paper presented the speed control of DC motor based on neural net and fuzzy logic. To bypass the difficulties caused by system constraints and modelling uncertainties of the speed control of DC motor a neural network approach for on-line speed control ... Keywords: DC motor, fuzzy logic, neural network, speed control

Zahra Moravej

2005-09-01T23:59:59.000Z

289

BEAM DYNAMICS SIMULATIONS FOR A DC GUN BASED INJECTOR F.Zhou 1,2,  

E-Print Network [OSTI]

BEAM DYNAMICS SIMULATIONS FOR A DC GUN BASED INJECTOR FOR PERL* F.Zhou 1,2, , I.Ben-Zvi2 , X for this machine are being extensively investigated at BNL. One of the possible options is photocathode DC gun. The schematic layout of a PERL DC gun based injector and its preliminary beam dynamics are presented

Brookhaven National Laboratory

290

November 2002 15th TOFE, Washington, D.C. 1 Thermal Behavior and Operating  

E-Print Network [OSTI]

November 2002 15th TOFE, Washington, D.C. 1 Thermal Behavior and Operating Requirements of IFE Washington, D.C. November 2002 #12;November 2002 15th TOFE, Washington, D.C. 2 Abstract During injection the thermal behavior of the target under such conditions and explores possible ways of extending the target

Raffray, A. René

291

Control of a Fuel-Cell Powered DC Electric Vehicle Motor  

E-Print Network [OSTI]

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models and Control Strategies Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models

Skogestad, Sigurd

292

Towards Building an Optimal Demand Response Framework for DC Distribution Networks  

E-Print Network [OSTI]

Towards Building an Optimal Demand Response Framework for DC Distribution Networks Hamed Mohsenian, an optimization-based foundation is proposed for demand response in DC distribution networks in presence to assess the performance and to gain insights into the proposed demand-response paradigm. Keywords: DC

Mohsenian-Rad, Hamed

293

DSP IMPLEMENTATION OF DC VOLTAGE REGULATION USING ADAPTIVE CONTROL FOR 200 KW 62000 RPM  

E-Print Network [OSTI]

to control the DC voltage for 200 kW induction generator rated at a speed of 62000 RPM under different load to regulate the DC voltage for high speed induction generators rated from 5 kW to 200 kW. ii #12DSP IMPLEMENTATION OF DC VOLTAGE REGULATION USING ADAPTIVE CONTROL FOR 200 KW 62000 RPM INDUCTION

Wu, Thomas

294

On the optimization of a dc arcjet diamond chemical vapor deposition reactor  

E-Print Network [OSTI]

On the optimization of a dc arcjet diamond chemical vapor deposition reactor S. W. Reevea) and W. A precursor in our dc arcjet reactor.1 Based on conclusions drawn from that work, an optimization strategy diamond film growth in a dc arcjet chemical vapor deposition reactor has been developed. Introducing

Dandy, David

295

A direct AC-to-DC converter topology with high-frequency isolation  

E-Print Network [OSTI]

-to-ac converter eliminating the acto-dc rectification stage, power factor correction boost stage, and dc-dc converter stage present in the conventional system. The output of the high-frequency isolation transformer is rectified and processed via a filtering stage...

Sulistyono, Widodo

2012-06-07T23:59:59.000Z

296

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

297

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

298

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

299

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

300

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Disc rotors with permanent magnets for brushless dc motor  

SciTech Connect (OSTI)

This patent describes a brushless dc permanent magnet motor for driving an autonomous underwater vehicle. It comprises first and second substantially flat, generally cylindrical stators disposed in side by side relation; a first substantially flat, generally cylindrical rotor; a first shaft connected to the first rotor and a second, concentric shaft connected to the second rotor; and means for providing rotation of the first and second shafts in opposite directions.

Hawsey, R.A.; Bailery, J.M.

1992-05-26T23:59:59.000Z

302

Synthesis of silicon nanotubes by DC arc plasma method  

SciTech Connect (OSTI)

Plasma synthesis is a novel technique of synthesis of nanomaterials as they provide high rate of production and promote metastable reactions. Very thin walled silicon nanotubes were synthesized in a DC direct arc thermal plasma reactor. The effect of parameters of synthesis i.e. arc current and presence of hydrogen on the morphology of Si nanoparticles is reported. Silicon nanotubes were characterized by Transmission Electron Microscopy (TEM), Local Energy Dispersive X-ray analysis (EDAX), and Scanning Tunneling Microscopy (STM).

Tank, C. M.; Bhoraskar, S. V.; Mathe, V. L. [Department of Physics, University of Pune, Pune-7, Maharashtra (India)

2012-06-05T23:59:59.000Z

303

!#"%$'&)(02130546708913@A4B0DC Scott Schaefer, Joe Warren  

E-Print Network [OSTI]

¢¡¤£¦¥¨§©©¡ !#"%$'&)(¤02130546708913£@¡A4B0DC Scott Schaefer, Joe Warren Rice UniversityE: for each edge in the grid that contains a sign change (i.e.; the vertices on its end- points these methods primal methods. i e-mail: p sschaefe,jwarrenq @rice.edu Figure 1: A sphere contoured using

Warren, Joe

304

Basic DC Meter Design ECE 2100 Circuit Analysis Laboratory  

E-Print Network [OSTI]

Basic DC Meter Design ECE 2100 Circuit Analysis Laboratory updated 8 January 2008 Pre-Laboratory Assignment 1. Design an ammeter with full scale current IFS equal to 5 mA using a meter movement rated at 0.5 mA and 100 mV. 2. Design a voltmeter with a full scale voltage VFS equal to 10 V using the meter

Miller, Damon A.

305

A dc superconducting fault current limiter using die-pressed  

Science Journals Connector (OSTI)

A model of a superconducting fault current limiter on a polycrystalline high-temperature superconductor basis is checked in the dc short circuit regime. Protection of load takes place under the conditions described in this paper. The use of ceramic materials with superconducting-normal metal-superconducting Josephson junction network having an S-type current-voltage characteristic (CVC) is shown to be effective for fault current limiter devices.

A G Mamalis; M I Petrov; D A Balaev; K A; D M Gohfeld; S V Militsyn; S G; V I Kirko; I N Vottea

2001-01-01T23:59:59.000Z

306

Report on Non-Contact DC Electric Field Sensors  

SciTech Connect (OSTI)

This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

Miles, R; Bond, T; Meyer, G

2009-06-16T23:59:59.000Z

307

Maryland DC Virginia Solar Energy Industries Association MDV SEIA | Open  

Open Energy Info (EERE)

DC Virginia Solar Energy Industries Association MDV SEIA DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place Bethesda, Maryland Zip 20814-3954 Sector Solar Product Trade associaton to promote solar equipment in the Mid-Atlantic region in US. Coordinates 40.020185°, -81.073819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.020185,"lon":-81.073819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Enhanced Model for Fast Ignition  

SciTech Connect (OSTI)

Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nationâ??s energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, â??implicitness and fluid modeling,â?ť can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

Dr. Rodney J. Mason

2010-10-12T23:59:59.000Z

309

Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination  

DOE Patents [OSTI]

DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

Lai, Jih-Sheng (Blacksburg, VA); Liu, Changrong (Sunnyvale, CA); Ridenour, Amy (Salem, VA)

2009-04-14T23:59:59.000Z

310

DC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional High DC Regions » DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jamie T. Scipio Email: jamie.scipio@hq.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 12

311

News From the D.C. Office: Energy-Saving Office Equipment Part 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Energy-Saving Office Equipment Part 2: Making the "Virtual Office" Real More on the DC Office efficiency up-grade: Lighting, Office Equipment: Part 1 Regular readers of the Center for Building Science News know that energy-efficient lighting and office equipment can have significant environmental and economic benefits. Previous articles ("Monitored Savings from Energy-Efficient Lighting in D.C. Office" [Spring 1997, p. 3] and "Energy-Saving Office equipment" [Summer 1997, p. 3]) discussed these features of Berkeley Lab's Washington, D.C. office. The D.C. office also serves as a demonstration site for telecommunications technologies, which have energy and environmental benefits of their own.

312

Energy Challenge Two: The WeatherizeDC Campaign | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Challenge Two: The WeatherizeDC Campaign Energy Challenge Two: The WeatherizeDC Campaign Energy Challenge Two: The WeatherizeDC Campaign June 14, 2010 - 9:15am Addthis John Lippert In my quest to learn what other local groups are doing to help the environment and hopefully avoid reinventing the wheel, I attended a meeting of the Greenbelt Climate Action Network, a local chapter of the grassroots, nonprofit organization Chesapeake Climate Action Network. There I met two WeatherizeDC field organizers who described the work they are doing. Terrance and Heather explained that WeatherizeDC is a campaign of The DC Project, a nonprofit based in Washington, D.C., founded by former leaders of the Obama for America campaign around a mission to advance economic and environmental justice by creating clean energy career opportunities for

313

DC Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional Middle DC Regions » DC Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Chester Scott Email: chester.scott@hq.doe.gov Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 12

314

Solar Decathlon at Home in the D.C. Community | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Decathlon at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community Addthis A New Energy-Efficient Home in the D.C. Community 1 of 27 A New Energy-Efficient Home in the D.C. Community On December 4, 2012, the Empowerhouse team, along with partners and community members, completed the installation of a permanent, two-family home in Washington, D.C. The home was originally showcased as part of the U.S Department of Energy's Solar Decathlon 2011. Image: Sarah Gerrity Date taken: 2012-12-04 12:22 2 of 27 The house is located in the D.C. neighborhood of Deanwood, which is just 10 miles from the National Mall. By installing the house nearby, the team was able to minimize shipping costs, therefore reducing the house's carbon footprint. Image: Sarah Gerrity

