National Library of Energy BETA

Sample records for david daer salt

  1. David Tooker

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Tooker David Tooker David-Tooker.jpg David Tooker DPTooker@lbl.gov Phone: (510) 486-4003 Mobile: (510) 637-9410 Assistant Facilities Manager Last edited: 2014-03-18 12:33:03

  2. David Paul

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Paul David Paul David-Paul.jpg David Paul Computational Systems Group DPaul@lbl.gov Phone: (510) 495-2883 Fax: (510) 486-4316 1 Cyclotron Road Mail Stop 943-256 Berkeley, CA 94720 Last edited: 2013-01-30 16:46:21

  3. Sandia Energy - David Wilson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wilson Home David Wilson David Wilson Mechanical Engineer Department: Water Power Technologies wilson-david...

  4. David Skinner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Skinner David Skinner David-Skinner.jpg David E. Skinner , Ph.D. Strategic Partnerships Lead DESkinner@lbl.gov Phone: 510-486-4748 Mobile: 510-847-2946 Web: http://www.nersc.gov/~dskinner 1 Cyclotron Road Mail Stop 943-256 Berkeley, CA 94720 US Biographical Sketch David Skinner earned his Ph.D. from UC Berkeley where his research focused on quantum and semi-classical approaches to chemical reaction dynamics and kinetics. At NERSC David leads strategic partnerships between NERSC and

  5. David Amaral

    Broader source: Energy.gov [DOE]

    David is the DOE Facility Chairperson for the Eisenhower School for National Security and Resource Strategy. David has over 25 years of human resources experience and has served in a variety of...

  6. David Mitchell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Mitchell Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net David Mitchell David Mitchell Network Engineer NESG mitchell

  7. David Hemelright

    Broader source: Energy.gov [DOE]

    David Hemelright, who lives in Lenoir City, is the K–12 Facilities Specialist for Kaatz, Binkley, Jones & Morris Architects, Inc, specializing in Tennessee public school planning, design...

  8. David Keavney

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Contact Us Ring Status Current Schedule David Keavney Argonne National Laboratory 9700 S. Cass Ave 431E002 Argonne, Il 60439 Phone: 252-7893 Fax: 252-7392 E-Mail:...

  9. David Johnson

    Broader source: Energy.gov [DOE]

    David Johnson is the Deputy Assistant Secretary for the Office of Petroleum Reserves in the Office of Fossil Energy. He is responsible for the management and direction of the Strategic Petroleum...

  10. David Clark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clark About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board Larry Smarr Jagdeep Singh Kristin Rauschenbach Cees de Laat David Foster David Clark Vinton Cerf ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems:

  11. David Foster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foster About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board Larry Smarr Jagdeep Singh Kristin Rauschenbach Cees de Laat David Foster David Clark Vinton Cerf ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems:

  12. David Mitchell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Mitchell About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO Operations and Deployment Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report

  13. David K. Zabransky

    Broader source: Energy.gov [DOE]

    David K. Zabransky is the Director of the Office of Standard Contract Management in the Office of the General Counsel.

  14. David G. Huizenga

    Broader source: Energy.gov [DOE]

    David G. Huizenga currently serves as the Principal Assistant Deputy Administrator for Defense Nuclear Nonproliferation (DNN) at the Department of Energy’s National Nuclear Security...

  15. David F. Conrad | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David F. Conrad About Us David F. Conrad - Deputy Director, Office of Indian Energy Policy and Programs David Conrad, Director for Tribal and Intergovernmental Affairs David F. ...

  16. David Moore | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moore About Us David Moore - Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy David Moore joined the Department in November 2010 as a Presidential ...

  17. David Gates home page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gates home page http://www.pppl.gov/%7Edgates/Site/Dr._David_A._Gates.html (1 of 4) [8/30/2012 9:47:58 AM] ● David Gates home page Dr. David A. Gates Princeton Plasma Physics Laboratory Welcome to my website: I am a plasma physicist at the Princeton Plasma Physics Laboratory. I work on the National Spherical Torus Experiment. My current areas of research are: Plasma shape control Collisional energy transport Ion power balance High frequency Alfvén waves Fast ion energy transfer Neoclassical

  18. David J. Weitzman- Biography

    Broader source: Energy.gov [DOE]

    David Weitzman is an industrial hygienist in the DOE's Office of Health, Safety and Security, Office of Safety and Health Policy. He primarily has been engaged in developing worker protection policy since joining the DOE in 1990.

  19. david miller | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    david miller david-miller.jpg Dr. David Miller joined the National Energy Technology Laboratory's (NETL) Computational Science Division in 2009 as a general engineer after a...

  20. David Telles wins NNSA Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Telles wins NNSA Security Professional of the Year award May 7, 2009 LOS ALAMOS, New Mexico, May 7, 2009 - David M. Telles, who leads Los Alamos National Laboratory's...

  1. David Foster | Department of Energy

    Energy Savers [EERE]

    David Foster About Us David Foster - Senior Advisor David Foster David Foster joined the Energy Department as a senior advisor on industrial and economic policy in June, 2014. Prior to his appointment, he served eight years as the founding Executive Director of the Blue Green Alliance, a national partnership of labor unions and environmental organizations dedicated to expanding the number and quality of jobs in the clean economy. From 1989-2006, he served as Director of United Steelworkers

  2. David Mohler | Department of Energy

    Energy Savers [EERE]

    David Mohler About Us David Mohler - Deputy Assistant Secretary, Office of Clean Coal and Carbon Management David Mohler David Mohler is the Deputy Assistant Secretary for Clean Coal and Carbon Management within the Office of Fossil Energy at the U.S. Department of Energy. In this capacity, he is responsible for the DOE's R&D program in advanced fossil energy systems, large demonstration projects, carbon capture, utilization, and storage (CCUS), and clean coal technology deployment.

  3. David Sheeley | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheeley About Us David Sheeley - Editor/Writer David Sheeley David Sheeley is currently editor of the DOE Office of Environmental Management's EM Update newsletter and news flashes. EM Update is the second DOE newsletter he has overseen as editor. The first was EM's Recovery News, which ended in late 2011. Prior to launching his career at DOE in 2010, David worked as a writer and reporter for a broad range of publications, from major metropolitan (Milwaukee Journal Sentinel) and small-town

  4. David Danielson | Department of Energy

    Office of Environmental Management (EM)

    David Danielson David Danielson November 13, 2013 - 12:54pm Addthis Assistant Secretary for Energy Efficiency and Renewable Energy Photo of David Danielson. Dr. David Danielson leads the Office of Energy Efficiency and Renewable Energy (EERE) within the U.S. Department of Energy (DOE). As Assistant Secretary, he oversees a broad energy portfolio that is intended to hasten the transition to a clean energy economy. Previously, he was the first Program Director hired by DOE's Advanced Research

  5. David Friedman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friedman About Us David Friedman - Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy Photo of David Friedman. As Principal Deputy Assistant Secretary of the Office of Energy Efficiency and Renewable Energy (EERE), David Friedman helps manage day-to-day operations and oversee a broad technology portfolio designed to accelerate development and deployment of energy efficiency and renewable energy technologies. Before joining EERE, David served as both Deputy and Acting

  6. Mr. David Martin, Chair

    Office of Environmental Management (EM)

    Oak Ridge Office P.O. Box 2001 Oak Ridge, Tennessee 37831 January 8, 2013 Oak Ridge Site Specific Advisory Board Post Office Box 2001 Oak Ridge, Tennessee 3 7831 Dear Mr. Martin: RESPONSE TO YOUR LETTER DATED OCTOBER 16,2012, RECOMMENDATION 211: RECOMMENDATION AVAILABILITY OF DEPARTMENT OF ENERGY (DOE) ENVIRONMENTAL MANAGEMENT DOCUMENTS Reference: October 16, 2012 Letter from David Martin to Susan Cange, Recommendation 211: Recommendation on Availability of DOE Environmental Management Documents

  7. Mr. David Meyer

    Office of Environmental Management (EM)

    0, 2014 Mr. David Meyer Office of Electricity Delivery and Energy Reliability (OE), U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Re: Comments on draft National Electric Transmission Congestion Study Dear Mr. Meyer: Clean Line Energy Partners LLC ("Clean Line") appreciates the opportunity to provide comments on the draft National Electric Transmission Congestion Study ("Draft Study"), published by the U.S. Department of Energy ("DOE") in

  8. Systems and Professional Development - David Brown, Director...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM Systems and Professional Development - David Brown, Director, Systems & ...

  9. Professor David Archer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impacts on the Earth's geologic carbon cycle Professor David Archer University of Chicago Wednesday, Jan 15, 2014 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy When fossil fuel CO2 is released to the atmosphere, it essentially accumu- lates in the relatively rapidly cycling atmosphere / ocean / land biosphere carbon cycle. The atmospheric concentration of CO2 spikes through a time period of CO2 emissions, then is

  10. David Conrad | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    David Conrad - Deputy Director, Office of Indian Energy Policy and Programs David Conrad, Director for Tribal and Intergovernmental Affairs David F. Conrad (Osage Nation) serves as the deputy director for the Office of Indian Energy Policy and Programs. He previously served as the Department's Director for Tribal and Intergovernmental Affairs in the Office of Congressional and Intergovernmental Affairs, where he was responsible for intergovernmental affairs with tribal, city, and county

  11. David Shafer | Department of Energy

    Energy Savers [EERE]

    Shafer About Us David Shafer Team Leader, Asset Management Team David Shafer joined the Office of Legacy Management in 2011 and has served as both the UMTRCA/Nevada Offsites Environmental Team Lead and the Acting Director of the Office of Site Operations prior to his current position. David worked previously for DOE from 1989 to 1998, primarily for the Office of Environmental Management at DOE Headquarters, working with environmental restoration projects managed out of the DOE offices in Las

  12. NREL: Energy Analysis - David Hurlbut

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hurlbut Photo of David Hurlbut David Hurlbut is a member of the Market and Policy Impact Analysis Group in the Strategic Energy Analysis Center. Senior Analyst On staff since January 2007 Phone number: 303-384-7334 E-mail: david.hurlbut@nrel.gov Areas of expertise Policy and legislative analysis Statistical analysis and econometrics Optimization modeling Cost-benefit analysis Primary research interests Economic incentives and market behavior affecting energy efficiency and renewable energy

  13. NREL: Energy Analysis - David Mooney

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mooney Photo of David Mooney David Mooney is the center director of the Strategic Energy Analysis Center. Center Director On staff since August 2002 Phone number: 303-384-6782 E-mail: David.Mooney@nrel.gov Analysis expertise Strategic planning Broad knowledge base in technologies and markets for energy technologies and their integration into the current energy infrastructure. Technical and operational knowledge of the photovoltaics technologies and industry Design and cost analysis of

  14. David Turk | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Turk About Us David Turk - Deputy Assistant Secretary for International Climate and Technology David Turk Dave Turk is Deputy Assistant Secretary for International Climate and Technology at the U.S. Department of Energy. In this role, Mr. Turk helps to coordinate the Department's international climate change and clean energy efforts. He has previously served as Deputy Special Envoy for Climate Change at the U.S. Department of State, where he focused on a range of bilateral and multilateral

  15. David Sandalow | Department of Energy

    Office of Environmental Management (EM)

    Sandalow About Us David Sandalow - Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs David Sandalow As Under Secretary of Energy (Acting), David Sandalow helped to oversee the Department's renewable energy, energy efficiency, fossil energy, nuclear energy and electricity delivery programs. As Assistant Secretary for Policy & International Affairs, he helped coordinate policy and manage international activities at the Department. Prior to

  16. David Danielson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Danielson About Us David Danielson - Assistant Secretary for Energy Efficiency and Renewable Energy Photo of David Danielson. Dr. David Danielson leads the Office of Energy Efficiency and Renewable Energy (EERE) within the U.S. Department of Energy (DOE). As Assistant Secretary, he oversees a broad energy portfolio that is intended to hasten the transition to a clean energy economy. Previously, he was the first Program Director hired by DOE's Advanced Research Projects Agency-Energy (ARPA-E). At

  17. David Lee | Department of Energy

    Office of Environmental Management (EM)

    Lee About Us David Lee - Residential Program Supervisor, Building Technologies Program David Lee is Residential Program Supervisor, Building Technologies Program with the Office of Energy Efficiency and Renewable Energy. Most Recent New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17

  18. David Sims - ORNL - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Dims Photo of David Sims, Commercialization Manager in the Partnerships Directorate at the Oak Ridge National Laboratory (ORNL) Meet David Sims. David is a Commercialization Manager in the Partnerships Directorate at the Oak Ridge National Laboratory (ORNL), operated and managed by UT-Battelle, LLC. David plays a key role within the laboratory, managing and licensing UT-Battelle's buildings, computational, nanophase materials, and transportation technologies portfolio. David joined ORNL

  19. Perspective & Acquisition Fellows Program - David Klaus, Deputy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective & Acquisition Fellows Program - David Klaus, Deputy Under Secretary for Management and Performance Perspective & Acquisition Fellows Program - David Klaus, Deputy Under...

  20. David Skinner Named NERSC Strategic Partnerships Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Skinner Named NERSC Strategic Partnerships Lead David Skinner Named NERSC Strategic Partnerships Lead January 24, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  1. David Martin | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Martin Industrial Outreach Lead David Martin Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 3126 Argonne, IL 60439 630-252-0929 dem

  2. David Swainsbury | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Swainsbury David Swainsbury David Swainsbury Postdoctoral Research Associate E-mail: d.swainsbury@sheffield.ac.uk Website: University of Sheffield Postdoctoral Associates

  3. David Steward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Steward About Us David Steward - Chairman and founder of World Wide Technology (WWT) David Steward WWT is a market-leading systems integrator and supply chain solutions provider. Started in 1990, with a handful of employees and a 4,000 square foot office, WWT posted its strongest year to date in 2013, with over 2,500 employees and two and a half million-plus sq. ft. of facilities and annual revenues exceeding $6 billion. Mr. Steward is the Council Board Chair for the Greater St. Louis Area

  4. David Feldman | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feldman About Us David Feldman - Energy Analyst, Department of Energy's National Renewable Energy Laboratory David Feldman is a Senior Financial Analyst for the National Renewable Energy Laboratory (NREL), helping the organization plan and carry out a wide range of analytical activities related to financial, policy, and market developments in the solar industry. His primary areas of expertise include project finance of renewable energy assets, public capital in the renewable energy sector, and

  5. David Telles wins NNSA Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Telles wins NNSA Security Professional of the Year award May 7, 2009 LOS ALAMOS, New Mexico, May 7, 2009 - David M. Telles, who leads Los Alamos National Laboratory's Vulnerability Analysis Office, received a 2008 National Nuclear Security Administration Security Professional of the Year award. NNSA administrator Tom D'Agostino said, "Our security professionals dedicate themselves to protecting some of the nation's most vital strategic assets, and in so doing, help advance broader

  6. NREL: Energy Analysis - David Harrison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harrison David Harrison is a member of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. Software Engineer On staff since 2009 Phone number: 303-275-4411 E-mail: david.harrison@nrel.gov Areas of expertise Data design and database administration Custom software solutions Full systems development life cycle Primary research interests Oracle and PostgreSQL database management Open source NoSQL implementations Geographic data design, maintenance, and analysis

  7. David Bina | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bina David Bina David Bina David Bina Alumnus E-mail: david.bina@seznam.cz Website: University of South Bohemia Dr. Bina completed his postdoctoral appointment at Washington University in St. Louis with Dr. Robert Blankenship in 2011, and is now a Research Scientist at the University of South Bohemia in Budweis, Czech Republic

  8. David Bocian | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Bocian David Bocian David Bocian David Bocian Principal Investigator E-mail: david.bocian@ucr.edu Phone: 951.827.3660 Fax: 951.827.4713 Office: Chemical Sciences 1 230 Website: University of California, Riverside Theme 3 Member Dr. Bocian conducts vibrational, electron paramagnetic resonance, electrochemical, and computational studies on tetrapyrrolic cofactors, synthetic light-harvesting assemblies, and natural photosynthetic antennas. Distinguished Professor of Chemistry and Vice Provost

  9. Liron David | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liron David Liron David placeholder image Liron David Alumnus E-mail: liron.david@childrens.harvard.edu Website: Harvard University Formerly a student of PARC Research Affiliate Noam Adir at the Technion, Dr. David is currently a postdoctoral fellow in the research group of Dr. Hao Wu at Harvard University. 10/02/11::Young research investigators honored at 2011 Gordon research conference on photosynthesis: ambiance and a perspective Alumni

  10. H. David Politzer, Asymptotic Freedom, and Strong Interaction

    Office of Scientific and Technical Information (OSTI)

    H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David...

