Powered by Deep Web Technologies
Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Learning - Passive Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

each side of a tower. The Zion National Park Visitor Center incorporates passive solar design features, including clerestory windows for daylighting and Trombe walls that absorb...

2

The Soralux Daylighting System : passive solar illumination for deep-plan building spaces  

E-Print Network (OSTI)

Daylight is a valuable resource for both energy and human health. However, this resource is often underutilized in buildings due to the difficulty of controlling the changing qualities of daylight. Deep-plan building spaces ...

Thuot, Kevin W. (Kevin William)

2011-01-01T23:59:59.000Z

3

Modelling and simulation of elements for solar heating and daylighting  

SciTech Connect

Through the development of highly efficient transparent insulation materials (TIM), new opportunities are appearing in the field of daylighting and passive solar space heating. The simulation program WANDSIM, developed at the Fraunhofer-Institut fuer Solare Energiesysteme (ISE), models the dynamic performance of three important elements for daylighting and passive solar space heating; window glazing; transparently insulated masonry; transparently insulated glass wall. Selected simulation results of each type are represented and compared under thermal and daylighting aspects. The advantages of the transparently insulated glass wall, a new combined passive space heating and daylighting system, in economy and comfort are verified.

Wilke, W.S.; Schmid, J. (Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (West Germany))

1991-01-01T23:59:59.000Z

4

Passive solar technology  

DOE Green Energy (OSTI)

The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

Watson, D

1981-04-01T23:59:59.000Z

5

Energy Basics: Lighting and Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Daylighting Passive Solar Design Space Heating & Cooling Water Heating Lighting and Daylighting Buildings can be lit in two ways: by using artificial lighting, or by...

6

Assessment of Solar Daylighting Technologies  

Science Conference Proceedings (OSTI)

With the continued advancement of and deeper integration between electric lighting fixtures, electric lighting controls, and various daylighting products, there is a renewed interest in delivering and controlling exterior lighting within interior spaces. This renewed interest is complimentary to trends related to energy efficiency, Leadership in Environmental Design (LEED) certification, and an expanding focus on environmentally sensitive approaches to lighting problems. Innovative electric lighting ...

2012-12-31T23:59:59.000Z

7

Passive Solar Design  

Energy.gov (U.S. Department of Energy (DOE))

The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate.

8

Daylighting  

Energy.gov (U.S. Department of Energy (DOE))

Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not...

9

Passive solar workbook  

SciTech Connect

After a case is presented for the use of solar energy, principles of solar kinetics, solar radiation and weather, and heat flow are reviewed and active, passive and hybrid systems are briefly discussed. Site planning, orientation, and landscaping and solar access are covered, as are the design and components of passive solar systems. Calculation methods are presented for determining building heating load profile, auxiliary load profile, and thermal storage capacity. Construction details are given for foundation, wall, and storage insulation, Trombe walls, movable insulation, and shading devices. Passive solar cooling is also covered. Interior applications for passive solar design are discussed and financial considerations are presented. (LEW)

1981-08-01T23:59:59.000Z

10

Definition: Passive solar heating | Open Energy Information  

Open Energy Info (EERE)

solar heating solar heating Jump to: navigation, search Dictionary.png Passive solar heating Using the sun's energy to heat a building; the windows, walls, and floors can be designed to collect, store, and distribute solar energy in the form of heat in the winter (and also to reject solar heat in the summer).[1] View on Wikipedia Wikipedia Definition Related Terms Daylighting, Passive Solar, heat, energy References ↑ http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10250 Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Passive_solar_heating&oldid=480581" Category: Definitions What links here Related changes Special pages Printable version Permanent link

11

Daylighter Daily Solar Roof Light | Open Energy Information  

Open Energy Info (EERE)

Daylighter Daily Solar Roof Light Daylighter Daily Solar Roof Light Jump to: navigation, search Name Daylighter Daily Solar Roof Light Address 1991 Crocker Road, Suite 600 Place Cleveland, Ohio Zip 44145 Sector Solar Product Installation; Manufacturing Phone number 440-892-3312 Website http://www.SolarLightisFree.co Coordinates 41.4648875°, -81.9506519° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4648875,"lon":-81.9506519,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Passive solar space heating  

DOE Green Energy (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

13

Passive solar construction handbook  

DOE Green Energy (OSTI)

Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

Levy, E.; Evans, D.; Gardstein, C.

1981-08-01T23:59:59.000Z

14

Passive solar applications  

DOE Green Energy (OSTI)

Passive solar applications in buildings are described. The major emphasis of the research has been on devising mathematical models to characterize heat flow within buildings, on the validation of these models by comparison with test results, and on the subsequent use of the models to investigate the influence of both various design parameters and the weather on system performance. Results from both test modules and monitored buildings are discussed. Simulation analysis, the development of simplified methods, and systems analysis are outlined. Passive solar potential in China is discussed.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

15

Passive solar design handbook  

DOE Green Energy (OSTI)

The Passive Solar Design Handbook, Volume Three updates Volume Two by presenting extensive new data on the optimum mix of conservation and solar direct gain, sunspaces, thermal storage walls, and solar radiation. The direct gain, thermal storage wall, and solar radiation data are greatly expanded relative to the Volume 2 coverage. The needed flexibility to analyze a variety of system designs is accommodated by the large number of reference designs to be encompassed - 94 in contrast to 6 in Volume two - and the large amount of sensitivity data for direct gain and sunspace systems - approximately 1100 separate curves.

Jones, R.W.

1981-01-01T23:59:59.000Z

16

Definition: Daylighting | Open Energy Information  

Open Energy Info (EERE)

Daylighting Daylighting Jump to: navigation, search Dictionary.png Daylighting The use of natural sunlight to provide interior lighting for a building.[1] View on Wikipedia Wikipedia Definition Daylighting is the practice of placing windows or other openings and reflective surfaces so that during the day natural light provides effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved either from the reduced use of artificial (electric) lighting or from passive solar heating or cooling. Artificial lighting energy use can be reduced by simply installing fewer electric lights because daylight is present, or by dimming/switching electric lights automatically in response to the presence of daylight, a

17

Annual daylighting performance of a passive optical light shelf in sidelit  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual daylighting performance of a passive optical light shelf in sidelit Annual daylighting performance of a passive optical light shelf in sidelit perimeter zones of commercial buildings Title Annual daylighting performance of a passive optical light shelf in sidelit perimeter zones of commercial buildings Publication Type Report Year of Publication 2013 Authors McNeil, Andrew, and Eleanor S. Lee Keywords bidirectional scattering distribution functions, building energy efficiency, daylighting, Radiance simulations Abstract Sunlight redirecting systems have the potential to significantly offset electric lighting energy use in deep perimeter zones of buildings where the windows are subject to high daylight availability. New Radiance modeling tools have recently been developed and validated, enabling accurate and timely simulation analysis of the annual energy and comfort performance of these optically-complex, anisotropic systems. A parametric study was conducted using these tools to evaluate the performance of a commercially-available passive optical light shelf (OLS) in a 17.4 m deep (57 ft), south-facing open plan office zone in three climates. Daylighting efficiency, discomfort glare, and lighting energy savings with continuous dimming and bi-level switching controls were determined at varying depths within the zone. The OLS decreased lighting energy use significantly throughout the depth of the space and achieved these savings with minimal discomfort glare in the area near the window. Annual lighting energy use intensity was reduced to 1.71-1.82 kWh/ft2-yr (22-27%) over the full depth of the perimeter zone across the three climates modeled (Phoenix, Washington DC, and Minneapolis) compared to a non-daylit zone at 2.34 kWh/ft2-yr. There was a greater occurrence of discomfort glare (3-7% during daytime work hours) if the occupant was in a seated view position looking at the window from the back of the room. The system is passive, needing no adjustment during the day and over the seasons and can be used as a retrofit measure in existing buildings. These results are encouraging and demonstrate how the primary daylit sidelit area can be extended well beyond the defined limits provided by the newly adopted ASHRAE 90.1-2010 code (i.e., 1.0 times the head height of the window).

18

Passive-solar construction handbook  

DOE Green Energy (OSTI)

Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

Levy, E.; Evans, D.; Gardstein, C.

1981-02-01T23:59:59.000Z

19

Modularization of passive solar  

SciTech Connect

Ways of modularizing component parts of passive soalr systems for the manufactured housing industry are discussed. Site-filled water mass modules installed in south-facing stud spaces, glazing systems, sun-rooms and roof apertures are being explored and constructed. Even though the houses are being designed without pre-selected sites, they are expected to perform well given the variable deployment of the south-facing wall system. Any facade of the house will be able to accept the sun's energy. While some of the solutions involve specific products and techniques, it is the general conclusion that low-cost, modular solar components can be worked into solar building designs without great regard for the final site. This makes marketing easier and costs lower with the result of more installations.

Maloney, T.

1980-01-01T23:59:59.000Z

20

Passive Solar Home Design | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Solar Home Design Passive Solar Home Design June 24, 2013 - 7:18pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the...

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MODELING PASSIVE SOLAR BUILDINGS WITH HAND CALCULATIONS  

E-Print Network (OSTI)

time of day for a passive solar house under four differentresponse function for a passive solar house would begin toB(w)/A(w). A good passive solar house w i l l have B/A large

Goldstein, David B.

2011-01-01T23:59:59.000Z

22

Passive solar heating and analysis  

Science Conference Proceedings (OSTI)

Passive solar heating experience and analysis techniques are reviewed with emphasis on annual auxiliary heat requirement. The role of analysis in the design of passive solar buildings is discussed. Selected results for existing systems are presented for locations in Saudi Arabia and climatically similar locations in the US. Advanced systems in the research stage are described.

Jones, R.W.

1984-01-01T23:59:59.000Z

23

Passive solar energy for builders  

Science Conference Proceedings (OSTI)

A handbook is presented that is designed to introduce Colorado builders to the possibilities available with energy-efficient, passive solar home construction. Although a wide variety of passive design options exist, only those which can be used in a cost effective manner in Colorado are discussed. The information is presented in four sections: solar fundamentals, passive design overview, design building elements, and builder considerations.

Andrews, S. (comp.)

1980-01-01T23:59:59.000Z

24

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Space Heat Jump to: navigation, search TODO: Add description List of Passive Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titlePassive...

25

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

for Passive Passive Solar Heating Applications StephenHEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS StephenMIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS Stephen

Selkowitz, S.

2011-01-01T23:59:59.000Z

26

Passive solar heating for buildings  

DOE Green Energy (OSTI)

A passive solar energy system is one in which the thermal energy flow is by natural means, that is by radiation, conduction, or natural convection. A survey of passive solar heating experience, especially in the U.S., is provided. Design approaches are reviewed and examples shown. Misconceptions are discussed. Advantages are listed. The Los Alamos program of performance simulation and evaluation is described and a simplified method of performance estimation is outlined.

Balcomb, J.D.

1979-01-01T23:59:59.000Z

27

MEAN MONTHLY PERFORMANCE OF PASSIVE SOLAR HEATERS  

E-Print Network (OSTI)

PERFORMANCE OF PASSIVE SOLAR WATER HEATERS W. Place, M.PERFORMANCE OF PASSIVE SOLAR WATER HEATERS* We Place, M.The Performance of Solar Water Heaters with Natu)""al

Place, W.

2011-01-01T23:59:59.000Z

28

Passive solar heating of buildings  

DOE Green Energy (OSTI)

Passive solar heating concepts--in which the thermal energy flow is by natural means--are described according to five general classifications: direct gain, thermal storage wall, solar greenhouses, roof ponds, and convective loops. Examples of each are discussed. Passive test rooms built at Los Alamos are described and results are presented. Mathematical simulation techniques based on thermal network analysis are given together with validation comparisons against test room data. Systems analysis results for 29 climates are presented showing that the concepts should have wide applicability for solar heating.

Balcomb, J.D.; Hedstrom, J.C.; McFarland, R.D.

1977-01-01T23:59:59.000Z

29

Definition: Passive Solar | Open Energy Information  

Open Energy Info (EERE)

Passive Solar Passive Solar Jump to: navigation, search Dictionary.png Passive Solar Passive Solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun.[1] View on Wikipedia Wikipedia Definition Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, solar photovoltaics, solar thermal electricity, solar architecture and artificial photosynthesis. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy.

30

Definition: Passive solar | Open Energy Information  

Open Energy Info (EERE)

solar Jump to: navigation, search Dictionary.png Passive solar Technology for using sunlight to light and heat buildings directly, with no circulating fluid or energy conversion...

31

Rules of thumb for passive solar heating  

DOE Green Energy (OSTI)

Rules of thumb are given for passive solar systems for: (1) sizing solar glazing for 219 cities, (2) sizing thermal storage mass, and (3) building orientation.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

32

Interior design for passive solar homes  

DOE Green Energy (OSTI)

The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

Breen, J. C.

1981-07-01T23:59:59.000Z

33

Passive Solar Home Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Home Design Passive Solar Home Design Passive Solar Home Design June 24, 2013 - 7:18pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. What does this mean for me? A passive solar home means a comfortable home that gets at least part of its heating, cooling, and lighting energy from the sun. How does it work?

34

User evaluation study of passive solar residences  

SciTech Connect

Speculation exists regarding the readiness of various passive techniques for commercialization and the market potential for residential applications. This paper discusses the preliminary findings of a market assessment study designed to document user experiences with passive solar energy. Owners and builders of passive solar homes were interviewed and asked to comment on personal experiences with their homes.

Towle, S.

1980-03-01T23:59:59.000Z

35

Passive solar energy: climate-adaptive architecture  

DOE Green Energy (OSTI)

Passive solar, climate adaptive architecture uses the following concepts: conservation, sun angles, glass, and thermal mass (passive heating and cooling). Specific measures of these concepts are briefly discussed. Passive solar water heating systems discussed are breadbox and thermosyphon water heaters. (MCW)

Baccei, B.

1981-09-01T23:59:59.000Z

36

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

37

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

38

Guide to Passive Solar Home Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Elements of Passive Solar Design Elements of Passive Solar Design To design a completely passive solar home, you need to incorporate what are considered the five elements of passive solar design: 1. Aperture (Windows) - Windows should face within 30 degrees of true south, and during winter months they should not be shaded from 9 a.m. to 3 p.m. The windows in living areas should face south, while the windows in bedrooms should face north. In colder climates, reduce the window area

39

Communication strategy to commercialize passive solar energy  

SciTech Connect

Although certain technical and economic issues remain to be clarified, passive solar market development is increasingly dependent upon communications such as information dissemination, education, training and promotional activities. Target audiences are identified as both recipients and disseminators of passive solar communications. Form and quality of information are discussed in terms of the stages of an innovation adoption decision-making process. Several communication-related barriers which impede the commercialization of passive solar are discussed and general information and education responses are suggested. The paper ends with a statement of precepts which should guide passive solar communication programs.

Wolcott, D. R.; Shoemaker, F. F.

1979-01-01T23:59:59.000Z

40

A method of optimizing solar control and daylighting performance in commercial office buildings  

SciTech Connect

We present a method for analyzing the annual cooling and lighting electricity use and peak demand associated with varying fenestration and lighting strategies in commercial office buildings. A prototypical office building module consisting of four perimeter zones and a central core zone was defined and a series of DOE-2 building energy simulations were completed to create a data base for varying fenestration and lighting system parameters. Using regression analysis procedures, we characterize energy and peak performance patterns as a function of solar aperture, defined as the product of shading coefficient and window-to-wall ratio, and effective daylighting aperture, defined as the product of visible transmittance and window-to-wall ratio. Optimum performance consists of defining the solar and effective daylighting aperture values that minimize annual energy consumption and peak demand, a process easily facilitated by the methods described herein.

Sullivan, R.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Passive Solar Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy in the form of heat in the winter and reject solar heat in the summer. Learn how passive solar design techniques work. Direct Gain Direct gain is the process by which...

42

Passive solar roof ice melter  

Science Conference Proceedings (OSTI)

An elongated passive solar roof ice melter is placed on top of accumulated ice and snow including an ice dam along the lower edge of a roof of a heated building and is held against longitudinal movement with respect to itself. The melter includes a bottom wall having an upper surface highly absorbent to radiant solar energy; a first window situated at right angles with respect to the bottom wall, and a reflecting wall connecting the opposite side edges of the bottom wall and the first window. The reflecting wall has a surface facing the bottom wall and the window which is highly reflective to radiant solar energy. Radiant solar energy passes through the first window and either strikes the highly absorbent upper surface of the bottom wall or first strikes the reflecting wall to be reflected down to the upper surface of the bottom wall. The heat generated thereby melts through the ice below the bottom wall causing the ice dam to be removed between the bottom wall and the top of the roof and immediately adjacent to the ice melter along the roof. Water dammed up by the ice dam can then flow down through this break in the dam and drain out harmlessly onto the ground. This prevents dammed water from seeping back under the shingles and into the house to damage the interior of the house.

Deutz, R.T.

1981-09-29T23:59:59.000Z

43

Gap between active and passive solar heating  

DOE Green Energy (OSTI)

The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

44

Passive Solar Design for the Home  

SciTech Connect

This fact sheet provides homeowners with an introduction to passive solar design, which is also called climatic design. It explains how they can use windows, walls, and floors to collect, store, and distribute solar energy to heat their homes in the winter, as well as reject solar heat in the summer. It includes information on heat-movement physics; basic solar design techniques--direct gain, indirect gain (Trombe walls), isolated gain (sunspaces), and design for summer comfort; window options for passive solar; and design cost.

Krigger, J. [Saturn Resource Management (US); Waggoner, T. [National Renewable Energy Lab., Golden, CO (US)

2001-02-14T23:59:59.000Z

45

Los Alamos National Laboratory passive solar program  

DOE Green Energy (OSTI)

Progress in passive solar tasks performed at the Los Alamos National Laboratory for FY-81 is documented. A third volume of the Passive Solar Design Handbook is nearly complete. Twenty-eight configurations of sunspaces were studied using the solar load ratio method of predicting performance; the configuration showing best performance is discussed. The minimum level of insolation needed to generate convective flow in the thermosiphon test rig is noted and measured. Information is also included on test room performance, off-peak auxiliary electric heating for a passive home, free convection experiment, monitored buildings, and technical support to the US Department of Energy.

Neeper, D.A.

1981-01-01T23:59:59.000Z

46

Active and passive solar heating of buildings  

SciTech Connect

An overview of both active and passive solar heating approaches for buildings is presented. Passive solar heating concepts--in which the thermal energy flow is by natural means--are described according to five classifications: direct gain, thermal storage wall, solar greenhouses, roof ponds, and convective loops. Results of simulation analyses are presented for a variety of climates. Active systems utilizing both liquid-heating collectors and air-heating collectors are described. Trends in the recent development of solar heating are discussed.

Balcomb, J.D.

1977-01-01T23:59:59.000Z

47

Energy savings obtainable through passive solar techniques  

DOE Green Energy (OSTI)

A passive solar energy system is one in which the thermal energy flow is by natural means, that is by radiation, conduction, or natural convection. The purpose of the paper is to provide a survey of passive solar heating experience, especially in the US. Design approaches are reviewed and examples shown. Misconceptions are discussed. Advantages are listed. The Los Alamos program of performance simulation and evaluation is described and a simplified method of performance estimation is outlined.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

48

International comparison of passive solar simulation codes  

DOE Green Energy (OSTI)

Two software-software comparisons of passive solar simulation codes have been conducted by the Passive Solar Applications Group of the Committee on the Challenges to Modern Society. These exercises have involved the simulation of hypothetical Trombe wall and direct gain buildings located in Madison, Wisconsin. The countries that have participated in the exercise include Canada, Denmark, France, and the United States. All results available at the time of writing are discussed in this report.

Wray, W.O.

1980-01-01T23:59:59.000Z

49

D i i f S t i bilit i th B ilt E i tDesigning for Sustainability in the Built Environment Exterior Facade Design for Maximum Daylighting and Solar Power  

E-Print Network (OSTI)

to downsize the air conditioning system. The resulting cost reduction helps pay for daylighting improvements Facade Design for Maximum Daylighting and Solar Power GenerationGeneration A frank assessment of issues "...the art and science of daylighting is not so much about how to provide enough daylighting as how to do

Massachusetts at Amherst, University of

50

NREL: Learning - Student Resources on Passive Solar Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

teams to design the most attractive, energy-efficient, and effective solar-powered house. American Solar Energy Society Has publications on passive solar design and...

51

Heterojunction solar cell with passivated emitter surface  

DOE Patents (OSTI)

A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

Olson, J.M.; Kurtz, S.R.

1994-05-31T23:59:59.000Z

52

Heterojunction solar cell with passivated emitter surface  

DOE Patents (OSTI)

A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1994-01-01T23:59:59.000Z

53

Eighth national passive solar conference. Final report  

DOE Green Energy (OSTI)

The Eighth National Passive Solar Conference was held near Santa Fe, New Mexico at the Glorieta Conference Center on September 5 to 11, 1983. Nearly 900 people from all across the nation and the world attended the conference. Close to 200 technical papers were presented, 50 solar product exhibits were available; 34 poster sessions were presented; 16 solar workshops were conducted; 10 renowned solar individuals participated in rendezvous sessions; 7 major addresses were delivered; 5 solar home tours were conducted; 2 emerging architecture sessions were held which included 21 separate presentations; and commercial product presentations were given for the first time ever at a national passive solar conference. Peter van Dresser of Santa Fe received the prestigious Passive Solar Pioneer Award, posthumously, from the American Solar Energy Society and Benjamin T. Buck Rogers of Embudo received the prestigious Peter van Dresser Award from the New Mexico Solar Energy Association. This report reviews conference organization, attendance, finances, conference evaluation form results, and includes press coverage samples, selected conference photos courtesy of Marshall Tyler, and a summary with recommendations for future conferences. The Appendices included conference press releases and a report by the New Mexico Solar Industry Development Corporation on exhibits management.

Owen, A.; Zee, R.

1983-12-01T23:59:59.000Z

54

Passive Solar Design: The Foundation for Low-Energy Federal Buildings  

DOE Green Energy (OSTI)

This fact sheet updates a similar one published in 1996 for the U.S. Department of Energy's Federal Energy Management Program. It is part of a series of fact sheets on ways that the Federal government can incorporate new energy efficiency, solar energy, and other renewable energy technologies in buildings and other facilities to save on energy costs and reduce greenhouse gas emissions. This fact sheet describes strategies for implementing passive solar features--such as south-facing windows, daylighting, and thermal mass--into new building designs and retrofits. It also discusses how to design and build low-energy, sustainable buildings by using a whole-building approach to the design process. In this approach, designers not only use passive solar techniques, they also create a design that makes the most of the complex ways that a building's occupants, components, and materials connect and interact in order to achieve the greatest possible comfort and energy efficiency.

Zachmann, W.; Pitchford, P.

2000-11-13T23:59:59.000Z

55

Energy Basics: Passive Solar Design  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. Learn how...

56

Interior planning of passive solar housing  

SciTech Connect

A study involving 28 Virginia passive solar homeowners was conducted in 1984 to examine their reactions to passive design. The results indicate that a significant source of dissatisfaction was in space planning; the majority of the homeowners had difficulty arranging furniture in the living room. The spatial analysis of the floor plans revealed that the configuration of the open plan and circulation as well as passive design features contributed to these space planning problems. Design guidelines and recommendations that incorporate the research findings are also presented. In terms of other considerations, these homeowners were very satisfied with their passive solar homes. This satisfaction seemed to be related to psychological factors; sunlight, spaciousness, and openness were frequently cited as the most pleasing elements of the designs.

McLain-Kark, J.

1987-01-01T23:59:59.000Z

57

Harvesting Daylight  

Science Conference Proceedings (OSTI)

The article discusses daylighting technologies. This article, also, addresses techniques and considerations for implementing daylighting. The energy savings, additional benefits and market potential of daylighting and corresponding technologies are addressed as well.

Hastbacka, Mildred; Beeson, Tracy A.; Cooperman, Alissa; Dieckmann, Christopher; Bouza, Antonio

2013-04-01T23:59:59.000Z

58

Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control  

E-Print Network (OSTI)

thermal and daylighting impacts of shading systems. Theseglazing the system. Modern energy and daylighting analysissystem. In this paper a shade screen used in the LBNL daylighting

Jonsson, Jacob C.

2008-01-01T23:59:59.000Z

59

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Heating and Cooling Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

60

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Renewable energy technologies for federal facilities. Passive solar design  

SciTech Connect

Renewable energy technologies for federal facilities using passive solar designs are presented. More than one million residences and 1, 700 commercial buildings across the U.S. now employ passive solar designs.

1996-05-01T23:59:59.000Z

62

Evaluation of passive solar retrofit options  

DOE Green Energy (OSTI)

An evaluation framework has been developed which allows for the assessment of the role of passive solar retrofit in the nationwide reduction of conventional fuel use. Three types of analysis are proposed within this framework: the physical/technical capability of the present housing stock to incorporate passive solar retrofit; the economic feasibility of the application of retrofit designs; and the actual market potential or acceptance of these alternative retrofit options. Each type of analysis has specific data requirements and a series of evaluation procedures to help establish estimates of the potential for passive solar retrofit in the present housing stock. The data requirements with their respective sources and evaluation procedures for the first two types of analysis-physical/technical setting and economic feasibility, are examined. A distinction is drawn between community specific case studies and more generalized national assessments. Information derived from these three types of analysis, whether case specific or national in scope, can then be used in an evaluation of potential economic impacts. The establishment of regional economic benefits and costs werve as a measure of the merit or attractiveness of the implementation of a passive solar retrofit program.

Ben-David, S.; Kirchemen, C.; Martin, S.; Noll, S.; Roach, F.

1980-01-01T23:59:59.000Z

63

Passive Solar Building Design Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Building Design Basics Passive Solar Building Design Basics Passive Solar Building Design Basics July 30, 2013 - 3:20pm Addthis The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate. Passive solar design-also known as climatic design-involves using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. Learn how passive solar design techniques work. Direct Gain Direct gain is the process by which sunlight directly enters a building through the windows and is absorbed and temporarily stored in massive floors or walls. Indirect Gain Indirect gain is the process by which the sun warms a heat storage

64

Passive solar energy information user study  

DOE Green Energy (OSTI)

The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1980-11-01T23:59:59.000Z

65

Advanced Optical Materials for Daylighting in Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Optical Materials for Daylighting in Office Buildings Advanced Optical Materials for Daylighting in Office Buildings Title Advanced Optical Materials for Daylighting in Office Buildings Publication Type Conference Paper LBNL Report Number LBL-20080 Year of Publication 1985 Authors Johnson, Russell, Deborah J. Connell, Stephen E. Selkowitz, and Dariush K. Arasteh Conference Name 10th Passive Solar Conference Date Published 10/1985 Conference Location Raleigh, NC Call Number LBL-20080 Abstract The use of daylighting to supplant electric light in office buildings offers substantial energy savings and peak electrical demand reductions. The benefits from electric lighting reductions can, however, be easily offset by increased cooling loads if solar gains are not controlled.sThe use of advanced glazing materials having optical switching propertiesscan facilitate solar control and, with proper design, maximize energy and cost benefits. The potential net annual performance of these materials, based on simulation studies using DOE-2.1C, are discussed insthis paper. Actively and passively controlled response functions aresanalyzed for the cooling-load-dominated climate of Lake Charles. The effects of advanced materials on net annual energy consumption, peak electrical demand, and chiller size are compared with those of conventional materials. The results demonstrate the importance of operable solar control to achieve energy-effective daylighting design. Advanced optical materials that provide the necessary level of control are shown to minimize peak electrical demand and electricity consumption.

66

Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control  

Science Conference Proceedings (OSTI)

Shade-screens are widely used in commercial buildings as a way to limit the amount of direct sunlight that can disturb people in the building. The shade screens also reduce the solar heat-gain through glazing the system. Modern energy and daylighting analysis software such as EnergyPlus and Radiance require complete scattering properties of the scattering materials in the system. In this paper a shade screen used in the LBNL daylighting testbed is characterized using a photogoniometer and a normal angle of incidence integrating sphere. The data is used to create a complete bi-directional scattering distribution function (BSDF) that can be used in simulation programs. The resulting BSDF is compared to a model BADFs, both directly and by calculating the solar heat-gain coefficient for a dual pane system using Window 6.

Jonsson, Jacob; Jonsson, Jacob C.; Lee, Eleanor S.; Rubin, Mike

2008-08-01T23:59:59.000Z

67

Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting  

DOE Patents (OSTI)

The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

1983-01-01T23:59:59.000Z

68

Advanced optical daylighting systems: light shelves and light pipes  

SciTech Connect

We present two perimeter daylighting systems that passively redirect beam sunlight further from the window wall using special optical films, an optimized geometry, and a small glazing aperture. The objectives of these systems are (1) to increase daylight illuminance levels at 4.6-9.1 m (15-30 ft) from the window aperture with minimum solar heat gains and (2) to improve the uniformity of the daylighting luminance gradient across the room under variable solar conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, laser visualization techniques, and photometric measurements and observations using physical scale models. Bi-directional illuminance measurements in combination with analytical routines were then used to simulate daylight performance for any solar position, and were incorporated into the DOE-2.1E building energy analysis computer program to evaluate energy savings. Results show increased daylight levels and an improved luminance gradient throughout the year compared to conventional daylighting systems.

Beltran, L.O.; Lee, E.S.; Selkowitz, S.E.

1996-05-01T23:59:59.000Z

69

Passive solar concepts for multistory buildings  

DOE Green Energy (OSTI)

Multistory buildings long in the east-west direction and short in the north-south direction offer good opportunity for passive solar application. If each unit within the building is designed so that the Solar Savings Fraction is the same, each will respond to the weather the same way and no unit-to-unit heat distribution is needed. A numerical example for Denver is given indicating excellent thermal performance and a several-day thermal response time. Solutions involving distribution of heat from unit to unit are also discussed as well as top-floor and south-wall variations.

Balcomb, J.D.

