Sample records for dave gates generating

  1. Queues with simultaneous loss on Dave Thornley

    E-Print Network [OSTI]

    Imperial College, London

    of Computing Imperial College of Science, Technology and Medicine Huxley Building 180 Queen's Gate London SW7 2BZ England djt@doc.ic.ac.uk #12; 2 Breakdowns and repairs In a uniform multi-processor server, weQueues with simultaneous loss on breakdowns Dave Thornley #3; Abstract We take a queue

  2. Dave Cowley | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dave Cowley Instruments Computing: Data File Storage (Aurora) (GB) Aurora, EMSL's scientific data archive, is a dedicated computer system specifically designed for long-term...

  3. Isolated-attosecond-pulse generation with infrared double optical gating

    SciTech Connect (OSTI)

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi [Extreme Photonics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-06-15T23:59:59.000Z

    We propose and theoretically demonstrate an infrared two-color polarization gating scheme for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. Our simulations show that an IAP can be produced using a multicycle two-color driving pulse with a duration up to 60 fs. Moreover, the carrier-envelope phase (CEP) of the driving laser is not required to be stabilized, although the IAP intensity changes with the CEP slip. Such a gating scheme significantly relaxes the requirements for driving lasers and opens the door to easily create intense IAPs with a high-power conventional multicycle laser pulse.

  4. Gate dielectric degradation: Pre-existing vs. generated defects

    SciTech Connect (OSTI)

    Veksler, Dmitry, E-mail: Dmitry.Veksler@sematech.org, E-mail: gennadi.bersuker@sematech.org; Bersuker, Gennadi, E-mail: Dmitry.Veksler@sematech.org, E-mail: gennadi.bersuker@sematech.org [SEMATECH Inc., 257 Fuller Rd., Albany, New York 12203 (United States)

    2014-01-21T23:59:59.000Z

    We consider the possibility that degradation of the electrical characteristics of high-k gate stacks under low voltage stresses of practical interest is caused primarily by activation of pre-existing defects rather than generation of new ones. In nFETs in inversion, in particular, defect activation is suggested to be associated with the capture of an injected electron: in this charged state, defects can participate in a fast exchange of charge carriers with the carrier reservoir (substrate or gate electrode) that constitutes the physical process underlying a variety of electrical measurements. The degradation caused by the activation of pre-existing defects, as opposed to that of new defect generation, is both reversible and exhibits a tendency to saturate through the duration of stress. By using the multi-phonon assisted charge transport description, it is demonstrated that the trap activation concept allows reproducing a variety of experimental results including stress time dependency of the threshold voltage, leakage current, charge pumping current, and low frequency noise. Continuous, long-term degradation described by the power law time dependency is shown to be determined by the activation of defects located in the interfacial SiO{sub 2} layer of the high-k gate stacks. The findings of this study can direct process optimization efforts towards reduction of as-grown precursors of the charge trapping defects as the major factor affecting reliability.

  5. Employee Spotlight: Dave Keller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-State HybridizationSecurityDave Keller Dave Keller-Sleepless

  6. Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses

    E-Print Network [OSTI]

    Silberberg, Yaron

    Polarization gating of high-order harmonic generation takes advantage of the significant reduction of har for generation of polarization gated pulses using wave-plate combinations is inefficient, and propose photon energy radiation from the harmonic spectrum. Need- less to say, the generation of near single

  7. Simulating Wax Crayons Dave Rudolf

    E-Print Network [OSTI]

    Mould, David

    Simulating Wax Crayons Dave Rudolf dave.rudolf@usask.ca David Mould mould@cs.usask.ca Eric Neufeld a physically-inspired model of wax crayons, which synthesizes drawings from collections of user- specified that evolves as it interacts with the paper. The amount of wax deposition is computed based on the crayon

  8. Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    E-Print Network [OSTI]

    T. Schulte-Herbrueggen; A. Spoerl; N. Khaneja; S. J. Glaser

    2009-05-17T23:59:59.000Z

    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.

  9. On Monday, January 14th , 2013, our colleague, Dr. Dave Pariser, passed away unexpectedly. Dave was a

    E-Print Network [OSTI]

    On Monday, January 14th , 2013, our colleague, Dr. Dave Pariser, passed away unexpectedly. Dave policy. We'll miss Dave, but he lives on in all of the lives he impacted. The Dave Pariser Memorial of the donation and choose the designated fund, the Dave Pariser Memorial Scholarship Fund. http

  10. Risk analysis study of non-routine turbine/generator shutdown events and intake gate evaluation

    SciTech Connect (OSTI)

    Bardy, D.M. [Hydroelectric Design Center, Portland, OR (United States)

    1995-12-31T23:59:59.000Z

    The Corps of Engineers has undertaken a study to perform a reliability and risk analysis for evaluating non-routine turbine/generator shutdown scenarios. The study will evaluate the risks associated with events that would require a powerhouse to shut down a turbine/generator by using intake gates. The goal of this project is to estimate any potential damage that could occur for various intake gate configurations and closure times. The data obtained can also be used to evaluate any of the systems that affect reliability of the turbine/generator using established methods of risk analysis. This paper will briefly outline the study objectives and describe the progress of the study to this point.