  11. David Armstrong | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong David Armstrong David Armstrong Alumnus Dr. Armstrong completed his PhD under PARC PI Neil Hunter and is currently a staff member of the Bioinformatics Institute, Cambridge, United Kingdom

  12. David Skinner Named NERSC Strategic Partnerships Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Skinner Named NERSC Strategic Partnerships Lead David Skinner Named NERSC Strategic Partnerships Lead January 24, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov XBD201102-00089.jpg David Skinner This month, the National Energy Research Scientific Computing Center (NERSC) created a new position-Strategic Partnerships Lead, to identify new science communities that can benefit from NERSC resources. David Skinner, former head of NERSC's Outreach Software and Programming Group (OSP), has

  13. David G. Huizenga | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David G. Huizenga About Us David G. Huizenga - Principal Assistant Deputy Administrator for Defense Nuclear Nonproliferation, NNSA Photo of David G. Huizenga David G. Huizenga currently serves as the Principal Assistant Deputy Administrator for Defense Nuclear Nonproliferation (DNN) at the Department of Energy's National Nuclear Security Administration (NNSA). As Principal Deputy Administrator, Mr. Huizenga will support DNN Deputy Administrator Anne Harrington in the management and operation of

  14. David M. Klaus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David M. Klaus About Us David M. Klaus - Deputy Under Secretary for Management and Performance David Klaus, Deputy Under Secretary for Management and Performance David M. Klaus has served as the Deputy Under Secretary for Management and Performance at the U.S. Department of Energy since July 2013. The Office of the Under Secretary for Management and Performance functions as the Chief Operating Officer of the Department and has responsibility for its primary mission support organizations,

  15. Dr. David Wilson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Wilson About Us Dr. David Wilson - President, Morgan State University Dr. David Wilson Dr. David Wilson, the 10th inaugurated president of Morgan State University, has a long record of accomplishments and more than 30 years of experience in higher education administration. He holds four academic degrees: a B.S. in political science and an M.S. in education from Tuskegee University; a master's in educational planning and administration from Harvard University; and a doctorate in

  16. Dr. David Peters | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Peters October 18, 2011 Dr. David Peters An Overview of Wind Energy Systems Published: October 18, 2011 As part of PARC's Events and Topics in Bioenergy Series, Dr. David Peters gives his talk entitled "An Overiew of Wind Energy Systems". Original Event Information: October 11, 2011 4:00 pm - 5:00 pm Seigle L006

  17. Dr. David Tiede | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Tiede April 22, 2015 Dr. David Tiede "Wiring Photosynthetic and Redox Proteins for Solar Fuels Function" Original Event info: April 21, 2015 - 11:00am Rodin Auditorium, Green Hall, Washington University View David's Bio Here Download our Flyer here News/Media Seminar Series

  18. David Gosztola | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gosztola Scientist Ph.D., Purdue University Research involves the development of laser-based instrumentation for investigating the interaction of light with nanoscale materials News Piezoelectrically enhanced ferroelectric polymers via nanoscale mechanical annealing David Gosztola Telephone 630.252.3541 Fax 630.252.4646 E-mail gosztola@anl.gov CV/Resume File Gosztola - Bio - Reivsed 1-18-16.docx

  19. Major General Kenneth David Nichols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Kenneth David Nichols Oak Ridge Operations, formed September 15, 1947, was the result of changes made over several months after the Atomic Energy Commission formally took control of the nation's atomic energy program on January 1, 1947. Up until then, the daily operations of the entire nuclear program had been directed by Colonel Kenneth D. Nichols from Oak Ridge. Before exploring the early years of the Oak Ridge Operations, we should take a closer look at Colonel Nichols. His role was

  20. A personal message from David Clark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Personal message Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Lab's centers and institutes help develop a future workforce A personal message from David Clark, National Security Education Center Director, Los Alamos National Laboratory September 1, 2015 David Clark, National Security Education Center Director David Clark, National Security Education Center Director Contacts Community Programs

  1. David S. Ginley - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David S. Ginley - Research Fellow Photo of David S. Ginley Research Fellows David S. Ginley's current activities are in the areas of the general class of defective transition metal oxides including high temperature superconductors, LiTMO2 rechargable Li battery materials, ferroelectric materials, transparent conducting oxides and electrochromic materials. Another focus of his work is on the development of new nano-materials for organic electronics and as biofilters etc. Dr. Ginley's work is

  2. Lee Berry, Paul Bonoli, David Green

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lee Berry, Paul Bonoli, David Green Lee Berry, Paul Bonoli, David Green FES Requirements Worksheet 1.1. Project Information - Center for Simulation of Wave-Plasma Interactions (aka RF SciDAC) Document Prepared By Lee Berry, Paul Bonoli, David Green Project Title Center for Simulation of Wave-Plasma Interactions (aka RF SciDAC) Principal Investigator Paul Bonoli Participating Organizations Massachusetts Institute of Technology, Princeton Plasma Physics Laboratory, Oak Ridge National Laboratory,

  3. NREL: Energy Analysis - David J. Feldman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Feldman Photo of David J. Feldman David J. Feldman is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Senior Financial Analyst On staff since 2010 Phone number: 202-488-2231 E-mail: david.feldman@nrel.gov Areas of expertise Renewable energy project finance Corporate finance Solar energy market analysis Primary research interests Economic and market analysis of renewable energy technologies Renewable energy policy Corporate finance in energy sector Education and

  4. David W. Swindle, Jr. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David W. Swindle, Jr. About Us David W. Swindle, Jr. - EMAB Board Member David W. Swindle is currently the Executive Vice President, URS Corporation, Federal Services. As Executive Vice President, Mr. Swindle is responsible for Federal Service's Mission Assurance functions for health, safety and the environment, and performance management, and serves as Federal Service's executive for coordinating international operations and new international business development. The Federal Services business,

  5. David G. Frantz | Department of Energy

    Office of Environmental Management (EM)

    David G. Frantz About Us David G. Frantz - Deputy Director, Loan Programs Office, U.S. Department of Energy David Frantz is the Deputy Director of LPO, overseeing application review, due diligence, negotiation, environmental compliance and performance tracking. Prior to LPO, Mr. Frantz worked at Overseas Private Investment Corporation (OPIC), where he managed a team with worldwide responsibilities for closing financial transactions helping U.S. businesses invest overseas and promoting economic

  6. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    published their proposal simultaneously with H. David Politzer, a graduate student at Harvard University who independently came up with the same idea. ... The discovery of Gross,...

  7. EM Update Presentation by David Huizenga

    Office of Environmental Management (EM)

    EM Program Update EM Site-Specific Advisory Board Chairs' Meeting October 2, 2012 David Huizenga Senior Advisor for Environmental Management www.em.doe.gov safety performance...

  8. David_practical_calc.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prac%cal c alcula%ons o f s emiconductors a nd m etals David A . S trubbe Department o f M aterials S cience a nd E ngineering, Massachuse8s I ns:tute o f T echnology BerkeleyGW t utorial 22 November 2013 Outline 1. Screening m odels f or E psilon 2. Construc%on o f k ---grids 3. Special t reatment f or m etals i n E psilon 4. Symmetry a nd d egeneracy 5. Linearizing t he D yson e qua%on 6. Real a nd c omplex v ersion Mean-Field φ MF nk , E MF nk WFN , V xc vxc.dat , ρ RHO epsilon -1 G,G (q,

  9. Supplemental Comments of David K. Paylor, Director of the Commonwealth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David K. Paylor, Director of the Commonwealth of Virginia's Department of Environmental Quality Supplemental Comments of David K. Paylor, Director of the Commonwealth of Virginia's ...

  10. David Prendergast | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Prendergast Previous Next List Prendergast David Prendergast Director of the Theory of Nanostructured Materials Facility, The Molecular Foundry, Lawrence Berkeley National...

  11. EECBG Success Story: David Crockett, Chattanooga's Green Frontiersman...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Crockett, Chattanooga's Green Frontiersman EECBG Success Story: David Crockett, Chattanooga's Green Frontiersman June 11, 2010 - 5:15pm Addthis Crockett has seen Chattanooga...

  12. Senior Advisor David Huizenga's Written Statement Before the...

    Energy Savers [EERE]

    David Huizenga's Written Statement Before the Subcommittee on Energy and Water Development Committee on Appropriations (March 19, 2013) Senior Advisor David Huizenga's Written...

  13. City of David City, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    David City, Nebraska (Utility Company) Jump to: navigation, search Name: David City Municipal Power Place: Nebraska Phone Number: 402.367.3135 Website: davidcityne.comutilities...

  14. Aligning Contract Incentives & Contract Mgt Trends - David Leotta...

    Energy Savers [EERE]

    Aligning Contract Incentives & Contract Mgt Trends - David Leotta, Director, Office of Contract Management, OAPM Aligning Contract Incentives & Contract Mgt Trends - David Leotta, ...

  15. Sandia Energy - CRF Researchers Awarded David A. Shirley Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Osborn (Sandia). Craig Taatjes and David Osborn (both in 8353), along with collaborators at the universities of Manchester and Bristol, were given this LBNL Advanced Light...

  16. Quercus Trust David Gelbaum Private investor | Open Energy Information

    Open Energy Info (EERE)

    Quercus Trust David Gelbaum Private investor Jump to: navigation, search Name: Quercus Trust David Gelbaum (Private investor) Place: Newport Beach, California Zip: 92660 Product:...

  17. ORISE: Postdoctoral Research Experiences - Dr. David Mebane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. David Mebane Dr. David Mebane As some scientists turn to solar and wind energy to combat the rise in harmful greenhouse gases, West Virginia University assistant professor Dr. David Mebane looks to improve current energy technologies to mitigate these harmful fossil fuel emissions. Today, U.S. coal-fired power plants generate nearly half of the nation's electricity and contribute more than a third of total U.S. carbon dioxide emissions. As some scientists turn to solar and wind energy to

  18. David J. Gross and the Strong Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David J. Gross and the Strong Force Resources with Additional Information The 2004 Nobel Prize in Physics was awarded to David Gross for "the discovery of asymptotic freedom in the theory of the strong interaction". 'Gross, who obtained his PhD in physics in 1966, currently is a professor of physics and director of the Kavli Institute for Theoretical Physics at UC Santa Barbara. ... David Gross Courtesy of UC Santa Barbara [When on the faculty at Princeton University,] he and

  19. USAEC, David Lilienthal and Oak Ridge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... David Lilienthal had been named one of three directors of the newly formed Tennessee Valley Authority in 1933. Recall the first dam built by TVA was Norris Dam on the Clinch River. ...

  20. David Ortiz, OE-40 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    He graduated cum laude from Princeton University, earning the B.S.E. degree in Mechanical and Aerospace Engineering. David is a member of IEEE, the IEEE Control Systems Society, ...

  1. David E. Scott | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scott Curriculum Vitae Faculty & Scientists SREL Home David E. Scott Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5747 office (803) 725-3309 fax...

  2. NREL: Biomass Research - David W. Templeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National Bioenergy Center at the National Renewable Energy Laboratory (NREL). As an analytical chemist, he works with principal investigators, external collaborators, researchers, chemical analysts, and technicians to generate high-quality process data leading to improved biochemical transformations of biomass to renewable fuels

  3. Treatment of Remediated Nitrate Salts | Department of Energy

    Energy Savers [EERE]

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. PDF icon Nitrate Salts - November 18, 2015 More Documents & Publications Accident Investigation Report Phase II Accident Investigation Report - Radiological Release Amount of Zeolite Required to Meet the Constraints Established by the Energetic Materials

  4. David A. Wark | Inventors | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Wark David Wark Materials Scientist Material Characterization & Chemical Sensing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) "Ask the right questions, step outside of comfort zones, make friends in strange places and take risks. And when outcome doesn't match expectation, treat it as a learning

  5. Building America Whole-House Solutions for New Homes: David Weekely...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Weekely Homes, Houston, Texas Building America Whole-House Solutions for New Homes: David Weekely Homes, Houston, Texas Case study of David Weekley Homes, who worked with ...

  6. Remarks by Federal Blue Ribbon Commission J. David Jameson ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Blue Ribbon Commission J. David Jameson Atlanta, GA October 18, 2011 Good Morning. I am David Jameson. I am President and CEO of the Greater Aiken, South Carolina, Chamber...

  7. 2013 Federal Energy and Water Management Award Winner David Morin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Morin 2013 Federal Energy and Water Management Award Winner David Morin PDF icon fewm13morinhighres.pdf PDF icon fewm13morin.pdf More Documents & Publications 2013 Federal ...

  8. H. David Politzer, Asymptotic Freedom, and Strong Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David Politzer has won the 2004 Nobel Prize in Physics 'for the discovery of asymptotic freedom in the theory of the strong interaction'. 'Politzer, a professor of theoretical physics at the California Institute of Technology, shares the prize with David Gross and Frank Wilczek. The key discovery celebrated by [the] prize was

  9. David Friedman Principal Deputy Assistant Secretary Office of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Friedman Principal Deputy Assistant Secretary Office ... sector occurs in personal vehicles and heavy ... optimized intelligent torque management, ...

  10. PARC Seminar Series featuring David Tiede | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center PARC Seminar Series featuring David Tiede PARC Seminar Series featuring David Tiede Wiring Photosynthetic and Redox Proteins for Solar Fuels Function April 21, 2015 - 11:00am Rodin Auditorium, Green Hall, Washington University View David's Bio Here Download our Flyer here Seminars

  11. Sandia researcher David Osborn elected physics fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researcher David Osborn elected physics fellow - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  12. David A Gates | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Gates Principal Research Physicist, Stellerator Physics Lead, Advanced Projects Division, Science Focus Group Leader for Macroscopic Stability David Gates is a principal research physicist for the advanced projects division of PPPL, and the stellarator physics leader at the Laboratory. In the latter capacity he leads collaborative efforts with the Wendelstein 7-X and Large Helical Device stellarator projects in Germany and Japan, respectively. Interests Stellarators Tokamaks Contact

  13. David W Johnson | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W Johnson Principal Research Physicist, Head, ITER Fabrication David Johnson is a principal research physicist with broad experience in techniques and instrumentation for measur- ing the characteristics of magnetic fusion plasmas. He has specific expertise in laser Thomson scattering systems, and has installed and operated such systems on many fusion devices around the world. He managed a division of plasma diagnostic experts for the Tokamak Fusion Test Reactor (TFTR) and National Spherical

  14. Microsoft PowerPoint - 2 David Kosson

    Office of Environmental Management (EM)

    Put Title Here Put SubTitle Here David S. Kosson 1 , Charles W. Powers 1 , Jennifer Salisbury, Craig H. Benson 2 , Kevin G. Brown 1 , Lisa Bliss 1 , Joanna Burger 3 , Bethany Burkhardt 1 , James H. Clarke 1 , Allen G. Croff 1 , Lyndsey Fern Fyffe 1 , Michael Gochfeld 3 , Michael Greenberg 3 , Kathryn A. Higley 4 , George M. Hornberger 1 , Kimberly L. Jones 5 , Steven L. Krahn 1 , Eugene J. LeBoeuf 1 , Henry S. Mayer 3 , Jane B. Stewart 6 , Richard B. Stewart 6 , and Hamp Turner 1 1 Vanderbilt

  15. Profiles in Leadership: David Mohler, Deputy Assistant Secretary for Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal and Carbon Management | Department of Energy Profiles in Leadership: David Mohler, Deputy Assistant Secretary for Clean Coal and Carbon Management Profiles in Leadership: David Mohler, Deputy Assistant Secretary for Clean Coal and Carbon Management August 6, 2015 - 8:58am Addthis Profiles in Leadership: David Mohler, Deputy Assistant Secretary for Clean Coal and Carbon Management Profiles in Leadership is a series of interviews with senior executives in the Office of Fossil Energy (FE).