315

Data:D28923dc-45dc-45e5-b62b-3ca789517591 | Open Energy Information  

Open Energy Info (EERE)

923dc-45dc-45e5-b62b-3ca789517591 923dc-45dc-45e5-b62b-3ca789517591 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Minnesota Effective date: 2012/05/01 End date if known: Rate name: SMALL GENERAL TIME OF DAY SERVICE Low Wattage (A22) Sector: Commercial Description: Customer Charge per Month (Please see page 5-24.1) Available to any non-residential customer for single or three phase electric service supplied through one meter. DETERMINATION OF CUSTOMER BILLS Customer bills shall reflect energy charges (if applicable) based on customer's kWh usage, plus a customer charge (if applicable), plus demand charges (if applicable) based on customer's kW billing demand as defined. INTERIM RATE ADJUSTMENT A 4.49% Interim Rate Surcharge will be applied to rate components specified in the "Interim Rate Surcharge Rider." In addition, customer bills under this rate are subject to the following adjustments and/or charges. FUEL CLAUSE Bills are subject to the adjustments provided for in the Fuel Clause Rider. RESOURCE ADJUSTMENT Bills are subject to the adjustments provided for in the Conservation Improvement Program Adjustment Rider, the State Energy Policy Rate Rider, the Renewable Development Fund Rider, the Transmission Cost Recovery Rider, the Renewable Energy Standard Rider and the Mercury Cost Recovery Rider. ENVIRONMENTAL IMPROVEMENT RIDER Bills are subject to the adjustments provided for in the Environmental Improvement Rider.

316

Study on Total Instantaneous Blockage Accident for CEFR  

SciTech Connect (OSTI)

Chinese Experimental Fast Reactor (CEFR) is under construction in China. It is essential to investigate core disruptive accidents (CDAs) for the evaluation of CEFR's safety characteristic. Accident of total instantaneous blockage in single assembly scale had already been modeled and analyzed. The degradation scenario had been calculated by a fluid-dynamics analysis code for liquid-metal fast reactors (LMFRs). For further investigation of accident process and influence to the near bundles, the seven assembly scale were then simulated and calculated. Total instantaneous blockage was assumed to occur in the center assembly under normal operating conditions and consequences to neighboring assemblies were studied. The result shows that the key events such as sodium boiling, clad melting, fuel particles relocation, hexcan failure and melt discharge into neighboring six assemblies symmetrically were adequately simulated. All the key events appeared in the same sequence as the single assembly simulation, while hexcan failure occurred later than that of single assembly simulation. The reason for the different timing may be the boundary condition assumption can influence the heat removal from the blocked assembly. The seven-assembly scale model can reduce the boundary condition's uncertainties and help to give a better understanding and prediction of hypothetical accident scenario in subassembly blockage accidents for CEFR. (authors)

Zhe Wang; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

2006-07-01T23:59:59.000Z

317

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

318

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

319

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

320

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fast scanning two-photon microscopy  

E-Print Network [OSTI]

Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable ...

Chang, Jeremy T

2010-01-01T23:59:59.000Z

322

Communication accepte: Healthy Buildings/IAQ'97 Washington DC, septembre 1997Communication accepte: Healthy Buildings/IAQ'97 Washington DC, septembre 1997 DISCRIMINATION OF VOLATILE ORGANIC COMPOUNDS  

E-Print Network [OSTI]

Communication acceptée: Healthy Buildings/IAQ'97 Washington DC, septembre 1997Communication acceptée: Healthy Buildings/IAQ'97 Washington DC, septembre 1997 DISCRIMINATION OF VOLATILE ORGANIC manuscript, published in "4th International Conference on Healthy Buildings'97, Washington : United States

Paris-Sud XI, Université de

323

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

324

Total Heart Transplant: A Modern Overview  

E-Print Network [OSTI]

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

325

Fast neutron imaging device and method  

DOE Patents [OSTI]

A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

2014-02-11T23:59:59.000Z

326

Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experimenta...  

E-Print Network [OSTI]

Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experimenta... A; published online 23 April 2004 Ion absorption of the high harmonic fast wave in a spherical torus Y.-K. M profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes

Egedal, Jan

327

Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment a...  

E-Print Network [OSTI]

Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment a; published online 23 April 2004# Ion absorption of the high harmonic fast wave in a spherical torus #Y.­K. M, likely due to a larger # profile, which promotes greater off­axis absorption where the fast ion

Egedal, Jan

328

Proposal of DC shield reactor type superconducting fault current limiter  

Science Journals Connector (OSTI)

Saturated DC reactor type superconducting fault current limiter (SFCL) had been proposed two years ago. It was classified to rectifier type SFCL. The changing inductance value with the operating mode has superior characteristics to reduce voltage sag during step increase of the load current. But it has the disadvantage of its weight. In this paper, rectifier type SFCL with shielded reactor has been proposed. The reactor which has superconducting ring or tube inside its winding is substituted to the DC link of the rectifier. The configuration looks like an air core transformer with secondary short winding. When the current through the bulk shield-ring reaches to a certain level, the flux penetrates to the shield body and finite impedance appears in the primary winding. In other words, when the surface flux density exceeds its critical flux density, the flux penetrates into the bulk superconductor, and increases equivalent inductance. The equivalent transient resistance of the shield was represented as a function of exponential of the time. Using this equivalent transient resistance, the transient impedance was expressed. The transient wave analysis using EMTDC (electro-magnetic transients in DC systems) has been described. Simulated waveforms are shown considering the source inductance, the leakage inductance, the coupling coefficient and the forward voltage drop of the semiconductor. And voltage sag was also investigated with 50% step load increase. Preliminary design was also performed. The coil size and number of turns are designed to obtain adequate inductance for the current limitation, and the central magnetic field of the coils are calculated. There is optimal aspect ratio to minimize the magnetic field with restriction in outer diameter of the coil.

Itsuya Muta; Tsutomu Hoshino; Khosru Mohammad Salim; Akio Kawasaki; Taketsune Nakamura; Masato Yamada

2004-01-01T23:59:59.000Z

329

AVTA: Bidirectional Fast Charging Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

330

DC Resistivity Survey (Wenner Array) | Open Energy Information  

Open Energy Info (EERE)

Wenner Array) Wenner Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Wenner Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

331

DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

Pole-Dipole Array) Pole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Pole-Dipole Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

332

DC Resistivity Survey (Schlumberger Array) | Open Energy Information  

Open Energy Info (EERE)

Schlumberger Array) Schlumberger Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Schlumberger Array) Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

333

Heteroepitaxial Ge-on-Si by DC magnetron sputtering  

SciTech Connect (OSTI)

The growth of Ge on Si(100) by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C), films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

Steglich, Martin; Schrempel, Frank; Füchsel, Kevin; Kley, Ernst-Bernhard [Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena (Germany)] [Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena (Germany); Patzig, Christian; Berthold, Lutz; Höche, Thomas [Fraunhofer Institute for Mechanics of Materials IWM, Walter-Hülse-Straße 1, 06120 Halle (Germany)] [Fraunhofer Institute for Mechanics of Materials IWM, Walter-Hülse-Straße 1, 06120 Halle (Germany); Tünnermann, Andreas [Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena (Germany) [Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena (Germany)

2013-07-15T23:59:59.000Z

334

The dc modeling program (DCMP): Version 2. 0  

SciTech Connect (OSTI)

In this project one of the main objectives was the refinement of tools for the study of HVDC systems. The original software was prepared in project RP1964-2 (EL-4365) as power flow and stability program models for HVDC systems. In this project new modeling capabilities were added to both the power flow and stability models. Additionally, the HVDC specific model capabilities were integrated into a new program, termed the Standalone program, for use in the development and testing of HVDC models. This manual provides technical background for programmers and those interested in understanding, augmenting or transporting the dc models.

Chapman, D.G. (Manitoba HVDC Research Centre, Winnipeg, MB (Canada))

1990-08-01T23:59:59.000Z

335

Diagnostics for Fast Ignition Science  

SciTech Connect (OSTI)

The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

2008-05-06T23:59:59.000Z

336

Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source  

E-Print Network [OSTI]

Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

2014-01-01T23:59:59.000Z

337

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

338

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

339

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

340

NETL: News Release -DOE Selects Projects Totaling $12.4 Million Aimed at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, 2011 1, 2011 DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection Focus is on Shale Gas, Enhanced Oil Recovery Washington, D.C. - A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE). MORE INFO Link to RPSEA website The selections include $10.3 million for eight projects that will reduce the environmental risks of shale gas development while accelerating the application of new exploration and production technologies; and $2.1 million for three projects investigating innovative processes for

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

342

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

343

News From the D.C. Office: Monitored Savings from Energy-Efficient Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Monitored Savings from Energy-Efficient Lighting in D.C. Office More on the DC Office efficiency up-grade: Office Equipment: Part 1, Part 2 Figure 1: Lighting energy use profile for a typical exterior office. Berkeley Lab's office in Washington, D.C. is located a few blocks from DOE headquarters, in a five-year-old office building constructed mainly for lease to Federal agencies and their contractors. Despite its recent vintage, the building's standard lighting specifications were far from today's best, cost-effective practice. In designing the build-out plans for offices and meeting rooms in our 7,500-square-foot suite, we wanted to showcase some of the energy-efficient lighting and office equipment developed for DOE's Building Technologies

344

Edison Revisited: Should we use DC Circuits for Lighting in Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edison Revisited: Should we use DC Circuits for Lighting in Commercial Edison Revisited: Should we use DC Circuits for Lighting in Commercial Buildings? Speaker(s): Brinda Thomas Date: March 7, 2012 - 12:30pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This seminar summarizes work from a forthcoming Energy Policy paper and thoughts on future work to understand the economics of DC building circuits. We examined the economic feasibility of a general application of DC building circuits to operate commercial lighting systems. We compare light-emitting diodes (LEDs) and fluorescents that are powered by either a central DC power supply or traditional AC grid electricity, with and without solar photovoltaics (PV) and battery back-up. We find that there are limited life-cycle ownership cost and capital cost benefits of DC

345

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

346

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

347

Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE partner, Allison Transmission, Inc., has achieved commercial success in the greater Washington, D.C. area, with 1,480 hybrid buses on the road.