1982-01-01T23:59:59.000Z

70

Passive commercial demonstration, automobile maintenance facility, City of Philadelphia, Department of Public Property: Phase 3. Final report  

SciTech Connect

The passive solar retrofit of an auto shop is reported. Retrofit features include insulation, weatherstripping, dampers, solar window panels, light shelves for daylighting, and gas fired infrared heating units. (BCS)

1984-12-01T23:59:59.000Z

71

Passive solar economics in 15 northwest locations  

DOE Green Energy (OSTI)

The economic performance of Trombe wall and direct gain passive solar heating designs are evaluated using the LASL/UNM solar economic performance code. Both designs are integrated into a ranch style tract home concept thereby facilitating intra-regional comparison. The economic performance of these systems is evaluated for 15 sites in the Northwest region. Space heating loads have been locally specified. System sizes have been optimized against the natural gas and electric resistance heating alternatives, the current price and future escalation of which is established for each locale. Sensitivity analysis is conducted to determine the maximum competitive add-on costs for each system under a specified set of energy price, solar performance and economic conditions.

Kirschner, C.; Ben-David, S.; Roach, F.

1979-08-10T23:59:59.000Z

72

Use of an atrium for the passive-solar retrofit of an office building: design and installation experience  

DOE Green Energy (OSTI)

A clerestory window system has been installed over a courtyard in an existing two-story office building/museum at the Los Alamos National Laboratory, thus creating an atrium. This atrium serves as a passive solar heating and daylighting system for the building and provides new display space for the museum. The retrofit consists of a roof-mounted clerestory window system with night insulating shutters which: forms an atrium that provides new museum space, buffers the former courtyard walls and windows, preheats ventilation air for the entire building, and provides daylighting and heating for the new museum space. The passive system is coupled to the heating, ventilating, and air-conditioning (HVAC) system of the surrounding building by inducing fresh-air makeup through the solar-tempered atrium; heating, cooling, and daylighting are addressed in the design. The design process, the use of the DOE-2 building energy analysis computer program during design, and the construction of the atrium are described.

Hunn, B.D.; Peterson, J.L.

1982-01-01T23:59:59.000Z

73

User participation in passive solar housing design  

SciTech Connect

A field study was conducted in 1984 in order to compare the characteristics, lifestyle, attitudes, and behavioral adaptations of two groups of passive solar homeowners, those with high or low levels of participation in the design and/or building process. Forty-one Virginia passive solar homeowners were surveyed and interviewed in their home. Photographic slides and floor plans with furniture layout were also analyzed. The results indicate that the owner-built homeowners or those with high participation in design and/or building were older, more educated, and were more involved in community affairs than the low participation homeowners. They also were more involved in maintenance tasks, more likely to engage in a voluntary simplicity lifestyle, and more energy conserving. The owner-builders too had a higher level of satisfaction with their home. The majority of the homeowners expressed dissatisfaction with the flexibility of arranging furniture in the open plan. An analysis of the floor plans revealed that three factors were contributing to the problems: zones, circulation/furniture arrangement, and passive elements.

McLain-Kark, J.H.

1985-01-01T23:59:59.000Z

74

Integrated passive-solar demonstration project. Final report  

Science Conference Proceedings (OSTI)

The objectives of the study reported were to collect data on a combination of several passive solar heating and cooling systems. A passive solar test structure was constructed and monitored and the demonstration of passive systems designed into the structure was evaluated. Passive solar cooling principles include: shading all mass walls and windows from direct solar gain, maintaining cool attic and ceiling temperatures using solar induced ventilation, maintaining cool mean radiant wall temperatures, recirculating internal air, and using natural cross-ventilation through the conditioned space in spring and fall. Passive solar heating principles include: orientation of windows and sunspaces towards the south, providing double pane south windows, providing a double pane solar sunspace, using night insulation over glazing, extended thermal storage mass, and using a fan-forced rock/earth/air storage system. (LEW)

Garrison, M.L.

1982-09-01T23:59:59.000Z

75

Passive solar progress: a simplified guide to the 3rd national passive solar conference  

DOE Green Energy (OSTI)

Some of the concepts and practices that have come to be known as passive solar heating and cooling are introduced, and a current picture of the field is presented. Much of the material presented is derived from papers given at the 3rd National Passive Solar Conference held in San Jose, California in January 1979 and sponsored by the US Department of Energy. Extracts and data from these papers have been integrated in the text with explanatory and descriptive material. In this way, it is attempted to present technical information in an introductory context. Topics include design considerations, passive and hybrid systems and applications, sizing methods and performance prediction, and implementation issues. A glossary is included. (WHK)

Miller, H.; Howell, Y.; Richards, D.

1980-10-01T23:59:59.000Z

76

Energy Revolving Loan Fund - Passive Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolving Loan Fund - Passive Solar Revolving Loan Fund - Passive Solar Energy Revolving Loan Fund - Passive Solar < Back Eligibility Agricultural Institutional Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Maximum Rebate $15,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 (ARRA) State Michigan Program Type State Loan Program Rebate Amount $5,000-$15,000 Provider Department of Energy, Labor and Economic Growth In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Passive Solar Systems portion of the loan program is available to family farms and non-profits located in Michigan. Under this program, a passive solar system is defined as "a structure which can extend the

77

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

Involvement in Passive Solar Heating and Cooling Section C:performance of passive solar heating and cooling systems.the design of passive solar heating and cooling systems, J

Authors, Various

2012-01-01T23:59:59.000Z

78

SOLCOST-PASSIVE solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PASSIVE solar energy design program is a public domain interactive computer design tool intended for use by non-thermal specialists to size passive solar systems with a methodology based on the Los Alamos Solar Load Ratio method. A life cycle savings analysis is included in the program. An overview of SOLCOST-PASSIVE capabilities and the Solar Load Ratio method which it is based on is presented. A detailed guide to the SOLCOST-PASSIVE input parameters is given. Sample problems showing typical execution sessions and the resulting SOLCOST-PASSIVE output are included. Appendices A thru D provide details on the SLR method and the life cycle savings methodology of SOLCOST-PASSIVE. (MHR)

Not Available

1980-09-01T23:59:59.000Z

79

Abrams Primary School passive solar system, Bessemer Board of Education, Bessemer, Alabama. Final report  

SciTech Connect

The general economic feasibility of the project was poor. Without federal assistance the solar enhancements would never have been considered economically feasible. The most optimistic payback time ranged up to 30 years or more. The construction was not any more difficult than a conventional building. Operation of the building is not affected by the solar enhancements insofar as any human participation is concerned: it is completely passive in response to the owner's original program criteria. Natural daylighting would be the feature the architect would recommend most to other designers. The advantages are obvious to anyone who sees the building, whereas the effect of passive heat storage and rejection systems is too esoteric and not directly discernible to the layman observer. The architect would design another passive commercial building without federal assistance provided the owner was willing to pay for the extra design effort and greater cost of construction. Federal participation created a paradox: funding was crucial to the realization of the project, but the cost of design was increased substantially by the level of detail required in reporting. The architect realizes very well the need for such detail in a publicly funded project but he doesn't think he would be inclined to participate in such a program in the future.

McWilliams, R.S.

1984-10-25T23:59:59.000Z

80

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Quantitative comparison of passive solar simulation codes  

DOE Green Energy (OSTI)

Several members of the Systems Simulation and Economic Analysis (SS/EA) Working Group have participated in a software-software comparison of passive solar simulation codes. The problems selected and defined by the Los Alamos Scientific Laboratory (LASL) for analysis include both a vented and an unvented Trombe wall and a direct gain building. The individuals, organizations, and associated computer models involved in this exercise are Byron Wynn, Colorado State University (CSU) (FREHEAT); Larry Palmiter, National Center for Appropriate Technology (NCAT) (SUNCAT); Bill Beckman, the University of Wisconsin (WIS) (TRNSYS); Bill Wray, LASL (PASOLE, SUNSPOT); and John Moore, LASL (DOE-2). Each of these organizations submitted simulation results to LASL, where a comparative analysis was conducted. Excellent agreement was achieved on annual auxiliary heat loads, but several detailed heat fluxes within the structures showed significant scatter, as did both the ventilation and auxiliary cooling.

Wray, W.O.

1980-01-01T23:59:59.000Z

82

New passive solar cooking system. Final report  

SciTech Connect

The development of a solar cooking system which uses a phase change process to passively transfer heat from a collector to a cooker is presented. In the design of this cooking system steam is produced in the collector and then is used as the heat transfer fluid in the cooker. The most efficient use of the system is to heat food directly by condensing the steam onto the food, whereas a heat exchanger is necessary to heat an oven or a frying pan. A pressure cooker was successfully built and tested using the steam from the collector. Brief discussions on the collector design and performance, and heat storage phase change materials are provided. (BCS)

Schlussler, L.

1981-11-01T23:59:59.000Z

83

Solar air-conditioning-active, hybrid and passive  

DOE Green Energy (OSTI)

After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

Yellott, J. I.

1981-04-01T23:59:59.000Z

84

Passive solar technology aids biogas digesters  

SciTech Connect

Farming communities throughout China rely on biogas generators as a primary source of light and heat, as well as using the sludge as a nitrogen-rich fertilizer. Now researchers at Beijing's Solar Energy Laboratory have improved efficiency by building a rectangular tank out of concrete slabs, with one slanted surface painted black and covered with glass. According to a report in New Scientist, this passive solar panel generates heat in the same way as a greenhouse, raising inside temperatures by 10{degree}C and increasing biogas production by 50%. Another advantage of the new tanks is easy access, since the tank's lid sites in wells of water which form a seal against oxygen. (Old biogas tanks were made of soil, sand and a little concrete, prone to developing severe cracks which would allow oxygen to enter thus slowing down anaerobic reaction). Explains Debora MacKenzie of New Scientist: with the new tank, the farmer can simply remove the lid and attack the contents with a spade. This means that the mixture can comprise more than 10% solids. Greater density allows smaller tanks. Rural families need one cubic meter of biogas daily for light and heat; instead of the former 8 cm biogas generator, the new tanks need only be 1 cm. The prediction is that the smaller size could make biogas more popular in China's crowded towns. The biogas department is headed by He Shao Qi, who is also investigating ways to reduce production costs for the tanks.

Not Available

1988-07-01T23:59:59.000Z

85

Code manual for passive solar design single family residential construction  

DOE Green Energy (OSTI)

General information is presented on types of passive solar techniques and a method for estimating passive solar performance. Important codes and standards are described, each description listing the items in the code which could have a potential impact on a passive solar design and analyzing the effect of the code on the use of such techniques. State and local codes and code agencies are summarized. The local summary contains the name of a contact in the enforcement agency to whom specific questions may be addressed. The requirements to file for a building permit are given briefly. (LEW)

None

1979-08-01T23:59:59.000Z

86

List of Daylighting Incentives | Open Energy Information  

Open Energy Info (EERE)

Daylighting Incentives Daylighting Incentives Jump to: navigation, search The following contains the list of 166 Daylighting Incentives. CSV (rows 1 - 166) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Local Government Multi-Family Residential Nonprofit Schools Boilers

87

State of the art in passive solar heating  

DOE Green Energy (OSTI)

The state of the art is outlined according to four major categories: passive solar practice, evaluation, design air, and products and materials. Needed future research activities and joint industry/government activities are listed. (MHR)

Balcomb, J.D.

1981-01-01T23:59:59.000Z

88

Self-contained passive solar heating system  

SciTech Connect

A self-contained passive solar heating system includes first and second heat pipes, each having a refrigerant medium therein, a condenser portion and an evaporator portion, with the condenser portion of the first heat pipe being coupled to the evaporator portion of the second heat pipe for transferring heat thereto when the pressure within the first heat pipe is greater than the pressure within the second heat pipe. The evaporator portion of the first heat pipe is adapted to be exposed to a source of heat and the condenser portion of the second heat pipe contacts a medium to be heated. A temperature control mechanism may be installed as the coupling between the first and second heat pipes for uncoupling the same when the temperature within the first heat pipe falls below a predetermined temperature. Also, a third heat pipe may be provided having a thermostatic portion operatively connected to the condenser portion of the second heat pipe by a piston means so that changes in pressure within the thermostatic portion occasioned by changes in temperature of the medium to be heated will cause movement of the pistons to vary the size of the condensing portion of the second heat pipe to increase or decrease the rate of heat transfer to the medium.

Maldonado, E.A.; Woods, J.E.

1983-05-10T23:59:59.000Z

89

Performance estimates for attached-sunspace passive solar heated buildings  

SciTech Connect

Performance predictions have been made for attached-sunspace types of passively solar heated buildings. The predictions are based on hour-by-hour computer simulations using computer models developed in the framework of PASOLE, the Los Alamos Scientific Laboratory (LASL) passive solar energy simulation program. The models have been validated by detailed comparison with actual hourly temperature measurements taken in attached-sunspace test rooms at LASL.

McFarland, R.D.; Jones, R.W.

1980-01-01T23:59:59.000Z

90

Net Solar radiation: passive systems with moveable insulation  

Science Conference Proceedings (OSTI)

Heat loss from uninsulated glazings of passive solar collectors can be checked by use of movable insulation. Five passivehybrid solar energy systems are studied in this paper. The buildings are monitored by the National Solar Data Network (NSDN) whose system is shown schematically. Tests show that no high cost direct gain solar systems were economically viable without movable insulation. Monitored seasonal performance of the five sites showed three good, and two poor performances. Each case is specified in detail.

Howard, B.D.

1982-06-01T23:59:59.000Z

91

THE PASSIVE SOLAR DESIGN PROCESS FOR A SMALL OFFICE/LABORATORY BUILDING  

E-Print Network (OSTI)

coolers. active solar heating and underground thermalbeam solar radiation is preferred to counteract the heatingdays vs. 5000 heating degree days). Passive solar potentials

Andersson, Brandt

2011-01-01T23:59:59.000Z

92

Passive-Solar-Heating Analysis: a new ASHRAE manual  

SciTech Connect

The forthcoming ASHRAE book, Passive Solar Heating Analysis, is described. ASHRAE approval procedures are discussed. An overview of the contents is given. The development of the solar load ratio correlations is described, and the applicability of the analysis method is discussed.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

93

Fast correlation method for passive-solar design  

SciTech Connect

A passive-solar design manual for single-family detached residences and dormitory-type buildings is being developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF) and the minimum monthly SHF, we have eliminated the need to perform an SLR calculation for each month of the heating season.

Wray, W.O.; Biehl, F.A.; Kosiewicz, C.E.

1982-01-01T23:59:59.000Z

94

Passive-solar design manual for the United States Navy  

DOE Green Energy (OSTI)

A passive solar design manual for single-family detached residences and dormitory-type buildings is being developed. The design procedure employed in the manual is a simplification of the original monthly solar load ratio (SLR) method. The new SLR correlations involve a single constant for each system. The correlation constant appears as a scale factor permitting the use of a universal performance curve for all passive systems. Furthermore, by providing location-dependent correlations between the annual solar heating fraction (SHF)* and the minimum monthly SHF, we have eliminated the need to perform an SLR calculation for each month of the heating season.

Wray, W.O.; Biehl, F.A.; Kosiewicz, C.R.; Miles, C.R. Durlak, E.R.

1982-01-01T23:59:59.000Z

95

Passive solar potential of a conventional home. Final report  

SciTech Connect

A conventional home not designed for passive solar heating was found to use an average of 61% less natural gas for space heating when compared to four similarly used control homes of identical design during the 1979-1980 heating season in Fort Collins, Colorado. The significant savings are attributed to: (1) passive solar gain through conventional windows; (2) optimum orientation of the home placing windows and doors away from prevailing winds; (3) the use of low-cost insulating window shutters; (4) conventional winterization; and (5) energy-conscious life-styles of the occupants. The payback period for the minor investment made by the owners of the demonstration home was estimated to be approximately two years. The results demonstrate that passive solar has a much greater potential in a conventional home than is currently believed and suggest that all future homes be oriented and constructed for maximum solar exposure.

Waterman, E.L.

1981-01-31T23:59:59.000Z

96

Daylighting design analysis. Project status report No. 2, 1 March-31 December 1980. [For pre-engineered metal buildings  

DOE Green Energy (OSTI)

Detailed scale model studies regarding daylighting aspects of the passive/hybrid solar test building located at Butler Research Center in Grandview, MO are discussed. The product development program is aimed at providing passive/hybrid system building alternatives for commercial, industrial, and community purchasers of Butler's Landmark pre-engineered metal buildings. Occasioned by recognition, early in the project, that daylighting could strongly influence annual energy consumption in buildings of the targetted use types, scale models of several alternative design configurations, including that of the test building in Grandview, were built and tested. The major design alternatives, test results, and conclusions to date are described.

Hallagan, W.B.; Lindsey, L.L.; Snyder, M.K.

1980-01-01T23:59:59.000Z

97

Can passive solar technology help meet African village energy needs  

SciTech Connect

Findings based on attempts to implement renewable energy in African villages over the last three years are presented. Specifically, village energy needs are identified and passive solar technologies are matched with each need. This needs/technology matching process is dominated by social, economic and cultural considerations. It is shown how the technology can only have significance when adapted to particular village settings and when it is understood within the cultural framework of the people. The resources available to most African villages are sunlight, mud, dung, thatch and person power. Villagers must be trained to make solar units such as solar ovens, passive air heaters, food dryers, water heaters, passive coolers and insulation out of these materials and some imported glass or fiberglass. These solar units must cost less than ten or fifteen dollars. Experiences in training, construction, performance and village acceptance are presented along with justification for the conclusion that passive solar technology has limited, but important, applications in improving living conditions and health standards in African villages.

Lillywhite, M.; Lillywhite, L.

1980-01-01T23:59:59.000Z

98

Progress in passive solar energy systems. Volume 8. Part 1  

DOE Green Energy (OSTI)

This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

Hayes, J.; Andrejko, D.A.

1983-01-01T23:59:59.000Z

99

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

during construction. many passive houses have performed muchif it occurred, the optimwll passive house would likely havephotographs of a passive solar house at First Village in

Goldstein, David Baird

2011-01-01T23:59:59.000Z

100

Passive Solar Design: Technology Fact Sheet; Office of Building Technology, State and Community Programs (BTS)  

DOE Green Energy (OSTI)

Fact sheet for homeowners and contractors on using passive solar design features in homes can increase energy efficiency and comfort. Topics include design techniques, cost, and passive solar design tools.

Southern Energy Institute

2000-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Simple procedure for schematic design of passive solar buildings  

SciTech Connect

A simple procedure for use during the schematic phase of passive solar building design is presented in this article. The procedure is quantitative and accurate enough to insure that designs based on the provided starting point values of the primary building parameters will be cost effective.

Wray, W.O.; Kosiewicz, C.E.

1984-01-01T23:59:59.000Z

102

Transparent heat mirrors for passive solar heating applications  

DOE Green Energy (OSTI)

Recent progress in the development of transparent heat mirror coatings for energy-efficient windows and passive solar applications is reviewed. It appears that cost-efficient coatings promising savings of 25 to 75%, depending upon application, may be available to window manufacturers and homeowners in the next one to three years. Performance, applications, and limitations are discussed.

Selkowitz, S.

1978-03-01T23:59:59.000Z

103

Passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-01-01T23:59:59.000Z

104

Passive and Hybrid Solar Energy Program  

DOE Green Energy (OSTI)

The background and scope of the program is presented in general terms. The Program Plan is summarized describing how individual projects are categorized into mission-oriented tasks according to market sector categories. The individual projects funded by DOE are presented as follows: residential buildings, commercial buildings, solar products, solar cities and towns, and agricultural buildings. A summary list of projects by institution (contractors) and indexed by market application area is included. (MHR)

Not Available

1980-11-01T23:59:59.000Z

105

Designing passive solar buildings to reduce temperature swings  

DOE Green Energy (OSTI)

Control of temperature swings is a major consideration in design of passive solar heated buildings - especially so as the designer seeks to achieve most of the building heat from the sun. Observations of temperature swings in several passive buildings are cited. Methods of temperature control are discussed, both by means of control intervention such as using of auxiliary backup heating, ventilation, and blowers, and by means of building design. The design approach is preferred as the main course with the intervention techniques used for fine tuning.

Balcomb, D.

1978-05-01T23:59:59.000Z

106

Passive solar design calculations with the DOE-2 computer program  

DOE Green Energy (OSTI)

The DOE-2 computer program has been modified to improve modeling of passive-solar buildings by the addition of the custom weighting-factor method. The thermal-load and air-temperature calculation procedure in DOE-2 are described. Assumptions inherent in the use of American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) precalculated and the custom weighting factors are discussed. Calculated results from DOE-2 are compared with measured heat-extraction rates and air temperatures for four buildings. These comparisons indicate that DOE-2 can accurately model direct-gain passive buildings and can treat night-ventilative cooling and water walls in an approximate manner.

Kerrisk, J.F.; Moore, J.E.; Schnurr, N.M.; Hunn, B.D.

1980-01-01T23:59:59.000Z

107

daylight | OpenEI Community  

Open Energy Info (EERE)

daylight daylight Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

108

Passive vapor transport solar heating systems  

DOE Green Energy (OSTI)

In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

Hedstrom, J.C.; Neeper, D.A.

1985-01-01T23:59:59.000Z

109

Heat storage and distribution inside passive-solar buildings  

DOE Green Energy (OSTI)

Passive-solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed, including both convection through single doorways and convective loops that may exist involving a sunspace. Design guidelines are given.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

110

Restaurateur designs and installs passive solar heating/cooling system  

SciTech Connect

An example of the use of passive solar heating and cooling systems by a Wisconsin restaurateur is discussed. The greenhouse effect is used on three sides of the restaurant's exterior walls. A dozen water-to-air electric heat pumps handle the restaurant's heating and cooling chores. The system doesn't require any fossil fuel for heating or cooling.

1983-04-01T23:59:59.000Z

111

Evaluating the performance of passive-solar-heated buildings  

DOE Green Energy (OSTI)

Methods of evaluating the thermal performance of passive-solar buildings are reviewed. Instrumentation and data logging requirements are outlined. Various methodologies that have been used to develop an energy balance for the building and various performance measures are discussed. Methods for quantifying comfort are described. Subsystem and other special-purpose monitoring are briefly reviewed. Summary results are given for 38 buildings that have been monitored.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

112

Capturing the Daylight Dividend  

Science Conference Proceedings (OSTI)

Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

Peter Boyce; Claudia Hunter; Owen Howlett

2006-04-30T23:59:59.000Z

113

Low-energy Passive Solar Residence in Austin, Texas  

E-Print Network (OSTI)

From the various studies, it can be concluded that the excessive summer heating and the humidity are one of the major problems of the hot, humid climatic region. The literature review for this study shows that natural ventilation alone cannot meet year long optimum indoor comfort in buildings. This research, through a design exercise, intends to verify whether a naturally ventilated house, in hot humid region of Austin, TX, can enhance its passive cooling potential through double?walled wind catcher and solar chimney. In this research, a passive solar residence has been designed. Two designs have been explored on the chosen site: a basecase design without the wind catcher and solar chimney and another design with wind catcher and solar chimney. In the designcase, the placement of the wind catcher and the solar chimney has been designed so that a thermal siphon of airflow inside the building can be created. The design might show that there will be a natural airflow during the time of the year when natural wind does not flow. Moreover, the double walled wind catcher will resist the cool winter wind due to its shape and orientation. In the design, the placement of the wind catcher and the solar chimney has been done so that a thermal siphon inside the building can be created. Therefore, inside the home, there will be a natural airflow during the time of the year when natural wind does not flow. The double walled wind catcher has been designed and placed according to the orientation of the building in order to achieve the optimum wind flow throughout the year. The solar chimney has been placed in a certain part of the building where it can get maximum solar exposure. By comparing two cases, it can be clearly said that there will some kind of changed indoor comfort level. Since the potential of the design has been judged through perception, a computational fluid dynamics simulation analysis for a year is to be done.

Sau, Arunabha

2010-08-01T23:59:59.000Z

114

Visualizing daylight : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

daylight Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and...

115

Daylight metrics and energy savings  

E-Print Network (OSTI)

Aizlewood. Innovative daylighting systems: An experimentalthe performance of daylighting systems are highly dependantin daylighting and with the use of innovative systems, the

Mardaljevic, John

2011-01-01T23:59:59.000Z

116

Supplementary material on passive solar heating concepts. A compilation of published articles  

DOE Green Energy (OSTI)

A compilation of published articles and reports dealing with passive solar energy concepts for heating and cooling buildings is presented. The following are included: fundamental of passive systems, applications and technical analysis, graphic tools, and information sources. (MHR)

None

1979-05-01T23:59:59.000Z

117

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

that exposure to solar radiation (i.e. daylight), has aterm perceptions of solar radiation, and changes within afound that for direct solar radiation exceedng 60 W/m 2 (

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

118

Overview : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Overview "Despite the growing interest in daylighting, "getting it right" remains a challenge. Elegant images in architectural magazines don't automatically translate into sustainable designs with proven comfort and energy performance. Controlling thermal heat loss and gain can be largely addressed with highly insulating glazing technologies on the market today. However, controlling solar gain and managing daylight, view, and glare is at a much earlier stage in terms of cost-effective, available solutions."

119

Load management and the La Vereda passive solar community  

SciTech Connect

Reviewed are preliminary data available from some of the passive solar homes now operational at the La Vereda subdivision in Santa Fe, New Mexico. The major emphasis is Load Management - an electric utility term pertaining to when and how much energy is used by the customer. A customer's home is considered to be Load Managed when its major demands for electricity occur at times during the day when the utility has surplus generation capacity. For most utilities this surplus occurs during the night and is referred to as the off-peak period. Compared to conventional electric homes, the La Vereda passive solar homes are Naturally Load Managed because most of their backup heating requirements occur during the utility's off-peak period. Naturally Load Managed homes like these allow the backup heating system to operate freely whenever the space needs heat. Load data from six La Vereda homes are compared to similar data from 1) a group of nonsolar super-insulated total electric homes, and 2) the utility's winter system peak day load profile. The comparison verifies the Natural Load Management characteristics of the well-designed passive solar home. The free operation of the backup heating system, especially during cloudy or severe weather, can reduce the Natural Load Management characteristics of the La Verda homes. Is it possible to Force Load Management on a home, regardless of weather conditions and still guarantee that all space heating requirements are satisfied with off-peak energy. One home at La Vereda is discussed that has an experimental Forced Load Management backup heating system designed to use energy only during the utility's off-peak period. Load data from this home is presented and compared to other homes at La Verda.

Pyde, S.E.

1981-01-01T23:59:59.000Z

120

Using Calibrated Simulation to Quantify The energy Savings From Residential Passive Solar Design in Canada.  

E-Print Network (OSTI)

??Energy savings from passive solar design applied to a typical Canadian house were quantified using calibrated whole building energy simulation. A detailed energy simulation model (more)

Zirnhelt, Hayes E.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solid-State Phase Change Technology for Use in Passive Solar ...  

Solid-State Phase Change Technology for Use in Passive Solar Building Materials Contact Information: Jeremy Nelson Phone: 970.491.7100 Email: ...

122

Economic performance of passive solar heating: a preliminary analysis  

DOE Green Energy (OSTI)

As the interest in solar energy applications for residential space heating grows, it becomes imperative to evaluate the economic performance of alternative designs. For the thermal storage wall two types of storage medium--masonry (Trombe) and water are examined. In addition a night insulation option is included in the thermal storage wall concept, thus giving rise to four alternative passive designs. The economic performance of these alternative designs are evaluated on a state-by-state basis. Discussion of the methodology briefly reviews the architectural design criteria, solar performance characteristics, and the incremental solar cost of each solar design. Also included is a discussion of conventional energy costs, as well as the optimal sizing/feasibility criterion employed in the economic performance analysis. Nationwide feasibility results are reviewed for each alternative design. In addition to contracting the solar systems themselves, the effects of two incentive proposals--the National Energy Act (NEA) income tax credits and low interest loads--upon each design are examined. Finally, major conclusions are summarized for each design.

Roach, F.; Noll, S.; Ben-David, S.

1978-01-01T23:59:59.000Z

123

Low cost performance evaluation of passive solar buildings  

DOE Green Energy (OSTI)

An approach to low-cost instrumentation and performance evaluation of passive solar heated buildings is presented. Beginning with a statement of the need for a low-cost approach, a minimum list of measured quantities necessary to compute a set of recommended performance factors is developed. Conflicts and confusion surrounding the definition of various performance factors are discussed and suggestions are made for dealing with this situation. Available instrumentation and data processing equipment is presented. The recommended system would monitor approximately ten variables and compute numerous performance factors on site at a projected system cost of less than $3,000 per installation.

Palmiter, L.S.; Hamilton, L.B.; Holtz, M.J.

1979-10-01T23:59:59.000Z

124

Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Daylighting Daylighting July 29, 2012 - 5:58pm Addthis Daylighting is the use of windows and skylights to bring sunlight into your home. | Photo courtesy of Heather Lammers, NREL. Daylighting is the use of windows and skylights to bring sunlight into your home. | Photo courtesy of Heather Lammers, NREL. TIPS: See our tips for energy-efficient windows. Daylighting is the use of windows and skylights to bring sunlight into your home. Today's highly energy-efficient windows, as well as advances in lighting design, reduce the need for artificial lighting during daylight hours without causing heating or cooling problems. The best way to incorporate daylighting in your home depends on your climate and home's design. The sizes and locations of windows should be based on the cardinal directions rather than their effect on the

125

Thermal and cost goal analysis for passive solar heating designs  

DOE Green Energy (OSTI)

Economic methodologies developed over the past several years for the design of residential solar systems have been based on life cycle cost (LCC) minimization. Because of uncertainties involving future economic conditions and the varied decision making processes of home designers, builders, and owners, LCC design approaches are not always appropriate. To deal with some of the constraints that enter the design process, and to narrow the number of variables to those that do not depend on future economic conditions, a simplified thermal and cost goal approach for passive designs is presented. Arithmetic and graphical approaches are presented with examples given for each. Goals discussed include simple payback, solar savings fraction, collection area, maximum allowable construction budget, variable cost goals, and Btu savings.

Noll, S.A.; Kirschner, C.

1980-01-01T23:59:59.000Z

126

Window Daylighting Demo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

127

Window Daylighting Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

128

Passive solar in the city : an energy conscious design for subsidized multi-family housing development  

E-Print Network (OSTI)

Until now, passive solar energy has been overlooked as a viable alternative for home heating in urban subsidized housing. Rather ironically, in housing whose residents could most benefit from the use of solar energy, such ...

Duncan, Karen M

1981-01-01T23:59:59.000Z

129

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. Homeowner Andrea Mitchel, with installer Joe Guasti, proudly shows off small wind turbine installed in Oak Hills, CA. | Photo by Karin Sinclair, National Renewable Energy Laboratory.