  16. NREL: Biomass Research - David A. Sievers, P.E.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David A. Sievers, P.E. Photo of David Sievers David Sievers is an engineer in the Bioprocess Integration R&D group of the National Bioenergy Center at the National Renewable Energy Laboratory (NREL). He has more than 10 years of hands-on engineering and design experience, helping biopharmaceutical companies design and validate their manufacturing processes; aiding natural gas clients deploying new processing facilities; and advancing next-generation biofuels to the market. Since 2007, he has

  17. Meet CMI Researcher David Reed | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Reed CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI Researcher David Reed is the PI for project 3.2.5 Bioleaching for Recovery of Recycled REE. The objective of this project is to develop and deploy a biological strategy for recovery of rare earth elements from recyclable materials. His collaborators include Vicki Thompson, Dayna Daubaras, and Debra Bruhn at Idaho National Laboratory and Yongqin Jiao

  18. Senior Advisor David Huizenga's Written Statement Before the Subcommittee

    Energy Savers [EERE]

    on Energy and Water Development Committee on Appropriations (March 19, 2013) | Department of Energy David Huizenga's Written Statement Before the Subcommittee on Energy and Water Development Committee on Appropriations (March 19, 2013) Senior Advisor David Huizenga's Written Statement Before the Subcommittee on Energy and Water Development Committee on Appropriations (March 19, 2013) Written Statement of David Huizenga, Senior Advisor for Environmental Management, United States Department of

  19. Perspective & Acquisition Fellows Program - David Klaus, Deputy Under

    Energy Savers [EERE]

    Secretary for Management and Performance | Department of Energy Perspective & Acquisition Fellows Program - David Klaus, Deputy Under Secretary for Management and Performance Perspective & Acquisition Fellows Program - David Klaus, Deputy Under Secretary for Management and Performance 2014 Acquisition Fellows Program Graduates PDF icon Workshop 2015 - David Klaus - Perspective & Acquisition Fellows Program.pdf More Documents & Publications 2015 DOE Acquisition and Project

  20. 5 Questions for a Scientist: Materials Engineer David Forrest | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 5 Questions for a Scientist: Materials Engineer David Forrest 5 Questions for a Scientist: Materials Engineer David Forrest July 24, 2014 - 9:38am Addthis Flash Ironmaking is a project to develop a fully operational iron making system that captures exhaust gases, eliminates ash, cuts energy, reduces greenhouse gas emissions. This project is managed by AMO Technology Manager Dr. David Forrest who was recently selected as a fellow by ASM International. | Graphic image courtesy

  1. 2013 Federal Energy and Water Management Award Winner David Morin

    Broader source: Energy.gov [DOE]

    Poster features 2013 Federal Energy and Water Management Award winner David Morin of the U.S. Air Force's Laughlin Air Force Base in Texas.

  2. Written Statement of David Huizenga Senior Advisor for Environmental...

    Energy Savers [EERE]

    David Huizenga represented the Department of Energy's (DOE) Office of Environmental Management (EM) before the Subcommittee on Strategic Forces Armed Services Committee...

  3. Written Statement of David Huizenga Senior Advisor for Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    the FY 2014 Request. Written Statement of David Huizenga Senior Advisor for Environmental Management United States Department of Energy Before the Subcommittee on Strategic Forces...

  4. DAVID Fuel Cell Components SL | Open Energy Information

    Open Energy Info (EERE)

    manufacture and marketing of components and devices for PEM fuel cells, direct methanol fuel cells (DMFC) and fuel reformers. References: DAVID Fuel Cell Components SL1...

  5. David Telles wins NNSA Security Professional of the Year award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Professional of the Year award David Telles wins NNSA Security Professional of the Year award The award recognizes one federal employee and one contractor employee whose...

  6. St. David, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    David, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9042517, -110.2142399 Show Map Loading map... "minzoom":false,"mappingservic...

  7. Sandia Energy - Introduction of Prof. David Kelley and UC Merced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to SSLS Home Solid-State Lighting Partnership News Energy Efficiency News & Events Introduction of Prof. David Kelley and UC Merced to SSLS Previous Next Introduction of Prof....

  8. Update from the Director: David Conrad | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update from the Director: David Conrad Update from the Director: David Conrad March 5, 2015 - 9:41am Addthis David F. Conrad David F. Conrad Deputy Director, Office of Indian Energy Policy and Programs We wrapped up 2014 with an outstanding dialogue between DOE Secretary of Energy Dr. Ernest Moniz and the tribal leaders of our DOE-sponsored energy working groups. Also at the end of the year, the new Under Secretary for Science and Energy, Dr. Franklin Orr, was sworn in to oversee several offices

  9. David Turner to Retire from NERSC User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Turner to Retire from NERSC User Services Group David Turner to Retire from NERSC User Services Group June 17, 2015 davidturnernow2 David Turner in the NERSC machine room, in front of Carver, circa 2015 Long-time User Services Group consultant David Turner is hanging up his headset after 17 years at NERSC. His love of math, science and computers began when he was still in high school, and it has not waned over the years. Here Turner, whose last official day is June 26, talks about how he

  10. Senate Confirms DOE Nominees Daniel Poneman, David Sandalow,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Senate Confirms DOE Nominees Daniel Poneman, David Sandalow, Kristina Johnson, Steve ... The Department has set aggressive goals for creating green jobs, addressing our climate ...

  11. Systems and Professional Development - David Brown, Director, Systems &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Professional Development, OAPM | Department of Energy Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM Topics Discussed: Importance of Contracting in DOE Compared with Other Civilian Agencies Professional Workforce Workload DOE's Certified Workforce Acquisition Workload The Holy Grail of Contract and Project Management More...

  12. TBH-0046- In the Matter of David K. Isham

    Broader source: Energy.gov [DOE]

    David Isham filed a retaliation complaint (the Part 708 Complaint or the Complaint) under the Department of Energy (DOE) Contractor Employee Protection Program. 10 C.F.R. Part 708 (2007). As...

  13. EECBG Success Story: David Crockett, Chattanoogas Green Frontiersman

    Broader source: Energy.gov [DOE]

    David Crockett is no stranger to Chattanooga, Tennessee. A three-term city councilman, former chairman of the council and President of the Chattanooga Institute for Sustainability, he knows his way around the city government. Learn more.

  14. Docker File System Isolation By Darrin Schmitz David Huff Destiny...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Docker File System Isolation By Darrin Schmitz David Huff Destiny Velasquez 1 LA-UR-15-25911 Specifications * HP ProLiant DL380p Gen8 servers * Head node has 32 cores and 32 GB RAM...

  15. TBA-0066- In the Matter of David L. Moses

    Broader source: Energy.gov [DOE]

    This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on September 3, 2008, involving a Complaint of Retaliation filed by David L. Moses (also referred to as the employee or...

  16. TBH-0066- In the Matter of David L. Moses

    Broader source: Energy.gov [DOE]

    This Initial Agency Decision involves a whistleblower complaint filed by Dr. David L. Moses (“Moses” or “the complainant”) under the Department of Energy (DOE) Contractor Employee Protection...

  17. Physics Nobel winner David Gross gives public lecture at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) ... "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on ...

  18. David Hopkinson | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email: David.Hopkinson at NETL.DOE.GOV Phone: 304-285-4360 EFRC Research: Within the CGS, the Hopkinson group is developing and characterizing MOFpolymer mixed-matrix membranes....

  19. VWX-0001- in the Matter of David Ramirez

    Broader source: Energy.gov [DOE]

    On December 2, 1994, the Deputy Secretary of Energy issued a Final Decision and Order in a case involving a "whistleblower" complaint filed by David Ramirez ("Ramirez") under the Department of...

  20. LWA-0002- In the Matter of David Ramirez

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by David Ramirez ("Ramirez" or "the complainant") under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Ramirez...

  1. David K. Garman Sworn in as Under Secretary of Energy

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC – David K. Garman was sworn in today as Under Secretary of Energy for Energy, Science and Environment at a small ceremony held at the Department of Energy (DOE) headquarters in...

  2. Ami M. DuBois, John David Lee, ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high time resolution x-ray diagnostic on the Madison Symmetric Torus Ami M. DuBois, John David Lee, and Abdulgadar F. Almagri Citation: Review of Scientific Instruments 86, 073512...

  3. TBH-0087- In the Matter of David P. Sanchez

    Broader source: Energy.gov [DOE]

    This Decision will consider a Motion to Dismiss filed by Los Alamos National Laboratory (“LANL” or “the Respondent”). LANL seeks dismissal of a pending complaint filed by David P. Sanchez (“Mr....

  4. TBZ-0087- In the Matter of David P. Sanchez

    Broader source: Energy.gov [DOE]

    This Decision will consider a Motion to Dismiss filed by Los Alamos National Laboratory (“LANL” or “the Respondent”). LANL seeks dismissal of a pending complaint filed by David P. Sanchez (“Mr....

  5. VWD-0003- In the Matter of David M. Turner

    Broader source: Energy.gov [DOE]

    This decision will consider two Motions for Discovery filed by David M Turner with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE) on June 8, 1999, as amended on June 22,...

  6. VWD-0005- In the Matter of David M. Turner

    Broader source: Energy.gov [DOE]

    This decision will consider two Motions for Discovery filed by David M Turner with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE) on June 8, 1999, as amended on June 22,...

  7. Senate Confirms DOE Nominees Daniel Poneman, David Sandalow, Kristina

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson, Steve Koonin, Scott Harris, and Ines Triay | Department of Energy Confirms DOE Nominees Daniel Poneman, David Sandalow, Kristina Johnson, Steve Koonin, Scott Harris, and Ines Triay Senate Confirms DOE Nominees Daniel Poneman, David Sandalow, Kristina Johnson, Steve Koonin, Scott Harris, and Ines Triay May 21, 2009 - 12:00am Addthis WASHINGTON, D.C. -- This week, the Senate confirmed six DOE nominees, including Deputy Secretary Daniel Poneman, Under Secretary for Energy Kristina

  8. Aligning Contract Incentives & Contract Mgt Trends - David Leotta,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director, Office of Contract Management, OAPM | Department of Energy Aligning Contract Incentives & Contract Mgt Trends - David Leotta, Director, Office of Contract Management, OAPM Aligning Contract Incentives & Contract Mgt Trends - David Leotta, Director, Office of Contract Management, OAPM The Deputy Secretary issued December 2012 memo: "Aligning Contract Incentives" The purpose of the memo: Align Contractor Incentives with taxpayer interests Hold each party to the

  9. David Muller > Research Thrust Leader - Complex Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professor Applied and Engineering Physics > Faculty Directory > The Energy Materials Center at Cornell David Muller Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics Research Group Webpage dm24@cornell.edu He joined the Applied and Engineering Physics faculty at Cornell University in July 2003, is a graduate of the University of Sydney and completed his Ph.D. in physics at Cornell in 1996. David was a member of the technical staff at Bell Laboratories

  10. David Lee, Douglas Osheroff, Superfluidity, and Helium 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Lee, Douglas Osheroff, Superfluidity, and Helium 3 Resources with Additional Information David M. Lee and Douglas D. Osheroff received the 1996 Nobel Prize in Physics for 'their discovery of superfluidity in helium-3'. "In 1976, Lee shared with Richardson and Osheroff their earliest recognition for studies of superfluidity, the Simon Memorial Prize of the British Physical Society. The Buckley Prize of the American Physical Society followed for the trio in 1981. ... Douglas D. Osheroff

  11. Public Scoping Meeting Public Scoping Meeting David Levenstein

    Office of Legacy Management (LM)

    Public Scoping Meeting Public Scoping Meeting David Levenstein EIS Document Manager David Levenstein EIS Document Manager 2 About Tonight's Scoping Meeting * Scoping is a required step in the National Environmental Policy Act (NEPA) process for preparing an environmental impact statement (EIS). * Scoping is the process of determining the subjects that will be considered and evaluated in an EIS. * Public comments - both oral and written - received during the scoping period are taken into account

  12. First Name: Last Name: David Babineau Thomas Bracke Dean Buchenauer

    Office of Environmental Management (EM)

    Name: Last Name: David Babineau Thomas Bracke Dean Buchenauer Anthony Busigin Lee Cadwallader Ian Castillo Craig Caudill Byron Denny Justin Dexter Charlie Gentile Ron Hafner Yuji Hatano Tatsuya Hinoki Paul Humrickhouse Richard Karnesky Kazunari Katayama Robert Kolasinski Paul Korinko Walter Luscher Chandra Marsden Peter Mason Brad Merrill Kari Moreno Gregg Morgan Yuji Nobuta Yasuhisa Oya Bob Pawelko Mike Rogers Bernice Rogers Keith Rule David Senor Masashi Shimada Walter Shmayda Greg Staack

  13. Sandia Energy - Molten Salt Test Loop Melted Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Home Renewable Energy Energy News Concentrating Solar Power Solar Molten Salt Test Loop Melted Salt Previous Next Molten Salt Test Loop Melted Salt The Molten Salt Test...

  14. W. David Montgomery Senior Vice President NERA Economic Consulting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    W. David Montgomery Senior Vice President NERA Economic Consulting 1255 23rd Street NW, Suite 600 Washington, DC 20037 Tel: 202-466-9294 Fax: 202-466-3605 w.david.Montgomery@NERA.com www.nera.com Office of Fossil Energy U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 December 3, 2012 Attn: Deputy Assistant Secretary Christopher Smith Dear Mr. Smith I am transmitting with this letter a clean copy of NERA's report on the macroeconomic impacts of LNG exports from the

  15. Acting Under Secretary of Energy David Sandalow's Remarks at the

    Energy Savers [EERE]

    U.S.-Brazil Wind Workshop - As Prepared for Delivery | Department of Energy Under Secretary of Energy David Sandalow's Remarks at the U.S.-Brazil Wind Workshop - As Prepared for Delivery Acting Under Secretary of Energy David Sandalow's Remarks at the U.S.-Brazil Wind Workshop - As Prepared for Delivery August 29, 2012 - 6:26pm Addthis Wind power has arrived. For many years, widespread wind power was a distant dream. No longer. Today, wind power is shaping energy markets around the world.

  16. SBOT CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov ADMINISTATIVE / WASTE / REMEDIATION Security Systems Services (except Locksmiths) 561621 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 CONSTRUCTION All Other Specialty Trade Contractors 238990 EDUCATION Computer Training 611420 Professional and Management Development Training 611430 GOODS Photographic Equipment and Supplies Merchant Wholesalers 423410 Computer and Computer

  17. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROFESSIONAL / SCIENTIFIC / TECHNICAL CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services 541360 Testing Laboratories 541380 Custom Computer Programming Services 541511 Computer Systems Design Services 541512 Other Computer Related Services 541519 Administrative Management and General Management Consulting Services 541611 Other Scientific and Technical

  18. GOODS CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Environmental Management (EM)

    GOODS CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Photographic Equipment and Supplies Merchant Wholesalers 423410 Computer and Computer Peripheral Equipment and Software Merchant Wholesalers 423430 Other Commercial Equipment Merchant Wholesalers 423440 Other Professional Equipment and Supplies Merchant Wholesalers 423490 Electrical Apparatus and Equipment, Wiring Supplies, and Related Equipment Merchant Wholesalers 423610 Electrical and

  19. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Environmental Management (EM)

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  20. Building America Whole-House Solutions for New Homes: David Weekely Homes,

    Energy Savers [EERE]

    Houston, Texas | Department of Energy David Weekely Homes, Houston, Texas Building America Whole-House Solutions for New Homes: David Weekely Homes, Houston, Texas Case study of David Weekley Homes, who worked with Building America research partner Building Science Corporation to design HERS-59 homes with advanced framed walls, airtight drywall, and rigid foam wall sheathing. PDF icon David Weekley Homes: Eagle Springs & Waterhaven - Houston, TX More Documents & Publications Building

  1. David Hopkinson | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome David Hopkinson Previous Next List Hopkinson David Hopkinson Carbon Capture Technical Portfolio Lead, National Energy Technology Laboratory Email: David.Hopkinson [at] NETL.DOE.GOV Phone: 304-285-4360 EFRC Research: Within the CGS, the Hopkinson group is developing and characterizing MOF/polymer mixed-matrix membranes.