348

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network [OSTI]

Appliance type Standard technology DC-internal best technology Lighting Incandescent, fluorescent, LED Incandescent Electronic Heating Heater Electric resistance Cooling Motor (& compressor,

Garbesi, Karina

2012-01-01T23:59:59.000Z

349

An Active Filter Approach to the Reduction of the DC Link Capacitor  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

350

Design and Modeling of Centralized Distribution Network for the DC House Project.  

E-Print Network [OSTI]

?? This thesis focuses on the design, modeling, simulation, and performance evaluation of Centralized Distribution Network for the DC House Project. Power System Computer Aided… (more)

Bassi, Harpreet S.

2013-01-01T23:59:59.000Z

351

A Segmented Drive Inverter Topology with a Small DC Bus Capacitor  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

352

RTGs Options for Pluto Fast Flyby Mission  

SciTech Connect (OSTI)

A small spacecraft design for the Pluto Fast Flyby (PFF) Mission is under study by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk. There are four duplicate copies

Schock, Alfred

1993-10-01T23:59:59.000Z

353

Data:695f5889-8dc6-411a-abc1-5f05ba5d2d6f | Open Energy Information  

Open Energy Info (EERE)

8dc6-411a-abc1-5f05ba5d2d6f 8dc6-411a-abc1-5f05ba5d2d6f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Eastern Illinois Elec Coop Effective date: 2010/08/27 End date if known: Rate name: OPTIONAL INTERRUPTIBLE LARGE POWER SERVICE RATE SCHEDULE NO. 24 Sector: Commercial Description: **THIS IS FOR SINGLE PHASE ONLY Available upon application to any member/owner for all uses, including lighting, heating and power, subject to established rules and regulations of the Cooperative. Member/owner agrees to curtail its total kilowatt load at any time on proper advance notice for the period of time specified.

354

Data:0c2dc453-a7cd-4b06-a67c-e8dbfc15a5c4 | Open Energy Information  

Open Energy Info (EERE)

dc453-a7cd-4b06-a67c-e8dbfc15a5c4 dc453-a7cd-4b06-a67c-e8dbfc15a5c4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Duke Energy Indiana Inc Effective date: 2009/09/14 End date if known: Rate name: Low Load Factor - High Efficiency Sector: Industrial Description: Availability Available only for the electrical requirements of a three phase total electric commercial building whose space conditioning requirements are provided by an energy efficient electric space conditioning system. Character of Service Electric energy supplied hereunder shall be alternating current, sixty Hertz, at any standard three phase voltage supplied by Company in the locality for which the service is requested.

355

Fast-acting valve actuator  

DOE Patents [OSTI]

A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

Cho, Nakwon (Knoxville, TN)

1980-01-01T23:59:59.000Z

356

Fast Generators of Direct Photons  

E-Print Network [OSTI]

Three fast generators of direct photons in the central rapidity region of high-energy heavy-ion collisions have been presented The generator of prompt photons is based on a tabulation of $p+p(\\bar p)$ data and binary scaling. Two generators of thermal direct photons, for hot hadron gas (HHG) and quark-gluon plasma (QGP) scenarios, assume the 1+1 Bjorken hydrodynamics. SPS and RHIC data can be fitted better by scenario with QGP. Predictions for the LHC energy have been made. The generators have been realized as macros for the ROOT analysis package.

S. M. Kiselev

2008-11-17T23:59:59.000Z

357

Superconducting fault current limiter with fast vacuum commutation modulus  

Science Journals Connector (OSTI)

A new approach to a problem of creation of a resistive version of superconducting fault current limiters (FCL) on the basis of HTS materials has been considered. According to this approach, a scheme of FCL is added by a commutation modulus which contains a fast vacuum interrupter. This interrupter allows one to switch off the transport current as soon as 5 ms after transition of the HTS element to the normal state. The proposed scheme allows one to restrict more than an order in value a necessary operation time of FCL in a regime of a current limitation. As a result, a time of recovering the superconducting state can be significantly reduced that allows FCL to operate in automatic iterative regime. The considering device can operate not only in high voltage ac transmission lines but also in dc electrical networks. A numerical simulation of transit processes in a proposed scheme of FCL has been performed for different regimes and its features are analyzed with respect to other schemes of FCL. An experimental study of test mock-up commutation elements of FCL has been performed. This study demonstrates an efficiency of the proposed scheme. A test of a FCL model with the limiting current up to 15 kA has been realized.

D Alferov; D Yevsin; L Fisher; V Ivanov; V Sidorov

2008-01-01T23:59:59.000Z

358

Inelastic scattering of fast neutrons from $^{56}$Fe  

E-Print Network [OSTI]

Inelastic scattering of fast neutrons from $^{56}$Fe was studied at the photoneutron source nELBE. The neutron energies were determined on the basis of a timeof- flight measurement. Gamma-ray spectra were measured with a high-purity germanium detector. The total scattering cross sections deduced from the present experiment in an energy range from 0.8 to 9.6 MeV agree within 15% with earlier data and with predictions of the statistical-reaction code Talys.

Beyer, R; Hannaske, R; Junghans, A R; Massarczyk, R; Anders, M; Bemmerer, D; Ferrari, A; Kögler, T; Röder, M; Schmidt, K; Wagner, A

2014-01-01T23:59:59.000Z

359

Data:32e71087-dc4e-4f67-a64d-c27cf8411705 | Open Energy Information  

Open Energy Info (EERE)

-dc4e-4f67-a64d-c27cf8411705 -dc4e-4f67-a64d-c27cf8411705 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Rockwood, Tennessee (Utility Company) Effective date: 2012/12/01 End date if known: Rate name: Outdoor Lighting HPS 200w Sector: Lighting Description: ROCKWOOD ELECRIC UTILITY can install a private security light on your residential or commercial property under most conditions. All new requests for outdoor lighting require the applicant to sign a minimum two year contract for security lighting service. If you have security concerns and would like to discuss outdoor lighting options, please contact our Engineering Department to look at the situation with you.

360

Data:692a2dc0-44ed-44ef-a5d9-f42dc3f27436 | Open Energy Information  

Open Energy Info (EERE)

dc0-44ed-44ef-a5d9-f42dc3f27436 dc0-44ed-44ef-a5d9-f42dc3f27436 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Tri-County Elec Member Corp (Tennessee) Effective date: 2013/06/01 End date if known: Rate name: 400 Watt MV Sector: Lighting Description: Source or reference: http://www.tcemc.org/index.php/residential-information/ Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Data:5df914dc-748a-4757-980d-c7fa8bd9d9fe | Open Energy Information  

Open Energy Info (EERE)

dc-748a-4757-980d-c7fa8bd9d9fe dc-748a-4757-980d-c7fa8bd9d9fe No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sumter Electric Member Corp Effective date: 2012/01/01 End date if known: Rate name: Outdoor Lighting Off- Roadway HPS 250 W Sector: Lighting Description: * Fixed Monthly Charge does not include monthly pole rate charges Source or reference: http://www.sumteremc.com/pdfs/OL-9.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

362

Data:73d310b4-d5f4-48dc-b4dc-9aca99090e47 | Open Energy Information  

Open Energy Info (EERE)

0b4-d5f4-48dc-b4dc-9aca99090e47 0b4-d5f4-48dc-b4dc-9aca99090e47 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Black Earth, Wisconsin (Utility Company) Effective date: 1999/08/01 End date if known: Rate name: Ms-1 Outdoor Lighting Service: Athletic Field Lighting Sector: Lighting Description: Application: This schedule will be applied to municipal street lighting. The utility will furnish, install, and maintain street lighting units. Fixed Monthly Charge includes Commitment to Community Rider: $1.33 per customer per month. Power Cost Adjustment Clause: Charge per all kWh varies monthly.