130

Pipe Freeze Prevention for Passive Solar Water Heaters Using a Room-Air Natural Convection Loop: Preprint  

SciTech Connect

Conference paper regarding research in the use of freeze prevention for passive solar domestic water heating systems.

Burch, J.; Heater, M.; Brandemuhl, M.; Krarti, M.

2006-05-01T23:59:59.000Z

131

Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling  

DOE Green Energy (OSTI)

The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

Schneider, A.R.

1980-01-01T23:59:59.000Z

132

Passive solar design strategies: Remodeling guidelines for conserving energy at home  

DOE Green Energy (OSTI)

The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

Not Available

1991-01-01T23:59:59.000Z

133

Passive solar design strategies: Remodeling guidelines for conserving energy at home. [Final report  

DOE Green Energy (OSTI)

The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler`s typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house`s need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

Not Available

1991-12-31T23:59:59.000Z

134

Passive solar design strategies: Remodeling guidelines for conserving energy at home  

SciTech Connect

The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

1991-01-01T23:59:59.000Z

135

Lighting and Daylighting Basics  

Energy.gov (U.S. Department of Energy (DOE))

Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting.

136

Lighting and Daylighting  

Energy.gov (U.S. Department of Energy (DOE))

Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting.

137

Energy Basics: Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of...

138

Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring...

139

Texas Daylighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

daylighting Living room lighting level in summer with sunshade off (left) and with sunshade on (right). Living room lighting level in winter with sunshade off (left) and with...

140

Passive Solar Design for the Home: Energy Efficiency and Renewable Energy Clearinghouse (EREC) Brochure  

NLE Websites -- All DOE Office Websites (Extended Search)

home's windows, walls, and floors home's windows, walls, and floors can be designed to collect, store, and dis- tribute solar energy in the form of heat in the winter and reject solar heat in the sum- mer. This is called passive solar design or climatic design because, unlike active solar heating systems, it doesn't involve the use of mechanical and electrical devices, such as pumps, fans or electrical controls to move the solar heat. To understand how passive solar design works, you first need to understand how heat moves. Heat-Movement Physics As a fundamental law, heat moves from warmer materials to cooler ones until there is no longer a temperature difference between the two. A passive solar building makes use of this law through three heat- movement mechanisms-conduction, con- vection, and radiation-to distribute heat

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Design of a Korean style passive solar house for rural area  

Science Conference Proceedings (OSTI)

The Korea Solar Energy Research Institute (KSERI) as well as the Korean government is pushing hard on the development of passive solar technology with high priority for the expeditious widespread use of soalr energy. As a first attempt at KSERI for the demonstration of a passive solar house in the rural area, designs of single family residential buildings were performed. The proposed designs are expected to be used by the Korean government for the construction of demonstration passive houses throughout Korea. Introduced here is one such design, whose design goal was to generate a demonstration solar house which is a) passive, b) for rural area, c) simple in construction and operation, d) technically sound (meeting the desired solar fraction) and, e) most economical.

Auh, P.C.

1980-01-01T23:59:59.000Z

142

Low-cost passive solar-retrofit options for mobile homes  

DOE Green Energy (OSTI)

Passive solar heating and cooling retrofit options can significantly reduce the energy consumption of new and existing mobile homes. The initial efforts of the Solar Energy Research Institute to explore the solar potential for the existing stock of mobile homes and those in the production stage are described.

Brant, S.; Holtz, M.; Tasker, M.

1981-03-01T23:59:59.000Z

143

Energy Basics: Lighting and Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting. Learn more about: Lighting Daylighting...

144

Madrid Daylighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

REPORTS - Daylighting Quality Page REPORTS - Daylighting Quality Page 1 of 2 DAYLIGHTING QUALITY 1) NATURAL LIGHTING The main criteria for interior design is leading the user from darkness toward daylight. For this reason, the main source of daylighting is the south wall. Moreover, a whole part of the house may be unfolded, letting an internal open courtyard provide a touch of natural environment into the house. Small fixed windows with steel sash and frames are also strategically located to allow the user to get a beam of the morning or sunset light -even though such orientations are inconvenient from a bioclimatic point of view-, as well as to see the outside while working or having lunch. In most cases, glass is covered with shutters and stainless steel frames fitting woven wire

145

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

to response to weather-varying solar amplitude is delayed 1-expansion for the weather-varying solar gain function; wea simple passive solar building to idealized weather. Such a

Goldstein, David Baird

2011-01-01T23:59:59.000Z

146

Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells  

E-Print Network (OSTI)

In this work we examine the effectiveness of hydrogen passivation at grain boundaries as a function of defect type and microstructure in multicrystalline silicon. We analyze a specially prepared solar cell with alternating ...

Bertoni, Mariana I.

147

Passive solar for urban tenement housing : case study and retrofit design for West-Berlin  

E-Print Network (OSTI)

Studies about residential passive solar heating have been conducted in many countries, mostly dealing with new or existing single family houses and nearly unlimited access to the sun. Only a few studies are related to ...

Lohr, Alexander W

1981-01-01T23:59:59.000Z

148

Human comfort and auxiliary control considerations in passive solar structures  

DOE Green Energy (OSTI)

Energy consumption and human comfort implications of various passive solar and energy conservation strategies are investigated for single-family, one-story, slab-on-grade residences in Albuquerque, NM and Washington, DC. The building energy analysis computer program BLAST is used to perform annual dynamic heating and cooling load calculations for a building in which the glazing area, glazing location, and thermal mass are varied systematically. The impacts on building performance of forced-flow ventilative cooling and nighttime and weekday thermostat setpoint adjustments are investigated. The results indicate that the annual heating and cooling loads are highly sensitive to glazing area, glazing location, and thermostatic controls. Annual cooling loads are substantially reduced by increased thermal mass in the walls. In contrast, annual heating loads are fairly insensitive to increased thermal mass in the walls, unless very large areas of south glazing are involved. BLAST calculates the air temperatures (T/sub a/) and mean radiant temperatures (T/sub mr/) in each zone for every hour of the year; a weighted average of T/sub a/ and T/sub mr/ is used to evaluate comfort conditions under various circumstances.

Place, W.; Kammerud, R.; Andersson, B.; Curtis, B.; Carroll, W.; Christensen, C.; Hannifan, M.

1980-10-01T23:59:59.000Z

149

Passive solar renovations to the Common Ground Community Restaurant. Final report  

SciTech Connect

The passive solar and energy conserving renovations to the Common Ground Community Restaurant were funded primarily as a demonstration project under this program. The majority of work accomplished was (1) design and construction of a passive solar greenhouse on the existing second floor porch of the restaurant, and (2) the design and construction of energy conserving improvements to the interior of the building, consisting largely of renovating the walls and ceiling to provide an insulated space with a substantially reduced heat load.

Not Available

1985-01-01T23:59:59.000Z

150

Daily radiation model for use in the simulation of passive solar buildings  

DOE Green Energy (OSTI)

A model is presented to characterize solar radiation with just three input parameters for each day. This compressed daily radiation data may be used in place of hourly data in simulations of passive solar buildings. This method is tested with the SUNCAT passive simulation. Global horizontal and direct normal radiation data are input using the compressed daily form instead of by hour. Simulation results are found to be comparable to results based on hourly radiation data.

Sillman, S.; Wortman, D.

1981-04-01T23:59:59.000Z

151

Site handbook: data acquisition system information, passive solar retrofit Automobile Maintenance Facility, City of Philadelphia  

SciTech Connect

Data were collected at the City of Philadelphia's Auto Maintenance Facility using an Aeoloan Kinetics PDL-24 data acquisition system. Instantaneous data readings were recorded each 15 seconds by the microprocessor. These channel readings were then averaged to produce hourly values which were then stored on an audio cassette. The energy saving strategies include: styrofoam and concrete roof coverings; weatherstripping; replacement of north windows with combination insulation and view glazing; PVC strips between heated and unheated areas; gas fired radiant heaters at individual work stations; reduction of the number of light fixtures; and the installation of retrofit window units for radiant solar heating, daylighting, ventilation, glare control and vandalism protection.

1985-01-01T23:59:59.000Z

152

Daylighting Application and Effectiveness in Industrial Facilities  

E-Print Network (OSTI)

Before the advent of practical mercury vapor and fluorescent lighting, the only available artificial lighting for industrial buildings was incandescent. The illumination of active industrial workspaces with incandescent lighting is difficult, so during the industrial revolution, architects utilized various daylighting strategies such as window walls, skylighting, monitors, etc. However, glazing technologies were primitive compared with our modern choices, When more efficient and effective artificial lighting became available, most older industrial buildings had their daylighting features boarded over. With modern glazing systems and sophisticated designs that minimize glare issues, daylighting for industrial buildings is making a strong comeback. Additionally, new controllable ballasts and automatic lighting controls make possible hybrid lighting systems that are able to provide optimal lighting under all environmental conditions. This paper will discuss how daylighting systems developed decades ago are being modernized to provide high quality, low-glare, uniform lighting. Premium glazing systems that limit heat losses and gain will be discussed. The importance of glare control in day-lit spaces, for worker safety and productivity, will be stressed, and a variety of passive and active strategies will be presented including: redirected beam daylighting; reflective light shelves; and movable baffles and louvers.

McCowan, B.; Birleanu, D.

2005-01-01T23:59:59.000Z

153

Daylighting Research at the Swiss Federal Institute of Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Group of the Solar Energy and Building Physics Laboratory (LESO-PB), works on advanced systems for optimal use of daylight in buildings, with the aim of improving user...

154

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

to the incident solar spectrum but must also have a highH I I \\j 6000 0 K solar spectrum I ! >.o .AA l--- visible

Selkowitz, S.

2011-01-01T23:59:59.000Z

155

Windows and Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

156

Cornell University Daylighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylighting Quality Daylighting Quality With a small building footprint and a relatively large vertical surface area, the CUSD house has the unique opportunity to supply almost all of its lighting with daylight. Keeping this in mind, we have created two large apertures, one on the south side of the building and one on the north side of the building. The southern aperture is a tri-fold glass door, opening to the living room on the west side of the house. This fenestration provides ambient light and some heat to the space during the day. Occupants can take advantage of this daylight as they go to and return from work, prepare meals, and relax in the living area. Concrete pavers (thermal mass) are placed inside and outside of the southern aperture, bridging the threshold between interior and exterior spaces. The

157

THE DAYLIGHTING SOLUTION  

E-Print Network (OSTI)

dimming and on/off systems. Daylighting, along with otherdaylighting will be propor- tionately less than if day lighting is competing against a very ineffi- cient electric lighting system.

Selkowitz, Stephen

2013-01-01T23:59:59.000Z

158

Daylight in Manhattan  

SciTech Connect

Zoning regulations concerned with daylighting in New York City are reviewed extensively going back to the 1916 regulation. Historical developments up to the newly proposed set of zoning regulations for midtown Manhattan are discussed. The importance of the Manhattan regulations, which often serve as a model for other USA cities, are stressed. The daylight performance test, designed to quantify the amount of natural light that will reach the street after a proposed project is constructed, is described. To gain acceptance a new building would have to score at least 85 points (out of 100) on criteria based on daylighting, street wall height, street wall length, and reflectivity. Of these, daylighting is the most important. A modified and simplified two-tiered proposal has been issued with minor changes in scoring the four criteria given above. (MJJ)

Moore, J.A.

1981-12-01T23:59:59.000Z

159

Daylighting potential in Thailand  

SciTech Connect

Daylighting has good potential for application in tropical climates. It can help save electric energy as well as reduce the daytime power demand substantially. It can bring another dimension of energy efficiency in addition to efficient lighting technology, as well as aesthetic value. Its integration with continuous-dimming electric lighting is found to be acceptable. However, fundamental research as well as daylighting application technology are required to realize the potential.

Chirarattananon, S.; Limmechokchai, B. [Asian Inst. of Tech., Bangkok (Thailand)

1996-12-01T23:59:59.000Z

160

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101: Daylighting Energy 101: Daylighting Addthis Description Daylighting-the use of windows or skylights for natural lighting and temperature regulation-is one building strategy...

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced fenestration systems for improved daylight performance  

E-Print Network (OSTI)

system efficacy of a daylighting system will vary with theupon the specifics of daylighting system. Skylighted systemsabove, we believe that daylighting systems continue to have

Selkowitz, S.; Lee, E.S.

1998-01-01T23:59:59.000Z

162

Daylighting, Dimming, and the Almost? California Meltdown?  

NLE Websites -- All DOE Office Websites (Extended Search)

of the mainstays of the effort to use daylighting to reduce annual lighting energy consumption. The coincidence of daylighting with electric utility peak demand makes daylighting...

163

Guidelines for conservation levels and for sizing passive-solar collection area  

DOE Green Energy (OSTI)

Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar building. The guidelines are based on balancing the incremental cost/benefit of conservation and solar strategies. Tables are given for 209 cities in the US and the results are also displayed on maps. The procedures are developed in an appendix, which gives the cost assumptions used and explains how to develop different guidelines for different costs.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

164

Prototype Passive Solar Buildings in Louisiana - A Hot-Humid Climate  

E-Print Network (OSTI)

This paper on prototype passive solar buildings in Louisiana presents state of the art passive solar design. According to U.S. Department of Energy report, the annual energy consumption for a single family detached dwelling in Louisiana is from 31,000 to 51,000 Btu's/sq.ft./yr. with a mean at 38,000 Btu's/sq.ft./yr. and for an office building is from 39,000 to 58,000 Btu's/sq.ft./yr. Incorporation of passive solar design may provide a major percentage of the energy consumption with only 2 to 8 percent of additional construction cost. The projected savings as presented in this report are an approximate estimation. However, the actual savings will vary depending upon the occupancy, operation, and maintenance of the building. At the same time, such design represents an increased involvement for the architect. The full potential of this passive solar design depends on a sensitive awareness of the relationship between climate, comfort and the thermal characteristics of buildings and building materials. The primary purpose of this work is to offer a working definition and fundamental understanding of a number of practical applications of passive solar designs in Louisiana. Four new buildings and six existing retrofitted buildings are presented.

Shih, J. C.

1986-01-01T23:59:59.000Z

165

State of the art in passive solar heating and cooling  

DOE Green Energy (OSTI)

Progress since the Albuquerque Passive Conference is discussed in terms of the major design approaches in buildings actually being constructed. Advantages and problem areas of each are described. Major areas where further work is needed are presented in detail.

Balcomb, J.D.

1978-01-01T23:59:59.000Z

166

Lighting system combining daylight concentrators and an artificial source  

DOE Patents (OSTI)

A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

1985-01-01T23:59:59.000Z

167

Daylighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Basics Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light but also improves productivity and health. Daylighting in schools has even improved student grades and attendance. Today's highly energy-efficient windows, as well as advances in lighting design, allow efficient use of windows to reduce the need for artificial lighting during daylight hours without causing heating or cooling problems.

168

Neural daylight control system  

E-Print Network (OSTI)

The paper describes the design, the implementation of a neural controller used in an automatic daylight control system. The automatic lighting control system (ALCS) attempt to maintain constant the illuminance at the desired level on working plane even if the daylight contribution is variable. Therefore, the daylight will represent the perturbation signal for the ALCS. The mathematical model of process is unknown. The applied structure of control need the inverse model of process. For this purpose it was used other artificial neural network (ANN) which identify the inverse model of process in an on-line manner. In fact, this ANN identify the inverse model of process + the perturbation signal. In this way the learning signal for neural controller has a better accuracy for the present application.

Grif, Horatiu Stefan

2010-01-01T23:59:59.000Z

169

Summer-heat-gain control in passive-solar-heated buildings: fixed horizontal overhangs  

DOE Green Energy (OSTI)

An aspect of passive cooling relates to cooling load reduction by the use of solar controls. When there is a substantial winter heating requirement, and when the winter heating needs are met in part by a passive solar heating system, then the potential aggravation of summer cooling loads by the heating system is an important design issue. A traditional solution is the use of a fixed, horizontal shading overhang. An approach to quantitative design rules for the sizing of a shading overhang to minimize total annual space conditioning energy needs is outlined.

Jones, R.W.

1981-01-01T23:59:59.000Z

170

DOE passive-solar Class A performance-evaluation program: preliminary results  

DOE Green Energy (OSTI)

The major objective of the DOE Passive Solar Class A Performance Evaluation Program is to collect, analyze, and archive detailed test data for the rigorous validation of analysis/design tools used for passive solar research and design. Elements of the plan for Class A validation are described. A proposed validation methodology, including both analytical and empirical tests, a quantitative definition of validation, minimum data requirements, and a standard reporting format, is outlined. The preliminary testing of this methodology using hourly data from two Class A test facilities is presented. Finally, the collection, analysis, and documentation of preliminary data sets is discussed.

Hunn, B.D.; Turk, W.V.; Wray, W.O.

1982-01-01T23:59:59.000Z

171

Theoretical and experimental simulation of passive vacuum solar flash desalination.  

E-Print Network (OSTI)

??Experimental and theoretical simulations of a novel sustainable desalination process have been carried out. The simulated process consists of pumping seawater through a solar heater (more)

Abutayeh, Mohammad

2010-01-01T23:59:59.000Z

172

Venetian Blind Control System Based on Fuzzy Neural Network for Indoor Daylighting  

Science Conference Proceedings (OSTI)

For the indoor daylighting need, venetian blinds are a key element in the passive control of buildings vision environment. They help to control glare, daylighting, and overheating, all of which affect both the comfort of occupants and a buildings ... Keywords: fuzzy neural network, visual comfort, position of venetian blind, double control loops

Yifei Chen; Huai Li; Xueliang Chen

2009-12-01T23:59:59.000Z

173

CALIFORNIA ENERGY Daylighting In Schools  

E-Print Network (OSTI)

.3 pixel line spread function of the camera system [6], only alternate pixels were sampled. Daylight successive daylights was regressed on com- binations of the estimated Shannon differential entropies of the colors of the scene under the same two daylights. The regression was strong, and it remained so when

174

Semi-empirical method for estimating the performance of direct gain passive solar heated buildings  

DOE Green Energy (OSTI)

The sunspot code for performance analysis of direct gain passive solar heated buildings is used to calculate the annual solar fraction for two representative designs in ten American cities. The two representative designs involve a single thermal storage mass configuration which is evaluated with and without night insulation. In both cases the solar aperture is double glazed. The results of the detailed thermal network calculations are then correlated using the monthly solar load ratio method which has already been successfully applied to the analysis of both active solar heated buildings and passive thermal storage wall systems. The method is based on a correlation between the monthly solar heating fraction and the monthly solar load ratio. The monthly solar load ratio is defined as the ratio of the monthly solar energy transmitted through the glazing aperture to the building's monthly thermal load. The procedure using the monthly method for any location is discussed in detail. In addition, a table of annual performance results for 84 cities is presented, enabling the designer to bypass the monthly method for these locations.

Wray, W.O.; Balcomb, J.D.; McFarland, R.D.

1979-01-01T23:59:59.000Z

175

Analysis of selected surface characteristics and latent heat storage for passive solar space heating  

DOE Green Energy (OSTI)

Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

Fthenakis, V.; Leigh, R.

1981-12-01T23:59:59.000Z

176

Low temperature front surface passivation of interdigitated back contact silicon heterojunction solar cell  

DOE Green Energy (OSTI)

The interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell requires a low temperature front surface passivation/anti-reflection structure. Conventional silicon surface passivation using SiO2 or a-SiNx is performed at temperature higher than 400C, which is not suitable for the IBC-SHJ cell. In this paper, we propose a PECVD a-Si:H/a-SiNx:H/a-SiC:H stack structure to passivate the front surface of crystalline silicon at low temperature. The optical properties and passivation quality of this structure are characterized and solar cells using this structure are fabricated. With 2 nm a-Si:H layer, the stack structure exhibits stable passivation with effective minority carrier lifetime higher than 2 ms, and compatible with IBC-SHJ solar cell processing. A critical advantage of this structure is that the SiC allows it to be HF resistant, thus it can be deposited as the first step in the process. This protects the a-Si/c-Si interface and maintains a low surface recombination velocity.

Shu, Brent; Das, Ujjwal; Jani, Omkar; Hegedus, Steve; Birkmire, Robert

2009-06-08T23:59:59.000Z

177

The New York Times headquarters daylighting mockup: Monitored performance of the daylighting control system  

E-Print Network (OSTI)

not valid because the daylighting system was not providingperformance of the daylighting control system E.S. Lee ,performance of two daylighting control systems installed in

Lee, Eleanor S.; Selkowitz, Stephen E.

2006-01-01T23:59:59.000Z

178

The effect of microscopic texture on the direct plasma surface passivation of Si solar cells  

SciTech Connect

Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 10{sup 5} H{sup +} ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

Mehrabian, S. [Laser and Plasma Research Institute, G.C., Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Xu, S. [Plasma Sources and Applications Center, NIE, Nanyang Technological University, 637616 Singapore (Singapore); Qaemi, A. A. [Physics Department, G.C., Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Shokri, B. [Laser and Plasma Research Institute, G.C., Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Physics Department, G.C., Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Chan, C. S. [Plasma Sources and Applications Center, NIE, Nanyang Technological University, 637616 Singapore (Singapore); Division of Microelectronics, School of EEE, Nanyang Technological University, 639798 Singapore (Singapore); Ostrikov, K. [Plasma Nanoscience Center Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218 Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, NSW 2522 (Australia); School of Physics and Advanced Materials, University of Technology Sydney, Sydney, NSW 2006 (Australia); Plasma Sources and Applications Center, NIE, Nanyang Technological University, 637616 Singapore (Singapore)

2013-04-15T23:59:59.000Z

179

Simple procedure for assessing thermal comfort in passive solar heated buildings  

DOE Green Energy (OSTI)

The Fanger thermal comfort equation is linearized and used to develop a procedure for assessing thermal comfort levels in passive solar heated buildings. In order to relate comfort levels in nonuniform environments to uniform conditions, a new thermal index called the equivalent uniform temperature is introduced.

Wray, W.O.

1979-01-01T23:59:59.000Z

180

Simple technique of estimating the performance of passive solar heating systems  

DOE Green Energy (OSTI)

A method is presented for estimating the annual solar performance of a building using a passive thermal storage wall of the Trombe wall or water wall type with or without night insulation. Tables of performance parameters are given for 84 cities. The method is accurate to +-3% as compared with hour-by-hour computer simulations.

Balcomb, J.D.; McFarland, R.D.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Passive-solar techniques for the mobile/modular housing industry  

DOE Green Energy (OSTI)

Using a fairly typical mobile home design, it is shown that state-of-the-art mobile/modular housing and passive solar techniques can be used together. Computer simulations are used to analyze the concept. Size conditions at a mobile home park are considered. Glazing orientation, shading, and thermal storage are included in the analysis. (LEW)

Osborn, D.C.

1983-01-31T23:59:59.000Z

182

New York State passive solar design and retrofit competition  

SciTech Connect

Many homeowners are faced with the problem of reducing their home energy bills. Solar and energy conservation retrofitting is a potential solution for the home energy problem, capable of significantly reducing heating, cooling, and domestic hot water energy bills. The technique used by 12 homeowners and their designers to adapt and integrate various solar and energy conservation features into 12 different projects is discussed. A variety of innovative solutions were utilized in this project and the integration of those ideas into the buildings being retrofitted is discussed. Integration of sunspaces, increased south glazing, solar domestic hot water, storage systems, air distribution systems, insulation systems, etc., is discusssed. All 12 of these designs are award winning projects submitted in response to an ERDA competitive solar retrofit announcement.

Niles, J.E.; Barron, J.J.; Cole, W.J.

1981-01-01T23:59:59.000Z

183

Some analytic models of passive solar building performance: a theoretical approach to the design of energy-conserving buildings  

DOE Green Energy (OSTI)

This paper describes an application of the fundamental methods of physics to solve a problem of environmental and economic interest: the description of the thermal performance of passive solar buildings. Such a description is of great practical interest to building designers; however, this paper is not intended to be of use to architects and engineers in its present form. Its intention is to provide a theoretical basis for understanding passive solar buildings; further effort is needed to develop rules of solar engineering.

Goldstein, D.B.

1978-11-01T23:59:59.000Z

184

Energy-conserving and passive-solar construction details  

DOE Green Energy (OSTI)

Diagrams are presented which show construction details for insulating foundations, walls, joists, roofs, and other components of energy-conserving residential and light commercial buildings; glazing systems; installing thermal mass; rock beds; and a passive hot air collector. The emphasis is on using commercially available building materials in new applications to minimize costs and maximize thermal design. The costs are given which are typical of what builders have incurred in different parts of the country. The thermal performance figures and comments are included. (LEW)

Taylor, R D

1981-04-01T23:59:59.000Z

185

Design and Evaluation of Daylighting Applications of Holographic Glazings  

NLE Websites -- All DOE Office Websites (Extended Search)

Design and Evaluation of Daylighting Applications of Holographic Glazings Design and Evaluation of Daylighting Applications of Holographic Glazings Title Design and Evaluation of Daylighting Applications of Holographic Glazings Publication Type Report LBNL Report Number LBNL-44167 Year of Publication 1996 Authors Papamichael, Konstantinos M., Charles K. Ehrlich, and Gregory J. Ward Call Number LBNL-44167 Abstract When combined with appropriate electric lighting dimming controls, the use of daylight for ambient and task illumination can significantly reduce energy requirements in commercial buildings. While skylights can effectively illuminate any part of one-story buildings, conventional side windows can illuminate only a 15 ft - 20 ft (4.6 m - 6.1 m) depth of the building perimeter. Even so, the overall efficacy of daylight is limited, because side windows produce uneven distributions of daylight. Achieving adequate illumination at distances further away from the window results in excessive illumination near the window, which increases cooling loads from the associated solar heat gain. As a result, the use of larger apertures and/or higher transmittance glazings, to introduce daylight deeper than 15 ft - 20 ft (4.6 m - 6.1 m), may prove ineffective with respect to saving energy, because cooling load penalties may exceed the electric lighting savings.

186

Residential passive solar systems: regional sensitivity to system performance costs, and alternative prices  

DOE Green Energy (OSTI)

The economic potential of two passive space heating configurations are analyzed. These are a masonry thermal storage wall (Trombe) and a direct gain system - both with night insulation. A standard tract home design for each of the two passive systems is being used throughout the analysis to allow interregional comparisons. The economic performance of these two systems is evaluated on a regional basis (223 locations) throughout the United States. For each of the two conventional energy types considered (electricity and natural gas), sensitivity analysis is conducted to determine the impact of alternative fuel price escalation rates and solar costs upon feasibility of the two solar systems. Cost goals for solar system prices are established under one set of future fuel prices and stated economic conditions. (MOW)

Kirschner, C.; Ben-David, S.; Roach, F.

1979-01-01T23:59:59.000Z

187

Passive test cell data for the solar laboratory, Winter 1980-81  

DOE Green Energy (OSTI)

Testing was done during the 1980-81 winter in 400 ft/sup 3/ test cells at the Los Alamos National Laboratory Solar Lab. This testing was done primarily to determine the relative efficiency of various passive solar heating concepts and to obtain data that could be used to validate computer simulation programs. The passive solar systems tested were Trombe wall with and without selective absorber, water wall, phase-change wall, direct gain, a heat-pipe collector, and two sunspace geometries. The heating load coefficient of these cells was roughly 26 Btu/h /sup 0/F and the collector area was 23.4 ft/sup 2/, giving a load collector ratio of approximately 27 Btu//sup 0/F day ft/sup 2/. The test cell configurations and instrumentation are detailed herein, and the resulting data and cell efficiencies are discussed.

McFarland, R.D.

1982-05-01T23:59:59.000Z

188

Analysis methodology for passive heating systems in the NSDN. [National Solar Data Network  

Science Conference Proceedings (OSTI)

The National Solar Data Network (NSDN) has been continuously monitoring the performance of solar energy systems in buildings throughout the country on a 24-hour basis for the past three years. The data collected from this program is analyzed and performance evaluation reports are published monthly and seasonally for each site. The passive systems in the NSDN are instrumented with an average of 90 sensors to measure weather; heat loss and gain, auxiliary energy and electrical energy consumption; operation of windows, doors, vents, and movable insulation, temperatures and relative humidity of the rooms; and surface and gradient temperatures of all thermal storage masses. The sensors are scanned at 30 second or 5 minute intervals continuously. Performance factors are calculated on the scan, hourly, daily, monthly and annual level. The approach to the performance analysis of passive solar heating systems is presented.

Spears, J.W.

1981-01-01T23:59:59.000Z

189

Plasma etching, texturing, and passivation of silicon solar cells  

DOE Green Energy (OSTI)

The authors improved a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignments to form self-aligned, patterned-emitter profiles. Standard commercial screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. The authors used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. They obtained an improvement of almost a full percentage point in cell efficiency when the self-aligned emitter etchback was combined with an optimized 3-step PECVD-nitride surface passivation and hydrogenation treatment. They also investigated the inclusion of a plasma-etching process that results in a low-reflectance, textured surface on multicrystalline silicon cells. Preliminary results indicate reflectance can be significantly reduced without etching away the emitter diffusion.

Ruby, D.S.; Yang, P. [Sandia National Labs., Albuquerque, NM (United States); Zaidi, S.; Brueck, S. [Univ. of New Mexico, Albuquerque, NM (United States); Roy, M.; Narayanan, S. [Solarex, Frederick, MD (United States)

1998-11-01T23:59:59.000Z

190

Tips for Daylighting - Browse  

NLE Websites -- All DOE Office Websites (Extended Search)

Tips for Daylighting with Windows Tips for Daylighting with Windows These guidelines provide an integrated approach to the cost-effective design of perimeter zones in new commercial buildings. They function as a quick reference for designers through a set of easy steps and rules-of-thumb, emphasizing "how-to" practical details. References are given to more detailed sources of information, should the reader wish to go further. No guidelines can answer all possible questions from all types of users. However, this document addresses the most commonly occurring scenarios. The guidance here is limited by the medium; short paper documents can only go so far in assisting a designer with a unique project. This document has been carefully shaped to best meet the needs of a designer when time does not permit a more extensive form of assistance.