  2. Attn: David Meyer Office of Electricity Delivery and Energy Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    P a g e October 20, 2014 Attn: David Meyer Office of Electricity Delivery and Energy Reliability U.S. Department of Energy; 1000 Independence Avenue SW Washington, DC 20585. RE: Comments on Draft National Electric Transmission Congestion Study Dear Mr. Meyer, On behalf of the American Wind Energy Association ("AWEA"), 1 we are submitting comments in response to the draft National Electric Transmission Congestion Study published August 19, 2014 (Draft NIETC Study). For the reasons set

  3. David Telles wins NNSA Security Professional of the Year award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Professional of the Year award David Telles wins NNSA Security Professional of the Year award The award recognizes one federal employee and one contractor employee whose contributions to the security programs within the NNSA enterprise exemplify the highest ideals of public service. May 7, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from

  4. COLLOQUIUM: David Sarnoff, RCA Laboratories, and the Dawn of the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Age | Princeton Plasma Physics Lab May 21, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: David Sarnoff, RCA Laboratories, and the Dawn of the Information Age Dr. Benjamin Gross Chemical Heritage Foundation Decades before Silicon Valley became synonymous with innovation, New Jersey was the center of the American consumer electronics industry. Leading the way was the Radio Corporation of America (RCA), whose Garden State laboratories were the birthplace of color

  5. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADMINISTATIVE / WASTE / REMEDIATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Security Systems Services (except Locksmiths) 561621 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Security Systems Services (except Locksmiths) 561621 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 COLORADO GOLDEN FIELD

  6. CONSTRUCTION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSTRUCTION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov All Other Specialty Trade Contractors 238990 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov All Other Specialty Trade Contractors 238990 COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and

  7. Mr. David B. B. Helfrey Guilfoil Petzell & Shoemake

    Office of Legacy Management (LM)

    Energy Washington, DC 20545 AUG 15 1988 Mr. David B. B. Helfrey Guilfoil Petzell & Shoemake Attorneys at Law 100 North Broadway St. Louis, Missouri 63102 Dear Mr. Helfrey: Enclosed please find two copies of the revised survey consent form for the radiological survey of that portion of the Spectrulite Consortium, Inc., site that was used by DOW Chemical for the processing of uranium metal. We have incorporated a modified version of the addendum that contained your requested changes into the

  8. From: Cutting, John To: Congestion Study Comments; Meyer, David

    Office of Environmental Management (EM)

    Cutting, John To: Congestion Study Comments; Meyer, David Cc: Buechler, John; Duffy, Timothy; Patka, Carl; Regulatory Affairs Subject: NYISO comments re: draft National Electric Transmission Congestion Study Date: Monday, October 20, 2014 12:29:46 PM Attachments: 20141020_NYISO_Comments_DOE_Congestion_Study.pdf Please find attached above the comments of the New York Independent System Operator, Inc. regarding the draft National Electric Transmission Congestion Study. John C. Cutting Regulatory

  9. From: Henderson, Michael To: Congestion Study Comments; Meyer, David

    Office of Environmental Management (EM)

    Henderson, Michael To: Congestion Study Comments; Meyer, David Cc: Doe, Stanley; Kowalski, Richard; Paradise, Theodore Subject: DOE Congestion Study Date: Monday, October 20, 2014 10:12:20 AM Attachments: image001.png ISO New England is pleased to provide comments on the public draft of the DOE Congestion Study. The ISO appreciates DOE's consideration of several specific comments shown in red below. Comments: Figure ES-2: It is possible to identify the consistent impacts of a few specific

  10. INFORMATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Environmental Management (EM)

    INFORMATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Periodical Publishers 511120 Software Publishers 511210 Telecommunications Resellers 517911 Data Processing, Hosting, and Related Services 518210 Internet Publishing and Broadcasting and Web Search Portals 519130 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Periodical Publishers 511120 Software Publishers 511210 Telecommunications Resellers 517911

  11. Written Statement of David Huizenga Senior Advisor for Environmental

    Broader source: Energy.gov (indexed) [DOE]

    Management United States Department of Energy Before the Subcommittee on Strategic Forces Armed Services Committee United States Senate (May 8, 2013) | Department of Energy Senate. He provide the members with an overview of the EM program, key accomplishments during the past year, 2013 planned accomplishments and progress to date, the projected impacts of sequestration, and planned accomplishments under the FY 2014 Request. PDF icon Written Statement of David Huizenga Senior Advisor for

  12. Mr. David Hernelright Chair, Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    2014 Mr. David Hernelright Chair, Oak Ridge Site Specific Advisory Board P.O. Box 2001 Oak Ridge, Tennessee 3 7831 Dear Mr. Hernelright: Thank you for the February 27th letter that you and the other Chairs of the Environmental Management Site-Specific Advisory Board (EM SSAB) sent recommending that the Department of Energy's (DOE's) cleanup funding be maintained as a top priority. We appreciate the Chairs' engagement to ensure successful EM cleanup efforts. EM Headquarters and the field sites

  13. Mr. David Meyer Office of Electricity Delivery and Energy Reliability

    Office of Environmental Management (EM)

    Mr. David Meyer Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to: Congestionstudy.comments@hq.doe.gov Re: Department of Energy - Draft National Electric Transmission Congestion Study, 79 Fed. Reg. 49076 (Aug. 19, 2014) Dear Mr. Meyer: Duke Energy Corporation ("Duke Energy") respectfully submits these comments in response to the above-referenced Department of Energy

  14. EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Environmental Management (EM)

    EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Computer Training 611420 Professional and Management Development Training 611430 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Computer Training 611420 Professional and Management Development Training 611430 COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Computer Training 611420 Professional and

  15. Physics Nobel winner David Gross gives public lecture at Jefferson Lab on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12 (Monday) | Jefferson Lab Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) June 6, 2006 David Gross David Gross, Nobel Prize recipient and lecturer David Gross, Nobel Prize recipient is scheduled to give a free, public lecture titled "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on (Monday) June 12. He is one of three men - Frank Wilczek, H. David Politzer and Gross - to have their work

  16. Los Alamos' David Mascareñas receives Presidential Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mascareñas receives Presidential Early Career Award Los Alamos' David Mascareñas receives Presidential Early Career Award David Mascareñas was named a recipient of the Presidential Early Career Award by President Obama last week. February 24, 2016 David Mascareñas David Mascareñas Contact Nick Njegomir Communications Office (505) 665-9394 Email "David is an innovative engineer whose creative thinking is essential to the continuing success of Los Alamos' national-security science

  17. Salt Selected (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Salt is relatively easy to mine. * Rock salt heals its own fractures because of its plastic quality. That is, salt formations will slowly and progressively move in to fill...

  18. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  19. Shane Canon, David Skinner and Jay Srinivasan! NUG2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canon, David Skinner and Jay Srinivasan! NUG2013 NERSC and HTC --- 1 --- February 1 2, 2 013 Science Strategies @ NERSC Science at Scale P etascale t o E xascale Science through Volume Thousands t o M illions o f S imula6ons Science in Data Petabytes t o Exabytes 2 3 Materials (Genome) Project * Need to gather slides 4 5 Common T hemes * Throughput O riented / E mbarrassingly p arallel * Rapidly I ncreasing d emand f or c omputaBon (outpacing M oore's L aw) * OIen D ata I ntensive * Scaling f

  20. Sub-scale Drum Test Memo David Rosenberg

    Office of Environmental Management (EM)

    Sub-scale Drum Test Memo David Rosenberg dmrosen@sandia.gov 505-284-5253 Sandia National Laboratories February 5, 2015 Introduction A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large

  1. David Turner! NERSC User Services Group NERSC Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Management --- 1 --- September 10, 2013 Overview * File S ystem R eview, D ata S haring, D ata T ransfer - David T urner * GlobusOnline D emo - Shreyas C holia * HPSS - Lisa G erhardt * Data A nalyDcs - Yushu Y ao --- 2 --- File Systems Summary File S ystem Path Type Default Q uota Backups Purge P olicy Global H omes $HOME GPFS 40GB/1M i nodes Yes Not p urged Global S cratch $GSCRATCH GPFS 20TB/2M i nodes No 12 weeks from last a ccess Global P roject /project/ projectdirs/ projectname GPFS

  2. Mr. David Abney Chief Executive Officer Wise Services, Inc.

    Office of Environmental Management (EM)

    9, 2014 Mr. David Abney Chief Executive Officer Wise Services, Inc. 1705 Guenther Road P.O. Box 159 Dayton, Ohio 45417 WEL-2014-04 Dear Mr. Abney: This letter refers to the U.S. Department of Energy's (DOE) investigation into the facts and circumstances associated with a track hoe operated by a Wise Services, Inc. (Wise Services) employee that struck a fiber optics line at the DOE Portsmouth Gaseous Diffusion Plant on November 8, 2012. The results of the investigation, conducted April 8-12,

  3. Mr. David Hemelright, Chair Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    David Hemelright, Chair Oak Ridge Site Specific Advisory Board P.O. Box 2001 , EM-91 Oak Ridge, Tennessee 37831 Dear Mr. Hemelright: SEP.. 2 0 2013 This is in response to your June 13 letter transmitting the Oak Ridge Site Specific Advisory Board (SSAB) Recommendation 218: Recommendation to Develop a Fact Sheet on Site Transition at On-Going Mission Sites. Enclosed is the fact sheet Site Transition Process upon Completion of the Cleanup Mission you requested by September 2013. This fact sheet

  4. Request for Rehearing and Request for Interim Clarification by David K.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paylor, Director of the Virginia Department of Environmental Quality | Department of Energy Rehearing and Request for Interim Clarification by David K. Paylor, Director of the Virginia Department of Environmental Quality Request for Rehearing and Request for Interim Clarification by David K. Paylor, Director of the Virginia Department of Environmental Quality Docket No. EO-05-01: Pursuant to Federal Power Act § 313, David K. Paylor, Director of the Virginia Department of Environmental

  5. Supplemental Comments of David K. Paylor, Director of the Commonwealth of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia's Department of Environmental Quality | Department of Energy David K. Paylor, Director of the Commonwealth of Virginia's Department of Environmental Quality Supplemental Comments of David K. Paylor, Director of the Commonwealth of Virginia's Department of Environmental Quality Docket No. EO-05-01: Pursuant to Department of Energy ("DOE") Order No. 202-06-1 issued February 17,2006, David K. Paylor ("Director"), Director of the Virginia Department of Environmental

  6. David Luebke | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome David Luebke Previous Next List David Luebke David Luebke Formerly: Technical Coordinator for Carbon Capture, National Energy Technology Laboratory Research Interests: Molecular design, synthesis, fabrication, and integration of CO2 capture materials including organic and inorganic sorbents and solvents as well as ionic liquid and mixed matrix membranes EFRC publications: Yan, Fangyong; Lartrey, Michael; Jariwala, Kuldeep; Bowser, Sage; Damodaran, Krishnan;

  7. David Friedman: On the Future of Transportation and the LA Auto Show |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy David Friedman: On the Future of Transportation and the LA Auto Show David Friedman: On the Future of Transportation and the LA Auto Show Addthis Description David Friedman, Principal Deputy Assistant Secretary in the Energy Department's Office of Energy Efficiency & Renewable Energy (EERE), visited the L.A. Auto Show in November 2015. In this video interview, he shared his thoughts about transportation's future, the exciting technologies being introduced to the

  8. Electrolyte salts for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (10516 Royal Birkdale, NE., Albuquerque, NM 87111); Ingersoll, David (5824 Mimosa Pl., NE., Albuquerque, NM 87111)

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  9. Microsoft PowerPoint - 9_David Thomas_WR Transparency at NMMSS...

    National Nuclear Security Administration (NNSA)

    HEU Downblending in Russia Under the 1993 U.S.-Russia HEU Purchase Agreement David Thomas NNSASAIC Russian HEU Down Blending Almost Complete The Agreement for the disposition...

  10. David Toledo > Graduate Student - Robinson Group > Researchers, Postdocs &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduates > The Energy Materials Center at Cornell David Toledo Graduate Student - Robinson Group dpt34@cornell.edu

  11. EVMS - FROM DATA TO DIAGNOSIS - A DoD Perspective - David Kester...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop 2015 - David KesterDoD EVMS Perspective.pdf More Documents & Publications PEP TALK "Policy - EVMS - PARS" Update, Mel Frank, Chief, Project Systems Division, PM Earned...

  12. David Friedman: On the Future of Transportation and the L.A. Auto Show |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy David Friedman: On the Future of Transportation and the L.A. Auto Show David Friedman: On the Future of Transportation and the L.A. Auto Show January 6, 2016 - 8:45am Addthis A conversation with David Friedman, Principal Deputy Assistant Secretary, Office of Energy Efficiency & Renewable Energy on his visit to the L.A. Auto Show in November 2015 Drew Bittner Writer/Editor, Office of Energy Efficiency and Renewable Energy David Friedman, Principal Deputy Assistant

  13. Slime-busting Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    past issues All Issues submit Slime-busting Salt A potential new treatment gets bacteria deep in their hiding places May 1, 2015 Slime-busting Salt Biofilms are made of...

  14. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt

  15. Ancient Salt Beds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Dr. Jack Griffith The key to the search for life on other planets may go through WIPP's ancient salt beds. In 2008, a team of scientists led by Jack Griffith, from the University of North Carolina, Chapel Hill, retrieved salt samples from the WIPP underground and studied them with a transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center of the University of North Carolina School of Medicine. In examining fluid inclusions in the salt and solid halite

  16. Characterization Report for the David Witherspoon Screen Art Site

    SciTech Connect (OSTI)

    Phyllis C. Weaver

    2011-01-31

    The U.S. Department of Energy (DOE) Oak Ridge Office (ORO) of Environmental Management (EM) requested the technical assistance of Oak Ridge Institute for Science and Education (ORISE) to characterize a tract of land associated with the David Witherspoon, Incorporated (DWI) Volunteer Equipment and Supply Company (VESC). This tract of land (hereinafter referred to as Screen Arts) is located in the Vestal Community in the 2000-block of Maryville Pike in south Knoxville, Tennessee, as shown in Figure A-1. This tract of land has been used primarily to store salvaged equipment and materials for resale, recycle, or for disposal in the former landfill once operated by DWI. The DWI Site industrial landfill and metal recycling business had been permitted by the Tennessee Division of Radiological Health to accept low-level radiologically contaminated metals. DWI received materials and equipment associated with operations from DOE sites, including those in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. It is likely that items stored at Screen Arts may have contained some residual radiological materials.