363

Fast Start Financing | Open Energy Information  

Open Energy Info (EERE)

Fast Start Financing Fast Start Financing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fast Start Financing Agency/Company /Organization: Government of the Netherlands Partner: United Nations Environment Programme, United Nations Development Programme, United Nations Framework Convention on Climate Change, World Bank Topics: Finance, Market analysis Resource Type: Maps Website: www.faststartfinance.org/home Fast Start Financing Screenshot References: Fast Start Financing [1] Overview "www.faststartfinance.org aims to provide transparency about the amount, direction and use of fast start climate finance, in turn building trust in its delivery and impact. Development of the website was initiated by the government of the Netherlands, with support from the governments of Costa Rica, Colombia,

364

Research, Washington, DC (United States) Sandia National Labs.,  

Office of Scientific and Technical Information (OSTI)

584878 SAND--95-2914 GeoEnergy technology 1980-12-31 USDOE Office of Energy 584878 SAND--95-2914 GeoEnergy technology 1980-12-31 USDOE Office of Energy Research, Washington, DC (United States) Sandia National Labs., Albuquerque, NM (United States) English 2010-02-18 Technical Report http://www.osti.gov/geothermal/servlets/purl/584878-P1qAuZ/webviewable/ http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=584878 29 ENERGY PLANNING AND POLICY; RESEARCH PROGRAMS; COAL; PETROLEUM; NATURAL GAS; SYNTHETIC PETROLEUM; GEOTHERMAL ENERGY; ENERGY CONVERSION; PRODUCTION; HEAT EXTRACTION; US DOE; IN-SITU GASIFICATION; ENHANCED RECOVERY; COAL LIQUEFACTION; GEOTHERMAL WELLS Geothermal Legacy 894529 894529 Use of Geothermal Energy for Aquaculture Purposes - Phase III Johnson, W.C.; Smith, K.C. 1981-09-01 USDOE Geo-Heat Center, Klamath Falls, OR English

365

Disc rotors with permanent magnets for brushless DC motor  

SciTech Connect (OSTI)

A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

Hawsey, Robert A. (Oak Ridge, TN); Bailey, J. Milton (Knoxville, TN)

1992-01-01T23:59:59.000Z

366

Prismatic Algorithm for Discrete D.C. Programming Problems  

E-Print Network [OSTI]

In this paper, we propose the first exact algorithm for minimizing the difference of two submodular functions (D.S.), i.e., the discrete version of the D.C. programming problem. The developed algorithm is a branch-and-bound-based algorithm which responds to the structure of this problem through the relationship between submodularity and convexity. The D.S. programming problem covers a broad range of applications in machine learning because this generalizes the optimization of a wide class of set functions. We empirically investigate the performance of our algorithm, and illustrate the difference between exact and approximate solutions respectively obtained by the proposed and existing algorithms in feature selection and discriminative structure learning.

Kawahara, Yoshinobu

2011-01-01T23:59:59.000Z

367

Effect of DC voltage pulses on memristor behavior.  

SciTech Connect (OSTI)

Current knowledge of memristor behavior is limited to a few physical models of which little comprehensive data collection has taken place. The purpose of this research is to collect data in search of exploitable memristor behavior by designing and implementing tests on a HP Labs Rev2 Memristor Test Board. The results are then graphed in their optimal format for conceptualizing behavioral patterns. This series of experiments has concluded the existence of an additional memristor state affecting the behavior of memristors when pulsed with positively polarized DC voltages. This effect has been observed across multiple memristors and data sets. The following pages outline the process that led to the hypothetical existence and eventual proof of this additional state of memristor behavior.

Evans, Brian R.

2013-10-01T23:59:59.000Z

368

Discharging a DC bus capacitor of an electrical converter system  

DOE Patents [OSTI]

A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

2014-10-14T23:59:59.000Z

369

Multi-terminal Subsystem Model Validation for Pacific DC Intertie  

SciTech Connect (OSTI)

this paper proposes to validate dynamic model of Pacific DC Intertie with the concept of hybrid simulation by combing simulation with PMU measurements. The Playback function available in GE PSLF is adopted for hybrid simulation. It is demonstrated for the first time the feasibility of using Playback function on multi-terminal subsystem. Sensitivity studies are also presented as a result of common PMU measurement quality problem, ie, offset noise and time synchronization. Results indicate a good tolerance of PDCI model generally. It is recommended that requirements should apply to phasor measurements in model validation work to ensure better analysis. Key parameters are identified based on impact of value change to model behavior. Two events are employed for preliminary model validation with PMU measurements. Suggestions are made for PDCI model validation work in the future.

Yang, Bo; Huang, Zhenyu; Kosterev, Dmitry

2008-07-20T23:59:59.000Z

370

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

371

Total cost model for making sourcing decisions  

E-Print Network [OSTI]

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

372

Data:6648eda2-bf9d-4ea7-8032-842dc3476009 | Open Energy Information  

Open Energy Info (EERE)

eda2-bf9d-4ea7-8032-842dc3476009 eda2-bf9d-4ea7-8032-842dc3476009 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Dakota Valley Elec Coop Inc Effective date: 2013/01/01 End date if known: Rate name: Electric Heat - Multi-Phase and consumer-owned generation Sector: Commercial Description: This rate is applicable to acceptable permanently wired electric heat installations that serve as a major heat source in a house, shop, livestock containment or small commercial building which are multi-phase accounts or accounts served in total or in part by a consumer-owned source of generation including but not limited to diesel, propane, wind or solar powered generators. The electric heating load must be 5-kW or larger and otherwise meet Cooperative requirements for loads metered. The electric heat installation must be wired and metered separately from the multi-phase or single-phase service which serves other non-electric heat loads and separately from the consumer-owned source of generation.

373

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

374

Scattering of Fast Neutrons by Boron  

Science Journals Connector (OSTI)

The cross section of boron for the scattering of fast neutrons through angles greater than 30° was measured at neutron energies between 0.2 and 3 Mev.

H. H. Barschall; M. E. Battat; W. C. Bright

1946-10-01T23:59:59.000Z

375

Fast Algorithms for the Minimum Volume Estimator  

E-Print Network [OSTI]

Abstract: The MVE estimator is an important tool in robust regression and outlier detection in statistics. We develop fast and efficient algorithms for the MVE ...

S D Ahipasaoglu

376

EE443L: Intermediate Control Lab Lab2: Modeling a DC motor  

E-Print Network [OSTI]

will develop and validate a basic model of a permanent magnet DC motor (Yaskawa Electric, Mini-series, Minertia of a permanent magnet DC motor, the field current is constant (i.e. a constant magnetic field). It can be shown(t) = input voltage eb(t) = back emf if(t) = field current (t) = shaft angle (t) = torque J = moment

Wedeward, Kevin

377

High Dynamic Performance Programmed PWM Control of a Multilevel Inverter with Capacitor DC Sources  

E-Print Network [OSTI]

High Dynamic Performance Programmed PWM Control of a Multilevel Inverter with Capacitor DC Sources inverter consisting of a stan- dard 3-leg inverter supplied by a DC source and three full H-bridges each reactive voltage to the motor while the standard three leg inverter can supply both reactive and active

Tolbert, Leon M.

378

DC WRRC Report No. 127 GROUND WATER RESOURCE ASSESSMENT STUDY FOR  

E-Print Network [OSTI]

of the District of Columbia 4200 Connecticut Ave, NW Building 50, MB 5004 Washington, DC 20008 #12;ABSTRACT TITLE pollution on the District of Columbia's ground water. 'PROJECT STAFF *GOURND WATER RESOURCE ASSESSMENT STUDY Affairs Environmental Regulation Administration Water Resources Management Division Washington, DC 20020

District of Columbia, University of the

379

Superconducting Cables for a.c. and d.c. Power Transmission  

Science Journals Connector (OSTI)

...1973 research-article Superconducting Cables for a.c. and d.c. Power Transmission...power transmission lines. Some present cables are water cooled to increase their current...both a.c. and d.c. superconducting cables are described, with particular attention...

1973-01-01T23:59:59.000Z

380

A new technique to reject dc-link voltage ripple in PWM inverters  

E-Print Network [OSTI]

on the rlc-link, is numerically calculated. Let us assume, Inverfer output frequency f, ? 60 Hz Vs, = 1 pu Dc ? link voltage rrpple = k Vs, ? 0. 2 x Vge = . 2 pu Dc ? link voltage ripple frequency f, = 120 Hz :tfodulation index ? 0. 5 Frequency spectrum...

Shireen, Wajiha

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FastStokes : a fast 3-D fluid simulation program for micro-electro-mechanical systems  

E-Print Network [OSTI]

We have developed boundary integral equation formulas and a corresponding fast 3-D Stokes flow simulation program named FastStokes to accurately simulate viscous drag forces on geometrically complicated MEMS (micro- electro- ...

Wang, Xin, 1972 Jan. 8-

2002-01-01T23:59:59.000Z

382

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

383

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

384

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

385

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

386

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

387

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

388

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

389

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

390

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

391

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

392

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

393

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

394

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

395

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

396

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

397

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

398

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

399

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

400

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

402

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

403

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

404

Washington DC Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Washington DC Regions Washington DC Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Washington DC Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Washington, DC Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

405

Washington DC Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Washington DC Regions Washington DC Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Washington DC Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Washington, DC Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

406

D.C. Community Comes Together in the Name of Sustainability, Affordability  

Broader source: Energy.gov (indexed) [DOE]

D.C. Community Comes Together in the Name of Sustainability, D.C. Community Comes Together in the Name of Sustainability, Affordability D.C. Community Comes Together in the Name of Sustainability, Affordability July 1, 2011 - 1:02pm Addthis Community leaders and members of the The New School for Design and Stevens Institute of Technology Solar Decathlon team.| Courtesy of Lisa Bleich Community leaders and members of the The New School for Design and Stevens Institute of Technology Solar Decathlon team.| Courtesy of Lisa Bleich Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? This 2011 Solar Decathlon team is partnering with D.C. community members and Habitat for Humanity to build an energy efficient home that will be moved to the Deanwood neighborhood of Washington, D.C. following

407

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area |  

Broader source: Energy.gov (indexed) [DOE]

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area June 17, 2013 - 6:15pm Addthis Watch Energy Secretary Ernest Moniz give remarks at the Solar Impulse Press Conference in Washington, D.C. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs More on Solar Impulse View a slideshow of photos from today's event on Secretary Moniz's Facebook Page. Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C. During the event, held at the National Air and Space Museum's Steven F. Udvar-Hazy Center, Secretary Moniz highlighted the rapid expansion of the solar industry in the United States over the past