191

Passive solar water heating: breadbox design for the Fred Young Farm Labor Center in Indio  

SciTech Connect

An appropriate passive solar preheater for multifamily housing units in the Fred Young Farm Labor Center in Indio, California, was designed and analyzed. A brief summary of passive preheater systems and the key design features used in current designs is presented. The design features necessary for the site requirements are described. The eight preliminary preheater designs reviewed for the project are presented. The results of thermal performance simulation for the eight prototype systems are discussed. Alternative monitoring systems for the installation are described and evaluated. The consultants' recommendations, working drawings, and performance estimates of the system selected are presented. (MHR)

Melzer, B; Maeda, B

1979-10-01T23:59:59.000Z

192

Daylighting control systems : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

control systems control systems Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Daylighting control systems Lighting energy savings were greater in zones daylit bilaterally from both the southwest and northwest facades, typically 50-60% at 11 feet from the windows and 25-40% at 14-25 feet from the façade. Total illuminance was maintained in all lighting zones to within -10% of the setpoint for 95-100% of the day throughout most of the nine-month monitored period. Daylight "harvesting" strategies are implemented using daylighting control systems that dim the electric lighting in response to interior daylight levels. For commercial applications, the light output of fluorescent lamps (T5 or T8) are varied by using electronic dimming ballasts. Photosensors, typically mounted in the ceiling, are used to measure the quantity of daylight in the space then determine the amount of dimming required to maintain the design work plane illuminance level. If daylight levels are more than adequate, the electric lights can be shut off. Simulation studies indicate that annual energy use and peak demand can be reduced by 20-30% compared to a non-daylit building. These technological solutions are increasingly becoming one of the key means to achieving compliance with stringent energy-efficiency standards and achieving LEED ratings for sustainable design.

193

Daylighting field study : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

mockup to develop our thinking and to evaluate a few examples of automated faade management and daylight harvesting systems." - Glenn Hughes, Director of Construction, The New...

194

Daylighting the New York Times Headquarters: Moving Daylighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Times Headquarters building will feature arguably the most technologically advanced daylighting systems in the world. This seminar will present not only how the project came to...

195

Utility-impacts assessment of residential passive-solar systems. Final report  

SciTech Connect

This report summarizes a project undertaken to provide the electric-utility industry with a tool to use in analyzing the advantages and disadvantages for themselves and their customers of passive-solar residential construction within their service areas. A methodology to accomplish this was created and then tested in cooperation with seven participating utilities. Results indicate that passive solar homes and well-insulated homes are more economic to both utilities and homeowners than conventional homes insulated to ASHRAE 90-75 standards, still the norm for building construction in many parts of the country. Further indications are that passive-solar homes may have lower life-cycle costs for heating and cooling than well-insulated homes in areas of the country where the annual heating load predominates over the annual cooling load, and where there is an adequate amount of sunshine during the heating season. The methodology developed also has the capability of simulating and comparing the performance of a wide variety of non-solar electrical heating and cooling systems. As a result, it can be adapted by utilities for a broad range of residential energy analyses.

Wood, R.A.; Siegel, M.D.

1983-03-01T23:59:59.000Z

196

Nanolens Window Coatings for Daylighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

197

Nanolens Window Coatings for Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

198

Daylight metrics and energy savings  

E-Print Network (OSTI)

and its application. CIBSE National Lighting Conference: 5-8based daylight modelling. CIBSE National Conference 2006:of a paper given at the 2006 CIBSE National Conference [10].

Mardaljevic, John

2011-01-01T23:59:59.000Z

199

Winter experience of a passive solar retrofit. Final technical report  

DOE Green Energy (OSTI)

An older home in St. Louis had 2 inch foam insulation added to the outside of masonry walls with stucco exterior finish applied. The south wall was modified so that there is a gross solar collection area of 26.2 m/sup 2/, with 13.2 m/sup 2/ of greenhouse, 8.6 m/sup 2/ of direct gain and 4.4 m/sup 2/ of Trombe components. The performance of the building and its data acquisition system are described. (MHR)

Michels, T.I.; Andes, F.S.

1980-12-23T23:59:59.000Z

200

Passive solar rondavel in the mountains of Lesotho  

Science Conference Proceedings (OSTI)

The design, construction and performance of a passie solar rondavel in Lesotho, a country in Southern Africa is described. A rondavel is a round building with stone walls and thatching grass for the roof. The one door is usually the major source of natural light and non-combusted heat energy in these houses which average about four meters in diameter. This new design is one possible response to addressing the problem of heating, without relying on the open fire combustion of dung and wood, two widely used fuels which are in short supply.

Klein, G.; Wyatt, A.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Passive Solar Design: The Foundation for Low-Energy Federal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our nation's buildings have a proven influence on Our nation's buildings have a proven influence on how we feel, learn, and work. Some studies indicate that indoor lighting, temperatures, and air quality even affect how much we earn. Our buildings also consume 37% of the energy and 67% of the electricity we use in the United States each year. This electricity is produced mainly by burning fossil fuels that emit gases, such as nitrogen oxide, that can contribute to the nation's air-quality problems. Therefore, the Federal govern- ment, which now owns or occupies more than 500,000 facilities, is taking a look at passive solar and low-energy building designs for both new construction and renovations. Passive solar design strategies involve more than just using large, south-facing windows to capture some of the sun's warmth. They also include the use

202

Design of an atrium for a passive-solar retrofit of an office buildings  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) has proposed to retrofit one of its administrative office buildings with a solar atrium. A 334 m/sup 2/ courtyard will be enclosed with a roof-mounted system of clerestory windows to maximize winter solar gain. This sunspace will thermally buffer the adjoining offices and also will preheat air supplied to the building's conventional heating, ventilating, and air-conditioning (HVAC) system. The use of the DOE-2 building energy analysis computer program in the design of the solar atrium is described. The results of a series of simulations are reported detailing the tradeoffs inherent in the selection of an optimal glazing area, the maintenance of acceptable comfort levels within the sunspace, and intergration of passive-solar devices with the conventional HVAC system. Potential energy savings are also discussed.

Peterson, J.L.; Hunn, B.D.

1980-01-01T23:59:59.000Z

203

Northward Market Extension for Passive Solar Water Heaters by Using Pipe Freeze Protection with Freeze-Tolerant Piping: Preprint  

SciTech Connect

Conference paper regarding research in freeze-protection methods that could extend market acceptance for passive solar domestic water heating systems in more northern climates if the U.S.

Burch, J.; Heater, M.; Brandemuhl, M.; Krarti, M.

2006-05-01T23:59:59.000Z

204

Market diffusion and the effect of demonstrations : a study of the Denver Metro Passive Solar Home program  

E-Print Network (OSTI)

This paper is a report on the reactions to and effects of the Denver Metro Passive Solar Home demonstration program, conducted in the Spring of 1981. The purpose of the program was to provide impetus to builders for ...

Lilien, Gary L.

1981-01-01T23:59:59.000Z

205

Passive and hybrid solar manufactured housing and buildings. [Includes architectural drawings  

DOE Green Energy (OSTI)

The final design work on a passive solar two story modular home to be built by Unibilt Industries is summarized. After reviewing alternative insulation, glazing, and water wall schemes, five options were identified for detailed energy use and life cycle cost analysis. Using the PASCALC/SLR analysis procedure, the performance of the base case home and each of the energy conservation options was calculated. (MHR)

Scholz, D.; Bowling, C; Winter, S.; Levy, E.; Marks, R.; Zgolinski, A.

206

Cooling-load implications for residential passive-solar-heating systems  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

Jones, R.W.; McFarland, R.D.

1983-01-01T23:59:59.000Z

207

Case Study: Passive Solar Concepts Adapted to In-Fill Housing in a Hot, Humid Climate  

E-Print Network (OSTI)

In-fill housing for central city areas appears to be an answer to the continuing need for compact, affordable dwelling unite that will improve the neighborhood environment. There exist many central city areas in Louisiana where lots are unusually narrow but zoned for residential use. As a result of current building code improvement programs, there are numerous vacant lots in the prime downtown locations. Owners and builders seem to be poorly equipped to deal with the design constraints inherent in architectural proposals for contemporary housing design in these areas. Thin investigation considers the development of a case study that involves the planning and design of a compact, solar multi-family residential unit for a central city site condition. Emphasis will be placed on developing units that are highly energy conserving and have potential for one of three levels of passive solar technology--from a sun-tempered unit to a dominant passive solar system. The case study also focuses on the optional mix relationship between conservation options and passive system size. The site study area, a neighborhood in Baton Rouge, Louisiana, is distinctive in that narrow 40 x 100 feet lots predominate. Many are vacant.

McQueen, T. M.; White, J. T.

1985-01-01T23:59:59.000Z

208

Advanced phase change materials and systems for solar passive heating and cooling of residential buildings  

SciTech Connect

During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

Salyer, I.O.; Sircar, A.K.; Dantiki, S.

1988-01-01T23:59:59.000Z

209

Large resource development projects as markets for passive solar technologies. Final report  

DOE Green Energy (OSTI)

A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housing needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.

Roze-Benson, R V

1980-12-01T23:59:59.000Z

210

New and Underutilized Technology: Integrated Daylighting Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Daylighting Systems Integrated Daylighting Systems New and Underutilized Technology: Integrated Daylighting Systems October 4, 2013 - 4:56pm Addthis The following information outlines key deployment considerations for integrated daylighting systems within the Federal sector. Benefits Integrated daylighting systems can be combined with electronic dimmable fluorescent ballasts, photo sensors, and occupancy sensors where appropriate. Network components, workstation controls, and building management options can also be integrated to provide significant savings on applied systems. Application Integrated daylighting systems are applicable in perimeter and interior spaces with daylight exposure via windows and skylights. Key Factors for Deployment Acceptable levels of daylight are required and must be factored into

211

Daylighting Islais Creek : a feasibility study  

E-Print Network (OSTI)

hydrologic systems. Nonetheless, daylighting urban streamssystem, or the costs of flood damage, liability and maintenance, there could be a good case made for daylighting

Jencks, Rosey; Leonardson, Rebecca

2004-01-01T23:59:59.000Z

212

Advanced fenestration systems for improved daylight performance  

E-Print Network (OSTI)

S.E. Selkowitz. Advanced Optical Daylighting Systems: LightAdvanced Fenestration Systems Based on the analysis presented above, we believe that daylighting systems

Selkowitz, S.; Lee, E.S.

1998-01-01T23:59:59.000Z

213

Automated roller shades : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated roller shades Automated roller shades Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Automated roller shades Automated roller shades manage daylight, solar heat gains, view, glare, privacy, and building appearance through changes in shade height. A roller shade consists of a fabric wrapped around a horizontal tube, which contains a tubular motor. The tubular motor rotates when ac- or dc- power is applied to it causing modulation in shade height. The control system can be designed to optimize numerous variables, the most common being control of direct sun. In this application, the shades were controlled to five preset heights that aligned with the architectural features of the façade - i.e., the vision portion of the window wall - so that direct sun penetrated no more than a specified distance from the window wall. The Times Company also requested that the shades control window glare, yet maximize the opportunity for view and daylight admission. Unnecessary up/down movement of the shade was to be minimized. Fabric choices (openness of the weave, color of the fabric facing toward the interior and exterior) were additional considerations in terms of appearance as well as visual comfort and daylighting benefits.

214

Passive solar analysis and design of commercial buildings using DOE-2  

DOE Green Energy (OSTI)

The custom weighting-factor loads calculative method that was implemented in the DOE-2.1 program was refined and fully documented. This method allows direct-gain and night-ventilative-cooling passive systems to be analyzed using DOE-2. A thermal storage wall model for DOE-2 was developed and tested.This model treats vented and unvented storage walls using either masonry or water as the storage medium. It includes the effect of night insulation and selective surfaces. A model for attached sunspaces, atriums, and buffer spaces has also been developed for DOE-2. This model simulates interzone convection (forced or natural), and interzone conduction through massive walls. A case study of Warner Hall at Carnegie-Mellon University in Pittsburgh, Pennsylvania was completed, as part of the DOE Passive Solar Commercial Buildings Program. DOE-2 was used in an analysis of several passive solar and energy conservation retrofit options. The Los Alamos analysis served as a basis for comparison to a more limited (in time and budget) analysis done by the energy consultant for the retrofit project.

Hunn, B.D.

1981-01-01T23:59:59.000Z

215

CALIFORNIA ENERGY Summary Of Daylighting In Schools  

E-Print Network (OSTI)

portions of the tubular daylighting device system. The design process for this project could have been a tube with an interior reflective system. TDDs are effective in bringing daylight into a building to the diffuser's daylight delivery system. With the optical control afforded by the futuregeneration Daylight

216

The New York Times headquarters daylighting mockup: Monitoredperformance of the daylighting control system  

SciTech Connect

A nine-month monitored field study of the performance of automated roller shades and daylighting controls was conducted in a 401 m{sup 2} unoccupied, furnished daylighting mockup. The mockup mimicked the southwest corner of a new 110 km{sub 2} commercial building in New York, New York, where The New York Times will be the major tenant. This paper focuses on evaluating the performance of two daylighting control systems installed in separate areas of an open plan office with 1.2-m high workstation partitions: (1) Area A had 0-10 V dimmable ballasts with an open-loop proportional control system and an automated shade controlled to reduce window glare and increase daylight, and (2) Area B had digital addressable lighting interface (DALI) ballasts with a closed-loop integral reset control system and an automated shade controlled to block direct sun. Daylighting control system performance and lighting energy use were monitored. The daylighting control systems demonstrated very reliable performance after they were commissioned properly. Work plane illuminance levels were maintained above 90% of the maximum fluorescent illuminance level for 99.9{+-}0.5% and 97.9{+-}6.1% of the day on average over the monitored period, respectively, in Areas A and B. Daily lighting energy use savings were significant in both Areas over the equinox-to-equinox period compared to a non-daylit reference case. At 3.35 m from the window, 30% average savings were achieved with a sidelit west-facing condition in Area A while 50-60% were achieved with a bilateral daylit south-facing condition in Area B. At 4.57-9.14 m from the window, 5-10% and 25-40% savings were achieved in Areas A and B, respectively. Average savings for the 7-m deep dimming zone were 20-23% and 52-59% for Areas A and B, respectively, depending on the lighting schedule. The large savings and good reliability can be attributed to the automatic management of the interior shades. The DALI-based system exhibited faulty behavior that remains unexplained, but operational errors are expected to be resolved as DALI products reach full maturity. The building owner received very competitive bids ($30-75 US/DALI ballast) and was able to justify use of the daylighting control system based on operational cost savings and increased amenity. Additional energy savings due to reduced solar and lighting heat gains were not quantified but will add to the total operational cost savings.

Lee, Eleanor S.; Selkowitz, Stephen E.

2006-02-24T23:59:59.000Z

217

Daylight, glazing, and building energy minimization  

SciTech Connect

This paper examines the effects of glazing on thermal loads. Annual heating, cooling, and lighting loads are reported for a window office in a Houston building in which five types of glass were simulated. The glass parameters are U-value, shading coeffient, visible band transmittance, and inside reflectance; therefore, a change in glass directly affected the solar heat gain. Once again, it was assumed that the artificial lights were continuously adjustable, that is, the lights provide the difference between the illumination required (user specified) and that provided by daylight.

Jurovics, S.A.

1982-01-01T23:59:59.000Z

218

Control system analysis for off-peak auxiliary heating of passive solar systems  

DOE Green Energy (OSTI)

A computer simulation method is presented for the design of an electrical auxiliary energy system for passive solar heated structures. The system consists of electrical mats buried in the ground underneath the structure. Energy is stored in the ground during utility off-peak hours and released passively to the heated enclosure. An optimal control strategy is used to determine the system design parameters of depth of mat placement and minimum instaled electrical heating capacity. The optimal control applies combinations of fixed duration energy pulses to the heater, which minimize the room temperature error-squared for each day, assuming advance knowledge of the day's weather. Various realizable control schemes are investigated in an attempt to find a system that approaches the performance of the optimal control system.

Murray, H.S.; Melsa, J.L.; Balcomb, J.D.

1980-01-01T23:59:59.000Z

219

Application of phase-change materials in passive solar systems. Final report  

DOE Green Energy (OSTI)

The Institute of Energy Conversion of the University of Delaware has designed and constructed a modular, hybrid passive solar energy collection and storage unit called the Thermal Wall Panel. The Thermal Wall Panel uses the concept of energy storage in phase change materials combined with direct solar gain. In the winter of 1977-78, the Thermal Wall Panel was tested at Solar One, the Institute's solar house and laboratory. The key results and conclusions from this testing and analysis program include the following: (1) Based on measurements, a Thermal Wall Panel with movable nighttime insulation (R = 6.80) between the storage components and the outside can retain and deliver as heat an average of 45 percent of the sun's energy which falls on it during the day. (2) Based on calculations, a 120 square foot wall can provide about 25 percent of the heating needs of a 1100 square foot house. Analysis indicates that when the Thermal Wall Panel (R = 6.00 nighttime insulation) is combined with other direct gain passive solar energy systems as large, south-facing windows, 56 percent of a home's heating needs can be provided. (3) A Thermal Wall Panel can be installed into a typical home in the Mid-Atlantic Region for an incremental cost of from $6 to $8 per square foot beyond the cost of the normal wall and pay for itself in 5 to 9 years at 1978 energy costs. Also, the Thermal Wall Panel does not require any additional foundation support. (4) A computer model has been developed for the Thermal Wall Panel which shows good agreement with predicted and measured performance. Based on these results, it is recommended that full-scale testing of the system be initiated at multiple sites in the Mid-Atlantic Region.

Sliwkowski, J.

1979-01-01T23:59:59.000Z

220

Antireflection and SiO2 Surface Passivation by Liquid-Phase Chemistry for Efficient Black Silicon Solar Cells: Preprint  

Science Conference Proceedings (OSTI)

We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturing cost compared to vacuum-based antireflection coating. Ag-nanoparticle-assisted black Si etching and post-etching chemical treatment recently developed at NREL enables excellent control over the pore diameter and pore separation. Performance of black Si solar cells, including open-circuit voltage, short-circuit current density, and blue response, has benefited from these improvements. Prior to this study, our black Si solar cells were all passivated by thermal SiO2 produced in tube furnaces. Although this passivation is effective, it is not yet ideal for ultra-low-cost manufacturing. In this study, we report, for the first time, the integration of black Si with a proprietary liquid-phase deposition (LPD) passivation from Natcore Technology. The Natcore LPD forms a layer of solar cells with LPD SiO2 with a spectrum-weighted average reflection lower than 5%, similar to the more costly thermally grown SiO2 approach. However, LPD SiO2 provides somewhat better surface-passivation quality according to the lifetime analysis by the photo-conductivity decay measurement. Moreover, black Si solar cells with LPD SiO2 passivation exhibit higher spectral response at short wavelength compared to those passivated by thermally grown SiO2. With further optimization, the combination of aqueous black Si etching and LPD could provide a pathway for low-cost, high-efficiency crystalline Si solar cells.

Yuan, H. C.; Oh, J.; Zhang, Y.; Kuznetsov, O. A.; Flood, D. J.; Branz, H. M.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Antireflection and SiO2 Surface Passivation by Liquid-Phase Chemistry for Efficient Black Silicon Solar Cells: Preprint  

DOE Green Energy (OSTI)

We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturing cost compared to vacuum-based antireflection coating. Ag-nanoparticle-assisted black Si etching and post-etching chemical treatment recently developed at NREL enables excellent control over the pore diameter and pore separation. Performance of black Si solar cells, including open-circuit voltage, short-circuit current density, and blue response, has benefited from these improvements. Prior to this study, our black Si solar cells were all passivated by thermal SiO2 produced in tube furnaces. Although this passivation is effective, it is not yet ideal for ultra-low-cost manufacturing. In this study, we report, for the first time, the integration of black Si with a proprietary liquid-phase deposition (LPD) passivation from Natcore Technology. The Natcore LPD forms a layer of <10-nm SiO2 on top of the black Si surface in a relatively mild chemical bath at room temperature. We demonstrate black Si solar cells with LPD SiO2 with a spectrum-weighted average reflection lower than 5%, similar to the more costly thermally grown SiO2 approach. However, LPD SiO2 provides somewhat better surface-passivation quality according to the lifetime analysis by the photo-conductivity decay measurement. Moreover, black Si solar cells with LPD SiO2 passivation exhibit higher spectral response at short wavelength compared to those passivated by thermally grown SiO2. With further optimization, the combination of aqueous black Si etching and LPD could provide a pathway for low-cost, high-efficiency crystalline Si solar cells.

Yuan, H. C.; Oh, J.; Zhang, Y.; Kuznetsov, O. A.; Flood, D. J.; Branz, H. M.

2012-06-01T23:59:59.000Z

222

Singapore's Zero-Energy Building's daylight monitoring system  

E-Print Network (OSTI)

Furthermore, advanced daylighting systems such as horizontalKeywords: daylighting, building monitoring system, glazingsystem is presented. Criteria to assess the daylighting

Grobe, Lars

2010-01-01T23:59:59.000Z

223

Passive solar heating of building with attached greenhouse. Final report, August 31, 1979-August 30, 1980  

DOE Green Energy (OSTI)

Research has been conducted on the attached-greenhouse type of passive solar heating system in the north-central region. The thermal performance of attached-greenhouse buildings was analyzed in order to determine the component sizes and configurations which optimize performance. The analytical method is dynamic computer simulation using a thermal network model and actual hourly meteorological and solar radiation data from the north-central region. The project has consisted of a large number of computer simulation runs and resulting performance estimates for certain designs. Conclusions on design guidelines emerge from the results. The overall result of the project is the development of specific design guidelines useful to architects and builders.

Jones, R W

1980-08-01T23:59:59.000Z

224

Passive solar heating of buildings with attached greenhouse. Progress report, November 30, 1979-February 28, 1980  

SciTech Connect

Research is being conducted on the attached-greenhouse type of passive solar heating system in the north-central region. The thermal performance of attached-greenhouse buildings is being analyzed in order to determine the component sizes and configurations which optimize performance. The analytical method is dynamic computer simulation using a thermal network model and actual hourly meteorological and solar radiation data from the north-central region. Progress has consisted of a large number of computer simulation runs resulting in performance estimates for certain designs. Preliminary conclusions on design guidelines are suggested by the results. The overall aim of the project is the development of specific design guidelines useful to architects and builders.

Jones, R.W.

1980-02-01T23:59:59.000Z

225

Shades and Shade Controls : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Shades and Shade Controls Shades and Shade Controls Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Shades and Shade Controls The shades and shade controls scope of work is based upon the philosophy that occupants of commercial office buildings prefer natural light to electric light. The shade system goals for The New York Times Building are: Maximize natural light Maximize occupant connectivity with the outdoors, i.e. external views Intercept sunlight penetration so as to avoid direct solar radiation on the occupants

226

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

used in simulation of daylighting system performance, modelsfor daylighting in green building rating systems, standardsfor daylighting in green building rating systems, standards

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

227

Performance and cost of a hybrid passive/active solar house  

DOE Green Energy (OSTI)

The design, construction, cost, and initial operation of a hybrid passive/active solar-heated house in Los Alamos, New Mexico, is described. The system is dominated by a two-story Trombe wall, constructed of 0.3-m-thick (1-ft) slump block, that can be operated in either a passive or active mode. In the active mode, a blower circulates air through the Trombe wall air space and into a rock bed. A three-zone forced-air distribution system is connected to the rock bed. A separate flat-plate collector array heats a preheater tank for domestic hot water. Operating results of the system, which is being monitored by the Los Alamos Scientific Laboratory (LASL), are reported for just over the first year of operation (1977 and part of 1978). In addition, system cost, occupant observations, and conclusions are presented. Energy consumption records for 1977 indicate that approximately 60% of the net space heating load was provided by solar energy.

Hunn, B.D.

1979-01-01T23:59:59.000Z

228

Demand response : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand response Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications...

229

Procurement specifications : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and...

230

Simulating the Daylight Performance of Complex Fenestration Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance Title Simulating the Daylight Performance of Complex...

231

4.430 Daylighting, Fall 2006  

E-Print Network (OSTI)

This class provides the tools necessary for an efficient integration of daylighting issues in the overall design of a building. The fundamentals of daylighting and electric lighting are introduced and their relevance to ...

Andersen, Marilyne

232

Trichromatic Model of Daylight Variation  

E-Print Network (OSTI)

Visual recognition of colors in outdoor imagery is a difficult task in artificial vision, chiefly because of natural chromatic variation. To accurately predict an object's color, it is necessary to have an accurate model of daylight as a function of spatial, temporal and weather conditions, as well as the object's surface reflectance parameters, and all relevant camera parameters. Preliminary studies indicate that in a scenario involving outdoor robotic vehicles, such color prediction (and consequently, recognition) may be achieved, given reasonably accurate models of all of the above. This paper addresses the first link in the chain of models: building a usable model of daylight. Studies done in the sixties under the International Commission for Illumination Colorometry Committee (ICI/ CIE) to model the shift in natural illumination resulted in fairly accurate models which are still valid, and used as a standard of illumination by daylight. However, these studies are rarely used in ou...

Shashi Buluswar; Bruce Draper

1995-01-01T23:59:59.000Z

233

Passive cooling with solar updraft and evaporative downdraft chimneys. Interim report, June 15, 1984--March 1, 1985  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-12-31T23:59:59.000Z

234

Simple empirical method for estimating the performance of a passive solar heated building of the thermal storage wall type  

DOE Green Energy (OSTI)

Two methods are presented for estimating the annual solar heating performance of a building utilizing a passive thermal storage wall of the Trombe wall or water wall type with or without night insulation and with or without a reflector. The method is accurate to +-3% as compared with hour-by-hour computer simulations.

Balcomb, J.D.; McFarland, R.D.

1978-01-01T23:59:59.000Z

235

Hodges residence: performance of a direct gain passive solar home in Iowa  

DOE Green Energy (OSTI)

Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

Hodges, L.

1980-01-01T23:59:59.000Z

236

Preliminary economic assessment or residential passive solar cooling potential in the United States  

DOE Green Energy (OSTI)

In many areas of the continental United States, residential cooling loads are equal to or greater than energy used for residential space heating. Offsetting part of the cooling load could yield considerable dollar savings to the consumer as well as total energy savings. The physical performances of three passive cooling designs are used to estimate the dollar value of first-year fuel savings (excluding heating benefits) and a maximum affordable design cost. The designs include natural ventilation, forced ventilation, and evaoprative cooling concepts. Because economic performance is primarily governed by the level of electricity prices, dollars savings are greatest in regions that show both good physical performance of the cooling design and high electricity prices. Physical and economic performance summaries are presented in mapped form for 220 solar regions within the continental United States.

Kirschner, C.; Mangeng, C.; Yemans, M.; Roach, F.

1982-01-01T23:59:59.000Z

237

CALIFORNIA ENERGY Daylight and Retail Sales  

E-Print Network (OSTI)

year with an optimized daylighting system. #12;RETAIL AND DAYLIGHTING INTRODUCTION 1 1. INTRODUCTIONCALIFORNIA ENERGY COMMISSION Daylight and Retail Sales TECHNICALREPORT October 2003 500-03-082-A-5 in this report. #12;#12;ACKNOWLEDGEMENTS This report is a part of the Integrated Energy Systems - Productivity

238

The New York Times Headquarters Daylighting Mockup: Monitored Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

The New York Times Headquarters Daylighting Mockup: Monitored Performance The New York Times Headquarters Daylighting Mockup: Monitored Performance of the Daylighting Control System Title The New York Times Headquarters Daylighting Mockup: Monitored Performance of the Daylighting Control System Publication Type Journal Article LBNL Report Number LBNL-56979 Year of Publication 2006 Authors Lee, Eleanor S., and Stephen E. Selkowitz Journal Energy & Buildings Volume 38 Pagination 914-929 Call Number LBNL-56979 Abstract A nine-month monitored field study of the performance of automated roller shades and daylighting controls was conducted in a 401 m2 unoccupied, furnished daylighting mockup. The mockup mimicked the southwest corner of a new 110 km2 commercial building in New York, New York, where The New York Times will be the major tenant. This paper focuses on evaluating the performance of two daylighting control systems installed in separate areas of an open plan office with 1.2-m high workstation partitions: 1) Area A had 0-10 V dimmable ballasts with an open-loop proportional control system and an automated shade controlled to reduce window glare and increase daylight, and 2) Area B had digital addressable lighting interface (DALI) ballasts with a closed-loop integral reset control system and an automated shade controlled to block direct sun. Daylighting control system performance and lighting energy use were monitored. The daylighting control systems demonstrated very reliable performance after they were commissioned properly. Work plane illuminance levels were maintained above 90% of the maximum fluorescent illuminance level for 99.9+/-0.5% and 97.9+/-6.1% of the day on average over the monitored period, respectively, in Areas A and B. Daily lighting energy use savings were significant in both Areas over the equinox-to-equinox period compared to a non-daylit reference case. At 3.35 m from the window, 30% average savings were achieved with a sidelit west-facing condition in Area A while 50-60% were achieved with a bilateral daylit south-facing condition in Area B. At 4.57-9.14 m from the window, 5-10% and 25-40% savings were achieved in Areas A and B, respectively. Average savings for the 7-m deep dimming zone were 20-23% and 52-59% for Areas A and B, respectively, depending on the lighting schedule. The large savings and good reliability can be attributed to the automatic management of the interior shades. The DALI-based system exhibited faulty behavior that remains unexplained, but operational errors are expected to be resolved as DALI products reach full maturity. The building owner received very competitive bids ($30-75 US/DALI ballast) and was able to justify use of the daylighting control system based on operational cost savings and increased amenity. Additional energy savings due to reduced solar and lighting heat gains were not quantified but will add to the total operational cost savings.

239

Passive-solar-heating project for a single-family residence. Final report  

DOE Green Energy (OSTI)

This project was a passive home heating system utilizing solar collectors that are part of the roof structure of a 15' x 30' greenhouse. The design utilized solar air collectors constructed on site that are actually part of the roof of the greenhouse. The flow of air is from the storage to the collectors then back to the storage. The storage bin consists of a 5' x 19' concrete insulated bin built into the floor of the greenhouse. The storage mass was gallon plastic jugs. The plastic jugs did not work properly, so they are being replaced by salt rods. This replacement will be an after the fact project by the owner. The concrete storage bin was insulated with 2'' plastic foam insulation, applied to the 8'' concrete wall. The ducts entering and leaving the storage bin have low voltage (12 volt) electric dampers. A cross flow system was used. The heated air circulates from the collectors to storage via ducts in the walls of the lean-to design. The removal of heat from the storage bin was from end to end via the ducts to the central air system for the house. In addition, the greenhouse is connected to the house with a doorway that can be opened to circulate air into the house, a shuttled exhaust fan 1/3H.P. motor has aided in the circulation of air from the storage bin to the collectors and back.