  17. Remarks by David Sandalow, Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs, to the Detroit Economic Club National Summit | Department of Energy Remarks by David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, to the Detroit Economic Club National Summit Remarks by David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, to the Detroit Economic Club National Summit PDF icon Microsoft Word - Sandalow Detroit National Summit Speech 6-17.doc More Documents & Publications Before the

  18. Statement of David Sandalow Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs Before the U.S.-China Economic and Security Review Commission | Department of Energy Statement of David Sandalow Assistant Secretary of Energy for Policy and International Affairs Before the U.S.-China Economic and Security Review Commission Statement of David Sandalow Assistant Secretary of Energy for Policy and International Affairs Before the U.S.-China Economic and Security Review Commission "China and the Clean Energy Opportunity" PDF icon Microsoft Word

  19. Statement of David Sandalow, Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs, Before the Committee on Energy and Natural Resources, U.S. Senate | Department of Energy Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Committee on Energy and Natural Resources, U.S. Senate Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Committee on Energy and Natural Resources, U.S. Senate COMMENTS ON THE PROMOTING ELECTRIC VEHICLES ACT OF 2010

  20. David Prendergast | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome David Prendergast Previous Next List Prendergast David Prendergast Director of the Theory of Nanostructured Materials Facility, The Molecular Foundry, Lawrence Berkeley National Lab Email: dgprendergast [at] lbl.gov Phone: 510-486-4948 EFRC research: Within the CGS, the Prendergast group is developing computational spectroscopy applied to MOFs. EFRC publications: Drisdell, Walter S.; Poloni, Roberta; McDonald, Thomas M; Long, Jeffrey R; Smit, Berend; Neaton,

  1. Los Alamos' David Mascareñas receives Presidential Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos' David Mascareñas receives Presidential Early Career Award February 24, 2016 Top award honors leading early-career science and engineering professionals LOS ALAMOS, N.M., Feb. 24, 2016-David Mascareñas, of Los Alamos National Laboratory's Engineering Institute in the National Security Education Center (NSEC), was named a recipient of the Presidential Early Career Award by President Obama last week and will be honored at an award ceremony this spring in Washington, DC. "These

  2. New Whole-House Solutions Case Study: David Weekley Homes, Houston, TX

    Energy Savers [EERE]

    Houston division of David Weekley Homes, worked with Building America research partner Building Science Corporation to design Builders Challenge homes in two Houston-area developments that achieved HERS scores of 59 to 68. The production builder, who operates in eight southern states, has qualified 1,500 homes for the U.S. Department of Energy's Builders Challenge, more than any U.S. home builder except Lennar Homes, which also builds in Texas. David Weekley Homes is also one of America's

  3. Dosimetry using silver salts

    DOE Patents [OSTI]

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  4. Hydroxycarboxylic acids and salts

    DOE Patents [OSTI]

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  5. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  6. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  7. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 2, Appendixes

    SciTech Connect (OSTI)

    1996-10-01

    This document contains the appendixes for the remedial investigation and feasibility study for the David Witherspoon, Inc., 901 site in Knoxville, Tennessee. The following topics are covered in the appendixes: (A) David Witherspoon, Inc., 901 Site Historical Data, (B) Fieldwork Plans for the David Witherspoon, Inc., 901 Site, (C) Risk Assessment, (D) Remediation Technology Discussion, (E) Engineering Support Documentation, (F) Applicable or Relevant and Appropriate Requirements, and (G) Cost Estimate Documentation.

  8. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Downtown Santa Fe. Begins 10 AM. Map will be provided Day 2 September 9 - Tuesday TM-behavior of salt 08:30-08:50 Update on the "Joint Project on Constitutive Laws benchmark"...

  9. Amine salts of nitroazoles

    DOE Patents [OSTI]

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  10. Remarks by Federal Blue Ribbon Commission J. David Jameson Atlanta, GA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Blue Ribbon Commission J. David Jameson Atlanta, GA October 18, 2011 Good Morning. I am David Jameson. I am President and CEO of the Greater Aiken, South Carolina, Chamber of Commerce. I am here today in my capacity as current Chairman of the SRS Community Reuse Organization. The SRSCRO is a non-profit regional group supporting economic diversification and job creation in a five-county in Georgia and South Carolina near the Department of Energy's Savannah River Site. We are unique among

  11. David A. Shirley, 1972 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    David A. Shirley, 1972 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1970's David A. Shirley, 1972 Print Text Size: A A A FeedbackShare Page Chemistry & Metallurgy:

  12. David E. Chavez, 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    David E. Chavez, 2011 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 2010's David E. Chavez, 2011 Print Text Size: A A A FeedbackShare Page Atomic, Molecular, and

  13. David E. Moncton, 1987 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    David E. Moncton, 1987 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's David E. Moncton, 1987 Print Text Size: A A A FeedbackShare Page Materials Research: For the

  14. David J. Schlegel, 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    David J. Schlegel, 2014 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 2010's David J. Schlegel, 2014 Print Text Size: A A A FeedbackShare Page High Energy Physics: For

  15. David R. Nygren, 1985 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    David R. Nygren, 1985 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's David R. Nygren, 1985 Print Text Size: A A A FeedbackShare Page Physics: For the development

  16. NREL Scientists Win Dan David Prize in Future Category - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Scientists Win Dan David Prize in Future Category Pioneering work on super-efficient solar cells earns international honor March 6, 2007 See an interview with Jerry Olson and Sarah Kurtz about their pioneering work on super-efficient solar cells at NREL. Two scientists at the U.S. Department of Energy's National Renewable Energy Laboratory have been named Dan David Prize Laureates for 2007. Jerry Olson and Sarah Kurtz will receive their award in a March 8 ceremony in Paris. The NREL

  17. Complex Oxides - Research Thrust Leader > David Muller > Leadership Team >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Energy Materials Center at Cornell David Muller dm24@cornell.edu He joined the Applied and Engineering Physics faculty at Cornell University in July 2003, is a graduate of the University of Sydney and completed his Ph.D. in physics at Cornell in 1996. David was a member of the technical staff at Bell Laboratories from 1997 to 2003, where he applied his research on imaging single atoms and atomic-scale spectroscopy to determine the physical limits on how small a transistor can be made.

  18. EVMS - FROM DATA TO DIAGNOSIS - A DoD Perspective - David Kester, Defense

    Office of Environmental Management (EM)

    Contract Management Agency | Department of Energy EVMS - FROM DATA TO DIAGNOSIS - A DoD Perspective - David Kester, Defense Contract Management Agency EVMS - FROM DATA TO DIAGNOSIS - A DoD Perspective - David Kester, Defense Contract Management Agency CONTENTS 1. DCMA At a Glance 2. Current EVMS Environment 3. The PM Connection 4. DCMA EVMS Mission Transformation 5. All Things Data 6. Mapping the EVMS Genome - EIA-748 Guideline 9 7. EVMAS - The Technology Solution 8. Role of the ACO in the

  19. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  20. Statement of David Sandalow, Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs, Before the Subcommittee on Investigations and Oversight, Committee on Science, Space, and Technology, United States House of Representatives | Department of Energy Investigations and Oversight, Committee on Science, Space, and Technology, United States House of Representatives Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Subcommittee on Investigations and Oversight, Committee on Science, Space, and

  1. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  2. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullman Dresden Newa September 7 - 9, 2015 September 7- Monday 08:00-08:30 Registration 08:30-08:50 Welcome by the organizers T. Lautsch, DBE F. Hansen, SNL W. Steininger, PTKA 08:50-09:15 Welcome by BMWi U. Borak, BMWi 09:15-09:30 Welcome by USDOE N. Buschman, US DOE 09:30-10:00 NEA Salt Club J. Mönig, GRS SAFETY CASE ISSUES 10:00-10:30 WIPP recovery F. Hansen, SNL 10:30-11:00 Coffee break and photo event

  3. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  4. Sandia Energy - Molten Salt Test Loop Commissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News EC News & Events Concentrating Solar Power Solar Molten Salt Test Loop Commissioning Previous Next Molten Salt Test Loop Commissioning The Molten Salt...

  5. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  6. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  7. Microsoft Word - Welcome David Huizenga from EM SSAB - FINAL DRAFT_rev4_.docx

    Office of Environmental Management (EM)

    August 11, 2011 David Huizenga Acting Assistant Secretary for Environmental Management U.S. Department of Energy, EM-1 1000 Independence Avenue, SW Washington, DC 20585 Dear Acting Assistant Secretary Huizenga: The eight local boards that make up the Office of Environmental Management's Site- Specific Advisory Board (EM SSAB) welcome you to your new position as Acting Assistant Secretary for EM. We look forward to continuing the positive, collaborative working relationship that the EM SSAB has

  8. Statement of David Sandalow, Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs, Before the Committee on Energy and Natural Resources Subcommittee on Energy, U.S. Senate | Department of Energy Energy and Natural Resources Subcommittee on Energy, U.S. Senate Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Committee on Energy and Natural Resources Subcommittee on Energy, U.S. Senate "Examining the Role of Strategic Minerals in Clean Energy Technologies and Other Applications" PDF

  9. Statement of David Sandalow, Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs, Before the Committee on Environment and Public Works, United States Senate | Department of Energy Environment and Public Works, United States Senate Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Committee on Environment and Public Works, United States Senate "Climate Change and Ensuring that America Leads the Clean Energy Transformation" PDF icon "Climate Change and Ensuring that America Leads

  10. Statement of David Sandalow, Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs, Before the Subcommittee on Energy and the Environment, Committee on Science, Space, and Technology, United States House of Representatives | Department of Energy Energy and the Environment, Committee on Science, Space, and Technology, United States House of Representatives Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Subcommittee on Energy and the Environment, Committee on Science, Space, and Technology,

  11. Statement of David Sandalow, Assistant Secretary of Energy for Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs, Before the Subcommittee on Energy, Committee on Energy and Natural Resources, United States Senate | Department of Energy Energy, Committee on Energy and Natural Resources, United States Senate Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Subcommittee on Energy, Committee on Energy and Natural Resources, United States Senate PDF icon 2011-06-09 FINAL Sandalow SENR.pdf More Documents & Publications

  12. Authors: Carol Burns, Mark Chadwick, John Erickson, David Funk, and Robert Fulton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures (N&PF) Pillar Authors: Carol Burns, Mark Chadwick, John Erickson, David Funk, and Robert Fulton Contributions by: Malcolm Andrews, Mike Baker, Joe Carlson, Bruce Carlsten, Aaron Couture, Mark Crawford, Greg Dale, Ed Dendy, Brenda Dingus, Steve Elliott, Juan Fernandez, Julianna Fessenden-Rahn, Alex Friedland, Chris Fryer, Michael Graesser, Rajan Gupta, Anna Hayes, Andrew Hime, Hui Li, Andi Klein, Tom Kwan, Bob Little, Bill Louis, Christopher Mauger, Pat McGaughey,

  13. David L. Rogow | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome L. Rogow Previous Next List Rogow David L. Rogow Formerly: Postdoctoral Fellow, Department of Chemistry University of California, Berkeley EFRC research: The focus of my research is on the rational design and synthesis of metal-organic framework (MOF) materials that are tailored with specific functionality for selective adsorption of carbon dioxide. Materials based on pyrazolate bridging ligands are being pursued due to the high thermal stability and chemically

  14. David Zee | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Blandine Jerome Zee Previous Next List Zee PhD Student Department of Chemistry University of California, Berkeley Email: david.zee [at] berkeley.edu Phone: 510-643-3832 BA in Chemistry and Economics, Swarthmore College EFRC Research My research involves the preparation of metal-organic frameworks with low valent early first-row transition metals for selective oxygen-nitrogen separation. These materials may afford tremendous energy savings by supplanting current separation technologies such

  15. Letter from James Ajello, Chair, to Acting Assistant Secretary David Huizenga

    Energy Savers [EERE]

    AVENUE SW WASHINGTON, DC 20585 December 9, 2011 Mr. David Huizenga Acting Assistant Secretary for Environmental Management 1000 Independence Avenue SW Washington, DC 20585 Dear Mr. Huizenga: As you know, the Environmental Management Advisory Board (EMAB) is charged with providing advice and recommendations on issues affecting the Environmental Management (EM) program. Specifically, throughout Fiscal Year 2010 and 2011, the Board was asked to review specific topics related to Acquisition and

  16. From: Jay Caspary To: Congestion Study Comments Cc: Meyer, David; Lanny Nickell

    Office of Environmental Management (EM)

    Jay Caspary To: Congestion Study Comments Cc: Meyer, David; Lanny Nickell Subject: SPP Staff Comments on DOE Congestion Study Date: Monday, October 20, 2014 4:32:04 PM Attachments: Draft Comments by SPP Staff regarding the DOE Draft Congestion Study rev.docx Importance: High SPP staff offers the attached comments for your review and consideration. Please verify receipt and don't hesitate to contact me with any questions or remarks. Take care... Jay Caspary Director - Research, Development &

  17. From: Onaran, Karen To: Congestion Study Comments Cc: Meyer, David; Fama, Jim; Ingram, Tony; Bartholomot, Henri

    Office of Environmental Management (EM)

    Onaran, Karen To: Congestion Study Comments Cc: Meyer, David; Fama, Jim; Ingram, Tony; Bartholomot, Henri Subject: Draft National Electric Transmission Congestion Study Date: Monday, October 20, 2014 4:37:41 PM Attachments: image001.png Third Triennial Congestion Study - EEI Comments.pdf Mr. Meyer, et al., Attached please find EEI's comments in response to the DOE Draft National Electric Transmission Congestion Study, 79 Fed. Reg. 49076 (Aug. 19, 2014). Please do not hesitate to contact us

  18. MEMORANDUM TO: File FROM: David R. Hill RE: Meeting Concerning Potential Test Procedures and Energy Conservation

    Office of Environmental Management (EM)

    MEMORANDUM TO: File FROM: David R. Hill RE: Meeting Concerning Potential Test Procedures and Energy Conservation Standards for Set-Top Boxes and Network Equipment DATE: March 14, 2012 In compliance with the Department of Energy's guidance on ex parte communications (74 Fed. Reg. 52795 (Oct. 14, 2009)), this memorandum provides a summary of a March 7, 2012, meeting with DOE officials concerning potential test procedures and energy conservation standards for set-top boxes and network equipment.

  19. David Danielson Assistant Secretary Office of Energy Efficiency and Renewable Energy

    Office of Environmental Management (EM)

    Written Statement of David Danielson Assistant Secretary Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Before the Subcommittee on Energy Committee on Science, Space, and Technology United States House of Representatives March 24, 2015 INTRODUCTION Chairman Weber, Ranking Member Grayson, and Members of the Subcommittee, thank you for the opportunity to testify on the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE). In

  20. David Henderson U.S. Department of Energy Office of Nuclear Energy

    Office of Environmental Management (EM)

    David Henderson U.S. Department of Energy Office of Nuclear Energy Mail Stop NE-52 19901 Germantown Rd. Germantown, MD 20874-1290 Re: UPA Response to DOE RFI; Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries Dear Mr. Henderson: Uranerz Energy Corporation (Uranerz) appreciates the opportunity to provide input regarding the Department's management of the federal excess uranium inventory. Uranerz is a publicly

  1. David Henderson U.S. Department of Energy Office of Nuclear Energy

    Office of Environmental Management (EM)

    January 21, 2015 David Henderson U.S. Department of Energy Office of Nuclear Energy Mail Stop NE-52 19901 Germantown Rd. Germantown, MD 20874-1290 Re: UPA Response to DOE RFI; Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries Dear Mr. Henderson: On behalf of the Uranium Producers of America (UPA) and our member companies, we appreciate the opportunity to provide input regarding the Department's management of

  2. David Henderson U.S. Department of Energy Office of Nuclear Energy

    Office of Environmental Management (EM)

    6, 2015 David Henderson U.S. Department of Energy Office of Nuclear Energy Mail Stop NE-52 19901 Germantown Rd. Germantown, MD 20874-1290 Re: Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Notice of Issues for Public Comment, Federal Register 80 14107 Dear Mr. Henderson: Uranerz Energy Corporation (Uranerz) appreciates the opportunity to provide comments on Federal Register notice FR 80 14107. Uranerz is a

  3. David Henderson U.S. Department of Energy Office of Nuclear Energy

    Office of Environmental Management (EM)

    April 6, 2015 David Henderson U.S. Department of Energy Office of Nuclear Energy Mail Stop NE-52 19901 Germantown Rd. Germantown, MD 20874-1290 Re: Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Notice of Issues for Public Comment, Federal Register 80 14107 Dear Mr. Henderson: Uranerz Energy Corporation (Uranerz) appreciates the opportunity to provide comments on Federal Register notice FR 80 14107.