408

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Energy October 2013 October-November Special Focus: Energy Efficiency, Buildings and the Electric Grid An increasing fraction of the most efficient appliances on the market operate on direct current (DC) internally, making it possible to use DC from renewable energy systems directly and avoid the losses inherent in converting power to alternating current (AC) and back, as is current practice. Products are also emerging on the commercial market that take advantage of that possibility. Lawrence Berkeley National Laboratory researchers Vagelis Vossos, Karina Garbesi, and Hongxia Shen investigated the potential savings of direct-DC power distribution in net-metered residences with on-site photovoltaics

409

2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The  

Open Energy Info (EERE)

Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2D Joint Inversion Of DC And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Details Activities (0) Areas (0) Regions (0) Abstract: Audio-magnetotelluric (AMT) and resistivity (dc) surveys are often used in environmental, hydrological and geothermal evaluation. The separate interpretation of those geophysical data sets assuming two-dimensional models frequently produces ambiguous results. The joint inversion of AMT and dc data is advocated by several authors as an efficient method for reducing the ambiguity inherent to each of those

410

Persons Who Received the DC PSC's Emergency Petition and Complaint via  

Broader source: Energy.gov (indexed) [DOE]

Persons Who Received the DC PSC's Emergency Petition and Complaint Persons Who Received the DC PSC's Emergency Petition and Complaint via E-mail on August 24, 2005 Persons Who Received the DC PSC's Emergency Petition and Complaint via E-mail on August 24, 2005 Docket No. EO-05-01: In response to your August 29, 2005 letter, attached please find a list of all entities and organizations to whom we served the District of Columbia Public Service Commission's (HOC PSC") Petition and Complaint filed on August 24, 2005, in the above-referenced proceeding. In addition, attached is the Federal Energy Regulatory Conmlission ("FERC") service list which contains some additional entities that have intervened before the FERC and that have apparently viewed the DC PSC's Petition and Complaint. Persons Who Received the DC PSC's Emergency Petition and Complaint via

411

Grid Modernization Highlighted in Washington DC in September with the Solar  

Broader source: Energy.gov (indexed) [DOE]

Grid Modernization Highlighted in Washington DC in September with Grid Modernization Highlighted in Washington DC in September with the Solar Decathlon Grid Modernization Highlighted in Washington DC in September with the Solar Decathlon September 9, 2011 - 4:40pm Addthis Smart Grid is on display at the U.S. Department of Energy 2011 Solar Decathlon, held September 23 through October 2 on the National Mall, West Potomac Park, Washington, DC. The decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Office of Electricity Delivery and Energy Reliability will be hosting a booth providing information on grid modernization and smart meters. From Monday September 12 through Thursday September 15, the GridWeek conference was held in Washington, DC. The Office of Electricity Delivery

412

We Have a Winner - DC High School Regional Science Bowl Competition Held  

Broader source: Energy.gov (indexed) [DOE]

We Have a Winner - DC High School Regional Science Bowl Competition We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday February 11, 2013 - 10:30am Addthis We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact As part of the National Science Bowl, more than 9,500 high school students take place in 70 high school regional competitions around the United States and Puerto Rico. The winners of these regions advance to the National Science Bowl competition held every April in Chevy Chase, Maryland. On Saturday, February 9, the Office of Economic Impact and Diversity hosted the Washington, D.C. High School Regional Science Bowl competition at Cesar

413

Small wind turbine emulator with armature controlled separately excited DC motor via analogue electronic circuit  

Science Journals Connector (OSTI)

In this paper, a small wind turbine emulator (WTE) using separately excited DC motor is modelled, designed, simulated, implemented and tested. A 1 HP separately excited DC motor is used to emulate the characteristics of the rotor of small wind turbine. The DC motor is driven by a thyristor bridge with closed-loop cascaded PI controller for armature control. A separately excited DC generator with a variable resistive load is directly coupled to the DC motor. A small cheap analogue electronic circuit, with less interfacing, is used to generate a specific reference wind turbine speed based on the wind turbine rotor characteristics and the mechanical wind power available. Simulation and experimental results are compared to proof the validity and accuracy of the WTE.

A. Mahdy; S.M. El-Hakim; Hanafy Hassan Hanafy

2012-01-01T23:59:59.000Z

414

Adaptive Selective Harmonic Minimization Based on ANNs for Cascade Multilevel Inverters With Varying DC Sources  

SciTech Connect (OSTI)

A new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different values at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.

Filho, Faete [ORNL; Maia, Helder Z [UFMS, Department of Electrical Engineering; Mateus, Tiago Henrique D [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL; Pinto, Joao Onofre P [ORNL

2013-01-01T23:59:59.000Z

415

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area |  

Broader source: Energy.gov (indexed) [DOE]

Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area June 17, 2013 - 6:15pm Addthis Watch Energy Secretary Ernest Moniz give remarks at the Solar Impulse Press Conference in Washington, D.C. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs More on Solar Impulse View a slideshow of photos from today's event on Secretary Moniz's Facebook Page. Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C. During the event, held at the National Air and Space Museum's Steven F. Udvar-Hazy Center, Secretary Moniz highlighted the rapid expansion of the solar industry in the United States over the past

416

Sustainable Energy Utility - D.C. Home Performance (District of Columbia) |  

Broader source: Energy.gov (indexed) [DOE]

D.C. Home Performance (District of D.C. Home Performance (District of Columbia) Sustainable Energy Utility - D.C. Home Performance (District of Columbia) < Back Eligibility Multi-Family Residential Residential Savings Category Other Program Info Start Date 06/14/2012 State District of Columbia Program Type Utility Rebate Program Rebate Amount $500 The District of Columbia Sustainable Energy Utility currently offers the D.C. Home Performance program (DCHP). DCHP provides a $500 incentive to properties which successfully complete qualifying home energy upgrades. This incentive is available to D.C. residents living in single-family homes, rowhomes (each unit is ground to sky) or converted (1 to 4 unit) apartments and rowhomes. Both owner-occupied homes and rental properties with the property owners' authorization are eligible to participate.

417

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

418

TotalView Parallel Debugger at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

419

Photo of the Week: National Science Bowl Participants on the Fast Track to  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: National Science Bowl Participants on the Fast Photo of the Week: National Science Bowl Participants on the Fast Track to a Future in STEM Photo of the Week: National Science Bowl Participants on the Fast Track to a Future in STEM May 2, 2013 - 10:48am Addthis After months of training and preparation, regional Science Bowl champions gathered in Washington, D.C. to compete for the national title at the 2013 National Science Bowl. Some of the nation's best and brightest high school and middle school students spent the past few days showing off their science, technology and engineering skills by completing a series of tasks, including the construction of a miniature electric car, using only household items and a lithium-ion battery. In this photo, Yaniel Ramirez from Colegio Catolico Notre Dame in Caguas, Puerto Rico launches his team's electric car down the test track. Learn more about the 2013 National Science Bowl. | Photo by Jack Dempsey, Department of Energy.

420

FastBit Reference Manual  

SciTech Connect (OSTI)

An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.

Wu, Kesheng

2007-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Heterogeneous Recycling in Fast Reactors  

SciTech Connect (OSTI)

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30T23:59:59.000Z

422

High energy electron fluxes in dc-augmented capacitively coupled plasmas I. Fundamental characteristics  

SciTech Connect (OSTI)

Power deposition from electrons in capacitively coupled plasmas (CCPs) has components from stochastic heating, Joule heating, and from the acceleration of secondary electrons through sheaths produced by ion, electron, or photon bombardment of electrodes. The sheath accelerated electrons can produce high energy beams which, in addition to producing excitation and ionization in the gas can penetrate through the plasma and be incident on the opposite electrode. In the use of CCPs for microelectronics fabrication, there may be an advantage to having these high energy electrons interact with the wafer. To control the energy and increase the flux of the high energy electrons, a dc bias can be externally imposed on the electrode opposite the wafer, thereby producing a dc-augmented CCP (dc-CCP). In this paper, the characteristics of dc-CCPs will be discussed using results from a computational study. We found that for a given rf bias power, beams of high energy electrons having a narrow angular spread (<1 deg. ) can be produced incident on the wafer. The maximum energy in the high energy electron flux scales as {epsilon}{sub max}=-V{sub dc}+V{sub rf}+V{sub rf0}, for a voltage on the dc electrode of V{sub dc}, rf voltage of V{sub rf}, and dc bias on the rf electrode of V{sub rf0}. The dc current from the biased electrode must return to ground through surfaces other than the rf electrode and so seeks out a ground plane, typically the side walls. If the side wall is coated with a poorly conducting polymer, the surface will charge to drive the dc current through.

Wang Mingmei [Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50010 (United States); Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

2010-01-15T23:59:59.000Z

423

Fast Ignition Program in Japan "Progress of Fast Ignition Project; FIREX"  

E-Print Network [OSTI]

1 Fast Ignition Program in Japan "Progress of Fast Ignition Project; FIREX" Fast Ignition.4 Fusion , Laser Astrophysics, EUV, and so on are main projects Laser Spectroscopy NIFS, Okayama Univ., High Pressure EOS AIST Tokyo Inst. Tech Laser Acceleration, Terahertz Coherent X-Ray JAEA KPRI Fusion

424

Research Program of a Super Fast Reactor  

SciTech Connect (OSTI)

Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

425

Fast algorithms for triangular Josephson junction arrays  

SciTech Connect (OSTI)

We develop fast algorithms for the numerical study of two-dimensional triangular Josephson junction arrays. The Dirac bra-ket formalism is introduced in the context of such arrays. We note that triangular arrays can have both hexagonal and rectangular periodicity and develop algorithms for each. Boundaries are next introduced and fast algorithms for finite arrays are developed. 40 refs., 4 figs.