Starkey, V.J.

1982-05-01T23:59:59.000Z

240

Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance  

E-Print Network (OSTI)

software, windows, daylighting systems, shading systems,daylighting performance of complex fenestration systems (daylighting performance of complex fenestration systems (

Ward, Gregory

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

Incentives Consumer education Utility programs Solar energy in federal facilities Solar energy in state/

Authors, Various

2012-01-01T23:59:59.000Z

242

Daylighting directory 6/1980  

SciTech Connect

A renewed interest in the energy conservation potential of daylighting has generated new research, applications and demonstration activities over the last few years. It is apparent that even those people actively working in the field are frequently not aware of all of the ongoing projects and activities. At the same time, the total national effort to utilize daylighting effectively in buildings on a broad scale is still very small, thus making it important that current activities are crossfertilized. The intent of this directory is to provide current listings of individuals and organizations that are actively engaged in daylighting work and related publications and upcoming events of interest. This directory was compiled from information contained in the survey response forms which were filled out and returned to us over the last few months. Responsibility for the accuracy and completeness of each survey form lies entirely with the respondents. The directory is composed of five parts: (1) Participant Survey Response: contains the survey response forms as submitted to us, listed alphabetically by responding organization; (2) Activity Index: lists individual respondents alphabetically, showing the daylighting activities each has checked. Allows the reader to quickly identify the individuals working in a specific area. Once an individual is identified, turn to the Individual Index to find the page numbers where that individual may be located in other areas of the directory; (3) Individual Index: lists individual respondents alphabetically; (4) Daylighting publications: lists the publications by each respondent (authors listed alphabetically); and (5) Notes of Interest: contains a variety of information on meetings, conferences, new projects and publications, etc. This material was collected from a variety of sources in addition to the survey respondents.

Not Available

1980-06-01T23:59:59.000Z

243

NREL: Learning - Solar Process Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

244

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Daylighting Energy 101: Daylighting Addthis Below is the text version for the Energy 101: Daylighting video. The video opens with "Energy 101: Daylighting." This is followed by various shots of building interiors with many windows and large amounts of natural lighting. Okay, so we all know that windows can provide a great view, right? But if they're placed in the right locations, they can also save you money on your utility bill...and they can help keep you more comfortable at home or work. A montage of building interiors and exteriors appears onscreen, with windows filling the interior spaces with natural light. It's called daylighting, and it takes a simple concept to a new level. Daylighting combines lots of things-everything from the type of window,

245

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

F. Uno, "High Efficiency Solar Panel (HESP)! ', N78 10572,High Efficiency, Long Life Terrestrial Solar Panel", 7 8Ncapabilities, the efficiency of the solar panels, co-

Viswanathan, R.

2011-01-01T23:59:59.000Z

246

The New York Times headquarters daylighting mockup: Monitored performance of the daylighting control system  

E-Print Network (OSTI)

of the daylighting control system E.S. Lee , S.E. Selkowitzof two daylighting control systems installed in separateopen-loop proportional control system and an automated shade

Lee, Eleanor S.; Selkowitz, Stephen E.

2006-01-01T23:59:59.000Z

247

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Daylighting Energy 101: Daylighting Energy 101: Daylighting May 31, 2011 - 6:10pm Addthis Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? Daylighting maximizes the benefits of natural lighting and temperature regulation -- reducing lighting, heating and cooling costs for homeowners and businesses. Daylighting takes a simple concept to a new money-saving level in this edition of Energy 101. Through strategic placement of windows and skylights, daylighting maximizes the benefits of natural lighting and temperature regulation -- reducing lighting, heating and cooling costs for homeowners and businesses. This home energy efficiency strategy takes into account everything from the type of window to placement and interior design to help control how the

248

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Daylighting Energy 101: Daylighting Energy 101: Daylighting May 31, 2011 - 6:10pm Addthis Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? Daylighting maximizes the benefits of natural lighting and temperature regulation -- reducing lighting, heating and cooling costs for homeowners and businesses. Daylighting takes a simple concept to a new money-saving level in this edition of Energy 101. Through strategic placement of windows and skylights, daylighting maximizes the benefits of natural lighting and temperature regulation -- reducing lighting, heating and cooling costs for homeowners and businesses. This home energy efficiency strategy takes into account everything from the type of window to placement and interior design to help control how the

249

Daylighting systems for the Kuwait National Museum  

E-Print Network (OSTI)

Daylight has a deteriorating effect on the museum objects. For this reason, usually museums totally block the daylight. This research is the part of restoration works of Kuwait National Museum (KNM), which was destroyed during the Gulf War in 1990. The purpose of this research is to investigate the lighting performance of the top lighting and side shading devices in KNM. This research will cover daylighting systems for Building 3 and 4 of the KNM. Daylighting systems are evaluated by using the scale model and Desktop RADIANCE, a lighting simulation program. This research will present how to make use of daylight in museum buildings while protecting museum objects from the harmful portion of daylight.

Ahn, Byoungsoo

2003-05-01T23:59:59.000Z

250

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Daylighting Energy 101: Daylighting Energy 101: Daylighting May 31, 2011 - 6:10pm Addthis Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? Daylighting maximizes the benefits of natural lighting and temperature regulation -- reducing lighting, heating and cooling costs for homeowners and businesses. Daylighting takes a simple concept to a new money-saving level in this edition of Energy 101. Through strategic placement of windows and skylights, daylighting maximizes the benefits of natural lighting and temperature regulation -- reducing lighting, heating and cooling costs for homeowners and businesses. This home energy efficiency strategy takes into account everything from the type of window to placement and interior design to help control how the

251

Integrating window pyranometer for beam daylighting measurements in scale-model buildings  

SciTech Connect

An experimental device has been developed to measure the total amount of solar radiation transmitted through glazed apertures in scale-model buildings. The device, an integrating window pyranometer (IWP), has two distinguishing characteristics: (1) it provides a measure of transmitted solar radiation integrated over a representative portion of the model glazing, accounting for nonuniform radiation distributions; and (2) it is spectrally independent. In applications to scale-model daylighting experiments, the IWP, together with photometric sensors mounted in the model, allows the direct measurement of the fraction of transmitted solar gains reaching the work plane as useful illumination, a convenient measure of the daylighting system performance. The IWP has been developed as part of an outdoor experimental facility to perform beam daylighting measurements in scale-model buildings. In this paper, the integrating window pyranometer is described; the results of calibration tests are presented and evaluated; the advantages and limitations of the device are discussed.

Bauman, F.; Place, W.; Thornton, J.; Howard, T.C.

1985-12-01T23:59:59.000Z

252

Multimedia: Energy 101: Daylighting (Text Version)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE Multimedia Printable Version Share this resource Send a link to Multimedia: Energy 101: Daylighting (Text Version) to someone by E-mail Share Multimedia: Energy 101:...

253

DAYLIGHTING DIRECTORY 1/1980  

E-Print Network (OSTI)

PRESENTATIONS ' ~solar Radiation Data, Natural Lighting, andJUROVICS, S.A. "Solar Radiation Data, Natural Lighting, and

,

2012-01-01T23:59:59.000Z

254

Daylight Analysis with Microcomputers for School Buildings in a Hot, Humid Climate  

E-Print Network (OSTI)

Daylighting and other passive energy technologies are critical issues that should be considered in the early stages of building planning and architectural design. Both new design and retrofit of existing buildings benefit greatly by use of microcomputer-generated models, especially as they relate to building studies in zones of extreme climate. The hot, humid environment of Louisiana poses unique problems and calls for creative solutions. The use of microcomputers as analytical tools to develop suggestions for optimizing the amount of energy consumed for lighting and climatic comfort is illustrated. The effective use of daylighting can, as might be expected, produce net energy savings in most school buildings.

Leaver, J.; McQueen, T.

1987-01-01T23:59:59.000Z

255

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Kreider and F. Kreith, "Solar Heating and Cooling". McGraw-and R. L. Field, "Solar Heating of Buildings and DomesticHeat Storage for Solar Heating Systems", N75-17005 (

Viswanathan, R.

2011-01-01T23:59:59.000Z

256

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

R. L. Field, "Solar Heating of Buildings and Domestic HotPullium, "Solar Heating and Cooling In Buildings: Air Force7Z LI I Tl Solar Heating and Cooling in Buildings: DATE: May

Viswanathan, R.

2011-01-01T23:59:59.000Z

257

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

of a Freeze ToLerant Solar Water Heater Using C ross Linkedof a Freeze Tolerant Solar Water Heater Using Crosslinkedof a Freeze- Tolerant Solar Water Heater Using Crosslinked

Viswanathan, R.

2011-01-01T23:59:59.000Z

258

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Applications'! , Sharing the Sun, Solar Technology in theAbsorber " , Sharing the Sun, Solar Technology in the 70's,Design ll , Sharing the Sun, Solar Technology in the 70's K,

Viswanathan, R.

2011-01-01T23:59:59.000Z

259

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

D. E. F. G. H. I. Solar Radiation Sky Properties AtmosphericDEVELOPMENT TASKS A. Solar Radiation B. Sky Properties c.a collector where solar radiation is admitted into the

Authors, Various

2012-01-01T23:59:59.000Z

260

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Ks W" Boer, t1Th.e Solar Spectrum at Typical Clear WeatherDifferent Regions of the Solar Spectrum in Degrading an ABS1) transmit the solar spectrum and reflect the infrared,

Viswanathan, R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Analysis of NOAA Solar/Weather S", N78 24766 (1977). F, C,Boer, t1Th.e Solar Spectrum at Typical Clear Weather Days",FORM The Solar Spectrum at Typical Clear Weather Days N77-

Viswanathan, R.

2011-01-01T23:59:59.000Z

262

DOE Solar Decathlon: 2005 Contests and Scoring - Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

of natural daylighting in their 2002 Solar Decathlon house. Solar Decathlon 2005 Lighting (100 Points) Electric lighting is the third largest consumer of energy in buildings....

263

The Effect of Daylighting Strategies on Building Cooling Loads...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Effect of Daylighting Strategies on Building Cooling Loads and Overall Energy Performance Title The Effect of Daylighting Strategies on Building Cooling Loads and Overall...

264

Daylighting control performance of a thin-film ceramic electrochromic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylighting control performance of a thin-film ceramic electrochromic window: Field study results Title Daylighting control performance of a thin-film ceramic electrochromic...

265

Daylight metrics and energy savings  

SciTech Connect

The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

2009-12-31T23:59:59.000Z

266

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

analyzed for hourly solar/weather data from 29 cities. solar systems. Iden- tify sensors and data inputs (e.g. , weather

Authors, Various

2012-01-01T23:59:59.000Z

267

Not everyone's a scientist - not everyone's a bureaucrat. [Financing and monitoring of passive solar houses in North Carolina  

SciTech Connect

Results are discussed of an effort to finance and monitor passive solar houses in North Carolina, emphasizing mistakes made by homeowners in using solar design features, and discussing education of decision-makers through the example of the monitored homes. (LEW)

Andron, S.R.

1981-01-01T23:59:59.000Z

268

Daylighting performance of offices with controlled shades  

Science Conference Proceedings (OSTI)

Energy conservation in buildings is critical in order to reduce energy consumption and greenhouse gas emissions. This paper presents a dynamic daylighting simulation model to evaluate the combined impact of faade design parameters on the overall ... Keywords: buildings, control, daylighting, energy conservation, simulation

Hui Shen; Athanasios Tzempelikos

2011-07-01T23:59:59.000Z

269

Daylighting Prediction Software: Comparative Analysis and Application  

E-Print Network (OSTI)

Daylighting is a beneficial design strategy since it may provide energy savings and contribute to a more sustainable design. In recent studies, daylighting has also been shown to increase staff and student productivity and to decrease absenteeism. The consulting engineer is often faced with the dilemma of how to design a daylighted building. What tools are available to predict the amount of daylighting? What are the design limitations and parameters? How much time is required? How does the data compare to the real world? The purpose of this paper is to answer these questions and provide useful information for the design of daylighted areas with the assistance of software-based simulation. A survey was made of the available software programs for the calibrated modeling of light scattered in enclosed spaces. These software packages used algorithms based on either total radiosity (flux transfer) computations or physically accurate ray tracing. A summary of this survey along with the selection criteria used in selecting a software program are presented. Radiance, a reverse ray tracing method software package, was chosen for use in the simulations. An existing school was modeled with the Radiance software and predictions of daylighting contributions were compared with actual data taken at the site location. The use of daylighting also requires a highly specialized lighting system. This system incorporates the use of controllable ballasts and lighting sensors to maximize the daylighting contribution to the overall required illumination. Some design criteria for this system is also discussed.

Estes, J. M. Jr.; Schreppler, S.; Newsom, T.

2004-01-01T23:59:59.000Z

270

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylighting Daylighting Energy 101: Daylighting Addthis Description Daylighting-the use of windows or skylights for natural lighting and temperature regulation-is one building strategy that can save money for homeowners and businesses. Highly efficient, strategically placed windows maximize the use of natural daylight in a building, lowering the need for artificial lighting without causing heating or cooling problems. Duration 2:44 Topic Energy Efficiency Heating & Cooling Home Weatherization Home Energy Audits Construction Commercial Lighting Credit Energy Department Video ANNOUNCER: OK, so we all know that windows can provide a great view, right? But if they're placed in the right locations, they can also save you money on your utility bill, and they can help keep you more comfortable

271

Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team NEW: Post-occupancy Evaluation Publications Daylighting The New York Times Headquarters Building This website provides information on a collaboration between The New York Times Company, the Lawrence Berkeley National Laboratory, industry, and three major public funding agencies designed to transform the market for emerging automated window shade systems and daylighting controls so that these types of energy-efficient products become the norm. Project activities included documenting and demonstrating that the technology works and generates energy savings in real world applications, creating a market response so that these systems are available at commodity prices and are cost-effective, making third party performance data available to the public, and providing guidance to support widespread deployment.

272

Application of phase change materials in passive solar systems. Final report, October 1, 1977-November 30, 1978  

DOE Green Energy (OSTI)

A modular, hybrid passive solar energy collection and storage unit called the Thermal Wall Panel was designed and constructed. The Thermal Wall Panel uses the concept of energy storage in phase change materials combined with direct solar gain. Based on measurements, a Thermal Wall Panel with movable night-time insulation (R = 6.80) between the storage components and the outside can retain and deliver as heat an average of 45 percent of the sun's energy which falls on it during the day. Based on calculations, a 120 square foot wall can provide about 25 percent of the heating needs of a 1100 square foot house. Analysis indicates that when the Thermal Wall Panel (R = 6.00 nighttime insulation) is combined with other direct gain passive solar energy systems as large, south-facing windows, 56 percent of a home's heating needs can be provided. A Thermal Wall Panel can be installed into a typical home in the Mid-Atlantic Region for an incremental cost of from $6 to $8 per square foot beyond the cost of the normal wall and pay for itself in 5 to 9 years at 1978 energy costs. Also, the Thermal Wall Panel does not require any additional foundation support. A computer model has been developed for the Thermal Wall Panel which shows good agreement with predicted and measured performance.

Sliwkowski, J.

1979-01-01T23:59:59.000Z

273

Building with passive solar: an application guide for the southern homeowner and builder  

DOE Green Energy (OSTI)

This instructional material was prepared for training workshops for builders and home designers. It includes: fundamental definitions and equations, climate and site studies, building components, passive systems and techniques, and design tools. (MHR)

None

1981-03-01T23:59:59.000Z

274

EVALUATION OF A PROTOTYPE SOLAR AWNING A prototype solar awning has been designed and installed on  

E-Print Network (OSTI)

students and faculty can perform tests and experi- ments on a real solar awning -- daylighting system awning system would meet or exceed the recommended daylight factor levels for most common commercial to evaluate of the performance of this building integrated photovoltaic (BIPV) system. Adding daylighting

Oregon, University of

275

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

General) ro space Medicine Aircraft Propulsion and PowerSpace Sciences (General) Spacecraft Instru:mentation Solar Physics Spacecraft Propulsion

Viswanathan, R.

2011-01-01T23:59:59.000Z

276

Publications : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Publications Technical Publications Post-occupancy Evaluation A post-occupancy monitored evaluation of the dimmable lighting, automated shading, and underfloor air distribution system in The New York Times Building. Eleanor S. Lee, Luis L. Fernandes, Brian Coffey, Andrew McNeil, Robert Clear, Tom Webster, Fred Bauman, Darryl Dickerhoff, David Heinzerling, Tyler Hoyt. LBNL Technical report, January 2013. LBNL-6023E.

277

Excellent Passivation and Low Reflectivity Al2O3/TiO2 Bilayer Coatings for n-Wafer Silicon Solar Cells: Preprint  

DOE Green Energy (OSTI)

A bilayer coating of Al2O3 and TiO2 is used to simultaneously achieve excellent passivation and low reflectivity on p-type silicon. This coating is targeted for achieving high efficiency n-wafer Si solar cells, where both passivation and anti-reflection (AR) are needed at the front-side p-type emitter. It could also be valuable for front-side passivation and AR of rear-emitter and interdigitated back contact p-wafer cells. We achieve high minority carrier lifetimes {approx}1 ms, as well as a nearly 2% decrease in absolute reflectivity, as compared to a standard silicon nitride AR coating.

Lee, B. G.; Skarp, J.; Malinen, V.; Li, S.; Choi, S.; Branz, H. M.

2012-06-01T23:59:59.000Z

278

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Tech Energy 101: Energy Efficient Data Centers Energy 101: Daylighting Solar Smarter Faster Seven Traffic Signals in Two Minutes It Starts with Science... Demoing...

279

4.492 Daylighting, Fall 2004  

E-Print Network (OSTI)

The course focuses on the use and optimization of daylight in buildings and on its complementarity to artificial (electric) lighting, to aim at reducing the building's environmental impact while improving the visual comfort ...

Andersen, Marilyne

280

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to a new level. Daylighting combines lots of things-everything from the type of window, window placement, and interior design to control how sunlight comes in. They all work...

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems  

DOE Green Energy (OSTI)

This paper describes a systems-level design and analysis of a new approach for improving the energy efficiency and affordability of solar energy in buildings, namely, hybrid solar lighting and full-spectrum solar energy systems. By using different portions of the solar spectrum simultaneously for multiple end-use applications in buildings, the proposed system offers unique advantages over other alternatives for using sunlight to displace electricity (conventional topside daylighting and solar technologies). Our preliminary work indicates that hybrid solar lighting, a method of collecting and distributing direct sunlight for lighting purposes, will alleviate many of the problems with passive daylighting systems of today, such as spatial and temporal variability, glare, excess illumination, cost, and energy efficiency. Similarly, our work suggests that the most appropriate use of the visible portion of direct, nondiffuse sunlight from an energy-savings perspective is to displace electric light rather than generate electricity. Early estimates detailed in this paper suggest an anticipated system cost of well under $2.0/Wp and 5-11 {cents}/kWh for displaced and generated electricity in single-story commercial building applications. Based on a number of factors discussed in the paper, including sunlight availability, building use scenarios, time-of-day electric utility rates, cost, and efficacy of the displaced electric lights, the simple payback of this approach in many applications could eventually be well under 5 years.

Muhs, J.D.

2001-06-19T23:59:59.000Z

282

Focus group discussions of daylighting practices  

SciTech Connect

This research was sponsored by the US Department of Energy (DOE) Office of Buildings and Community systems and conducted by Pacific Northwest Laboratory (PNL) as part of an ongoing effort to enhance the commercial use of federally developed technologies. One such technology is the use of daylighting practices in the design of nonresidential buildings. This document is a report of the findings from meetings of focus groups conducted to gain insight into building designers' perceptions and attitudes about daylighting systems.

Roberson, B.F.; Harkreader, S.A.

1988-11-01T23:59:59.000Z

283

Advanced Facades, Daylighting, and Complex Fenestration Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facades, Daylighting, and Facades, Daylighting, and Complex Fenestration Systems Eleanor Lee Lawrence Berkeley National Laboratory eslee@lbl.gov 510-486-4997 April 5, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: In order to reach BTO's aggressive 50% energy savings goal by 2030, innovative façade systems must minimize both lighting and HVAC energy end use consumption more optimally while addressing occupant comfort and amenity requirements.

284

Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort  

E-Print Network (OSTI)

in thermal, daylighting, and control system performanceEC windows and daylighting control systems: energy savingswith a dimmable daylighting control system. Daily lighting

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-01-01T23:59:59.000Z

285

Impact of Fixed Exterior Shading on Daylighting: A Case Study of the David Brower Center  

E-Print Network (OSTI)

Rooms with Daylighting Systems. (Doctoral dissertation).performance of the daylighting control system. Energy andthe daylighting and the radiant ceiling cooling system and

Zelenay, Krystyna

2011-01-01T23:59:59.000Z

286

Delight2 Daylighting Analysis in Energy Plus: Integration and Preliminary User Results  

E-Print Network (OSTI)

A Source Book On Daylighting Systems and Components,the impact of the daylighting system, including interiorthe impact of daylighting systems through the hourly effect

Carroll, William L.; Hitchcock, Robert J.

2005-01-01T23:59:59.000Z

287

Automating the selection of fenestration systems to best meet daylighting performance goals  

E-Print Network (OSTI)

of materials and systems for daylighting, Renewable Energy,of fenestration systems for daylighting is traditionallyof fenestration systems for daylighting. The ability to

Fernandes, Luis; Papamichael, Konstantinos

2003-01-01T23:59:59.000Z

288

Cooling Energy and Cost Savings with Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

289

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

projects such as home heating and cooling is the overall production cost of converting solarcosts do not project a bright future for this method in solar

Viswanathan, R.

2011-01-01T23:59:59.000Z

290

Study on the use of TiO{sub 2} passivation layer to reduce recombination losses in dye sensitized solar cells  

Science Conference Proceedings (OSTI)

A lot of research on various aspects of dye solar cells (DSC) has been carried out in order to improve efficiency. This paper analyzes the utilization of TiO{sub 2} passivation layers of different thicknesses by improving the electron transport properties. Four different thicknesses of passivation layers namely 10, 20, 50 and 100 nm were deposited onto the working electrode using r.f sputtering. The electrodes were assembled into TiO{sub 2} based DSC with active area of 1 cm{sup 2}. The solar performance was investigated using 100 mW/cm{sup 2} of AM 1.5 simulated sunlight from solar simulator. The kinetics of the solar cells was investigated using Electrochemical Impedance Spectroscopy (EIS) measurement and the spectral response was measured using Incident Photon to Electron Conversion (IPCE) measurement system. The highest efficiency was found for DSC with 20 nm passivation layer. DSCs with the passivation layer have open circuit voltage, V{sub OC} increased by 57 mV, their current density, J{sub SC} increased by 0.774 mA cm{sup -2} compared to the one without the passivation layer. The quantum efficiency of the 20 nm passivation layer is the highest, peaking at the wavelength of 534 nm, resulting in the highest performance. All DSCs with the passivation layer recorded higher ratio of R{sub BR}/R{sub T} where R{sub T} is the diffusion resistance of the TiO{sub 2} particles in the mesoscopic layer and R{sub BR} is the recombination resistance of the electron to the electrolyte. This implies that the recombination of the electrolyte I{sup -}{sub 3}/3I{sup -} couple at the substrate/electrolyte interface has been effectively reduced resulting in an enhanced efficiency.

Eskander bin Samsudin, Adel; Mohamed, Norani Muti; Nayan, Nafarizal; Ali, Riyaz Ahmad Mohamed; Shariffuddin, Sharifah Amira Amir; Omar, Salwa [Electrical and Electronics Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Fundamental and Applied Sciences Department, 31750, Tronoh, Universiti Teknologi PETRONAS (Malaysia); Electronic Engineering Department, Electrical and Electronic Engineering Faculty, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia)

2012-09-26T23:59:59.000Z

291

LASL passive program  

DOE Green Energy (OSTI)

Recent accomplishments are outlined on the following tasks: (1) solar load ratio for sunspaces; (2) thermal performance of components and buildings; (3) convective loop test; (4) similarity study of interzone convection; (5) evaluation of phase-change thermal storage; (6) off-peak electrical auxiliary heating; (7) passive solar design handbook; (8) program support to DOE; and (9) passive cooling for residences. (WHK)

Neeper, D.A.

1980-01-01T23:59:59.000Z

292

Tips for Daylighting with Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

These guidelines provide an integrated approach to the cost-effective design of perimeter zones in new commercial buildings. They function as a quick reference for designers through a set of easy steps and rules-of-thumb, emphasizing "how-to" practical details. These guidelines provide an integrated approach to the cost-effective design of perimeter zones in new commercial buildings. They function as a quick reference for designers through a set of easy steps and rules-of-thumb, emphasizing "how-to" practical details. This research was funded by the California Institute for Energy Efficiency (CIEE), a research unit of the University of California. Additional related support was provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Browse the document online Download the document in PDF form To obtain information about (1) this project, (2) updates to this document, or (3) future daylighting tools - or to submit comments about this site - contact Eleanor Lee at eslee@lbl.gov.

293

Technology reviews: Daylighting optical systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends.Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

294

A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS  

E-Print Network (OSTI)

EXAMPLES OF PASSIVE SOLAR HEATING SYSTEMS {CONVECTIVE SPACEbeen supported by the Solar Heating and Cooling Research andinteraction. Passive solar heating systems use elements of

Holtz, Michael J.

2011-01-01T23:59:59.000Z

295

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

296

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

297

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

Cunningham, W.A.; Migon, G.V.

1985-01-01T23:59:59.000Z

298

Bringing simulation to implementation: Presentation of a global approach in the design of passive solar buildings under humid tropical climates  

E-Print Network (OSTI)

In early 1995, a DSM pilot initiative has been launched in the French islands of Guadeloupe and Reunion through a partnership between several public and private partners (the French Public Utility EDF, the University of Reunion Island, low cost housing companies, architects, energy consultants, etc...) to set up standards to improve thermal design of new residential buildings in tropical climates. This partnership led to defining optimized bio-climatic urban planning and architectural designs featuring the use of passive cooling architectural principles (solar shading, natural ventilation) and components, as well as energy efficient systems and technologies. The design and sizing of each architectural component on internal thermal comfort in building has been assessed with a validated thermal and airflow building simulation software (CODYRUN). These technical specifications have been edited in a reference document which has been used to build over 300 new pilot dwellings through the years 1996-1998 in Reunion...

Garde, Franois; Celaire, Robert

2012-01-01T23:59:59.000Z

299

Effective passivation of the low resistivity silicon surface by a rapid thermal oxide/PECVD silicon nitride stack and its application to passivated rear and bifacial Si solar cells  

DOE Green Energy (OSTI)

A novel stack passivation scheme, in which plasma silicon nitride (SiN) is stacked on top of a rapid thermal SiO{sub 2} (RTO) layer, is developed to attain a surface recombination velocity (S) approaching 10 cm/s at the 1.3 {Omega}-cm p-type (100) silicon surface. Such low S is achieved by the stack even when the RTO and SiN films individually yield considerably poorer surface passivation. Critical to achieving low S by the stack is the use of a short, moderate temperature anneal (in this study 730 C for 30 seconds) after film growth and deposition. This anneal is believed to enhance the release and delivery of atomic hydrogen from the SiN film to the Si-SiO{sub 2} interface, thereby reducing the density of interface traps at the surface. Compatibility with this post-deposition anneal makes the stack passivation scheme attractive for cost-effective solar cell production since a similar anneal is required to fire screen-printed contacts. Application of the stack to passivated rear screen-printed solar cells has resulted in V{sub oc}`s of 641 mV and 633 mV on 0.65 {Omega}-cm and 1.3 {Omega}-cm FZ Si substrates, respectively. These V{sub oc} values are roughly 20 mV higher than for cells with untreated, highly recombinative back surfaces. The stack passivation has also been used to form fully screen-printed bifacial solar cells which exhibit rear-illuminated efficiency as high as 11.6% with a single layer AR coating.

Rohatgi, A.; Narasimha, S. [Georgia Inst. of Tech., Atlanta, GA (United States). Univ. Center for Excellence in Photovoltaics Research and Education; Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

300

Industrialized passive: two case studies  

Science Conference Proceedings (OSTI)

Modular homes present unique constraints to the incorporation of passive solar concepts. A series of passive soalr modular designs were developed. Two of the designs developed and slated for construction are described here. In particular those characteristics unique to the interface of passive solar design with modular home technology are discussed.

Levy, M.E.; Winter, S.; Marks, R.; Gardstein, C.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experimental Evaluation of Innovative Wall Daylighting Systems  

E-Print Network (OSTI)

Daylighting offers the potential to save electrical energy and reduce peak demand for lighting, the major consumer of energy in a variety of buildings. However, widespread adoption of daylighting techniques is hampered by the lack of both daylight resource information and simple, reliable methods of testing daylighting designs. To surmount these obstacles, facilities for collecting illuminance data and for testing small-scale and full-size models have been established. These are (1) an extensively instrumented resource measurement station, (2) a sun angle simulator for exploring the geometries of the sun and the building during the early stages of design, (3) a heliodon to allow detailed illuminance and luminance distribution measurements in scale models, and (4) a rotating test building for quantitative and qualitative assessments of full-scale components. The current research efforts have been using these facilities to seek ways of projecting light admitted through walls deep into interior spaces. Sidelighting systems are of interest because the wall is the only available source of daylight in many commercial buildings. Innovative static and dynamic reflector assemblies have been examined and proven effective. Compared with typical sidelighting designs, the systems examined in this study project light deeper and produce more uniform illuminance across the space.

Place, J. W.; Howard, T. C.; Paulos, S.; Chung, K.