  4. David Skinner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arxiv preprint arXiv:1112.2193, December 1, 2011, abs1112, J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.C. Andre, D. Barkai, J.Y. Berthou, T. Boku, B....

  5. David Ederer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ederer , Ph.D. Dr. Ederer, a research professor of the J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices at Louisiana State University (CAMD), has spent his entire career utilizing synchrotron radiation in the vacuum ultraviolet and soft x-ray region. Dr. Ederer, a fellow of the American Physical Society, is an internationally recognized expert in the use of synchrotron radiation for research in atomic, molecular, and solid state physics He was a senior staff scientist in

  6. David Kleinpeter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kleinpeter Title: Research Specialist 2 Office Tel. : (225) 578-9344

  7. David Maniaci

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maniaci - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  8. David Minster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minster - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  9. David Lampert

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Figure 3: Hydrologic Processes Affecting Pesticide Fate and Transport This research will develop a quantitative approach to estimate the water quality impacts associated with ...

  10. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Salt Repository Research, Design, and Operation La Fonda Hotel Santa Fe, New Mexico September 7 - 11, 2014 Please join us Sunday September 7, 2014 for a welcome and reception at the La Fonda Hotel hosted by Sandia National Laboratories beginning at 6:00 PM. Day 1 Technical Agenda September 8 - Monday 08:00-08:45 Sign-in and distribution of meeting materials 08:45-09:45 Welcome addresses H.C. Pape (BMWi) US-DOE Offices Highlights of US/German Collaboration F. Hansen (SNL) W. Steininger (PTKA)

  11. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  12. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  13. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  14. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  15. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  16. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  17. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  18. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  19. Best Practices Case Study: David Weekley Homes - Eagle Springs and Waterhaven, Houston, TX

    SciTech Connect (OSTI)

    none,

    2011-04-01

    Case study describing David Weekley Homes, Houston Division, has qualified more than 1,240 homes for the DOE Builders Challenge. Advanced framed 2x6 walls with open headers and two-stud corners allow more room for R-20 damp sprayed cellulose wall cavity insulation that is covered with R-5 rigid XPS foam. A radiant barrier cuts heat gain in the R-38 insulated vented attics. Draft stopping at fireplace and duct chases and behind tubs, gluing sheetrock to framing, and extensive caulking make for air-tight homes at 3.0 ACH50.

  20. David Henderson U.S. Depaiiment of Energy Office of Nuclear Energy

    Office of Environmental Management (EM)

    6, 2015 David Henderson U.S. Depaiiment of Energy Office of Nuclear Energy Mailstop NE-52 19901 Germantown Road Germantown, MD 20874-1290 Dear Mr. Henderson: ~~* Cameco CAMECO CORPORATION Corporate Office 2121 - 11th Street West Saskatoon, Saskatchewan Canada S7M 113 Tel 306.956.6200 Fax 306.956.6201 www.cameco.com Notice of Issues for Public Comments - Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries Cameco

  1. DOE - Office of Legacy Management -- Salt_Lake

    Office of Legacy Management (LM)

    Salt_Lake Salt Lake City Sites ut_map Salt Lake City Disposal Site Salt Lake City Processing Site Last Updated: 12/14

  2. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  3. Plant salt-tolerance mechanisms

    SciTech Connect (OSTI)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  4. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  5. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    SciTech Connect (OSTI)

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels.

  6. Work plan addendum for David Witherspoon, Inc., 901 Site Building Characterization, Knoxville, Tennessee

    SciTech Connect (OSTI)

    1997-01-01

    This building characterization plan was developed as an addendum to the existing site characterization work plan documents, which are in Appendix B of the David Witherspoon, Inc., (DWI) preliminary remedial investigation (RI)/feasibility study (FS). All building characterization activities will be conducted in accordance with the rules of the Hazardous Substance Remedial Action Program under the direction of the Tennessee Department of Environment and Conservation, Division of Superfund (TN Rules 1200-1-3) and its implementing regulations. Additional rules of the state of Tennessee, Comprehensive Environmental Response, Compensation, and Liability Act of 1980, and the U.S. Environmental Protection Agency guidance were consulted during development of this plan. Activities at the DWI site were concerned with scrap metal processing and scrap metal resale.

  7. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pam Marks; EM SWPF Chief Engineer Robert Leugemors; EM SWPF Quality Assurance Manager David Quattlebaum; Parsons Vice President of Construction Chuck Swain; EM SWPF...

  8. Production of chlorine from chloride salts

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA)

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  9. David Blackwell’s Forty Years in the Idaho Desert, The Foundation for 21st Century Geothermal Research

    SciTech Connect (OSTI)

    McLing, Travis; McCurry, Mike; Cannon, Cody; Neupane, Ghanashyam; Wood, Thomas; Podgorney, Robert; Welhan, John; Mines, Greg; Mattson, Earl; Wood, Rachel; Palmer, Carl

    2015-04-01

    Dr. David Blackwell has had a profound influence on geo-thermal exploration and R&D in Idaho. Forty years have elapsed since the first Southern Methodist University (SMU) temperature logging truck rolled onto the high desert in Southern Idaho, yet even after so much time has elapsed, most recent and ongoing geothermal R&D can trace its roots to the foundational temperature studies led by Dr. Blackwell. We believe that the best way to honor any scientist is to see their work carried forward by others. As this paper demonstrates, it has been an easy task to find a host of Idaho researchers and students eager to contribute to this tribute paper. We organize this paper by ongoing or recent projects that continue to benefit left to Idaho by Dr. David Blackwell.

  10. WIPP Shares Expertise with Salt Club Members

    Broader source: Energy.gov [DOE]

    EM’s Carlsbad Field Office (CBFO) participated in the second meeting of the Nuclear Energy Agency’s (NEA) Salt Club and the 4th U.S.-German Workshop on Salt Repository Research, Design & Operation in Berlin.

  11. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  12. Brine Migration Experimental Studies for Salt Repositories

    Broader source: Energy.gov [DOE]

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  13. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular

    Office of Environmental Management (EM)

    Salt Consolidation, Constitutive Model and Micromechanics | Department of Energy Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1)

  14. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  15. Salt restrains maturation in subsalt plays

    SciTech Connect (OSTI)

    Mello, U.T. ); Anderson, R.N.; Karner, G.D. . Lamont-Doherty Earth Observatory)

    1994-01-31

    The thermal positive anomaly associated with the top of salt diapirs has attracted significant attention in modifying the temperature structure and history of a sedimentary basin. Here the authors explore the role of the negative thermal anomaly beneath salt in modifying the maturation history of the source rocks in subsalt sediments. Organic matter maturation is believed to follow temperature dependent chemical reactions. Therefore, any temperature anomaly associated with salt masses affects the nearby maturation of potential source rocks. The level of maturity of source rocks close to salt diapirs will differ from that predicted based on regional trends. The impact of the thermal anomaly on a given point will depend on the duration and distance of the thermal anomaly to this particular point. Consequently, the maturation history of source rocks in salt basins is closely related to the salt motion history, implying that a transient thermal analysis is necessary to evaluate the sure impact on maturation of the thermal anomalies associated with salt diapirism. The paper describes vitrinite kinetics, salt in evolving basins, correlation of salt and temperature, salt dome heat drains, and restrained maturation.

  16. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  17. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  18. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect (OSTI)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stührenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  19. Mechanochemical Preparation of Phosphonium Salts and Phosphorus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...olvent-free mechanochemical preparation method to prepare phosphonium salts and phosphorous ylides. The phosphorous ylides are then utilized in carrying out the solvent-free ...

  20. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  1. RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee

    SciTech Connect (OSTI)

    Pfeffer, J.

    2008-06-10

    The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state of Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal, cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.

  2. Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt

    Energy Savers [EERE]

    Waste Processing Facility Independent Technical Review | Department of Energy Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review This is a presentation outlining the Salt Waste Processing Facility process, major risks, approach for conducting reviews, discussion of the findings, and conclusions. PDF icon Savannah River Site -

  3. Solar Policy Environment: Salt Lake

    Broader source: Energy.gov [DOE]

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  4. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  5. Metal salt catalysts for enhancing hydrogen spillover

    SciTech Connect (OSTI)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  6. Evaluation of Salt Coolants for Reactor Applications

    SciTech Connect (OSTI)

    Williams, David F

    2008-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high-temperature fluid fuel for the Molten Salt Reactor (MSR). The U.S. Department of Energy Office of Nuclear Energy is exploring the use of molten salts as primary and secondary coolants in a new generation of solid-fueled, thermal-spectrum, hightemperature reactors. This paper provides a review of relevant properties for use in evaluation and ranking of salt coolants for high-temperature reactors. Nuclear, physical, and chemical properties were reviewed, and metrics for evaluation are recommended. Chemical properties of the salt were examined to identify factors that affect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented.

  7. Geothermal Literature Review At Salt Wells Area (Faulds, Et Al...

    Open Energy Info (EERE)

    Salt Wells Area (Faulds, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salt Wells Area (Faulds,...

  8. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  9. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  10. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  11. Voluntary Protection Program Onsite Review, Parsons Corp., Salt...

    Office of Environmental Management (EM)

    Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction Project...

  12. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants ... Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough ...

  13. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  14. Assessment of Nuclear Safety Culture at the Salt Waste Processing...

    Office of Environmental Management (EM)

    Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility ... Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste ...

  15. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  16. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells...

  17. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  18. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  19. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    Open Energy Info (EERE)

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  20. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  1. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing...

  2. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  3. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  4. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  5. Director, Salt Waste Processing Facility Project Office

    Broader source: Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  6. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  7. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  8. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  9. Salt Selection for the LS-VHTR

    SciTech Connect (OSTI)

    Williams, D.F.; Clarno, K.T.

    2006-07-01

    Molten fluorides were initially developed for use in the nuclear industry as the high temperature fluid-fuel for a Molten Salt Reactor (MSR). The Office of Nuclear Energy is exploring the use of molten fluorides as a primary coolant (rather than helium) in an Advanced High Temperature Reactor (AHTR) design, also know as the Liquid-Salt cooled Very High Temperature Reactor (LS-VHTR). This paper provides a review of relevant properties for use in evaluation and ranking of candidate coolants for the LS-VHTR. Nuclear, physical, and chemical properties were reviewed and metrics for evaluation are recommended. Chemical properties of the salt were examined for the purpose of identifying factors that effect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented. (authors)

  10. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  11. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, Kien-yin (Los Alamos, NM); Coburn, Michael D. (Los Alamos, NM)

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  12. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Environmental Management (EM)

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos. More Documents & Publications Los Alamos National Laboratory TRU Waste Update Los Alamos National Laboratory Accident Investigation Board Corrective Action Plan Update Treatment of Remediated Nitrate Salts

  13. Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt

    Office of Scientific and Technical Information (OSTI)

    Mixtures: Highly Associated Salts Revisited (Journal Article) | SciTech Connect Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited Citation Details In-Document Search Title: Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited Molecular dynamics (MD) simulations of acetonitrile (AN) mixtures with LiBF4, LiCF3SO3 and LiCF3CO2 provide extensive details about the

  14. Savannah River Site - Salt Waste Processing Facility Independent Technical

    Energy Savers [EERE]

    Review | Department of Energy Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility Independent Technical Review Full Document and Summary Versions are available for download PDF icon Savannah River Site - Salt Waste Processing Facility Independent Technical Review PDF icon Summary - Salt Waste Processing Facility Design at the Savannah River Site More Documents & Publications Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt

  15. Low temperature oxidation using support molten salt catalysts

    DOE Patents [OSTI]

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  16. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  17. Characterization of the molten salt reactor experiment fuel and flush salts

    SciTech Connect (OSTI)

    Williams, D.F.; Peretz, F.J.

    1996-05-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These {open_quotes}static{close_quotes} properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions.

  18. Corrosion of aluminides by molten nitrate salt

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  19. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  20. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  1. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  2. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  3. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect (OSTI)

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  4. Salt repository project closeout status report

    SciTech Connect (OSTI)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  5. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  6. Completing Salt Waste Processing Facility is an EM Priority and...

    Office of Environmental Management (EM)

    Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup ...

  7. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  8. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  9. File:Salt2.pdf | Open Energy Information

    Open Energy Info (EERE)

    Salt2.pdf Jump to: navigation, search File File history File usage Metadata File:Salt2.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Go to page...

  10. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  11. Workplace Charging Challenge Partner: Salt River Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Salt River Project Workplace Charging Challenge Partner: Salt River Project Workplace Charging Challenge Partner: Salt River Project The mission of Salt River Project's (SRP) Electric Vehicle Initiative is to encourage greater use of clean energy transportation. Under this program, SRP's headquarters received two Level 2 charging stations in 2010. When demand for workplace charging increased in 2012, SRP added eight Level 2 and five Level 1 charging stations for employee use.

  12. Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Feasibility | Department of Energy Concentrating Solar Power » Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility eSolar logo eSolar, under the Baseload CSP FOA, is designing a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50

  13. Construction of Salt Waste Processing Facility (SWPF) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy of Salt Waste Processing Facility (SWPF) Construction of Salt Waste Processing Facility (SWPF) Presentation from the 2015 DOE National Cleanup Workshop by Frank Sheppard, Project Manager, Parsons-SWPF. PDF icon Construction of Salt Waste Processing Facility (SWPF) More Documents & Publications Audit Report: OAS-L-15-09 Parsons Infrastructure & Technology Group, Inc., Consent Order Savannah River Site - Salt Waste Processing Facility Independent Technical Review

  14. Salt Waste Contractor Reaches Contract Milestone | Department of Energy

    Energy Savers [EERE]

    Salt Waste Contractor Reaches Contract Milestone Salt Waste Contractor Reaches Contract Milestone April 29, 2013 - 12:00pm Addthis Robert Brown, SRR tank farm operator, performs daily inspections of a salt disposition process facility. The inspections and improvement upgrades have resulted in continued successful operations. Robert Brown, SRR tank farm operator, performs daily inspections of a salt disposition process facility. The inspections and improvement upgrades have resulted in continued

  15. Savannah River Site Salt Waste Processing Facility Technology Readiness

    Energy Savers [EERE]

    Assessment Report | Department of Energy Salt Waste Processing Facility Technology Readiness Assessment Report Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Full Document and Summary Versions are available for download PDF icon Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report PDF icon Summary - SRS Salt Waste Processing Facility More Documents & Publications Compilation of TRA Summaries Basis for Section

  16. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Office of Environmental Management (EM)

    Facility - August 2013 | Department of Energy Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE)

  17. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  18. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  19. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    Gasoline and Diesel Fuel Update (EIA)

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  20. Production of carboxylic acid and salt co-products

    DOE Patents [OSTI]

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  1. Dr. David Snyder

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Department of Agriculture, Natural Resources Conservation Service 2002 Field Book for Describing and Sampling Soils, version 2.0. USDA, NRCS. Washington, D.C. 2013 Web Soil Survey. ...

  2. Dr. David Snyder

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... No. 7. Midcontinental Journal of Archaeology, Kent State ... Friedrich Heller 2003 Environmental Magnetism: Principles ... Archaeological Prospection 12:191-197. 82 Justice, Noel D. ...

  3. David B. Hart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. Hart - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  4. Dr. David Danielson

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rely on the use of materials with certain essential properties, such as efficient light emission or strong magnetism. Many of those critical materials are essential to...

  5. David Knaak (Cray Inc.)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific discoveries are driven by data Storing, analyzing, and visualizing large data are big challenges By 2020, climate data is expected to be hundreds of exabytes or...