Datta, S.; Sahdev, D. [Indian Institute of Technology, Kanpur (India)] [Indian Institute of Technology, Kanpur (India)

1997-04-01T23:59:59.000Z

426

Developing fast and efficient climate models  

E-Print Network [OSTI]

report from Tyndall research project IT 1.31 Planning and Prototyping a Climate Module for the Tyndall The aim of this project was to develop a fast and efficient climate model, as a vital componentDeveloping fast and efficient climate models John Shepherd, Peter Challenor, Bob Marsh, Mark

Williamson, Mark

427

FAST User's Guide - Updated August 2005  

SciTech Connect (OSTI)

The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) Code is a comprehensive aeroelastic simulator capable of predicting both the extreme and fatigue loads of two- and three-bladed horizontal-axis wind turbines (HAWTs). This document covers the features of FAST and outlines its operating procedures.

Jonkman, J. M.; Buhl, M. L. Jr.

2005-10-01T23:59:59.000Z

428

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect (OSTI)

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

429

Analytical model for fast-shock ignition  

SciTech Connect (OSTI)

A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

Ghasemi, S. A., E-mail: abo.ghasemi@yahoo.com; Farahbod, A. H. [Plasma Physics Research School, NSTRI, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Sobhanian, S. [Department of Physics, Tabriz University, Tabriz (Iran, Islamic Republic of)

2014-07-15T23:59:59.000Z

430

FAST ION STUDIES OF ION CYCLOTRON HEATING  

E-Print Network [OSTI]

FAST ION STUDIES OF ION CYCLOTRON HEATING IN THE PLT TOKAMAK Gregory Wayne Hammett;@1986 Gregory Wayne Hammett ALL RIGHTS RESERVED #12;Abstract Fast Ion Studies of Ion Cyclotron Heating about the physics of wave heating. Previous experiments have demonstrated that ion cyclotron heating

Hammett, Greg

431

PROTON, ELECTRON, AND ION HEATING IN THE FAST SOLAR WIND FROM NONLINEAR COUPLING BETWEEN ALFVENIC AND FAST-MODE TURBULENCE  

SciTech Connect (OSTI)

In the parts of the solar corona and solar wind that experience the fewest Coulomb collisions, the component proton, electron, and heavy ion populations are not in thermal equilibrium with one another. Observed differences in temperatures, outflow speeds, and velocity distribution anisotropies are useful constraints on proposed explanations for how the plasma is heated and accelerated. This paper presents new predictions of the rates of collisionless heating for each particle species, in which the energy input is assumed to come from magnetohydrodynamic (MHD) turbulence. We first created an empirical description of the radial evolution of Alfven, fast-mode, and slow-mode MHD waves. This model provides the total wave power in each mode as a function of distance along an expanding flux tube in the high-speed solar wind. Next, we solved a set of cascade advection-diffusion equations that give the time-steady wavenumber spectra at each distance. An approximate term for nonlinear coupling between the Alfven and fast-mode fluctuations is included. For reasonable choices of the parameters, our model contains enough energy transfer from the fast mode to the Alfven mode to excite the high-frequency ion cyclotron resonance. This resonance is efficient at heating protons and other ions in the direction perpendicular to the background magnetic field, and our model predicts heating rates for these species that agree well with both spectroscopic and in situ measurements. Nonetheless, the high-frequency waves comprise only a small part of the total Alfvenic fluctuation spectrum, which remains highly two dimensional as is observed in interplanetary space.

Cranmer, Steven R.; Van Ballegooijen, Adriaan A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-08-01T23:59:59.000Z

432

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

433

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

434

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

435

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

436

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

437

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

438

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

439

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

440

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

442

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

443

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

444

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

445

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

446

ARM - Measurement - Shortwave spectral total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shadowband Spectroradiometer SPEC-TOTDN : Shortwave Total Downwelling Spectrometer UAV-EGRETT : UAV-Egrett Value-Added Products VISST : Minnis Cloud Products Using Visst...

447

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

448

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

449

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

450

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

451

Solar Decathlon at Home in the D.C. Community | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

at Home in the D.C. Community at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community Addthis A New Energy-Efficient Home in the D.C. Community 1 of 27 A New Energy-Efficient Home in the D.C. Community On December 4, 2012, the Empowerhouse team, along with partners and community members, completed the installation of a permanent, two-family home in Washington, D.C. The home was originally showcased as part of the U.S Department of Energy's Solar Decathlon 2011. Image: Sarah Gerrity Date taken: 2012-12-04 12:22 2 of 27 The house is located in the D.C. neighborhood of Deanwood, which is just 10 miles from the National Mall. By installing the house nearby, the team was able to minimize shipping costs, therefore reducing the house's carbon footprint. Image: Sarah Gerrity Date taken: 2012-12-04 09:00

452

Impact of quasi-dc currents on three-phase distribution transformer installations  

SciTech Connect (OSTI)

This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This smoking neutral'' results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

McConnell, B.W.; Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Schafer, D.A. (Mission Research Corp., Albuquerque, NM (United States))

1992-06-01T23:59:59.000Z

453

Observation and cancellation of the dc Stark shift in strontium optical lattice clocks  

E-Print Network [OSTI]

We report on the observation of a dc Stark frequency shift at the $10^{-13}$ level by comparing two strontium optical lattice clocks. This frequency shift arises from the presence of electric charges trapped on dielectric surfaces placed under vacuum close to the atomic sample. We show that these charges can be eliminated by shining UV light on the dielectric surfaces, and characterize the residual dc Stark frequency shift on the clock transition at the $10^{-18}$ level by applying an external electric field. This study shows that the dc Stark shift can play an important role in the accuracy budget of lattice clocks, and should be duly taken into account.

Lodewyck, Jérôme; Lorini, Luca; Gurov, Mikhail; Lemonde, Pierre

2011-01-01T23:59:59.000Z

454

Application of direct pulsewidth modulation scheme to AC-DC converters: - a way to reduce ripple  

E-Print Network [OSTI]

and Problems . 2 Switching Transfer Function . 3 General Theory of PWM 4 Performance Measurement of PWM sc-dc Coverters 1 5 8 12 ALGORITHM OF DIRECT PULSEWIDTH MODULATION USED IN AC- DC COVERTER 14 SINGLE PHASE AC-DC PWM CONVERTERS . . 17 ac..., and ISPWM. 3. 1 Sinusoidal Pulsewidth Modulation (SPWM) SPWM is the most commonly used PWM technique. In SPWM as shown in Figure 1, the pulse widths are generated by comparing a carrier signal which is made of CARRIER REFERENCE 0 0 I . 0 1. 5 20 2. 5...

Zhang, Yuemin

2012-06-07T23:59:59.000Z

455

The smoothing transformer, a new concept in dc side harmonic reduction of HVdc schemes  

SciTech Connect (OSTI)

Direct connection schemes have been a subject of recent investigation, offering operational flexibility and substantial reductions in ac components. In these schemes the use of active dc filters has been suggested to replace the conventional tuned passive filter design. This paper presents the smoothing transformer as a new means for reducing dc harmonics at characteristic and non-characteristic frequencies using only passive components. A realistic smoothing transformer design is examined using the New Zealand HVdc system operating in the direct connection mode. The steady-state and transient performance of the smoothing transformer design is compared with that of the existing dc smoothing reactor and filter bank.

Enright, W.; Arrillaga, J.; Wood, A.R.; Hidalgo, F.P.

1996-10-01T23:59:59.000Z

456

Total Synthesis of Irciniastatin A (Psymberin)  

E-Print Network [OSTI]

Total Synthesis of Irciniastatin A (Psymberin) Michael T. Crimmins,* Jason M. Stevens, and Gregory, North Carolina 27599 crimmins@email.unc.edu Received July 21, 2009 ABSTRACT The total synthesis of a hemiaminal and acid chloride to complete the synthesis. In 2004, Pettit and Crews independently reported

457

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

458

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

459

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...