1988-01-01T23:59:59.000Z

302

Effect of daylighting on energy consumption and daylight quality in an existing elementary school  

E-Print Network (OSTI)

This research investigates the effects of daylighting in an existing elementary school in College Station, Texas. The conclusions are generalizable to similar school designs in hot and humid climates. This study focuses on the trends observed in the building??s heating, cooling, and lighting energy consumption due to daylighting, and the overall effect on total energy consumption. Skylights with 1% to 10% glazing surface to floor area and clerestories from 2 ft to 8 ft glazing height were analyzed to formulate balanced daylighting designs that could provide for decreased electricity and gas energy consumption and increased daylight illuminance levels and energy cost savings. Classroom and Library areas inside the case study school building were analyzed using walk-throughs and daylight factor measurements to understand existing lighting conditions and the potential for daylighting. Physical scale models of the study spaces with and without daylighting alternatives were built for daylight factor and daylight penetration analysis. Computer simulation models were created for the base case and all proposed daylighting designs for building energy performance evaluation using the DOE-2 building energy simulation program. Daylight factors from the actual spaces, physical model measurements, and computer simulation outputs were studied for trendsin interior daylight illuminance levels. Annual energy consumption analyses were performed using DOE-2 and involved heating, cooling, and electrical energy use comparisons of all proposed designs with the base case. One design each from the skylight and clerestory cases, and an overall design based upon the performance criteria are proposed for the existing school building. The building energy analyses suggested that a considerable reduction in artificial lighting and total electricity use could be achieved through proper sizing of skylights and clerestories. Heating energy use stayed almost constant in all cases. Considering all different trends in energy use, all the proposed cases perform better than the base case in terms of total energy savings. The spaces analyzed constituted 15% of total school area, and projected savings would be much higher if daylighting could be applied to the entire school building.

Atre, Umesh Vinayak

2003-05-01T23:59:59.000Z

303

Performance modeling of daylight integrated photosensor-controlled lighting systems  

Science Conference Proceedings (OSTI)

Some building energy codes now require the incorporation of daylight into buildings and automatic photosensor-controlled switching or dimming of the electric lighting system in areas that receive daylight. This paper describes enhancements to the open-source ...

Richard G. Mistrick; Craig A. Casey

2011-12-01T23:59:59.000Z

304

Inferring Architectural Designs from Physical Sketches: Application to Daylighting Analysis  

E-Print Network (OSTI)

a daylighting and photosensor control system. The program has two main sections: a Design Tool followed ......................................................................................19 5.2 Daylighting Results............................................................47 Test Classroom #7 - Vary Control System Type - Sliding vs. Constant Setpoint .......47 Appendix C

Salama, Khaled

305

AEDG Implementation Recommendations: Daylighting Controls | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls Controls The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on expanded recommendations for daylighting controls; photo sensor placement; calibration and commissioning; daylight levels. Publication Date: Wednesday, May 13, 2009 air_daylighting_controls.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer

306

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-01-01T23:59:59.000Z

307

Inorganic compounds for passive solar energy storage. Solid-state dehydration materials and high specific heat materials. Progress report  

DOE Green Energy (OSTI)

Two classes of hydrated inorganic salts have been studied to assess their potential as materials for passive solar energy storage. The materials are part of the quaternary system CaO-Al/sub 2/O/sub 3/-SO/sub 3/-H/sub 2/O and related chemical systems, and the two classes are typified by ettringite, a trisubstituted salt, and Friedel's salt, a monosubstituted salt. The trisubstituted salts were studied for their possible application in latent heat storage, utilizing a low-temperature dehydration reaction, and both classes were studies for their application in sensible heat storage. In order to assess their potential for energy storage, the salts have been synthesized, characterized by several analytical techniques, and thermal properties measured. The dehydration data of that the trisubstituted salts vary somewhat with chemical composition, with the temperature of the onset of dehydration ranging from 6/sup 0/C to 33/sup 0/C, and enthalpy changes on dehydration ranging from 60 to 200 cal/g. Heat capacity is less variable with composition; values for the trisubstituted phases are 30 cal/g//sup 0/C and for the monosubstituted phases between 0.23 and 0.28 cal/g//sup 0/C. Preliminary experiments indicate that the dehydration is reversible, and suggest that the materials might have additional potential as solar desiccant materials. These thermal data demonstrate the trisubstituted salts have potential as latent heat storage materials, and that both classes of salts have potential as sensible heat storage materials.

Struble, L.J.; Brown, P.W.

1986-04-01T23:59:59.000Z

308

Well-Passivated a-Si:H Back Contacts for Double-Heterojunction Silicon Solar Cells: Preprint  

DOE Green Energy (OSTI)

We have developed hydrogenated amorphous silicon (a Si:H) back contacts to both p- and n-type silicon wafers, and employed them in double-heterojunction solar cells. These contacts are deposited entirely at low temperature (<250 C) and replace the standard diffused or alloyed back-surface-field contacts used in single-heterojunction (front-emitter only) cells. High-quality back contacts require excellent surface passivation, indicated by a low surface recombination velocity of minority-carriers (S) or a high open-circuit voltage (Voc). The back contact must also provide good conduction for majority carriers to the external circuit, as indicated by a high light I-V fill factor. We use hot-wire chemical vapor deposition (HWCVD) to grow a-Si:H layers for both the front emitters and back contacts. Our improved a-Si:H back contacts contribute to our recent achievement of a confirmed 18.2% efficiency in double-heterojunction silicon solar cells on p type textured silicon wafers.

Page, M. R.; Iwaniczko, E.; Xu, Y.; Wang, Q.; Yan, Y.; Roybal, L.; Branz, H. M.; Wang, T. H.

2006-05-01T23:59:59.000Z

309

Back-side hydrogenation technique for defect passivation in silicon solar cells  

DOE Patents (OSTI)

A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts.

Sopori, Bhushan L. (Denver, CO)

1994-01-01T23:59:59.000Z

310

Back-side hydrogenation technique for defect passivation in silicon solar cells  

DOE Patents (OSTI)

A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts. 3 figures.

Sopori, B.L.

1994-04-19T23:59:59.000Z

311

Passive thermosyphon solar heating and cooling module with supplementary heating. Quarterly report  

DOE Green Energy (OSTI)

This report is a collection of three quarterly reports from Sigma Research, Inc., covering progress and status from January through September 1977. Sigma Research is developing and delivering three heat exchangers for use in a solar heating and cooling system for installation into single-family dwellings. Each exchanger consists of one heating and cooling module and one submersed electric water heating element.

Not Available

1977-10-01T23:59:59.000Z

312

The daylight blocking optical stereo see-through HMD  

Science Conference Proceedings (OSTI)

In this paper we present an innovative daylight blocking optical stereo see-through HMD. Its outstanding capability is to pixelwise block incident daylight before super-imposing virtual content on the real scene. By doing so the device allows to seamlessly ... Keywords: augmented reality, daylight blocking, head mounted displays, interaction, mixed reality, mobility, virtual reality

Pedro Santos; Thomas Gierlinger; Oliver Machui; Andr Stork

2008-08-01T23:59:59.000Z

313

A Spatially Augmented Reality Sketching Interface for Architectural Daylighting Design  

E-Print Network (OSTI)

tool based on this rendering method. Our interactive tangible daylighting design system can be used by novice or experienced designers who need not be experts in daylighting technology or advanced graphical heliodon system [42], [43] that complements modern desktop architectural daylighting design software tools

Linhardt, Robert J.

314

Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging  

E-Print Network (OSTI)

of the daylighting system in The New York Times Headquarters.3 DALI continues to mature as a technology. Thus, there is a need for an advanced daylight sensor that can reap the benefits and flexibility for a given amount of time, the system goes to standby mode where daylight dimming is not operational. Normal

Salvaggio, Carl

315

Edward S. Curtis, 1905. The CFS Daylighting Wizard  

E-Print Network (OSTI)

Systems (CFS), as part of daylighting strategies in buildings. This is at the present a difficult task which a full analysis of the luminous characteristics and performance of different Advanced Daylighting' option is made according to the desired approximation depending from the specific Advanced Daylighting

316

First Demonstration of Surface Passivation in Dye-Sensitized TiO2 Solar Cells by an Additive in the Electrolyte  

DOE Green Energy (OSTI)

The composition of the electrolyte is known to greatly influence the performance of dye-sensitized solar cells. It has been speculated that some components of the electrolyte passivate the TiO2 surface against recombination; however, this has never been confirmed experimentally. We hereby present the first case of passivation of the TiO2 surface against recombination by an additive in the electrolyte. Even though the additive also causes a downward movement of the TiO2 bands, suppression of recombination prevails and an overall improvement in open-circuit photovoltage is observed. This work was conducted in collaboration with the DOE Office of Science program.

Kopidakis, N.; Neale, N. R.; van de Lagemaat, J.; Frank, A. J.

2005-01-01T23:59:59.000Z

317

Energy 101: Concentrating Solar Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Energy Efficient Data Centers Energy 101: Daylighting Solar Smarter Faster Seven Traffic Signals in Two Minutes It Starts with Science... Demoing the Modified TALON...

318

Passive and low energy research and development: a global view  

DOE Green Energy (OSTI)

Passive and low energy applications in buildings have become a topic of worldwide interest within the last few years. It has now been demonstrated very clearly that indoor comfort can be maintained with an expenditure of only 10 to 20% of the energy often required by modern buildings. This is accomplished through a combination of conservation measures to minimize the load, passive use of solar energy for heating, natural cooling, and daylighting. The major research emphasis has been on devising mathematical models to characterize heat flow within buildings, on the validation of these models by comparison with test results, and on the subsequent use of the models to investigate the influence of both design parameters and weather on system performance. Design guidelines have been developed, and simplified methods of analysis have been promulgated. Performance has been monitored in test modules, test buildings, and many residential and commercial buildings. The results both confirm good performance and establish the accuracy of model predictions. A significant change in the research picture has been seen in the last 4 years; whereas the major effort was originally in the United States, research is now being conducted in many countries throughout the world as many people have realized that passive and low energy methods are appropriate in virtually every climate and are well suited to economic, convenient, and reliable building construction and operation.

Balcomb, J.D.

1984-01-01T23:59:59.000Z

319

Thermal control system and method for a passive solar storage wall  

DOE Patents (OSTI)

A system and method are provided for controlling the storing and release of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, J.K.E.

1981-07-10T23:59:59.000Z

320

Thermal control system and method for a passive solar storage wall  

DOE Patents (OSTI)

The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, Joseph K. E. (Westminister, CO)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Utilizing Daylighting Controls in a Manufacturing Facility  

E-Print Network (OSTI)

Opportunities exist to reduce artificial lighting in manufacturing facilities which have skylights and/or fenestration that provide sufficient quantities of daylight to the work space. Using photometric sensors to measure the illuminance in the space, artificial lights can be automatically switched off during periods when sufficient daylight is available. Daylighting controls used in commercial buildings often use dimmable ballasts with fluorescent lights. Most fluorescent lighting used in manufacturing facilities use high output ballasts which are non-dimmable. The preferred method for reducing artificial lighting output is to switch the lamps off. For multi-lamp fixtures such as six-lamp Super T8s, ballast/lamp configurations are either 2-4 or 3-3, thus giving rise to various stages of lighting reduction. This paper examines these lighting control strategies for a 90,000 square foot manufacturing facility in Iowa. Using the EnergyPlus building energy simulation code, annual lighting energy savings associated with utilization of daylighting were computed for the building. Results showed that the 2- 4 switching control strategy provided better energy reduction opportunity compared to 3-3 switching control.

Shrestha, S. S.; Maxwell, G. M.

2009-05-01T23:59:59.000Z

322

Solar radiation data manual for buildings  

DOE Green Energy (OSTI)

Architects and engineers use solar resource information to help design passive solar and daylighting features for buildings. Solar resource information includes data on how much solar radiation and illuminance are available for different window orientations, and how they vary. This manual provides solar radiation and illuminance values for a horizontal window and four vertical windows (facing north, east, south, and west) for 239 stations in the United States and its territories. The solar radiation values are monthly and yearly averages for the period of 1961--1990. Included are values showing the solar radiation incident on the window and the amount transmitted into the living space, with and without exterior shading of the window. Illuminance values are presented r average dismal profiles for 4 months of the year. In addition to the solar radiation and illuminance data, this manual contains tables listing climatic condition such as average temperature, average daily minimum and maximum temperature, record minimum and maxi mum temperature, average heating and cooling degree days, average humidity ratio, average wind speed, an average clearness index. The solar radiation, illuminance, and climatic data a presented in tables. Data for each station are presented on a single page, and the pages are arranged alphabetically by the state or territory two-letter abbreviation. Within a state or territory, the pages are arranged alp betically by city or island.

Marion, W.; Wilcox, S.

1995-09-01T23:59:59.000Z

323

Assessing the Feasibility of Creek Daylighting in San Francisco, Part I: A Synthesis of Lessons Learned from Existing Urban Daylighting Projects  

E-Print Network (OSTI)

systems, both have significant experience with urban stream daylighting, andDaylighting Projects Current City City Area Popu- Sewer Systemsystems could help San Francisco develop its own stream daylighting

Smith, Brooke Ray

2007-01-01T23:59:59.000Z

324

Evaluation of Lightshelf Daylighting Systems for Office Buildings in Hot Climates  

E-Print Network (OSTI)

This paper presents part of an on-going research project in the College of Architecture at Texas A&M University. This research investigates how lightshelf daylighting delivery systems can manipulate sunlight and daylight both in terms of their light and heat by shading view apertures below the shelf to reduce solar heat gain and glare and by reflecting light deep into the space through the daylight aperture above the shelf. It also investigates how to provide view with good interior lighting in terms of light levels, distribution, and glare. Evaluation of these systems are based on two different experiments. The first uses scale-models for daylighting evaluation. Methodology of the research is presented as well as results and evaluation for part of the first experiment. The second experiment will use computer program simulations for energy evaluation that include reducing lighting and cooling loads and shaving peak loads, especially, when used with selective low-e glazing for office buildings in hot climates.

Abdulmohsen, A.; Boyer, L. L.; Degelman, L. O.

1994-01-01T23:59:59.000Z

325

Monitored Energy Performance of Electrochromic Windows Controlledfor Daylight and Visual Comfort  

SciTech Connect

A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10 {+-} 15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0 {+-} 3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44 {+-} 11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-09-23T23:59:59.000Z

326

Design calculation procedure for passive solar houses at Navy installations in regions with cold climate. Volume I. Preliminary report, April 1980-September 1981  

SciTech Connect

A 'worksheet' approach is used in that the user may work through an example passive solar design by following the text in the report. Included are tables for heating degree days, solar heat gains, building R factors, orientation factors, roof overhang designs, etc. Performance is calculated on a monthly basis. The reports are presented for five geographical regions with content and text format similar, differing only in the appropriate regional factors. Appropriate designs are given for Navy installations in regions with cold climate.

Lumsdaine, M.; Lumsdaine, E.

1981-10-01T23:59:59.000Z

327

Solar Energy Vol. 72, No. 5, pp. 385395, 2002 2002 Published by Elsevier Science Ltd  

E-Print Network (OSTI)

.elsevier.com/locate/solener DYNAMIC ANNUAL DAYLIGHT SIMULATIONS BASED ON ONE-HOUR AND ONE-MINUTE MEANS OF IRRADIANCE DATA for Solar Energy Systems ISE, Heidenhofstra?e 2, 79110 Freiburg, Germany **Institute for Research the influence of the short-term dynamics of daylight on simulation-based predictions of the annual daylight

Timmer, Jens

328

The Texas Solar D House  

E-Print Network (OSTI)

The Solar Decathlon provided a national forum for competition among fourteen university student teams, each of which designed, built, and operated a totally solar-powered home with a home office and their transportation needs using a solar-charged vehicle. The competition took place on the National Mall in Washington D.C., where each house was constructed and operated from September 18 to October 10, 2002. The competition consisted of ten contests focusing on energy production, energy-efficiency, design, thermal comfort, refrigeration, lighting, communication and transportation Professor Michael Garrison of the School of Architecture directed the University of Texas at Austin (UT) Solar Decathlon team along with Pliny Fisk, codirector of the non-profit Center for Maximum Potential Building Systems in Austin, Texas. The graduate student team developed a design that features an open building system using a reusable kit of parts that sits lightly on the land and forms the superstructure around a mobile utility environment. Our investigations suggest that progressive technologies offer solutions to the serious emerging challenges of energy efficiency and sustainable development and thereby become a strong design shaping force. These progressive technologies: photovoltaic (PV) power, passive solar heating, daylighting, natural ventilation, and solar hot water heating were integrated with concepts of affordability and energy conservation to help promote an ideology of sustainable architecture.

Garrison, M.

2004-01-01T23:59:59.000Z

329

Sereno Solar | Open Energy Information  

Open Energy Info (EERE)

Sereno Solar Jump to: navigation, search Name Sereno Solar Place Monte Sereno, California Sector Solar Product Has developed a solar passive water heating panel to be installed...

330

Advanced fenestration systems for improved daylight performance  

Science Conference Proceedings (OSTI)

The use of daylight to replace or supplement electric lighting in commercial buildings can result in significant energy and demand savings. High performance fenestration systems area necessary, but not sufficient, element of any successful daylighting design that reduces lighting energy use. However, these savings may be reduced if the fenestration systems impose adverse thermal loads. In this paper, we review the state of the art of several advanced fenestration systems which are designed to maximize the energy-saving potential of daylighting, while improving comfort and visual performance at an "affordable" cost. We first review the key performance issues that successful fenestration systems must address, and then review several classes of fenestration systems intended to meet those performance needs. The systems are reviewed in two categories: static and dynamic. Static systems include not only glazings, such as spectrally-selective and holographic glazings, but specialized designs of light-shelves and light-pipes, while dynamic systems cover automatically-operated Venetian blinds and electrochromic glazings. We include a discussion of the research directions in this area, and how these efforts might lead to static and dynamic hardware and system solutions that fulfill the multiple roles that these systems must play in terms of energy efficiency, comfort, visual performance, health, and amenity in future buildings.

Lee, E.S.; Selkowitz, S.

1998-03-01T23:59:59.000Z

331

Passive retrofits for Navy housing  

DOE Green Energy (OSTI)

A project to assess and initiate passive solar energy retrofits to US Navy family housing is described. The current data base for Navy housing (ECOP), and its enhancement for passive solar purposes options proposed for Navy housing are explained. The analysis goals and methods to evaluate the retrofits are discussed. An educational package to explain the retrofits is described.

Hibbert, R.; Miles, C.; Jones, R.; Peck, C.; Anderson, J.; Jacobson, V.; Dale, A.M.

1985-01-01T23:59:59.000Z

332

DOE Solar Decathlon: Solar Decathlon Juries  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Decathlon Juries Solar Decathlon Juries The U.S. Department of Energy Solar Decathlon 2011 included several contests that relied on jurors to determine their results. These jurors served on the contest juries for Solar Decathlon 2011. Contest Jurors Architecture Photo of Paul Hutton. Paul Hutton Paul Hutton is founder and principal at Hutton Architecture Studio in Denver, Colorado. He presented research at the First International Daylighting Conference in 1983 and has been developing expertise in the integration of electric lighting and daylighting ever since. Paul teaches the Daylighting course at the University of Colorado College of Architecture and has been heavily involved with administration of the Governor's Energy Office High-Performance Building Program. Paul is a board member of the American Institute of Architect's Committee on Architecture for Education, for which he plans conferences and helps direct the activities of the 7,000-member Knowledge Community.

333

Daylight performance of a microstructured prismatic window film...  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley National Laboratory, Mailstop 90-3111, 1 Cyclotron Road, Berkeley, CA 94720 USA Summary Daylight redirecting systems with vertical windows have the potential to...

334

Daylighting Window Film Shows Potential to Significantly Reduce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylighting Window Film Shows Potential to Significantly Reduce Lighting Energy Use in Buildings Outdoor view of the windows testbed facility. Indoor view showing how sunlight is...

335

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsoft Vista and Windows 7 Operating System Issues Last update:071612 12:38 PM The LBNL Windows & Daylighting suite of software programs (WINDOW, THERM, Optics) are installed...

336

Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana  

E-Print Network (OSTI)

R. and H. Wolff. In press. Does Extending Daylight SavingCSEM WP 179 Does Daylight Saving Time Save Energy? Evidence94720-5180 www.ucei.org Does Daylight Saving Time Save

Kotchen, Matthew J; Grant, Laura E.

2008-01-01T23:59:59.000Z

337

Analysis of the California Solar Resource--Volume 3: Appendices  

E-Print Network (OSTI)

fuel) they can obtain. Solar heating appears economicallysystems designing passive solar heating and cooling systemssystems f) passive solar heating and cooling systems B)

erdahl, P.

2011-01-01T23:59:59.000Z

338

Combining daylighting, personal controls, and load shedding offers  

E-Print Network (OSTI)

systems can enhance occupant comfort and improve organizational productivity. However, even with advances lighting system to respond to available daylight and demand response control · Allows building occupantsCombining daylighting, personal controls, and load shedding offers enormous potential for reducing

339

Heating/daylighting prototype development. Phase I, Passive and Hybrid Solar Manufactured Building Project. Interim report and project status report No. 1, 1 October 1979-29 February 1980  

DOE Green Energy (OSTI)

Climatological data, both representative (typical) and extreme conditions, relevant to building energy use in Grandview, Missouri are presented. The energy-related characteristics of a particular building and its use are merged with ambient weather conditions. The graphs depict daily fluctuations in the major categories of building heating/cooling load for the experimental building (Roof Runner facility) at Butler Research Center. Data input include hourly weather and building occupancy schedules, the geometry and fixed thermal characteristics (component R-values, heat capacities, etc.) of the prototype structure, and variable conditions (status of moveable insulating shutters, HVAC operating modes, etc.). The prototype systems to be incorporated in the new Roof Runner building are shown. Both warehouse (no ceiling) and office (suspended ceiling) system types are included. The diagrams conceptually depict the heat flows in several representative operating modes, sampling the wide variety of operating conditions which will be evaluated during the testing phase of this project. Cost estimates for the designs selected for construction are provided. (MHR)

Snyder, M.; Fraker, H.; Lindsey, L.; Braham, W.; Hallagan, W.; Huffman, J.

1980-03-31T23:59:59.000Z

340

Test building instrumentation cooperative agreement: heating/daylighting prototype development. Phase II. Passive and hybrid solar manufactured building project. Project status report No. 2, April 16, 1980-March 16, 1981  

DOE Green Energy (OSTI)

Progress is reported on the test building instrumentation and problems encountered are described. An instrumentation trip report is presented dealing with installation of data acquisition systems, roof and roll runner building. (MCW)

Lindsey, L.L.; Snyder, M.K.

1981-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lighting and Daylighting Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services July 29, 2012 - 5:06pm Addthis Lighting and Daylighting Products and Services Use the following links to get product information and locate professional services for lighting and daylighting. Product Information Advanced Lighting Package ENERGY STAR® Information on the ENERGY STAR Advanced Lighting Project, which allows homeowners to upgrade their light fixtures to more energy efficient products. Energy-efficient Lights ENERGY STAR® Information on the benefits of ENERGY STAR qualified light bulbs. Fixtures Guide ENERGY STAR® Examples and pictures of ENERGY STAR qualified light fixtures. How to Select Residential LED Under-cabinet Lighting (PDF) Alliance for Solid-State Illumination Systems and Technologies

342

Lighting and Daylighting Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services July 29, 2012 - 5:06pm Addthis Lighting and Daylighting Products and Services Use the following links to get product information and locate professional services for lighting and daylighting. Product Information Advanced Lighting Package ENERGY STAR® Information on the ENERGY STAR Advanced Lighting Project, which allows homeowners to upgrade their light fixtures to more energy efficient products. Energy-efficient Lights ENERGY STAR® Information on the benefits of ENERGY STAR qualified light bulbs. Fixtures Guide ENERGY STAR® Examples and pictures of ENERGY STAR qualified light fixtures. How to Select Residential LED Under-cabinet Lighting (PDF) Alliance for Solid-State Illumination Systems and Technologies

343

Daylighting, dimming, and the electricity crisis in California  

SciTech Connect

Dimming controls for electric lighting have been one of the mainstays of the effort to use daylighting to reduce annual lighting energy consumption. The coincidence of daylighting with electric utility peak demand makes daylighting controls an effective strategy for reducing commercial building peak electric loads. During times of energy shortage, there is a greatly increased need to reduce electricity use during peak periods, both to ease the burden on electricity providers and to control the operating costs of buildings. The paper presents a typical commercial building electric demand profile during summer, and shows how daylighting-linked lighting controls and load shedding techniques can reduce lighting at precisely those times when electricity is most expensive. We look at the importance of dimming for increasing the reliability of the electricity grid in California and other states, as well as examine the potential cost-effectiveness of widespread use of daylighting to save energy and reduce monthly electricity bills.

Rubinstein, Francis; Neils, Danielle; Colak, Nesrin

2001-09-17T23:59:59.000Z

344

Daylighting in schools: Energy costs reduced, student performance improved  

Science Conference Proceedings (OSTI)

Ordinarily, architectural-engineering firms are only indirectly concerned with psychological and physical benefits to the occupants of the buildings they design. However, a firm in North Carolina, Innovative Design, is not ordinary. Their use of daylighting in schools yields considerable economic benefits: energy costs reduced up to 64%, cooling and electrical equipment costs reduced, long-term mechanical and lighting equipment maintenance costs reduced. But equally impressive are the benefits of daylighting on student performance. Students in schools using daylighting have higher achievement scores in reading and math tests. Further, as shown in a related study, because of additional vitamin D received by students via daylighting, they will have less dental decay--and grow taller. In the two performance reports which follow, authors Nicklas and Bailey analyze specific win-win benefits of daylighting. Their findings are startling.

Nicklas, M.H.; Bailey, G.B. [Innovative Design, Raleigh, NC (United States)

1997-11-01T23:59:59.000Z

345

Does Daylight Savings Time Affect Traffic Accidents?  

E-Print Network (OSTI)

This paper studies the effect of changes in accident pattern due to Daylight Savings Time (DST). The extension of the DST in 2007 provides a natural experiment to determine whether the number of traffic accidents is affected by shifts in hours of daylight using the year as control group. Using data on traffic accidents in Texas based on crash reports provided by the Texas Transportation Institute, and a difference in differences technique, this study creates a regression model to determine how significant this factor is in affecting traffic accident patterns as observed in the data. Results show that DST has no statistically significant effect on traffic accidents of all categories including (but not limited to) highway, non-highway, and accidents, accidents with injuries and no injuries, and accidents by drivers of all age-groups. This implies that the federal governments policy of DST (and its extension) has no costs incurred by a rise in motor vehicle crashes when it gets dark early.

Deen, Sophia 1988-

2012-05-01T23:59:59.000Z

346

Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems  

Science Conference Proceedings (OSTI)

Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of less than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)

Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

347

Principles of Passive House  

NLE Websites -- All DOE Office Websites (Extended Search)

Principles of Passive House Principles of Passive House Speaker(s): Wolfgang Feist Date: November 1, 2010 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Alan Meier The Passive House ("Passivhaus") concept is a rigorous, voluntary energy performance standard for buildings that reduces heating requirements by up to 90% and overall energy use by up to 80% over standard construction. Developed in Germany in the early 1990s and drawing on Super-insulated and Passive Solar ideas from North America and "Low Energy" European building standards, the concept of a building that could be practically constructed to maintain a comfortable interior climate without conventional heating or cooling systems was devised, tested and proven. The Passive House remains comfortable without large "active"

348

Passive research and practice  

DOE Green Energy (OSTI)

Passive-solar applications in buildings are described and examples are given to illustrate how research in the field has been approached. The major emphasis of the research has been on devising mathematical models to characterize heat flow within buildings, on the validation of these models by comparison with test results, and on the subsequent use of the models to investigate the influence of both various design parameters and the weather on system performance. Results from both test modules and monitored buildings are given. Simulation analysis, the development of simplified methods, and systems analysis are outlined. Passive-solar practice is described and the key elements that have led to successful passive-solar applications are discussed.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

349

Dimas Solar | Open Energy Information  

Open Energy Info (EERE)

search Name Dimas Solar Place Argos, Greece Sector Solar Product Makes solar passive systems, particularly collectors and absorbers. Coordinates 41.23725, -86.245919...

350

Passivhus Norden 2008 1st Nordic passive house conference  

E-Print Network (OSTI)

-Efficiency Heat Pump Water Heater System for Apartment Buildings of Passive House Standard...........57 SESSION 3 for the conference is passive houses and: zero emission, energy scenarios, architecture, solar- and bio energy of architecturally optimised solar roofs

Hansen, René Rydhof

351

An interactive performancebased expert system for daylighting in architectural design  

E-Print Network (OSTI)

ABSTRACT: Architects are increasingly using digital tools during the design process, particularly as they approach complex problems such as designing for successful daylighting performance. However, while simulation tools may provide the designer with valuable information, they do not necessarily guide the user towards design changes which will improve performance. This paper proposes an interactive, goal-based expert system for daylighting design, intended for use during the early design phase. The expert system consists of two major components: a daylighting knowledge-base which contains information regarding the effects of a variety of design conditions on resultant daylighting performance, and a fuzzy rule-based decision-making logic which is used to determine those design changes most likely to improve performance for a given design. The system gives the user the ability to input an initial model and a set of daylighting performance goals in the form of illuminance and daylighting-specific glare metrics. The system acts as a virtual daylighting consultant, guiding the user towards improved performance while maintaining the integrity of the original design and of the design process itself.

Jaime M. L. Gagne; Marilyne Andersen; Leslie K. Norford

2011-01-01T23:59:59.000Z

352

CERTIFICATE OF ACCEPTANCE LTG-3A Automatic Daylighting Control Acceptance Document (Page 1 of 1)  

E-Print Network (OSTI)

for buildings with > 5 daylight control systems, sample group glazing must be the same orientation) Control-meter or amp-meter measurement Applicable Control SystemComplete all tests on pages 5 & 6 (No Daylight Test, Full Daylight Test, and Partial Daylight Test) and fill out Pass/Fail section on Page 6 A B C System

353

Reduce Threshold for Toplit Daylighting Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting analysis for proposed Supporting analysis for proposed changes to the commercial provisions of the 2012 IECC: Reduce Threshold for Toplit Daylighting Area R Hart R Athalye Pacific Northwest National Laboratory December 2012 2 Proposal Description This proposal modifies Section C402.3.2 of the 2012 IECC for the 2015 version. It reduces the area threshold for skylight daylit zones from 10,000 square feet to 2,000 square feet. It maintains 15 foot ceiling height requirement and the exception for climate zones 6 through 8. Energy Impact Based on average national energy prices 1 of $0.99 per therm and $0.1032 per kWh, the net savings are calculated with EnergyPlus(tm) 2 from whole building energy savings that result from reduced lighting, and depending on climate zone, increased or decreased heating and cooling.