  6. Mr. David Hemelright

    Office of Environmental Management (EM)

    Hemelright Department of Energy Washington, DC 20585 April 24, 2014 Oak Ridge Site Specific Advisory Board P.O. Box 2001 Oak Ridge, Tennessee 3 7831 Dear Mr. Hemelright: Thank you for your March 4 letter recommending the Department of Energy (DOE) make publically available disposition path maps for the current and planned legacy disposition paths. At the November 5, 2013, meeting, you were briefed by Ms. Christine Gelles, Associate Deputy Assistant Secretary for Waste Management, on the

  7. Mr. David Martin, Chair

    Office of Environmental Management (EM)

    September 26, 2012 Oak Ridge Site Specific Advisory Board P.O. Box 2001 Oak Ridge, Tennessee 37831 Dear Mr. Martin: Thank you for your July 26, 2012, letter regarding continued support for stakeholder involvement in the Office ofEnvironmental Management (EM) program activities. I appreciate your continued support and will continue to request funds to facilitate open and transparent engagement with the EM Site Specific Advisory Board (SSAB) and local boards. EM takes stakeholder and regulator

  8. Mr. David Martin, Chair

    Office of Environmental Management (EM)

    11, 2013 Oak Ridge Site Specific Advisory Board P. 0. Box 2001 Oak Ridge, Tennessee 37831 Dear Mr. Martin: Thank you for your February 27, 2013, letter offering your continued support for the Office of Environmental Management's (EM) program and your interest in EM's ability to invest in robust technology research and development activities. As your letter notes, the EM program has benefitted from past and existing technology development investments and needs to fund future efforts to continue

  9. Mr. David Martin, Chair

    Office of Environmental Management (EM)

    5, 2013 Oak Ridge Site Specific Advisory Board P.O. Box 2001 Oak Ridge, Tennessee 37831 Dear Mr. Martin: Thank you for your February 27, 2013, letter recommending that the...

  10. Dr. David Snyder

    Office of Environmental Management (EM)

    NOV 2 1 2013 Archaeology Reviews Manager Resource Protection and Reviews 1982 Velma Avenue Columbus, Ohio 43211 Dear Dr. Snyder: PPPO-03-2164867 -14 TRANSMITTAL OF THE GEOMORPHOLOGICAL INVESTIGATION OF THE LITTLE BEAVER CREEK AND ASSOCIATED DRAINAGES AT THE PORTSMOUTH GASEOUS DIFFUSION PLANT, PIKETON, OHIO Enclosed for your information is the Letter Report: Geomorphological Investigation of the Little Beaver Creek and Associated Drainages PORTS Plant, Piketon, Ohio, conducted by ASC Group, Inc.

  11. Dr. David Snyder

    Office of Environmental Management (EM)

    2 4 2013 Archaeology Reviews Manager Ohio Historic Preservation Office 1982 Velma Avenue Columbus, Ohio 43211 Dear Dr. Snyder: PPPO-03-2088012-14 TRANSMITTAL OF A REPORT ON PREHISTORIC ARCHAEOLOGICAL COMPONENTS IDENTIFIED AT HISTORIC-ERA SITES AT THE PORTSMOUTH GASEOUS DIFFUSION PLANT Enclosed for your information is the report titled "Pre-Historic Archaeological Components Identified at Six Historic-Era Farmstead Sites (33Pk185, 33Pk203, 33Pk206, 33Pk 211, 33Pk217 and 33Pk218) Within the

  12. Salt Lake City, Utah, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Salt Lake City, Utah, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Salt Lake City Processing and Disposal Sites Site Descriptions and History The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt

  13. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  14. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Dirk, Shawn M. (Albuquerque, NM); Trudell, Daniel E. (Albuquerque, NM)

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  15. Advanced heat exchanger development for molten salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  16. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  17. Parsons Salt Water Processing Facility Construction Project

    Office of Environmental Management (EM)

    Parsons Corporation Salt Waste Processing Facility Construction Project Report from the Department of Energy Voluntary Protection Program Onsite Review February 5-14, 2013 U.S. Department of Energy Office of Health, Safety and Security Office of Health and Safety Office of Worker Safety and Health Assistance Washington, DC 20585 Parsons Corporation SWPF Construction Project DOE-VPP Onsite Review February 2013 Foreword The Department of Energy (DOE) recognizes that true excellence can be

  18. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  19. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  20. 2015 VIII MECHANICAL BEHAVIOR OF SALT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIII MECHANICAL BEHAVIOR OF SALT - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  1. Salt Lake City | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Salt Lake City | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  2. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPPs operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  3. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Tichenor, Mark S. (San Diego, CA); Artau, Alexander (Humacao, PR)

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  4. An Overview of Liquid Fluoride Salt Heat Transport Technology

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; Holcomb, David Eugene

    2010-01-01

    Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

  5. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    SciTech Connect (OSTI)

    Kwon, K.C.

    2001-09-18

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  6. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  7. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  8. Molecular dynamics study of saltsolution interface: Solubility and surface charge of salt in water

    SciTech Connect (OSTI)

    Kobayashi, Kazuya; Liang, Yunfeng E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Sakka, Tetsuo

    2014-04-14

    The NaCl saltsolution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl saltsolution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a saltsolution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  9. Independent Oversight Assessment, Salt Waste Processing Facility Project -

    Office of Environmental Management (EM)

    January 2013 | Department of Energy Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the

  10. Notice of Availability of Section 3116 Determination for Salt Waste

    Office of Environmental Management (EM)

    Disposal at the Savannah River Site | Department of Energy Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Department of Energy (DOE) announces the availability of a section 3116 determination for the disposal of separated, solidified, low-activity salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. PDF icon

  11. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. PDF icon SWPF Fact Sheet More Documents & Publications Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment

  12. Section 3116 Waste Determinationfor Salt Disposal at the Savannah River

    Office of Environmental Management (EM)

    Site, signed by Secretary of Energy, Samuel W. Bodman | Department of Energy Section 3116 Waste Determinationfor Salt Disposal at the Savannah River Site, signed by Secretary of Energy, Samuel W. Bodman Section 3116 Waste Determinationfor Salt Disposal at the Savannah River Site, signed by Secretary of Energy, Samuel W. Bodman PDF icon Section 3116 Waste Determinationfor Salt Disposal at the Savannah River Site, signed by Secretary of Energy, Samuel W. Bodman More Documents &

  13. Voluntary Protection Program Onsite Review, Salt Waste Processing Facility

    Energy Savers [EERE]

    Construction Project - February 2013 | Department of Energy Salt Waste Processing Facility Construction Project - February 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013 February 2013 Evaluation to determine whether Salt Waste Processing Facility Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during February 5 - 14, 2013 to determine whether

  14. Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste

    Office of Environmental Management (EM)

    Processing Facility Construction Project - May 2014 | Department of Energy Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction Project - May 2014 May 2014 Evaluation to determine whether Parsons SWPF is performing at a level deserving DOE-VPP Star recognition PDF icon Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction

  15. DOE Issues Salt Waste Determination for the Savannah River Site |

    Energy Savers [EERE]

    Department of Energy Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks,

  16. Project Profile: Advanced Nitrate Salt Central Receiver Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nitrate Salt Central Receiver Power Plant Project Profile: Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Abengoa, under the Baseload CSP FOA, will demonstrate a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. The plan is to

  17. Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluids | Department of Energy Concentrating Solar Power » Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics logo Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt formulations for use as highly efficient heat transfer fluids (HTFs). Approach Robotic high-throughput

  18. Project Profile: Novel Molten Salts Thermal Energy Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Generation | Department of Energy Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Alabama logo The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems. Approach They will conduct

  19. Enterprise Assessments Salt Waste Processing Facility Construction Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Fire Protection Systems Follow-up Review at the Savannah River Site - January 2016 | Department of Energy Salt Waste Processing Facility Construction Quality and Fire Protection Systems Follow-up Review at the Savannah River Site - January 2016 Enterprise Assessments Salt Waste Processing Facility Construction Quality and Fire Protection Systems Follow-up Review at the Savannah River Site - January 2016 February 2016 Follow-up Review of the Salt Waste Processing Systems and Fire

  20. Salts of alkali metal anions and process of preparing same

    DOE Patents [OSTI]

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  1. Test Proposal Document for Phased Field Thermal Testing in Salt |

    Energy Savers [EERE]

    Department of Energy Test Proposal Document for Phased Field Thermal Testing in Salt Test Proposal Document for Phased Field Thermal Testing in Salt The document summarizes how a new round of staged thermal field testing will help to augment the safety case for disposal of heat generating nuclear waste in salt. The objectives of the proposed test plan are to: (1) address features, events, and processes (FEPs), (2) build scientific and public confidence, (3) foster international

  2. Salt Lake County Residential Solar Financing Study | Department of Energy

    Energy Savers [EERE]

    Salt Lake County Residential Solar Financing Study Salt Lake County Residential Solar Financing Study As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a review of the

  3. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  4. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Energy Savers [EERE]

    Facility - April 2014 | Department of Energy Salt Waste Processing Facility - April 2014 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - April 2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of the

  5. DOE - Office of Legacy Management -- Penn Salt Manufacturing Co Whitemarsh

    Office of Legacy Management (LM)

    Research Laboratories - PA 20 Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Penn Salt Company PA.20-1 Location: Philiadelphia , Pennsylvania PA.20-1 Evaluation Year: 1987 PA.20-1 Site Operations: Conducted process studies for recovery of uranium from fluoride scrap. PA.20-1 Site

  6. Salt River Electric- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  7. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  8. Salt Wells Geothermal Energy Projects Environmental Impact Statement...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Energy Projects Environmental Impact Statement Abstract Abstract unavailable....

  9. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  10. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  11. BLM Approves Salt Wells Geothermal Energy Projects | Open Energy...

    Open Energy Info (EERE)

    Energy Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Energy Projects Abstract Abstract unavailable....

  12. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  13. Project Profile: Novel Molten Salts Thermal Energy Storage for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Alabama's LMP molten salt is projected to have the following ... Lower melting point Higher energy density Lower power-generation cost This program aims to develop a ...

  14. Domestic Material Content in Molten-Salt Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Material Content in Molten-Salt Concentrating Solar Power Plants Craig Turchi, Parthiv Kurup, Sertac Akar, and Francisco Flores Technical Report NRELTP-5500-64429 August...

  15. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  16. Water Sampling At Salt Wells Area (Shevenell & Garside, 2003...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details...

  17. Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  18. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  19. Controlled Source Frequency-Domain Magnetics At Salt Wells Area...

    Open Energy Info (EERE)

    At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics At...

  20. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and...

  1. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pressure solution and dislocation creep, with both terms dependent on effective stress to account for the effects of porosity. This provides insight into granular salt...

  2. Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity...

  3. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005...

  4. Sandia Energy - New Liquid Salt Electrolytes Could Lead to Cost...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Electrolytes Could Lead to Cost-Effective Flow Batteries Chemical technologist Harry Pratt synthesizes a copper-based ionic liquid. (Photo by Randy Montoya) Sandia...

  5. Project Profile: Molten Salt-Carbon Nanotube Thermal Storage

    Broader source: Energy.gov [DOE]

    Texas Engineering Experiment Station (TEES), under the Thermal Storage FOA, created a composite thermal energy storage material by embedding nanoparticles in a molten salt base material.

  6. ENEL Salt Wells Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Facility Sector Geothermal energy Location Information Location Churchill, NV Coordinates 39.651603422063, -118.49778413773 Loading map......

  7. Enterprise Assessments Review of the Savannah River Site Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site...

  8. Method for the production of uranium chloride salt

    DOE Patents [OSTI]

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  9. Enterprise Assessments Review of the Savannah River Site Salt...

    Broader source: Energy.gov (indexed) [DOE]

    Salt Waste Processing Facility Construction Quality and Startup Test Plans June 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and...

  10. Molten Nitrate Salt Development for Thermal Energy Storage in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOLTEN NITRATE SALT DEVELOPMENT FOR THERMAL ENERGY STORAGE IN PARABOLIC TROUGH SOLAR POWER SYSTEMS Robert W. Bradshaw and Nathan P. Siegel Sandia National Laboratories, PO Box 969 ...

  11. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  12. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  13. Technical review of Molten Salt Oxidation

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

  14. Voluntary Protection Program Onsite Review, Parsons Corporation Salt Waste

    Office of Environmental Management (EM)

    Processing Facility Construction Project - October 2015 | Department of Energy Corporation Salt Waste Processing Facility Construction Project - October 2015 Voluntary Protection Program Onsite Review, Parsons Corporation Salt Waste Processing Facility Construction Project - October 2015 October 2015 Parsons SWPF Construction Project will continue participating in the Department of Energy Voluntary Protection Program and be elevated to a Star participant. This report summarizes the results

  15. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  16. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect (OSTI)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  17. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    SciTech Connect (OSTI)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  18. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    SciTech Connect (OSTI)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng; Kim, Heejae; Kim, Seongheun

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the OD stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the OD stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of OD vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing OD stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the OD stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the OD stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the OD stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating OD stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the OD stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the OD stretch mode is shown to be important and the asymmetric line shapes of the OD stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this computational approach will be of critical use in interpreting linear and nonlinear vibrational spectroscopies of HDO molecule that is considered as an excellent local probe for monitoring local electrostatic and hydrogen-bonding environment in not just salt but also other confined and crowded solutions.

  19. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  20. Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005)...

  1. Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy...

    Open Energy Info (EERE)

    Salt Wells Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salt Wells Area (Combs, Et Al., 1999)...

  2. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  3. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect (OSTI)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  4. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  5. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  6. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  7. Sol-gel processing with inorganic metal salt precursors

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  8. Experimental Investigation of Two-Phase Flow in Rock Salt

    SciTech Connect (OSTI)

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  9. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  10. Category:Salt Lake City, UT | Open Energy Information

    Open Energy Info (EERE)

    UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total....

  11. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  12. Salt River Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    River Electric Coop Corp Jump to: navigation, search Name: Salt River Electric Coop Corp Place: Kentucky References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  13. Apparatus and method for making metal chloride salt product

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Homer Glen, IL); Richmann, Michael K. (Carlsbad, NM)

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  14. Salt Wells, Eight Mile Flat | Open Energy Information

    Open Energy Info (EERE)

    Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau...

  15. Basis for Section 3116 Determination for Salt Waste Disposal...

    Office of Environmental Management (EM)

    WD-2005-001 January 2006 Basis for Section 3116 Determination for Salt Waste Disposal at ......... 28 4.0 THE WASTE DOES NOT REQUIRE PERMANENT ISOLATION IN A ...

  16. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  17. Direct esterification of ammonium salts of carboxylic acids

    DOE Patents [OSTI]

    Halpern, Yuval (Skokie, IL)

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  18. Project Profile: Modular and Scalable Baseload Molten Salt Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C. Moursund, D. Rogers; D. Wasyluk. "Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant" in Proceedings of SolarPACES 2011, Granada Spain, September 20-23, 2011...

  19. Polyimide amic acid salts and polyimide membranes formed therefrom

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz; Macheras, James Timothy

    2004-04-06

    The invention relates to preparation and uses of novel polymeric materials, polyimide amic acid salts (PIAAS). The use of these materials for the fabrication of fluid separation membranes is further disclosed.

  20. Molten salt electrolyte battery cell with overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  1. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Environmental Management (EM)

    Solut ions f or Sustainability ABENGOA SOLAR Freeze Prot ect ion and Recovery Lessons Learned Salt f reeze point has an unexpect edly low impact on inst alled cost of t he...

  2. EM Gains Insight from Germany on Salt-Based Repositories

    Broader source: Energy.gov [DOE]

    KARLSRUHE and PEINE, Germany – EM officials recently took part in workshops in Germany to benefit from the exchange of research and experience operating salt-based repositories for radioactive waste.

  3. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    Open Energy Info (EERE)

    To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  4. Surface Indicators of Geothermal Activity at Salt Wells, Nevada...

    Open Energy Info (EERE)

    of geothermal fluids. An example is provided by the Salt Wells geothermal system in Churchill County, Nevada, USA, where surface features define a 9-km-long area that matches the...

  5. BLM Approves Salt Wells Geothermal Plant in Churchill County...

    Open Energy Info (EERE)

    Plant in Churchill County Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Plant in Churchill County Abstract...