460

BERAC Meeting, February 16-17, 2012, Washington, DC| U.S. DOE Office of  

Office of Science (SC) Website

February 16-17, 2012, Washington, DC February 16-17, 2012, Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting, February 16-17, 2012, Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting February 16-17, 2012 Washington, DC Agenda .pdf file (25KB) Presentations William Brinkman, Comments from the Director, Office of Science .pdf file (24.4MB) Sharlene Weatherwax, State of BER Report .pdf file (4.3MB) Eddy Rubin, Joint Genome Institute Update .ppt file (18.0MB) Allison Campbell, Environmental Molecular Sciences Laboratory (EMSL) Update .pdf file (17.8MB) Adam Arkin, Knowledgebase Discussion .pdf file (8.9MB)

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

BERAC Meeting April 30 - May 1, 2003 Washington DC | U.S. DOE Office of  

Office of Science (SC) Website

30 - May 1, 2003 Washington DC 30 - May 1, 2003 Washington DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting April 30 - May 1, 2003 Washington DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting April 30 - May 1, 2003 Washington, DC Agenda .pdf file (8KB) Presentations Teresa Fryberger .ppt file (5.9MB), Director, Environmental Remediation Sciences Division, Division and Draft Strategic Plan Overview Anna Palmisano .ppt file (16.6MB), Natural and Accelerated Bioremediation Research Program Update Roland Hirsch .ppt file (740KB), Environmental Management Science Program Bill Rogers .ppt file (10.6MB), Environmental Molecular Sciences

462

BERAC Meeting April 25-26, 2002 Washington, DC | U.S. DOE Office of Science  

Office of Science (SC) Website

25-26, 2002 Washington, DC 25-26, 2002 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting April 25-26, 2002 Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting April 25-26, 2002 Washington DC Agenda .pdf file (6KB) Available Presentations James Decker .ppt file (22.1MB), Principal Deputy Director, Office of Science Rod Brown .ppt file (70KB), Deputy Undersecretary for Research, Education and Economics, USDA Ari Patrinos .ppt file (64KB), Associate Director for Biological & Environmental Research Dick Swaja .ppt file (74KB), National Institute of Biomedical Imaging and

463

BERAC Meeting December 3-4, 2002 Washington, DC | U.S. DOE Office of  

Office of Science (SC) Website

3-4, 2002 Washington, DC 3-4, 2002 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting December 3-4, 2002 Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting December 3-4, 2002 Washington, DC Agenda .pdf file (6KB) Presentations Genomes to Life Facilities Marvin Frazier, DOE .ppt file (5.0MB), User Facilities for 21st Century Systems Biology Eric Ackerman, PNNL .ppt file (1.9MB), Facility I: Production and Characterization of Proteins Michelle Buchanan, ORNL .ppt file (4.3MB), Facility II: Whole Proteome Analysis Lee Makowski, ANL .ppt file (8.5MB), Characterization and Imaging of

464

BERAC Meeting July 10-11, 2006 Washington, DC | U.S. DOE Office of Science  

Office of Science (SC) Website

July 10-11, 2006 Washington, DC July 10-11, 2006 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting July 10-11, 2006 Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting July 10-11, 2006 Washington, DC Agenda .pdf file (14KB) Presentations James Tiedje .ppt file (123KB), Discussion of Final Report of the BERAC Review of the JGI Jim Bristow .ppt file (2.8MB), JGI, Progress in addressing BERAC Recommendations Jeff Gaffney .pdf file (6.6MB), ANL, Reconfigured Atmospheric Science Program and the 2006 Mexico City Campaign David Thomassen .ppt file (119KB), State of BER Mike Kuperberg .ppt file (9.8MB), Introduction to EMSL

465

BERAC Meeting November 29-30, 2007 Washington, DC | U.S. DOE Office of  

Office of Science (SC) Website

November 29-30, 2007 Washington, DC November 29-30, 2007 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting November 29-30, 2007 Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting November 29-30, 2007 Washington, DC Agenda .pdf file (9KB) Presentations BER Updates on BERAC Reports Jeff Amthor .ppt file (11.5MB), Free Air Carbon Dioxide Enrichment (FACE) Report Bob Vallario .ppt file (749KB), Integrated Assessment Program Report David Thomassen .ppt file (651KB), Climate Change Committee of Visitors Report Update on BERAC Charges Jim Adelstein .ppt file (785KB), Low Dose Program Review

466

News From the D.C. Office: Seminars Explore Energy Policies & Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Seminars Explore Energy Policies & Technologies As part of our effort to communicate with customers and colleagues in the Washington area, the LBNL-D.C. office sponsors a series of breakfast seminars on research and policy topics of current interest. We've held six seminars this spring, each attended by 15 to 25 invited guests from the Department of Energy, the Environmental Protection Agency, the Agency for International Development, nongovernmental organizations, Congressional committee staff, and D.C. staff of other national laboratories. On March 2, Jim McMahon of LBNL's Energy Analysis Program described LBNL's important contribution to national energy-efficiency standards for appliances. LBNL has provided analytical support to DOE for more than 15

467

BERAC Meeting November 13-14, 2003 Washington, DC | U.S. DOE Office of  

Office of Science (SC) Website

13-14, 2003 Washington, DC 13-14, 2003 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting November 13-14, 2003 Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting November 13-14, 2003 Washington, DC Agenda .pdf file (12KB) Presentations Mark Humayun .ppt file (8.4MB), The Artificial Retina Project Chris Stubbs .ppt file (10.7MB), Computational Aspects of Medical Imaging Pat Dehmer .ppt file (34.2MB), Nanoscience and Hydrogen Initiatives Jim Mahoney .ppt file (761KB), The U.S. Climate Change Science Program: Strategic Planning to Implementation David Conover .ppt file (573KB), U.S. Climate Change Technology Program

468

BERAC Meeting April 20-21, 2005 Washington DC | U.S. DOE Office of Science  

Office of Science (SC) Website

April 20-21, 2005 Washington DC April 20-21, 2005 Washington DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting April 20-21, 2005 Washington DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting April 20-21, 2005 Washington DC Agenda .pdf file (15KB) Presentations Ray Orbach .ppt file (134KB), Advancing Energy, Economic and National Security... Dave Bader .ppt file (36KB), Subcommittee Report on the Need for Enhanced Research on Cloud Parameterization Methods... Peter Lunn .ppt file (215KB), Status Report on Restructuring of Aerosol Research Program Jerry Elwood .ppt file (552KB), New Charge to Review Terrestrial Carbon

469

BERAC Meeting April 29-30, 2004 Washington DC | U.S. DOE Office of Science  

Office of Science (SC) Website

29-30, 2004 Washington DC 29-30, 2004 Washington DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting April 29-30, 2004 Washington DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting April 29-30, 2004 Washington, DC Agenda .pdf file (15KB) Presentations Ray Orbach .ppt file (1.5MB) Ari Patrinos .ppt file (72.2MB), The State of BER Jill Banfield .ppt file (20.5MB), Structure, Reactivity, and Behavior of Nanoparticles in the Environment Steve Larson .ppt file (420KB), Radiopharmaceutical Subcommittee Report Joel Parriott/Bill Valdez .ppt file (710KB), Program Plans and Program Assessment Rating Tool (PART) Roadmaps

470

BERAC Meeting December 5-6, 2005 Washington, DC| U.S. DOE Office of Science  

Office of Science (SC) Website

5-6, 2005 Washington, DC 5-6, 2005 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting December 5-6, 2005 Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting December 5-6, 2005 Washington, DC Agenda .pdf file (14KB) Presentations Mike Kuperberg .ppt file (68KB) and Andy Felmy .ppt file (9.8MB), EMSL Update: Reviews, Action Plan & Progress Ari Patrinos .ppt file (80KB), State of BER Warren Washington .ppt file (152KB), Discussion of the TCCRP subcommittee Report George Sgouros .pdf file (42KB), SNM, Public Comment Dan Hitchcock .ppt file (848KB), Dinner Talk, High Performance Computing

471

BERAC Meeting March 9-11, 2011 Washington, DC | U.S. DOE Office of Science  

Office of Science (SC) Website

March 9-11, 2011 Washington, DC March 9-11, 2011 Washington, DC Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Meetings BERAC Meeting March 9-11, 2011 Washington, DC Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Meeting March 9-10, 2011 Washington, DC Agenda .pdf file (7KB) Presentations Warren Washington .pptx file (29.0MB), The Present and Future of Climate Modeling William Brinkman .pptx file (25.3MB), Office of Science Report Sharlene Weatherwax .pdf file (446KB), State of BER Report Paul Bryan .pptx file (2.4MB), Activities in DOE's Office of Biomass Programs Gary Geernaert .pptx file (8.3MB), Climate and Environmental Sciences

472

103 Teams to Head to DOE's National Science Bowl in Washington, D.C. |  

Broader source: Energy.gov (indexed) [DOE]

3 Teams to Head to DOE's National Science Bowl in Washington, 3 Teams to Head to DOE's National Science Bowl in Washington, D.C. 103 Teams to Head to DOE's National Science Bowl in Washington, D.C. April 23, 2009 - 12:00am Addthis WASHINGTON, DC- Students from 67 high school teams and 36 middle school teams from across the nation will compete next weekend for championship titles in the U.S. Department of Energy's (DOE) National Science Bowl in Washington D.C. The National Science Bowl is the nation's largest academic competition of its kind and the only one sponsored by a federal agency. The National Finals will be held from May 2 through May 4. Each of the participating teams emerged from a regional competition to earn an all-expense-paid trip to the event. The participating teams represent 42 states, the District of Columbia, the U.S. Virgin Islands and Puerto

473

EETD Researchers Contribute to Efficient DC-Power Data Center at UC San  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EETD Researchers Contribute to Efficient DC-Power Data Center at UC San EETD Researchers Contribute to Efficient DC-Power Data Center at UC San Diego Interior of the GreenLight Instrument October 2010 The California Institute for Telecommunications and Information Technology (Calit2) at UC San Diego is operating a set of servers in a campus data center on 380-volt DC (direct current) power. The new modular data center on campus has sensors and other instruments to measure the energy efficiency of information and communication technologies, the infrastructure that supports it - and to help researchers build greener IT systems and software. The direct current technology in the center eliminates the need for multiple conversions back and forth between AC to DC power, which are used in AC-based data centers that are in common use today. This technology

474

News From the D.C. Office: New Work With Motor Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office New Work With Motor Systems The Energy Analyis Program has recently started a project for the DOE Office of Industrial Technologies Motor Challenge Program. This project, to be carried out in the Washington D.C. office, extends the office's work to an exciting new area of electric motor system efficiency. Motor systems consume about 70 percent of the electric energy used in the U.S. industrial sector. Emphasis on motor efficiency in recent years has led to passage of efficiency standards, to become effective in 1997, for most common types of motors. This is extremely important because the cost of energy consumed by a motor during its useful life typically far exceeds its acquisition cost. Frequently, significant system-level opportunities