354

Daylighting performance of electrochromic glazing system  

NLE Websites -- All DOE Office Websites (Extended Search)

52E 52E Lighting energy savings potential of split- pane electrochromic windows controlled for daylighting with visual comfort L.L. Fernandes Lawrence Berkeley National Laboratory E.S. Lee Lawrence Berkeley National Laboratory G. Ward Anyhere Software Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division February 2013 Published in Energy and Buildings 61 (2013) 8-20 10.1016/j.enbuild.2012.10.057 ! DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of

355

Project team : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Project team Project team Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Project team To contact the following individuals, please call the number listed or enable JavaScript within your browser's preferences. The New York Times Company Angelo Salvatore Executive Director of Building Operations Patrick Whelan Facilities Director Glenn Hughes Director of Construction/ Real Estate David Thurm Chief Information Officer Hussain Ali-Khan Vice President, Real Estate Development

356

Improving the daylighting conditions of existing buildings : the benefits and limitations of integrating anidolic daylighting systems using the American classroom as a model  

E-Print Network (OSTI)

Awareness of the benefits of good daylighting has risen in recent years, and the designs of many new buildings take daylighting into consideration. However, the majority of our built environment is older than this recent ...

Kleindienst, Sin A. (Sin Alexandra)

2006-01-01T23:59:59.000Z

357

The architectural approach : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

architectural approach architectural approach Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team The architectural approach Proper architectural and interior design are key to successful realization of daylighting in buildings. The New York Times Building was designed by Renzo Piano, an internationally distinguished, Pritzker prize winning architect in association with Fox & Fowle, a leading high rise architectural firm based on New York City. In concert with Renzo Piano's design, the interiors were designed by Gensler, a leading interior design firm. Flack + Kurtz, Inc. provided MEP engineering. SBLD Studio, Inc. provided lighting design services.

358

Using Daylight to Light the Access Zone of Road Tunnels  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Daylight to Light the Access Zone of Road Tunnels Using Daylight to Light the Access Zone of Road Tunnels Speaker(s): Eliyahu Ne'eman Date: March 4, 2003 - 12:00pm Location: Bldg. 90 Lighting guides for roadway tunnels specify relatively high luminances for the "access zone" into the tunnel. They are needed to allow the eyes of the driver sufficient time to adapt during the short period of the transition from the outdoor natural daylight levels to the fairly low luminances along the main length of the tunnel. Usually, the necessary high luminances are provided by rows of costly luminaries which consume a lot of electricity during peak use periods and need a good deal of maintenance. To save some electric power, controls are used to dim the lighting on cloudy hours. Daylight has been used for the access zone in several tunnels around the

359

Validation of Autodesk Ecotect accuracy for thermal and daylighting simulations  

Science Conference Proceedings (OSTI)

Autodesk Ecotect is an environmental analysis software which according to the U.S. Department of Energy, has not been validated yet. Therefore, the objectives of this research were to validate accuracy of Ecotect for thermal and daylighting ...

Prasanthi R. Vangimalla; Svetlana J. Olbina; Raymond R. Issa; Jimmie Hinze

2011-12-01T23:59:59.000Z

360

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

can be either passive or active systems. The proposed solar system must meet Florida Solar Energy Center (FSEC) specifications and be installed by a contractor certified to...

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A validation of the Radiance three-phase simulation method for modeling annual daylight performance of optically-complex fenestration systems  

E-Print Network (OSTI)

of innovative daylighting systems and to demonstrate itsproperties of daylighting systems and have performed limitedCharacterization of daylighting systems required modified

McNeil, Andrew

2013-01-01T23:59:59.000Z

362

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, March 1985--September 1985  

DOE Green Energy (OSTI)

The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

Cunningham, W.A.; Migon, G.V.

1985-12-31T23:59:59.000Z

363

Research on the Hydrogen Passivation of Defects and Impurities in Si Relevant to Crystalline Si Solar Cell Materials: Final Report, 16 February 2000 -- 15 April 2003  

DOE Green Energy (OSTI)

The goal of this experimental research program is to increase the understanding, at a microscopic level, of hydrogenation processes and passivation mechanisms for crystalline-Si photovoltaics. In our experiments, vibrational spectroscopy was used to study the properties of the interstitial H2 molecule in Si and the transition-metal-hydrogen complexes in Si. The interstitial H2 molecule is formed readily in Si when hydrogen is introduced. Our studies establish that interstitial H2 in Si behaves as a nearly free rotator, solving puzzles about the behavior of this defect that have persisted since the discovery of its vibrational spectrum. The transition metals are common impurities in Si that decrease the minority-carrier lifetime and degrade the efficiencies of solar cells. Therefore, the possibility that transition-metal impurities in Si might be passivated by hydrogen has long been of interest. Our studies of transition-metal-H complexes in Si help to establish the structural and electrical properties of a family of Pt-H complexes in Si, and have made the Pt-H complexes a model system for understanding the interaction of hydrogen with transition-metal impurities in Si.

Stavola, M.

2003-09-01T23:59:59.000Z

364

Water | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. A guide to...

365

NREL: Learning - Renewable Energy for Homeowners  

NLE Websites -- All DOE Office Websites (Extended Search)

use Geothermal heat pumps Passive solar heating and daylighting Photovoltaic (solar cell) systems Solar hot water systems Wind energy Wood heating (biomass energy heating)...

366

The Practical Application of Daylighting Systems as an Effective Energy Conservation Measure with a Reasonable Return on Investment  

E-Print Network (OSTI)

Surveys conducted by the State of Florida Energy Offices Energy Conservation Assistance Program (ECAP) at the University of South Florida, over a 13 year period on a national basis, have, with repeatable results, shown that regardless of Longitude and Latitude, Passive and Active Daylight Harvesting Systems can significantly reduce conventional lighting loads with no adverse effects on a facilities originally designed HVAC systems. When such systems are properly engineered and installed, savings can be accomplished with little or no negative effect on a facilities Architectural Aesthetics and without compromising it's Water Tight Integrity.

Othmer, A.

2002-01-01T23:59:59.000Z

367

FREE-SPACE QUANTUM CRYPTOGRAPHY IN DAYLIGHT  

Science Conference Proceedings (OSTI)

Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation over a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.

Hughes, R.J.; Buttler, W.T. [and others

2000-01-01T23:59:59.000Z

368

Performance of solar heating and cooling systems: Solid desiccant cooling/fresh air heating with evacuated-tube collectors in CSU Solar House I  

DOE Green Energy (OSTI)

In keeping with the national energy policy goal of fostering an adequate supply of energy at a reasonable cost, the United States Department of Energy (DOE) supports a variety of programs to promote a balanced and mixed energy resource system. The mission of the DOE Solar Buildings Research and Development Program is to support this goal, by providing for the development of solar technology alternatives for the buildings sector. It is the goal of the Program to establish a proven technology base to allow industry to develop solar products and designs for buildings that are economically competitive and can contribute significantly to building energy supplies nationally. Toward this end, the program sponsors research activities related to increasing the efficiency, reducing the cost, and improving the long-term durability of passive and active solar systems for building water and space heating, cooling, and daylighting applications. These activities are conducted in four major areas: Advanced Passive Solar Materials Research, Collector Technology Research, Cooling Systems Research, and Systems Analysis and Applications Research.

Loef, G.O.G.; Beba, S.; Cler, G.; Birdsong, M.; McLay, B.

1988-11-01T23:59:59.000Z

369

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Transforming the American Economy Through Innovation Linac Coherent Light Source Overview Matt Rogers on AES Energy Storage Energy 101: Concentrating Solar Power...

370

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, October 1985--February 1986  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-12-31T23:59:59.000Z

371

Performance of Solar Facade Components  

E-Print Network (OSTI)

of these products by developing and applying appropriate methods for assessment of durability, reliability materials · Daylighting products · Solar protection devices (e.g., blinds) · PV windows · Solar collector components are investigated. Physical models are further developed that allow component performance

372

Solar Depot Inc | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Solar Depot Inc Place Petaluma, California Zip 94954 Sector Solar Product US-based PV and solar passive system integrator and distributor. References...

373

Solar Markt Franken | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Solar Markt Franken Place Nrnberg, Germany Zip 90431 Sector Solar Product PV project developer, and solar passive system advisory company. References...

374

Southern Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

search Name Southern Solar Ltd Place Offham, East Sussex, United Kingdom Sector Solar Product Installer of PV and solar passive hot water systems in the UK. References...

375

Tata BP Solar India | Open Energy Information  

Open Energy Info (EERE)

search Name Tata BP Solar India Place Bangalore, Karnataka, India Zip 561 229 Sector Solar Product Manufacturer of PV cells and modules, and solar passive products. References...

376

Development and evaluation of design tools for estimating the indoor daylight illuminance under the CIE standard skies.  

E-Print Network (OSTI)

???Daylight is a natural, free and non-depleted resource coming from the sun. Integrating daylight with architectural design not only enriches the built environment but also (more)

Cheung, Hoi Wah (???)

2008-01-01T23:59:59.000Z

377

Energy 101: Daylighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Solar PV Sec. Chu Online Town Hall Energy 101: Cool Roofs Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future...

378

Towards Embedded Wireless-Networked Intelligent Daylighting Systems for Commercial Buildings  

Science Conference Proceedings (OSTI)

Energy efficient office lighting systems can save 40% in electricity consumption in areas that receive significant amounts of daylight. In spite of the savings they can generate, daylighting systems are not widely used in the commercial office building. ...

Yao-Jung Wen; Jessica Granderson; Alice M. Agogino

2006-06-01T23:59:59.000Z

379

Evaluating post-occupancy performance : Daylighting The New York Times  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluating post-occupancy performance Evaluating post-occupancy performance Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Evaluating post-occupancy performance "We aggressively pursued innovative designs to improve the quality of the workplace for our employees and to reduce energy use and other operating costs of our facility. The outcomes of this study confirm that we were successful. More importantly, our hope is that the energy efficient measures and designs documented in this independent study may inspire other companies' workplace designs." - Angelo Salvatore, Executive Director of Building Operations, The Times Company.

380

New tools for the evaluation of daylighting strategies and technologies  

SciTech Connect

The use of daylight for the illumination of building interiors has the potential to enhance the quality of the environment while providing opportunities to save energy by replacing or supplementing electric lighting. Moreover, it has the potential to reduce heating and cooling loads, which offer additional energy saving opportunities as well as reductions in HVAC equipment sizing and cost. All of these benefits, however, assume proper use of daylighting strategies and technologies, whose performance depends on the context of their application. On the other hand, improper use can have significant negative effects on both comfort and energy requirements, such as increased glare and cooling loads. To ensure proper use, designers need design tools that model the dynamic nature of daylight and accurately predict performance with respect to a multitude of performance criteria, extending beyond comfort and energy to include aesthetics, cost, security, safety, etc.

Papamichael, K.; Hitchcock, R.; Ehrlich, C.; Carroll, B.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Singapore's Zero-Energy Building's daylight monitoring system  

SciTech Connect

A setup to monitor the daylighting performance of different glazing types in Singapore is presented. The glazing is installed in the facade of four dedicated testing chambers in BCAA's Zero Energy Building in Singapore. These test rooms are equipped with sensors that both record illuminances on the work plane, and luminances as seen by occupants. The physical and logical design of the monitoring system is presented. Criteria to assess the daylighting performance are introduced, and initial results of the work in progress are presented.

Grobe, Lars; Wittkopf, Stephen; Pandey, Anupama Rana; Xiaoming, Yang; Seng, Ang Kian; Scartezzini, Jean-Louis; Selkowitz, Stephen

2010-02-28T23:59:59.000Z

382

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network (OSTI)

natural circulation solar water heater. Energy Conversionas water circulation in solar water heaters 60 , and passivewater circulation in solar water heaters 60 , and passive

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

383

SunCast: Fine-grained Prediction of Natural Sunlight Levels for Improved Daylight Harvesting  

E-Print Network (OSTI)

window, which allows the daylight harvesting system to set a specific window transparency level for each the center of the building. However, daylight harvesting systems have gradually gained popularity in mod- ern National Laboratory (LBNL) recently deployed a well-known daylight harvesting system in the new New York

Whitehouse, Kamin

384

Development of a new model to predict indoor daylighting : integration in CODYRUN software and validation  

E-Print Network (OSTI)

In this paper, we present a stereovision-based human detection system which uses a far-infrared and daylightHuman detection with a multi-sensors stereovision system Y. Benezeth1 , P.M. Jodoin2 , B. Emile3 Far-Infrared (FIR) and daylight cameras mounted on a stereovision setup. Although daylight or FIR

385

USING VIDEO FOR ANALYZING DAYLIGHT SIMULATION TOOLS Daniel C. Glaser1  

E-Print Network (OSTI)

of the daylighting system in The New York Times Headquarters.3 DALI continues to mature as a technology. Thus, there is a need for an advanced daylight sensor that can reap the benefits and flexibility for a given amount of time, the system goes to standby mode where daylight dimming is not operational. Normal

Salama, Khaled

386

GERONIMO: the CFS Daylighting Wizard Jrme Kmpf, Jean-Louis Scartezzini  

E-Print Network (OSTI)

and metrics, 4th VELUX Daylight Symposium, 2011, Lausanne Abstract Complex fenestration systems composed systems. These measurements indicate how much and in what direction the daylight flux is redirected illuminances, glare risks calculations, daylighting autonomy and advanced user control of the rendering

387

SunCast: fine-grained prediction of natural sunlight levels for improved daylight harvesting  

Science Conference Proceedings (OSTI)

Daylight harvesting is the use of natural sunlight to reduce the need for artificial lighting in buildings. The key challenge of daylight harvesting is to provide stable indoor lighting levels even though natural sunlight is not a stable light source. ... Keywords: daylight harvesting, fine-grained prediction, sunlight, wireless sensor networks

Jiakang Lu; Kamin Whitehouse

2012-04-01T23:59:59.000Z

388

Effect of inelastic scattering on underwater daylight in the ocean: model evaluation,  

E-Print Network (OSTI)

optical processes affecting underwater daylight are mathematically described by the radiativeEffect of inelastic scattering on underwater daylight in the ocean: model evaluation, validation capable of simulating underwater daylight in the ocean is presented. The main focus is on gelbstoff

Oldenburg, Carl von Ossietzky Universität

389

Solar Decathlon | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Decathlon Solar Decathlon In the video above, Lakiya Culley talks about how her solar-powered, passive home, which was donated to Habitat for Humanity by a Solar Decathlon...

390

A study on daylighting for energy saving  

Science Conference Proceedings (OSTI)

The energy consumption for lighting system of the buildings can catch up 50% of the total consumption. It often approaches that the artificial light also is used when is not necessary, for example in the schools or the offices. A possible method in order ... Keywords: natural light, saving energy, solar light

Roberto Faranda; Kim Fumagalli

2008-07-01T23:59:59.000Z

391

Automating the Selection of Fenestration Systems to Best Meet Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Automating the Selection of Fenestration Systems to Best Meet Daylighting Automating the Selection of Fenestration Systems to Best Meet Daylighting Performance Goals Title Automating the Selection of Fenestration Systems to Best Meet Daylighting Performance Goals Publication Type Conference Paper LBNL Report Number LBNL-53003 Year of Publication 2003 Authors Fernandes, Luis L., and Konstantinos M. Papamichael Conference Name 2003 International Building Performance Simulation Association Conference Date Published 02/2003 Conference Location Eindhoven, Netherlands Call Number LBNL-53003 Abstract Traditional selection of fenestration systems follows a trial-and-error approach, i.e., iterative selection of fenestration systems and evaluation of their performance through the use of simulation tools and techniques. This paper is about the development of a new method, which inverts traditional practice, i.e., aims at automated selection of fenestration systems that best meet specific lighting performance goals. The new method is based on manipulation of matrices that represent the optical properties of fenestration systems, the propagation of light in interior spaces, and the outdoors luminous conditions. The method follows two steps: 1) the determination of the luminous flux distribution originating from the location of the fenestration that best meets the desired lighting performance goals and 2) the selection of the fenestration system that comes closer to producing the desired flux distribution from the outdoor daylight distribution.

392

Lighting Controls : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls Lighting Controls Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Lighting Controls The lighting controls scope of work is based upon the philosophy that occupants of commercial office buildings prefer natural light to electric light. The lighting controls system specified by the Times Company for its new headquarters building is a DALI (Digital Addressable Lighting Interface) based system with dimmable fixtures throughout the interior space. This allows the system to dim down the electric lighting in response to daylight admittance. It also provides for variable target set points for illuminance levels at the work plane. The Times Company intends to establish and adjust target set points on a departmental basis. The lighting control sequences are described within the specification 16575. These sequences utilize occupancy sensors, photo sensors, switches and a time clock to control the lighting in the interior space on each floor. The emergency lighting system is also described within the specification. The lighting control sequences are tied to Control Intent Diagrams that divide up the space on each floor into its various control zones. The overall intent is to provide electric light only when the space is occupied and to provide as little electric light as is necessary to achieve the target set point for the work plane in a given department. A department usually occupies multiple floors.

393

Commissioning/ verification : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning/ verification Commissioning/ verification Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Commissioning/ verification The construction cycle of the building life cycle is the time when the design intent is translated into a physical reality. Given novel integrated systems with which contractors (vendors, installers, commissioning (Cx) agents, etc.) do not have much experience, there is a risk that carefully laid plans will go amiss. To insure that the automated shading and daylighting control systems were installed and operating as intended, the manufacturers, LBNL, and the Times Company developed procedures to commission and verify system performance. With verification data resulting from these procedures, the Times Company possessed the unique capability to measure and compare performance to design intent then discuss and tune system performance with the manufacturer prior to closure of the work scope and occupancy of the building.

394

Using simple light sensors to achieve smart daylight harvesting  

Science Conference Proceedings (OSTI)

Lighting is the largest single energy consumer in commercial buildings. In this paper, we demonstrate how to improve the effectiveness of daylight harvesting with a single light sensor on each window. Our system automatically infers the window orientation ... Keywords: building energy, lighting control, wireless sensor networks

Jiakang Lu; Dagnachew Birru; Kamin Whitehouse

2010-11-01T23:59:59.000Z

395

Analysis of Daylighting Requirements within ASHRAE Standard 90.1  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

2013-08-01T23:59:59.000Z

396

Energy impact of the use of daylighting in offices  

SciTech Connect

Additional data are provided to permit evaluation and optimization of energy utilization for office type applications with the use of daylighting. The scope of this is limited to the analysis of the sensitivity of the loads of four major parameters: window area, window/wall orientation, the type of glazing and the geographic location. three particular locations, Detroit, Houston, Denver, were selected to depict the influence of different climates. It is desirable to obtain, within practical limits, the lower and upper bounds of the effects of the parameters so as to be able to infer the results for a wide range of values. For this reason the performance of the model was analyzed for ranges of window area from 0 to 100% of the exterior wall area with glazing materials ranging from the single clear to a product of the highest thermal performance such as an insulating and reflecting window. The results for operation without daylighting are used as a baseline of comparison for the daylighting mode. The use of daylighting is found to be effective in reducing the total energy required in office buildings. Even though the heating energy requirement is increased, total energy required is reduced. The model does not include any aspect of the quality of the light, and the results are based on computer simulation, not actual case studies. 16 refs.

Sachez, N.E.; Rudoy, W.

1981-01-01T23:59:59.000Z

397

Color and spectral analysis of daylight in southern Javier Hernandez-Andres, Javier Romero, and Juan L. Nieves  

E-Print Network (OSTI)

for Proposals (RFP). We focus on how daylighting and thoughtful electric #12;2 lighting systems and controls interiors to maximize daylighting distribution · Integrate the electric lights with the daylighting system. The team selected an optical louver system to occupy the daylight glazing to provide glare control

Lee Jr., Raymond L.

398

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

399

LBNL Window & Daylighting Software -- RESFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS GET A COPY DOCUMENTATION KNOWLEDGE BASE Overview Today's energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for a residence. Product information typically offers window properties: U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on site- and building-specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation a window will be used in.

400

Passive cooling system for a vehicle - Energy Innovation Portal  

The passive cooling system includes one or more heat pipes (112) having an evaporator section ... Building Energy Efficiency; ... Solar Thermal; Startup America;

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Top 8 Things You Didn't Know About Daylight Saving Time | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 8 Things You Didn't Know About Daylight Saving Time Top 8 Things You Didn't Know About Daylight Saving Time Top 8 Things You Didn't Know About Daylight Saving Time October 30, 2013 - 12:36pm Addthis This Sunday, people across the country will set their clocks back an hour, marking an end to Daylight Saving Time. | Photo courtesy of iStock Photo, WoodyUpstate. This Sunday, people across the country will set their clocks back an hour, marking an end to Daylight Saving Time. | Photo courtesy of iStock Photo, WoodyUpstate. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Looking for Energy-Saving Tips? Check out our lighting page to learn about ways to save electricity. Learn how to incorporate daylighting into your home. For more ways to save, visit Energy Saver. This article is part of the Energy.gov series highlighting the "Top

402

Effects of low-emissivity glazings on energy use patterns in nonresidential daylighted buildings  

SciTech Connect

Fenestration is the most significant envelope design determinant of energy use in nonresidential buildings. This paper presents our assessment of energy use effects of low-emissivity (low-E) versus conventional glazings for a range of window-to-wall ratios in a daylighted office building, in representative hot and cold climates. Low-E glazings transmit ''cooler'' daylight than their conventional counterparts because, for a given visible transmittance, they reflect a much larger fraction of incident solar infrared radiation. We thus use the ratio of visible transmittance to shading coefficient, which we define as K/sub e/, to compare the effect of representative glazing characteristics on component and total-building energy use, peak electrical demand, and required cooling equipment sizes. It is concluded that insulated glazings with low-E coatings can provide lighting and cooling energy savings in both hot and cold climates. The most dramatic lighting, cooling, and total electricity energy savings are achieved for increases of K/sub e/ within the range of 0.5 to 1.0; higher K/sub e/s provide diminishing savings. The increased R-value of low-E insulated glass units provides significant benefits in cold climates and is not a liability in hot climates. Low-E glazings also help increase the mean radiant temperature of interior environments in winter and reduce it in summer, and provide greater architectural design freedom without adverse energy consequences. Further, the higher first costs of these glazings may be more than offset by savings from smaller cooling equipment, energy and peak-demand cost savings, long-term financial gains from better rentals, and increased productivity due to improved occupant comfort.

Sweitzer, G.; Arasteh, D.; Selkowitz, S.

1986-12-01T23:59:59.000Z

403

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an evaluation of the use of renewable energy systems (including active and passive solar and wind systems) and energy efficient strategies (including the effect of...

404

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

loan fund. Check the program web site for future solicitations. ''''' October 16, 2013 Energy Revolving Loan Fund - Passive Solar In January 2010, Michigan enacted the Public...

405

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

include the path of the sun require solar control featuresto provide solar control of direct sun Recognized andof direct solar irradiance on the facade, sun position, and

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

406

Daylighting in schools: Improving student performance and health at a price schools can afford: Preprint  

SciTech Connect

Over the next seven years, at least 5,000 new schools will be designed and constructed to meet the needs of American students in kindergarten through grade 12. National efforts are underway to encourage the use of daylighting, energy efficiency, and renewable energy technologies in school designs, which can significantly enhance the learning environment. Recent rigorous statistical studies, involving 21,000 students in three states, reveal that students perform better in daylit classrooms and indicate the health benefits of daylighting. This paper discusses the evidence regarding daylighting and student performance and development, and presents four case studies of schools that have cost effectively implemented daylighting into their buildings.

Plympton, P.; Conway, S.; Epstein, K.

2000-06-14T23:59:59.000Z

407

Solar-energy-system performance evaluation, April-August 1982, University of Minnesota Bookstore, Minneapolis, Minnesota  

DOE Green Energy (OSTI)

The solar system at the University of Minnesota Bookstore provided a total of 5% of the combined space heating and cooling load of 825 million Btu. The solar savings ratio, which accounts for operating energy used to collect solar energy, was 0.02. The fossil energy savings were 154.6 million Btu, equivalent to nine tons of coal, but there was an electrical energy expense of 19.2 million Btu (5620 kwh). The system had a net energy savings of $49.09 based on energy costs of $41.36 per ton of coal and 5.75 cents per kwh. Major energy flows to the heating and cooling subsystems are presented in the Energy Flow Diagram. In terms of solar energy utilization, the space cooling subsystem used 82 million Btu compared to 10.7 million Btu used in the space heating subsystem. The active solar energy system was retrofitted in 1979 on a relatively new earth-sheltered building which houses a bookstore, admissions and records facility. The building is 95% below ground for energy conservation and to preserve open space on the campus. Other energy conservation features are triple glazing on the windows, clerestories for daylighting and passive solar energy collection in winter, and a warm-air heat recovery system on the ventilation air. Due to the energy conservation features, the solar collection subsystem could be downsized and still provide large solar fractions. The solar collector array is comprised of six stationary units of 10 movable reflectors, each about 110 feet long and one foot wide. These glass mirrors concentrate sunlight onto a copper absorber tube receiver. Solar heated water from the storage tank or the collector array and water heated with auxiliary steam via a heat exchanger are delivered to a 147-ton absorption chiller for space cooling or to the heating coils for space heating.

Logee, T.L.

1982-01-01T23:59:59.000Z

408

The effect of hydrogen-plasma and PECVD-nitride deposition on bulk and surface passivation in string-ribbon silicon solar cells  

DOE Green Energy (OSTI)

We have investigated whether an in-situ hydrogen or ammonia rf-plasma treatment prior to a PECVD-nitride deposition would promote bulk defect passivation independently of surface effects. We also studied whether the predeposition of a thin silicon-nitride protective layer vbefore performing the plasma treatment would serve to minimize surface damage. We found that for the limited set of deposition conditions in of cells processed using the used five different deposition strategies and compared the resulting cell performance with that investigated so far, the direct deposition of PECVD-nitride produces the best cells on String Ribbon silicon wafers to date, with efficiencies up to 14.5%. Hydrogen and ammonia plasma pretreatments without a protective nitride layer resulted in better bulk passivation, but damaged surfaces. Pretreatments after deposition of the protective layer produced the best surface passivation, but were not effective in passivating the bulk.

Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States); Wilbanks, W.L.; Fleddermann, C.B. [New Mexico Univ., Albuquerque, NM (United States); Hanoka, J.I. [Evergreen Solar Inc., Waltham, MA (United States)

1995-12-01T23:59:59.000Z

409

Active Solar Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Solar Heating Active Solar Heating June 24, 2012 - 5:58pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar...

410

LaSolar | Open Energy Information  

Open Energy Info (EERE)

LaSolar Jump to: navigation, search Name LaSolar Place Argentina Sector Solar Product Manufactures and distributes solar passive water heating systems and PV systems in Spain,...

411

Swiss Solar Tech Ltd | Open Energy Information  

Open Energy Info (EERE)

Sector Geothermal energy, Solar Product the comapny develops, manufactures and constructs solar passive water heating systems combined with geothermal sources through underground...

412

In Support of Local Solar Mandates  

E-Print Network (OSTI)

Passive solar space conditioning can save 70 to 85 percent of the heating and cooling costs of a house.

Hamrin, Janice G.

1981-01-01T23:59:59.000Z

413

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

414

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

changing exterior solar and weather conditions. In addition,fraction, solar heat gain and heat loss (in cold weather)

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

415

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

changing exterior solar and weather conditions. In addition,fraction, solar heat gain and heat loss (in cold weather)

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

416

passive data structure  

Science Conference Proceedings (OSTI)

Definition of passive data structure, possibly with links to more information and implementations. NIST. passive data structure. (data structure). ...

2013-08-23T23:59:59.000Z

417

A new approach in data visualization to integrate time and space variability of daylighting in the design process  

E-Print Network (OSTI)

Daylighting design has great impact on the performance and aesthetical quality of a work of architecture but requires many issues to be addressed during the design process. The way existing daylighting tools deliver data ...

Yi, Lu, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

418

Assessing the Feasibility of Creek Daylighting in San Francisco, Part II: A Preliminary Analysis of Yosemite Creek  

E-Print Network (OSTI)

from the sewer system via daylighting and other low impactdaylighting. Specifically, the citys existing combined systemDaylighting a small upstream segment in McLaren Park but returning flow to the combined sewer system

Smith, Brooke Ray

2007-01-01T23:59:59.000Z

419

Daylight in faade renewal : using new metrics to inform the retrofitting of aging modern-ear faade types  

E-Print Network (OSTI)

New methods for quantifying daylight are increasingly accessible to designers and planners. While these methods have enabled new building facades to better balance the admission of daylight with the maintenance of thermal ...

Rice, Edward Oren

2006-01-01T23:59:59.000Z

420

Solar skylight  

DOE Patents (OSTI)

A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

Adamson, James C. (Osprey La., Rumson, NJ 07760)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Walking on daylight : the application of translucent floor systems as a means of achieving natural daylighting in mid and low rise architecture  

E-Print Network (OSTI)

This thesis is concerned with the introduction of quality daylight to buildings by means of translucency in the horizontal planes or floors within the building. Since people began to build, the concept of translucency in ...

Widder, James

1985-01-01T23:59:59.000Z

422

Daylighting coefficient of utilization tables. Final report, February-August 1983  

SciTech Connect

Use of daylighting coefficient of utilization tables provides a simple methodology for predicting interior illumination from daylight through windows. Tables are provided for transparent windows, and for windows with vertical and horizontal venetian blinds. The method predicts illuminance at five predefined target points within the room. The source code for the computer program which created the tables is included.

Brackett, W.E.

1983-08-01T23:59:59.000Z

423

Daylighting practices of the architectural industry (baseline results of a national survey)  

DOE Green Energy (OSTI)

A national survey of over 300 commercial design architects was conducted to develop baseline information on their knowledge, perceptions, and use of daylighting in commercial building designs. Pacific Northwest Laboratory conducted the survey for the US Department of Energy's (DOE) Office of Building and Community Systems (BCS). In the survey daylighting was defined as the intentional use of natural light as a partial substitute for artificially generated light. The results suggested that architects need to be educated about the true benefits of daylighting and the impacts it can have on a building's energy performance. Educational programs that will increase the architects' understanding and awareness of modern daylighting technologies and practices should be developed by utilities, stage agencies, and the federal government. If more architects can be made aware of the true effectiveness and positive attributes of daylighting systems and technologies, daylighting may be used in more commercial buildings. The results of the survey show that the more familiar architects feel they are with daylighting, the more they use daylighting. 3 refs., 19 tabs.