  6. Oxidation of aqueous pollutants using ultrasound: Salt-induced enhancement

    SciTech Connect (OSTI)

    Seymour, J.D.; Gupta, R.B.

    1997-09-01

    Ultrasound can be used to oxidize aqueous pollutants; however, due to economic reasons, higher oxidation/destruction rates are needed. This study reports enhancements of reaction rates by the addition of sodium chloride salt. Using 20 kHz ultrasound, large salt-induced enhancements are observed--6-fold for chlorobenzene, 7-fold for p-ethylphenol, and 3-fold for phenol oxidation. The reaction rate enhancements are proportional to the diethyl ether--water partitioning coefficient of the pollutants. It appears that the majority of oxidation reactions occur in the bubble-bulk interface region. The addition of salt increases the ionic strength of the aqueous phase which drives the organic pollutants toward the bubble-bulk interface. A first order reaction rate equation is proposed which can represent the observed enhancement with a good accuracy. A new sonochemical-waste-oxidation process is proposed utilizing the salt-induced enhancement.

  7. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    Title: Wasatch Solar Project Funding Opportunity: Solar Market PathwaysSunShot Subprogram: Soft CostsLocation: Salt Lake City, UTAmount Awarded: $600,000Awardee Cost Share: $164,645

  8. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    SciTech Connect (OSTI)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

  9. Nitrate Salt Bearing Transuranic Waste Container Monitoring | Department of

    Office of Environmental Management (EM)

    Energy Nitrate Salt Bearing Transuranic Waste Container Monitoring Nitrate Salt Bearing Transuranic Waste Container Monitoring This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment

  10. Molten salt heat transfer fluids and thermal storage technology.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No abstract prepared. Authors: Glatzmaier, Greg [1] ; Siegel, Nathan Phillip + Show Author Affiliations (NREL) Publication Date: 2010-06-01 OSTI Identifier: 1020492 Report Number(s): SAND2010-3826C TRN: US201116%%508 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource

  11. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Battery Electrolytes | Department of Energy Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es057_henderson_2010_p.pdf More Documents & Publications Inexpensive, Nonfluorinated (or Partially Fluorinated)

  12. Energy Department Completes Salt Coolant Material Transfer to Czech

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Republic for Advanced Reactor Research | Department of Energy Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research Energy Department Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research May 20, 2013 - 12:52pm Addthis News Media Contact (202) 586-4940 PRAGUE, CZECH REPUBLIC - The U.S. Department of Energy recently joined with the U.S. Embassy in Prague and the Czech Republic's Ministry of Industry and Trade to complete

  13. Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates

    Office of Scientific and Technical Information (OSTI)

    and Esters (Journal Article) | SciTech Connect Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Solvate crystal structures serve as useful models for the molecular-level interactions within the diverse solvates present in liquid electrolytes. Although acyclic carbonate solvents are widely used for Li-ion battery electrolytes, only

  14. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Broader source: Energy.gov (indexed) [DOE]

    Plan | Department of Energy The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container Isolation Plan for identified nitrate salt bearing waste disposed in the Waste Isolation Pilot Plant underground disposal facility. PDF

  15. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect (OSTI)

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  16. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  17. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect (OSTI)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  18. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 and an overall minimum RMSD of 1.9 from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  19. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  20. Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data

  1. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    SciTech Connect (OSTI)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  2. Effect of water in salt repositories. Final report

    SciTech Connect (OSTI)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  3. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  4. CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS

    SciTech Connect (OSTI)

    Stephens, K; Davoud Eghbali, D; Michelle Abney, M

    2008-01-15

    High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

  5. Method for making a uranium chloride salt product

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

    2004-10-05

    The subject apparatus provides a means to produce UCl.sub.3 in large quantities without incurring corrosion of the containment vessel or associated apparatus. Gaseous Cl is injected into a lower layer of Cd where CdCl.sub.2 is formed. Due to is lower density, the CdCl.sub.2 rises through the Cd layer into a layer of molten LiCl--KCL salt where a rotatable basket containing uranium ingots is suspended. The CdCl.sub.2 reacts with the uranium to form UCl.sub.3 and Cd. Due to density differences, the Cd sinks down to the liquid Cd layer and is reused. The UCl.sub.3 combines with the molten salt. During production the temperature is maintained at about 600.degree. C. while after the uranium has been depleted the salt temperature is lowered, the molten salt is pressure siphoned from the vessel, and the salt product LiCl--KCl-30 mol % UCl.sub.3 is solidified.

  6. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  7. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  8. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  9. Analytical methods for determining the reactivity of pyrochemical salts

    SciTech Connect (OSTI)

    Phillips, A.G.; Stakebake, J.L.

    1994-05-01

    Pyrochemical processes used for the purification of plutonium have generated quantities of residue that contain varying amounts of reactive metals such as potassium, sodium, calcium, and magnesium. These residues are currently considered hazardous and are being managed under RCRA because of the reactivity characteristic. This designation is based solely on process knowledge. Currently there is no approved procedure for determining the reactivity of a solid with water. A method is being developed to rapidly evaluate the reactivity of pyrochemical salts with water by measuring the rate of hydrogen generation. The method was initially tested with a magnesium containing pyrochemical salt. A detection limit of approximately 0.004 g of magnesium was established. A surrogate molten salt extraction residue was also tested. Extrapolation of test data resulted in a hydrogen generation rate of 4.4 mg/(g min).

  10. Salt transport extraction of transuranium elements from lwr fuel

    DOE Patents [OSTI]

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  11. Salt transport extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  12. Modular & Scalable Molten Salt Plant Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modular & Scalable Molten Salt Plant Design Modular & Scalable Molten Salt Plant Design This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_tyner.pdf More Documents & Publications Advance Patent Waiver W(A)2011-018 SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE) Abengoa-Tilley RevD

  13. Simulation of water transport in heated rock salt

    SciTech Connect (OSTI)

    Schlich, M.; Jockwer, N.

    1986-01-01

    This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

  14. Materials and methods for stabilizing nanoparticles in salt solutions

    DOE Patents [OSTI]

    Robinson, David Bruce; Zuckermann, Ronald; Buffleben, George M.

    2013-06-11

    Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.

  15. Written Statement of David Huizenga

    Office of Environmental Management (EM)

    Los Alamos National Laboratory, FY 2013 funds expedite the disposal of much of the above-ground transuranic waste that is currently stored on the mesa at the Laboratory. In...

  16. Washington Post editor David E.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and others, sought to slow down the arms race. "They recoiled from the balance of terror out of personal experience as designers and stewards of the weapons, or because of...

  17. QER- Comment of David Ludwig

    Broader source: Energy.gov [DOE]

    I attended the Meeting on 8/8/14 in Bismarck. I didn’t Know what the Quadrennial Review was so I did some research prior to the meeting. I realized I didn’t know what the DOE did. Since it was started in 1977 it appears to have a goal of Cheap and Clean Energy. A current goal appears to be to reduce use of Coal instead of Working on Clean coal. A goal of more electric cars would mean using coal to generate electricity to reduce use of gasoline. Ports are being built to ship more coal to places like China. If coal is a cheap source of power, do we give China an economic advantage while we use more expensive alternatives? Do we reduce emissions from Coal in the U.S. but allow China and other countries to pollute the earth with U.S. coal? Using more natural gas for electricity will raise the price of home heating. Ethanol and biofuels raise the price of food.

  18. QER- Comment of David Cash

    Broader source: Energy.gov [DOE]

    Dear Katy, Thank you for your engagement in this issue – so crucial right now in terms of protecting our environment for the future and growing our economy. I would like to take this opportunity to correct what appears to be a misunderstanding in your email below about what I presented.

  19. David Wollman | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wollman - Deputy Director of the Smart Grid and Cyber-Physical Systems Program at the National Institute of Standards and Technology, U.S. Department of Commerce...

  20. David Geiser | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mr. Geiser joined the Department of Energy's Office of Environmental Management in 1991 and has served in several capacities: international programs, high-level waste research and ...

  1. David Czaplewski | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Czaplewski Scientist Ph.D., Cornell University Research interests include the design, layout, fabrication,and testing of micromechanical and nanomechanical devices; characterization of the materials properties of devices at this scale; characterization of the catalytic behavior, mechanical, and environmental interaction at the interface between two metal-contacting surfaces; and developing novel methods to realize nanoscale devices for use as sensors and actuators. News Nano-mechanical plasmonic

  2. David Eckstein | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eckstein Principal Application Developer Telephone 630.252.7918 E-mail deckstein@anl.gov

  3. David Turner! User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N ERSC. 1. Your p ersonal, p rivate a ccount * Associated w ith y our l ogin o r u ser n ame * Iden:fies y ou t o o ur s ystems a nd u sed w hen l ogging i n t o N ERSC systems a...

  4. NREL: Energy Analysis - David Keyser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of expertise Economic impact studies Time series analysis Analysis of labor and demographic data Primary research interests Static and dynamic economic impact models Labor...

  5. David Dieffenthaler | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and control systems. After an internship in the energy systems division under the umbrella of the Autonomie vehicles simulations team, he took responsibility for assisting the...

  6. David Streets | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lead author of UNEP black carbon and tropospheric ozone assessment report, 2011; lead author of UNECE hemispheric transport of air pollution reports, 2010, 2008; lead author of US ...

  7. NREL: Energy Analysis - David Palchak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical load forecasting with artificial neural networks Demand-side management optimization with Matlab Primary research interests Demand response and renewable energy ...

  8. Introduction by David Meyer, DOE

    Office of Environmental Management (EM)

    St. Louis, MO December 8

  9. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  10. Molten salt processing of mixed wastes with offgas condensation

    SciTech Connect (OSTI)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. ); Gay, R.L.; Stewart, A.; Yosim, S. . Energy Systems Group)

    1991-05-13

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

  11. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect (OSTI)

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  12. TGS measurements of pyrochemical salts at Rocky Flats

    SciTech Connect (OSTI)

    Mercer, D. J.; Hansen, J. S.; Lestone, J. P.; Prettyman, T. H.

    2001-01-01

    A new skid-mounted tomographic gamma scanner (TGS) was designed to assist in the decommissioning of Rocky Flats Building 37 1, This instrument was used to assay pyrochemical salts as a prerequisite for disposal at the Waste Isolation Pilot Plant (WIPP). The following paper discusses measurement challenges and results from the first year of operation of the instrument.

  13. Salt Lake City, Utah: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  14. Sample Results from Routine Salt Batch 7 Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-05-13

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the microbatches of Integrated Salt Disposition Project (ISDP) Salt Batch (Macrobatch) 7B have been analyzed for 238Pu, 90Sr, 137Cs, Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Ion Chromatography Anions (IC-A). The results from the current microbatch samples are similar to those from earlier samples from this and previous macrobatches. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal, due to the use of the Next Generation Solvent (NGS). The Savannah River National Laboratory (SRNL) notes that historically, most measured Concentration Factor (CF) values during salt processing have been in the 12-14 range. However, recent processing gives CF values closer to 11. This observation does not indicate that the solvent performance is suffering, as the Decontamination Factor (DF) has still maintained consistently high values. Nevertheless, SRNL will continue to monitor for indications of process upsets. The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  15. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  16. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  17. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  18. Amended Record of Decision for the Savannah River Site Salt Processing...

    Office of Environmental Management (EM)

    33.8 million gallons (Mgal) of salt waste are currently stored in underground waste storage tanks at SRS. This waste, along with future salt waste forecasted to be sent to the...

  19. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  20. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Office of Environmental Management (EM)

    Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was...

  1. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:20:34 AM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground...

  2. ,"U.S. Natural Gas Non-Salt Underground Storage Activity-Net...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Activity-Net (MMcf)" "Sourcekey","N5560US2" "Date","U.S. Natural Gas Non-Salt Underground...

  3. Corrosion in Very High-Temperature Molten Salt for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems This presentation was ...

  4. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOE Patents [OSTI]

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  5. Neutrinoless Double Beta Decay in Light of SNO Salt Data (Journal...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double Beta Decay in Light of SNO Salt Data Citation Details In-Document Search Title: Neutrinoless Double Beta Decay in Light of SNO Salt Data In the SNO data from...

  6. Summary - Salt Waste Processing Facility Design at the Savannah River Site

    Office of Environmental Management (EM)

    Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge

  7. Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility

  8. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  9. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, Shih-Perng (Naperville, IL)

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  10. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  11. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  12. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  13. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Elder, H.H.

    2001-07-11

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  14. DOE - Office of Legacy Management -- Tatum Salt Dome Test Site - MS 01

    Office of Legacy Management (LM)

    Tatum Salt Dome Test Site - MS 01 FUSRAP Considered Sites Site: Tatum Salt Dome Test Site (MS.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Tatum Salt Dome Test Site

  15. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  16. Process for the preparation of protected dihydroxypropyl trialkylammonium salts and derivatives thereof

    DOE Patents [OSTI]

    Hollingsworth, Rawle I. (Haslett, MI); Wang, Guijun (East Lansing, MI)

    2000-01-01

    A process for the preparation of protected dihydroxypropyl trialkylammonium salts, particularly in chiral form is described. In particular, a process for the preparation of (2,2-dimethyl-1,3-dioxolan-4-ylmethyl)trialkylammonium salts, particularly in chiral form is described. Furthermore, a process is described wherein the (2,2-dimethyl-1,3-dioxolan-4ylmethyl)trialkylammonium salts is a 2,2-dimethyl-1,3-dioxolan-4-ylmethyl trimethylammonium salt, preferably in chiral form. The protected dihydroxypropyl trialkylammonium salts lead to L-carnitine (9) when in chiral form (5).

  17. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  18. Photosensitive dissolution inhibitors and resists based on onium salt carboxylates

    DOE Patents [OSTI]

    Dentinger, Paul M.; Simison, Kelby L.

    2005-11-29

    A photoresist composition that employs onium salt carboxylates as thermally stable dissolution inhibitors. The photoresist composition can be either an onium carboxylate salt with a phenolic photoresist, such as novolac, or an onium cation protected carboxylate-containing resin such as an acrylic/acrylic acid copolymer. The onium carboxylate can be an onium cholate, wherein the onium cholate is an iodonium cholate. Particularly preferred iodonium cholates are alkyloxyphenylphenyl iodonium cholates and most particularly preferred is octyloxyphenyphenyl iodonium cholate. The photoresist composition will not create nitrogen or other gaseous byproducts upon exposure to radiation, does not require water for photoactivation, has acceptable UV radiation transmission characteristics, and is thermally stable at temperatures required for solvent removal.

  19. Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters

    SciTech Connect (OSTI)

    Afroz, Taliman; Seo, D. M.; Han, Sang D.; Boyle, Paul D.; Henderson, Wesley A.

    2015-03-06

    Solvate crystal structures serve as useful models for the molecular-level interactions within the diverse solvates present in liquid electrolytes. Although acyclic carbonate solvents are widely used for Li-ion battery electrolytes, only three solvate crystal structures with lithium salts are known for these and related solvents. The present work, therefore, reports six lithium salt solvate structures with dimethyl and diethyl carbonate: (DMC)2:LiPF6, (DMC)1:LiCF3SO3, (DMC)1/4:LiBF4, (DEC)2:LiClO4, (DEC)1:LiClO4 and (DEC)1:LiCF3SO3 and four with the structurally related methyl and ethyl acetate: (MA)2:LiClO4, (MA)1:LiBF4, (EA)1:LiClO4 and (EA)1:LiBF4.

  20. Cooling molten salt reactors using gas-lift

    SciTech Connect (OSTI)

    Zitek, Pavel E-mail: klimko@kke.zcu.cz; Valenta, Vaclav E-mail: klimko@kke.zcu.cz; Klimko, Marek E-mail: klimko@kke.zcu.cz

    2014-08-06

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a Two-phase flow demonstrator (TFD) used for experimental study of the gas-lift system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for gas-lift (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.