475

GRR Update Meeting scheduled for 9/13 in D.C. | OpenEI Community  

Open Energy Info (EERE)

GRR Update Meeting scheduled for 9/13 in D.C. GRR Update Meeting scheduled for 9/13 in D.C. Home > Groups > Geothermal Regulatory Roadmap Kyoung's picture Submitted by Kyoung(155) Contributor 6 September, 2012 - 08:51 D.C. GRR meeting update The next Geothermal Regulatory Roadmap update meeting will be held in Washington, D.C. on Thursday, September 13 from 2-4 p.m. (ET). We will be reviewing the progress to date, giving a demonstration on accessing the roadmap on OpenEI, and presenting preliminary analysis of the roadmapping effort. If you are interesting in attending this workshop, please e-mail Stacee Foster to receive an official invitation. Groups: Geothermal Regulatory Roadmap Login to post comments Kyoung's blog Latest blog posts Kyoung Geothermal NEPA Workshop at GRC Posted: 14 Oct 2013 - 20:19 by Kyoung

476

News From the D.C. Office: Greenhouse Gas Mitigation Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerial view of Washington D.C. Aerial view of Washington D.C. News From the D.C. Office Greenhouse Gas Mitigation Workshops LBNL brought technical training to four continents this summer with a series of regional greenhouse gas mitigation workshops. As part of LBNL's continued work on the U.S. Country Studies Program (USCSP), staff members of the Energy Analysis Program from Washington, D.C. and Berkeley worked together to put on workshops in Warsaw, Poland; Cancun, Mexico; Arusha, Tanzania; and Seoul, Korea. LBNL began working with USCSP more than a year and a half ago, when it was awarded the contract to provide mitigation assistance to some 35 countries. The Program grew out of the U.S.'s commitment to help developing and transitional countries address climate-change issues- specifically to

477

News From the D.C. Office: Presidential Mission on Energy Investment in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Presidential Mission on Energy Investment in Pakistan Secretary of Energy Hazel O'Leary led a presidential mission on energy investment in the Islamic Republic of Pakistan September 19-25, 1994. Stephen Wiel, who heads the Energy and Environment Division's Washington D.C. Project Office, participated in the mission. It was the first visit to Pakistan by a U.S. cabinet member for a nonmilitary purpose: to build economic bridges and an enhanced business relationship between the two countries. Members of the mission were assigned to work on oil and natural gas, coal, rural development and renewables, energy efficiency and environment, and electricity (including generation, transmission, and distribution). Stephen

478

OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC  

Broader source: Energy.gov (indexed) [DOE]

100 Connecticut Ave., NW, Suite 810, Washington, DC 100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 1 Electricity Advisory Committee Meeting 8:33 a.m. through 2:49 p.m. October 29, 2010 OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 2 National Rural Electric Cooperative Conference Center 4301 Wilson Boulevard Arlington, VA 22203 OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 3 ELECTRICITY ADVISORY MEMBERS PRESENT: Richard Cowart

479

Dean's Report from DC (Nov 2011) 1: Federal Science Funding PerspecAve  

E-Print Network [OSTI]

Dean's Report from DC (Nov 2011) 1: Federal Science Funding Perspec (AdministraAon's) FY12 PrioriAes Ă? Moving toward a clean energy future to reduce dependence on energy imports while curbing greenhouse gas emissions Ă? Understanding

Wang, Yuqing

480

DC Pro Software Tool Suite, Data Center Fact Sheet, Industrial Technologies Program  

SciTech Connect (OSTI)

This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

Not Available

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "dc fast total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Design of Brushless DC Motor Control System Based on Back Electric Motive Force (EMF)  

Science Journals Connector (OSTI)

Brushless dc motor uses electronic commutation technology instead of mechanical commutation brush for electric motor with new types of mechanical and electrical integration. It has the ac motor simple structure, ...

Ran Dong; Hongqi Wang; Weiwei Xue

2012-01-01T23:59:59.000Z

482

Measured Savings of DC to AC Drive Retrofit in Plastic Extrusion  

E-Print Network [OSTI]

This paper presents the potential electrical energy efficiency improvements for utilizing alternating current (AC) motors controlled by variable frequency drives (VFD) in place of direct current (DC) motors to drive plastic extrusion machines. A...

Sfeir, R. A.

2008-01-01T23:59:59.000Z

483

Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor  

Broader source: Energy.gov [DOE]

Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

484

Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages  

DOE Patents [OSTI]

A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

Su, Gui-Jia [Knoxville, TN

2005-11-29T23:59:59.000Z

485

Strontium Titanate DC Electric Field Switchable and Tunable Bulk Acoustic Wave Solidly Mounted Resonator  

E-Print Network [OSTI]

Strontium Titanate DC Electric Field Switchable and Tunable Bulk Acoustic Wave Solidly Mounted Abstract - A voltage switchable/tunable strontium titanate solidly mounted BAW resonator was implemented films, piezoelectric resonators. I. INTRODUCTION Strontium titanate (STO) and barium strontium titanate

York, Robert A.

486

Area Efficient D/A Converters For Accurate DC Operation Brandon Royce Greenley  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 Mismatch Modeling For Area Optimization . . . . . . . . . . . . . . . . . . . . . . . 51 6Area Efficient D/A Converters For Accurate DC Operation by Brandon Royce Greenley A THESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1 Measurement Setup

Moon, Un-Ku

487

U.S. Department of Energy - Washington, DC | Department of Energy  

Energy Savers [EERE]

Washington, DC. A photovoltaic (PV) system was installed as part of the DOE's support of alternative energy and the Federal initiatives to lower energy usage. The 3 kW AC PV...

488

DC Connected Hybrid Offshore-Wind and Tidal Turbine Generation System  

Science Journals Connector (OSTI)

“Hybrid Offshore-wind and Tidal Turbine” (HOTT) generation system (Rahman and ... interconnecting method for a DC side cluster of wind and tidal turbine generators system are proposed. This method can be achieved...

Mohammad Lutfur Rahman; Yasuyuki Shirai

2010-01-01T23:59:59.000Z

489

N–O mix optimisation in low energy dense DC glow surface Ti conditioning  

Science Journals Connector (OSTI)

Samples of pure titanium have been treated by means a plasma immersed ion implantation (PIII) process in a DC glow discharge in pure oxygen and in different nitrogen-oxygen mixtures. In contrast with conventio...

E. E. Granda-Gutiérrez; R. López-Callejas…

2009-08-01T23:59:59.000Z

490

FastBit: Interactively Searching Massive Data  

SciTech Connect (OSTI)

As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

2009-06-23T23:59:59.000Z

491

Heterogeneous effects in fast breeder reactors  

E-Print Network [OSTI]

Heterogeneous effects in fast breeder reactors are examined through development of simple but accurate models for the calculation of a posteriori corrections to a volume-averaged homogeneous representation. Three distinct ...

Gregory, Michael Vladimir

1973-01-01T23:59:59.000Z

492

Development and evaluation of an implantable chronic DC stimulation and measurement probe for nerve regeneration studies  

E-Print Network [OSTI]

DEVELOPMENT AND EVALUATION OF AN IMPLANTABLE CHRONIC DC STIMULATION AND MEASUREMENT PROBE FOR NERVE REGENERATION STUDIES A Thesis by DOUGLAS BRYAN MACHA Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1995 Major Subject: Bioengineering DEVELOPMENT AND EVALUATION OF AN IMPLANTABLE CHRONIC DC STIMULATION AND MEASUREMENT PROBE FOR NERVE REGENERATION STUDIES A Thesis by DOUGLAS...

Macha, Douglas Bryan

2012-06-07T23:59:59.000Z

493

Nonlinear modal interaction in HVDC/AC power systems with dc power modulation  

SciTech Connect (OSTI)

In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.

Ni, Y.X. [Tsinghua Univ., Beijing (China)] [Tsinghua Univ., Beijing (China); Vittal, V.; Kliemann, W.; Fouad, A.A. [Iowa State Univ., Ames, IA (United States)] [Iowa State Univ., Ames, IA (United States)

1996-11-01T23:59:59.000Z

494

Fast ignition of inertial confinement fusion targets  

SciTech Connect (OSTI)

Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2013-01-15T23:59:59.000Z

495

Status of fast-breeder-reactor safety  

SciTech Connect (OSTI)

The current state of knowledge of fast breeder reactors is reviewed. The primary focus on the analysis of postulated accident sequences and the implications to fast-reactor design. The accidents considered include loss-of-collant flow and transient overpower, both with a postulated failure to scram. The associated accident phenomena considered largely relate to the potential for energetic disassembly and include fuel, clad, and coolant motions during the accident sequence, fuel-coolant thermal interactions, and potential recriticality phenomena.

Avery, R.

1982-01-01T23:59:59.000Z

496

Electromagnetic design considerations for fast acting controllers  

SciTech Connect (OSTI)

Electromagnetic design considerations for fast acting controllers in a power system is introduced and defined. A distinction is made in relation to the more commonly understood system control design necessary for damping electromechanical oscillations using stability programs and eigenanalysis. Electromagnetic eigenanalysis tools have limited availability and are consequently rarely used. Electromagnetic transients programs (emtp) on the other hand are widely used and a procedure for undertaking electromagnetic control design of fast acting controllers in a power system using emtp is presented.

Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)

1996-07-01T23:59:59.000Z

497

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

498

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

499

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

500

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567