Hattrup, M.P.

1990-05-01T23:59:59.000Z

424

Using Simple Light Sensors to Achieve Smart Daylight Harvesting Jiakang Lu, Dagnachew Birru, Kamin Whitehouse  

E-Print Network (OSTI)

Research · Energy Systems Integration · Environmentally Preferred Advanced Generation · Industrial portions of the tubular daylighting device system. The design process for this project could have been a tube with an interior reflective system. TDDs are effective in bringing daylight into a building

Whitehouse, Kamin

425

DARKNESS, TWILIGHT, AND DAYLIGHT FORAGING SUCCESS OF BEARS (URSUS AMERICANUS) ON SALMON  

E-Print Network (OSTI)

(Cutler, et al., 2008). A range of advanced fenestration systems was also tested, using measured BTDF data No 6 (Nov 2008) An intuitive daylighting performance analysis and optimization approach M. Andersen1 of daylighting considerations into the design process requires many issues to be addressed simultaneously

Reimchen, Thomas E.

426

How Do You Use Daylighting While Reducing Excess Heat from Windows? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Use Daylighting While Reducing Excess Heat from Windows? Do You Use Daylighting While Reducing Excess Heat from Windows? How Do You Use Daylighting While Reducing Excess Heat from Windows? June 16, 2011 - 7:30am Addthis On Monday, Elizabeth discussed her south-facing windows and her difficulties balancing the nice daylighting advantages with the excess heat that can come through these windows in the summer. How do you use daylighting while reducing excess heat from windows? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Fighting with South-Facing Windows This Month on Energy Savers: June 2011 Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias.

427

CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR  

E-Print Network (OSTI)

orientations and solar where E sun E 8 k y Illumination fromClear Sky Solar Altitude oo Window Azimuth from Sun goo .40 Solar Azimuth: 90 Window Orientation: 90 west of sun

Bryan, Harvey J.

2013-01-01T23:59:59.000Z

428

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

429

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

430

Virtual heliodon: Spatially augmented reality for architectural daylighting design  

E-Print Network (OSTI)

We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the inter-reflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation.

Yu Sheng; Theodore C. Yapo; Christopher Young; Barbara Cutler

2009-01-01T23:59:59.000Z

431

Solar still. Final report  

DOE Green Energy (OSTI)

Passive solar heating was used in a still in which a packed column packed with popped popcorn separates the alcohol and water vapors. The still's performance was not satisfactory, and it is concluded that passive solar heating could have been better used to preheat makeup water for the fermentation process and to maintain proper fermentation temperatures during the winter. (LEW)

Adams, W.D.

1983-07-20T23:59:59.000Z

432

Solar heating and you  

SciTech Connect

This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

1994-08-01T23:59:59.000Z

433

Solar home on the range  

Science Conference Proceedings (OSTI)

Solar technologies and indigenous materials are used in this remote Texas ranch house. Passive solar, thermal mass of adobe walls, photovoltaics, wood stoves, native stone, a ventilated roof, reflective barrier, and porch overhangs surrounding the house combine to keep the house comfortable all summer. The PV system used a passive solar tracking system that increased the electrical output by an overall 29 percent.

Wainwright, K.

1999-10-01T23:59:59.000Z

434

Section DOE/GO-102001-1165 NREL/BK-710-29267  

NLE Websites -- All DOE Office Websites (Extended Search)

siting, climate-responsive building form, energy- efficient envelope design, daylighting, passive solar heating, cooling-load reduction strategies, high-performance glazings,...

435

Christoph Reinhart  

NLE Websites -- All DOE Office Websites (Extended Search)

at the National Research Council of Canada and the Fraunhofer Institute for Solar Energy Systems in Germany. Christoph's research expertise is in daylighting, passive...

436

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson, Russell, Deborah J. Connell, Stephen E. Selkowitz, and Dariush K. Arasteh. "Advanced Optical Materials for Daylighting in Office Buildings." In 10th Passive Solar...

437

Deborah Connell  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson, Russell, Deborah J. Connell, Stephen E. Selkowitz, and Dariush K. Arasteh. "Advanced Optical Materials for Daylighting in Office Buildings." In 10th Passive Solar...

438

National Aeronautics and Space Administration Ultra-Light, Low-Cost Solar Concentrator Offers  

E-Print Network (OSTI)

Fresnel lenses for optical concentration, minimizing solar cell area, mass, and cost. The SLA has been of solar energy technologies and sustainable daylighting solutions. The company designs, manufacturers lenses focusing sunlight onto multi-junction solar cells mounted to thin carbon-fiber composite radiators

439

Thermal and Daylighting Performance of an automated venetian blind and lighting system in a full scale private office  

E-Print Network (OSTI)

Dynamic envelope/lighting systems have the potential to optimize the perimeter zone energy balance between daylight admission and solar heat gain rejection on a real-time basis, and to increase occupant comfort. Two side-by-side full-scale offices in Oakland, California were built to further develop and test this concept. An automated venetian blind was operated in synchronization with a dimmable electric lighting system to block direct sun, provide the design workplane illuminance, and maximize view. The research program encompassed system design refinements, energy measurements, and human factors tests. In this study, we present lighting energy and cooling load data that were monitored in this facility over the course of a year. Significant energy savings and peak demand reductions were attained with the automated venetian blind / lighting system compared to a static venetian blind with the same dimmable electric lighting system. Correlations between key weather parameters and

E. S. Lee; D. L. Dibartolomeo; S. E. Selkowitz; E. S. Lee; D. L. Dibartolomeo; S. E. Selkowitz

1998-01-01T23:59:59.000Z

440

Bridgeview Park facility solar retrofit  

DOE Green Energy (OSTI)

The weatherization and insulation of a presently unheated frame park building and the installation of a Trombe wall on the south side of the structure for passive solar heating are planned. The major objectives of the project are to increase the exposure of local residents and visitors to passive solar technology and to demonstrate the applicability of passive solar technology to residential, commercial and recreational buildings. Some changes in the original plans are discussed. Five blueprints illustrate the planned improvements. (LEW)

Not Available

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

442

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

443

Measurements of sky luminance, sky illuminance, and horizontal solar radiation  

Science Conference Proceedings (OSTI)

This paper presents initial findings of a sky measurement program currently in progress at the National Bureau of Standards. Measurements are reported on sky luminance and illuminance and how they relate to horizontal solar radiation and sun position. Correlations are presented relating horizontal illuminance to horizontal solar radiation, and zenith luminance to solar altitude. These empirical models are particularly suitable for use in daylighting energy studies since they are based on existing solar data currently available on standard weather tapes.

Treado, S.; Gillette, G.

1983-04-01T23:59:59.000Z

444

Investigation of the potential application of solar energy to existing homes. Semi-annual technical progress report  

DOE Green Energy (OSTI)

Progress is reported in designing passive solar retrofits for three older house types in Minneapolis. (MHR)

Not Available

445

CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR  

E-Print Network (OSTI)

Window Azimuth from Sun so Solar Altitude o Table A40 Solar Azimuth: 90 Window Orientation: 90 west sunsolar altitudes, while fg is determined as follows: where Illumination from the sun (

Bryan, Harvey J.

2013-01-01T23:59:59.000Z

446

Filsol Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Kingdom Zip SA15 5RA Sector Solar Product Wales-based manufacturer and installer of solar passive heating systems and PV modules. References Filsol Solar Ltd1 LinkedIn...

447

Thermo Solar s r o | Open Energy Information  

Open Energy Info (EERE)

Thermo Solar s r o Jump to: navigation, search Name Thermo Solar s.r.o. Place iar nad Hronom, Slovakia Zip 965 01 Sector Solar Product Manufacturer of solar passive heating...

448

Economic and design analysis of daylighting a commercial tower in a hot and humid climate  

E-Print Network (OSTI)

A forty story commercial office tower in Tampa, Florida was redesigned for daylighting. The methods are outlined and results illustrated, A cooling load comparison is done to determine the economic feasibility of such a ...

Roscow, Robert F

1981-01-01T23:59:59.000Z

449

Time-varied daylighting performance to enable a goal-driven design process  

E-Print Network (OSTI)

Due to the overwhelming number of decisions to be made during early stage design, there is a need for intuitive methods to communicate data so that it is quickly and easily understood by the designer. In daylighting analysis, ...

Kleindienst, Sin A. (Sin Alexandra)

2010-01-01T23:59:59.000Z

450

Form and daylight as a creative medium : Church of John Paul II in South End, Boston  

E-Print Network (OSTI)

This thesis is an architectural design project of a Catholic Church dedicated to Pope John Paul II. The main intention of this Thesis is to explore and clearly present daylighting methods and techniques and how important ...

Gruzewski, Jaroslaw

1992-01-01T23:59:59.000Z

451

Energy efficient commercial buildings : a study of natural daylighting in the context of adaptive reuse  

E-Print Network (OSTI)

Daylighting is a powerful design element which can have a dramatic impact on people's perception of space, physical and psychological well-being as well as a building's annual and daily energy requirements. Understanding ...

Crowley, John Stephen

1982-01-01T23:59:59.000Z

452

A system for optimizing interior daylight distribution using reflective Venetian blinds with independent blind angle control  

E-Print Network (OSTI)

An operational algorithm for blind angle control is developed to optimize the daylighting performance of a system of reflective Venetian blinds. Numerical modeling and experiment confirm that independent control of alternating ...

McGuire, Molly E

2005-01-01T23:59:59.000Z

453

Does Extending Daylight Saving Time Save Energy? Evidence from an Australian Experiment  

E-Print Network (OSTI)

CSEM WP 163 Does Extending Daylight Saving Time Save Energy?advantage of the fact that DST does not affect electricityHowever, the simulation does not include non-residential

KELLOGG, RYAN M; Wolff, Hendrik

2007-01-01T23:59:59.000Z

454

Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress  

SciTech Connect

The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings compared to the northern regions, a result possibly due to a small, offsetting increase in household air conditioning usage. (4) Changes in national traffic volume and motor gasoline consumption for passenger vehicles in 2007 were determined to be statistically insignificant and therefore, could not be attributed to Extended Daylight Saving Time.

Belzer, D. B.; Hadley, S. W.; Chin, S-M.

2008-10-01T23:59:59.000Z

455

Empirical assessment of a prismatic daylight-redirecting window film in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical assessment of a prismatic daylight-redirecting window film in a Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Title Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Publication Type Conference Paper LBNL Report Number LBNL-6496E Year of Publication 2013 Authors Thanachareonkit, Anothai, Eleanor S. Lee, and Andrew McNeil Conference Name Illuminating Engineering Society (IES) Annual Conference 2013 Date Published 10/2013 Conference Location Huntington Beach, California Keywords building energy efficiency., daylighting, microstructure film, prismatic film, windows Abstract Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-to-wall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare= probability and other metrics used to evaluate visual discomfort.

456

Delight2 Daylighting Analysis in Energy Plus: Integration and Preliminary User Results  

SciTech Connect

DElight is a simulation engine for daylight and electric lighting system analysis in buildings. DElight calculates interior illuminance levels from daylight, and the subsequent contribution required from electric lighting to meet a desired interior illuminance. DElight has been specifically designed to integrate with building thermal simulation tools. This paper updates the DElight capability set, the status of integration into the simulation tool EnergyPlus, and describes a sample analysis of a simple model from the user perspective.

Carroll, William L.; Hitchcock, Robert J.

2005-04-26T23:59:59.000Z

457

DOE Solar Decathlon: Kansas Project Solar House: Getting From Here to There  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Project Solar House taken during the U.S. Department of Energy Solar Decathlon 2007. Kansas Project Solar House taken during the U.S. Department of Energy Solar Decathlon 2007. Enlarge image The Kansas Project Solar House incorporated a translucent polycarbonate north wall for daylighting and reclaimed barn wood for exterior screening. (Credit: Jim Tetro/U.S. Department of Energy) Who: Kansas State University and the University of Kansas What: Kansas Project Solar House Where: SunEdison Alamosa Solar Plant 8900 Lane 8 North Mosca, CO 81146 Map This House Public tours: Not available Solar Decathlon 2007 Kansas Project Solar House: Getting From Here to There Following the U.S. Department of Energy Solar Decathlon 2007, Kansas State University and the University of Kansas sold the Kansas Project Solar House to SunEdison-the largest solar energy services provider in North America.

458

Question of the Week: How Do You Feel About the Extended Daylight Saving  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feel About the Extended Daylight Feel About the Extended Daylight Saving Time? Question of the Week: How Do You Feel About the Extended Daylight Saving Time? March 12, 2009 - 6:00am Addthis Have you been drinking extra coffee this week? The spring switch to Daylight Saving Time can be rough-especially for those of us who aren't morning people-but that extra time in the afternoon sun sure is nice! The change took a few people by surprise-this is only the third year that Daylight Saving Time started the second Sunday in March, rather than the first Sunday in April. The Energy Policy Act of 2005 changed the start and end dates of Daylight Saving Time in order to save energy, and DOE has found that it worked. The savings from the shift, while small percentage-wise, are enough to power about 122,000 average U.S. homes for a year. See the article in EERE

459

Performance of Anidolic Daylighting Systems in tropical climates - Parametric studies for identification of main influencing factors  

Science Conference Proceedings (OSTI)

Making daylight more available in buildings is highly desirable, not only for reasons of energy-efficiency, but also for improvement of occupants' health and well-being. Core-daylighting, that is daylight provision in areas situated at considerable distances from facades and windows, is currently one of the main challenges in sustainable building design. Anidolic Daylighting Systems (ADSs) are one very promising technology in the field of core-daylighting, but commercial solutions that are not only well-performing but also financially competitive are not yet widely available. This article presents results of parametric studies on Anidolic Integrated Ceilings (AICs), a special type of ADS, for identification of main influencing factors. The article describes a reliable method for simulating ADS and AIC performance under given sky conditions. Various simulation results for the example location Singapore are discussed in detail, it is concluded that the main influencing factors are coating material, system dimensions and external obstruction, and those influencing factors' potential impacts are quantified. It is shown that AIC overall efficiencies can reach up to almost 50% in Singapore. The essentially new results presented in this article can be of great help to architects, engineers and scientists in the future, when it comes to precisely dimensioning ADS for various buildings and daylight conditions. (author)

Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO-PB), Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne (Switzerland); Wittkopf, Stephen K. [School of Design and Environment, Department of Architecture, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

2010-07-15T23:59:59.000Z

460

Energy, Shading and Daylighting Analysis for the Austin Bergstrom International Airport Terminal  

E-Print Network (OSTI)

Our firm was under contract with the City of Austin, Texas to perform energy analysis and analysis of the daylighting potential within the New Austin Bergstrom International Airport Terminal. Design of the Passenger Terminal Facility for the New Austin Airport included large glass areas for viewing arriving and departing planes, the sky, and the surrounding terrain. The glass was envisioned to provide quality natural lighting for the terminal during daylight hours in order to improve the quality of the space and save energy throughout the usable life of the terminal. For the glass to achieve the design goals, adverse qualities were minimized and beneficial qualities must be enhanced. Using computer simulation, we studied the shading devices on the south clearstories to maximize the daylight and minimize problems of direct gain in a large commercial space. The study also included analysis of skylights above the baggage claim, indirect lighting of major spaces within the airport, and the controls of the artificial lights for integrating the efficient use of the available daylight. The energy, shading, and daylighting analysis includes analysis of a mix of low and high volume spaces. The daylight sources include glass walls, clearstories, and skylights.

Holder, L. M. III; Holder, L. M. IV

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effectiveness of External Window Attachments Based on Daylight Utilization and Cooling Load Reduction for Small Office Buildings in Hot Humid Climates  

E-Print Network (OSTI)

This study explored the effectiveness of selected external shading devices and glazing treatments used to minimize the total annual energy consumption in small office buildings in hot humid climates. The external shading devices included a permanent horizontal overhang and a light shelf. The selected types of glazing included clear, reflective, tinted, low-emissivity coating, and heat-mirror glass. One concern about using external window attachments is that while reducing the solar heat gains, they also reduce the amount of the daylight needed to supplement interior lighting. Therefore the objective of this study was to explore which strategy would give a balance between solar heat gain reduction and daylight utilization and result in the most energy savings in the building. Computer simulations using an hourly energy calculation model were conducted to predict the building's total energy consumption using each strategy. The economics of each strategy were analyzed with lifecycle costing techniques using the present value technique. Results show that properly designed overhangs that shade clear glazing are slightly more cost-effective than specialized low-e glazing systems. These results are unique for hot humid climates where winter heating is not an issue. On the contrary, when used in cold climates, external shading devices tend to increase the building's energy consumption.

Soebarto, V. I.; Degelman, L. O.

1994-01-01T23:59:59.000Z

462

Determining daylight illuminance in rooms having complex fenestration systems  

SciTech Connect

Traditional computational models predict daylight illuminance in a space by dividing window surfaces into discrete areas and then calculating the apparent luminance of each window element by multiplying the luminance of the natural light source in a given viewing direction by the window transmittance in that direction. This approach works well for conventional glazing materials but is incapable of modeling commonly used, but complex, window systems such as those with specular reflective venetian blinds. We describe a new approach that combines measured luminance distributions for complex window systems with a flux transfer calculation within the space. This method resembles the calculation of illuminance from electric light fixtures where the candlepower distribution of the fixtures is measured and used as an input to the calculation. Based on the variable luminance characteristics of the window system, the SUPERLITE program calculates illuminance at the workplane over the entire space. The measurement techniques and mathematical implementation in the SUPERLITE program are described. This approach allows a wide range of complex and shading systems to be evaluated without continuous changes in the computational program. A special apparatus for measuring the bidirectional transmittance of window systems has been built in conjunction with this approach. Sample results from the program are compared to measurements made in scale models in a sky simulator. 5 refs., 6 figs.

Kim, J.J.; Papamichael, K.M.; Selkowitz, S.; Spitzglas, M.; Modest, M.

1986-11-01T23:59:59.000Z

463

Parameterizing passive participle movement  

E-Print Network (OSTI)

houses bought Finally, the meaning of (25) is not passive,houses burnt in English, it is not: it does not have the structure we are positing for passiveshouses in the present. Ci is completely unacceptable with genuine passives (

Caponigro, Ivano; Schtze, Carson T

2003-01-01T23:59:59.000Z

464

Solar | OpenEI Community  

Open Energy Info (EERE)

Solar Solar Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Files: application/pdf icon solar_rfi_complete.pdf Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero

465

Daylighting techniques used in indigenous buildings in the United Arab Emirates (UAE), an investigative approach  

E-Print Network (OSTI)

This study investigated the potential of the daylighting systems used in the indigenous architecture of the United Arab Emirates (UAE), located in Dubai (latitude 25 N longitude 55 E). The analysis tested the lighting performance of three daylighting systems under UAE climatic conditions. The purpose of this research was to investigate the daylighting performance of three of the most common daylighting systems found in the indigenous buildings of the UAE, traditional windows (Dreeshah), gypsum decorative panels and wind tower (Barjeel). The lighting performance of each of the three lighting systems was examined. The lighting performance parameters examined were illuminance level, light distribution, uniformity, and glare. IESNA standards, CIBSE guidelines and LEED 2.2 daylighting credit and recommendations were used as the minimum recommended level for all analyzed variables. On-site measurements (illuminance and luminance) were conducted to compare measured versus simulated measurements inside the space. Desktop Radiance 2.0 Beta was used as the lighting performance analysis tool under clear sky conditions. Results have shown that the gypsum decorative panel performs better than the other two systems in terms of light uniformity and distribution, regardless of a lower illuminance level. The double panel window prototype has poor lighting performance in terms of glare, light distribution and uniformity. Wind tower performed well under the area of the wind tower itself. Apart from that it also had a poor lighting performance in terms of glare, light distribution, and uniformity.

Alnuaimi, Maitha Mohammed

2007-08-01T23:59:59.000Z

466

Performance of Integrated Systems of Automated Roller Shade Systems and Daylight Responsive Dimming Systems  

Science Conference Proceedings (OSTI)

Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability. The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position, sky condition, and fenestration condition. Therefore, this paper describes the integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm, and the relative performance of the integrated systems and single systems. The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy. In this study, the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm. In the results, the average maintenance percentage and the average discrepancies of the target illuminance, as well as the average time under 90percent of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system.

Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon; Lee, Eleanor S.

2010-07-08T23:59:59.000Z

467

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

legislation in June 2007 (H.B. 7432) that established a sales and use tax exemption for solar energy equipment and geothermal resource systems. H.B. 7432 added passive and active...

468

Brief Coordinated passivation designs  

Science Conference Proceedings (OSTI)

In two-input (or multi-input) nonlinear systems it may be possible to achieve feedback passivation of a chosen input using the second input (other inputs) to improve the stability properties of the first input's zero dynamics. This 'coordinated passivation' ... Keywords: Nonlinear passivation, Turbocharged diesel engine, Zero dynamics

Michael Larsen; Mrdjan Jankovi?; Petar V. Kokotovi?

2003-02-01T23:59:59.000Z

469

Windows and Daylighting Group, Lawrence Berkeley National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Comfort Research Deposition Process Energy Star Field Verification Gas-Filled Panels Infrared Lab Integrated WindowWall LowE and Solar Control MoWiTT Optical data...

470

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

471

DOE Solar Decathlon: West Virginia University  

NLE Websites -- All DOE Office Websites (Extended Search)

with innovative and modern home automation and energy-saving technologies. Features A solar chimney in the center of the house provides passive ventilation and represents a...

472

The Role of Daylight in Achieving Ultra-Low-Energy Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylight in Achieving Daylight in Achieving Ultra-Low-Energy Buildings May 6, 2011 Neall Digert, Ph.D., MIES Vice President of Product Enterprise Solatube International, Inc. Countries around the globe are experiencing an energy crisis! The World's enormous design and construction market is focused on energy-efficient retrofit and innovative, ultra-low energy new construction. The desire to halt global warming is creating an awareness and need for sustainable buildings, communities, and societies. Energy Policy is at the forefront of governmental initiatives in nearly every country. China needs to increase its generation capacity by over 1,312 GW between 2006 and 2030. Source: International Energy Agency, "World

473

Solar collector with altitude tracking  

DOE Patents (OSTI)

A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

Barak, Amitzur Z. (Chicago, IL)

1977-01-01T23:59:59.000Z

474

Renewable energy technologies for federal facilities: Solar water heating  

SciTech Connect

This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

1996-05-01T23:59:59.000Z

475

AsahiSolar Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co Ltd Place Oita-Ken, Japan Zip 870-0844 Sector Solar Product Manufactures simple solar panels and hybrid systems of solar passive system and electricity-generating system...

476

Conserval aka SolarWall | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Conserval (aka SolarWall) Place Toronto, Ontario, Canada Zip M3J2N5 Sector Solar Product Makes solar passive heating and cooling products, and...

477

Applications of Passive Thin Films  

DOE Green Energy (OSTI)

The physical properties of thin films affect the performance and durability of nearly every solar energy conversion device. Familiar examples of thin films for solar applications are optical materials and protective coatings. Optimized optical properties are key to cost-effective photothermal conversion where individual components must have high absorptance, reflectance, or transmittance. The protection of sensitive substrates from corrosion and/or erosion is essential to ensure adequate component and system lifetime. Such substrates range from photovoltaic materials operating near room temperature to turbine blade structural alloys in hostile environments at very high temperatures (>1,000 degrees C). Although much has been written on particular categories of thin-film materials for solar energy (for example, absorbers for receiver surfaces), to date no one has provided an overview of the spectrum of applications for passive thin films in solar energy. This work is such an overview and also reviews the material state of the art as described in the current literature. Active thin film devices such as photovoltaics and thermoeleetrics are not discussed.

Call, P. J.

1979-05-01T23:59:59.000Z

478

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

479

Interactive selection of optimal fenestration materials for schematic architectural daylighting design  

E-Print Network (OSTI)

ABSTRACT RENDERINGS OF DIFFERENT TIMES AND DAYS ADVANCED FENESTRATION BTDF REDIRECTING DAYLIGHT-directional Videogoniophotometer for Advanced Fenestration Systems. PhD thesis, Swiss Federal Institute of Technology (EPFL), 2004 on a standard PC. Using the standard CIE Sky Model [5], the system can render qualitatively accurate images

Xuan, Dong

480

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

at the 3rd Annual Solar Heating and Cooling R&D Contractors'been supported by the Solar Heating and Cooling Research andof Energy. 3rd Annual Solar Heating and Cooling R&D

Martin, M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "daylighting passive solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Rights Solar Rights Solar Rights < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State North Carolina Program Type Solar/Wind Access Policy Provider North Carolina Department of Commerce Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for water heating, active space heating and cooling, passive heating, or generating electricity for residential property."* However, city and county ordinances may prohibit the installation of solar-energy collectors that are visible from the

482

Definition: Solar radiation | Open Energy Information  

Open Energy Info (EERE)

radiation radiation Jump to: navigation, search Dictionary.png Solar radiation Electromagnetic energy emitted from the sun.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Solar radiant energy impinging on the earth in any given region or area. Also Known As Solar energy, Solar resource Related Terms Solar energy, Solar cell, Photovoltaics, PV array, PV module, Passive solar, Passive solar heating, energy, bioenergy References ↑ http://www.eere.energy.gov/basics/renewable_energy/solar_resources.html ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#S ↑ http://rredc.nrel.gov/solar/glossary/gloss_s.html Retrieved f LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rom "http://en.openei.org/w/index.php?title=Definition:Solar_radiation&oldid=502602"

483

Los Alamos National Laboratory solar program  

DOE Green Energy (OSTI)

Progress is reported for passive solar tasks performed at the Los Alamos National Laboratory during FY 1982. Results on test cell experiments for the 1981-1982 winter are reported, as are Class A performance monitoring, passive cooling, both residential and commercial economic cooling assessments, and thermal effects of distributed mass in passive buildings.

Reisfeld, S.K.; Neeper, D.A.

1982-01-01T23:59:59.000Z

484

Passive magnetic bearing configurations  

Science Conference Proceedings (OSTI)

A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

Post, Richard F. (Walnut Creek, CA)

2011-01-25T23:59:59.000Z

485

Passive environmental temperature control system  

DOE Patents (OSTI)

Passive environmental heating and cooling systems are described, which utilize heat pipes to transmit heat to or from a thermal reservoir. In a solar heating system, a heat pipe is utilized to carry heat from a solar heat absorber plate that receives sunlight, through a thermal insulation barrier, to a heat storage wall, with the outer end of the pipe which is in contact with the solar absorber being lower than the inner end. The inclining of the heat pipe assures that the portion of working fluid, such as Freon, which is in a liquid phase will fall by gravity to the outer end of the pipe, thereby assuring diode action that prevents the reverse transfer of heat from the reservoir to the outside on cool nights. In a cooling system, the outer end of the pipe which connects to a heat dissipator, is higher than the inner end that is coupled to a cold reservoir, to allow heat transfer only out of the reservoir to the heat dissipator, and not in the reverse direction.

Corliss, John M. (Columbus, OH); Stickford, George H. (Columbus, OH)

1981-01-01T23:59:59.000Z

486

Passive incentive requirements: a regional assessment  

DOE Green Energy (OSTI)

The nation's goal of 20% solar contribution by the turn of the century will be achieved, in part, by the construction of residences heated by virtue of their passive solar designs. These designs are not economically competitive against all conventional fuels in all locations. Some degree of government incentive will be required to assure a competitive position for these designs. A methodology is presented which is used to assess the magnitude of the government incentive required to assure feasibility. The methodology is used to provide a regional assessment for the Pacific Northwest under alternative home ownership periods and conventional fuel types.

Ben-David, S.; Kirschner, C.; Noll, S.A.; Roach, F.

1980-01-01T23:59:59.000Z

487

Heterojunction solar cell  

DOE Patents (OSTI)

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30T23:59:59.000Z

488

Survey of solar homeowners  

SciTech Connect

Some key results are presented of a national mail survey of 3800 solar homeowners. The solar owners expressed their perceptions about performance, cost, problem areas, and their own motivations and degree of satisfaction. Various types of residential solar installations are represented, including active and passive water heating, space heating, and wind energy systems. After each question put to the respondents, the breakdown of answers is listed and a brief interpretation of the findings is presented. (LEW)

1981-09-01T23:59:59.000Z

489

Heterojunction solar cell  

DOE Patents (OSTI)

A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

Olson, Jerry M. (Lakewood, CO)

1994-01-01T23:59:59.000Z

490

Comparative economics of passive and active systems  

SciTech Connect

As the interest in solar energy applications for residential space heating grows, it becomes imperative to evaluate the economic performance of alternative designs. One passive design is concentrated on--the thermal mass storage wall. The economic performance of this design is examined and subsequently contrasted with one active design--the air collector/rock storage system. Architectural design criteria, solar performance characteristics, and the incremental solar cost of each design is briefly reviewed. Projections of conventional energy prices are discussed, along with the optimal sizing/feasibility criterion employed in the economic performance analysis. In addition, the effects of two incentive proposals--income tax credits and low interest loans--upon each design are examined. Results are reported on a state-by-state basis for the U.S., with major conclusions summarized for each design. It is generally the case that incentives greatly enhance the economics of both system designs, although the contrast is greater for the passive design. Also, against the less expensive conventional fuels (natural gas and heating oil) the passive design was shown to offer a more cost effective alternative than the active system for most states.

Roach, F.; Noll, S.; Ben-David, S.

1978-01-01T23:59:59.000Z

491

Solar application in Tunisia  

SciTech Connect

Various solar applications were constructed in Tunisia during a program sponsored by the Save the Children Federation. The solar applications were constructed in three community schools, a community wool workshop, a new prototype low income residence, an office, and several residences; solar water heating installations were also built. A modified Trombe wall was constructed partially with metal, thermal mass, and direct gain in a school. The low income residence was equipped with a Trombe wall, a roof overhang, and insulation. Passive solar water heating installations included a mini solar pond and a bottom loading batch water heater. The people and culture of Tunisia are discussed and appropriate technology for the country is reviewed.

Hopman, F.

1979-12-01T23:59:59.000Z

492

Solar cell with back side contacts  

SciTech Connect

A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

2013-12-24T23:59:59.000Z

493

Definition: Solar energy | Open Energy Information  

Open Energy Info (EERE)

energy energy Radiant energy emitted by the sun[1] View on Wikipedia Wikipedia Definition Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, solar photovoltaics, solar thermal electricity, solar architecture and artificial photosynthesis. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distr