  11. Dr. Dave Danielson Assistant Secretary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOEDepartment ofOff-GasServicesDownload theDave

  12. Attosecond x-ray source generation from two-color polarized gating plasmonic field enhancement

    SciTech Connect (OSTI)

    Feng, Liqiang [College of Science, Liaoning University of Technology, Jinzhou 121000 (China) [College of Science, Liaoning University of Technology, Jinzhou 121000 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yuan, Minghu [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tianshu [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2013-12-15T23:59:59.000Z

    The plasmonic field enhancement from the vicinity of metallic nanostructures as well as the polarization gating technique has been utilized to the generation of the high order harmonic and the single attosecond x-ray source. Through numerical solution of the time-dependent Schrödinger equation, for moderate the inhomogeneity and the polarized angle of the two fields, we find that not only the harmonic plateau has been extended and enhanced but also the single short quantum path has been selected to contribute to the harmonic. As a result, a series of 50 as pulses around the extreme ultraviolet and the x-ray regions have been obtained. Furthermore, by investigating the other parameters effects on the harmonic emission, we find that this two-color polarized gating plasmonic field enhancement scheme can also be achieved by the multi-cycle pulses, which is much better for experimental realization.

  13. C. David (Dave) Warren Field Technical Manager

    E-Print Network [OSTI]

    , Processing Technologies 1B lbs/year Wind Energy Enables Longer Blade Designs and More EfficientC. David (Dave) Warren Field Technical Manager Transportation Materials Research Oak Ridge National by UT-Battelle for the U.S. Department of Energy Presentation_name Questions for Today Materials How can

  14. Queues with simultaneous loss on Dave Thornley

    E-Print Network [OSTI]

    Ould-Khaoua, Mohamed

    London SW7 2BZ England djt@doc.ic.ac.uk #12; 2 Breakdowns and repairs In a uniform multi-processor serverQueues with simultaneous loss on breakdowns Dave Thornley #3; June 15, 2002 Abstract We take a queue with breakdowns and repairs of processors in which the queue length does not change

  15. A Bidirectional Deposition Model of Wax Crayons Dave Rudolf

    E-Print Network [OSTI]

    Mould, David

    A Bidirectional Deposition Model of Wax Crayons Dave Rudolf dave.rudolf@usask.ca David Mould mould present a physically-inspired model of wax crayons, which synthesizes drawings from collections of user that evolves as it interacts with the paper. The amount of wax deposition is computed based on the crayon

  16. A 100V, 3 Phase Gate Driver with integrated digital PWM Generation and Current Sampling

    E-Print Network [OSTI]

    Ng, Wai Tung

    multiple market segments such as automotive, pumps, motion control and home appliances have been demanding and capabilities of this technology will also be included. Background: Smart power ICs (PICs) are increasingly-5], the smart PICs offered only limited analog sensing and gate drive functions. The protections are usually

  17. "Ask Argonne" - Dave Grabaskas, Nuclear Engineer, Part 2

    ScienceCinema (OSTI)

    Grabaskas, Dave

    2014-11-24T23:59:59.000Z

    Part 1 (http://www.youtube.com/watch?v=Vs_0wXoSL8M) of Dr. Dave Grabaskas' "Ask Argonne" video set drew many questions from the public. In Part 2, Grabaskas answers three of those questions.

  18. "Ask Argonne" - Dave Grabaskas, Nuclear Engineer, Part 2

    SciTech Connect (OSTI)

    Grabaskas, Dave

    2013-09-13T23:59:59.000Z

    Part 1 (http://www.youtube.com/watch?v=Vs_0wXoSL8M) of Dr. Dave Grabaskas' "Ask Argonne" video set drew many questions from the public. In Part 2, Grabaskas answers three of those questions.

  19. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    SciTech Connect (OSTI)

    Katsuno, Takashi, E-mail: e1417@mosk.tytlabs.co.jp; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu [Toyota Central R and D Laboratories Inc., Nagakute, Aichi 480-1192 (Japan); Manaka, Takaaki; Iwamoto, Mitsumasa [Department of Physical Electronics, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan)

    2014-06-23T23:59:59.000Z

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800??s) the completion of drain-stress voltage (200?V) in the off-state, the second-harmonic (SH) signals appeared within 2??m from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  20. Organic Electronics and Photovoltaics CopyrightDaveWhite2008

    E-Print Network [OSTI]

    ENERGY Organic Electronics and Photovoltaics Objective CopyrightDaveWhite2008 Organic electronics and photovoltaic technology are reaching critical mass with the establishment of a U.S. consortium and the recent an inte- grated suite of measurement methods to tie the electrical and photovoltaic performance of organic

  1. Optical XOR gate

    DOE Patents [OSTI]

    Vawter, G. Allen

    2013-11-12T23:59:59.000Z

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  2. DAVE: A plug and play model for distributed multimedia application development

    SciTech Connect (OSTI)

    Mines, R.F.; Friesen, J.A.; Yang, C.L.

    1994-07-01T23:59:59.000Z

    This paper presents a model being used for the development of distributed multimedia applications. The Distributed Audio Video Environment (DAVE) was designed to support the development of a wide range of distributed applications. The implementation of this model is described. DAVE is unique in that it combines a simple ``plug and play`` programming interface, supports both centralized and fully distributed applications, provides device and media extensibility, promotes object reuseability, and supports interoperability and network independence. This model enables application developers to easily develop distributed multimedia applications and create reusable multimedia toolkits. DAVE was designed for developing applications such as video conferencing, media archival, remote process control, and distance learning.

  3. Attosecond Temporal Gating with Elliptically Polarized Light

    SciTech Connect (OSTI)

    Dudovich, N.; Smirnova, O.; Ivanov, M. Yu.; Villeneuve, D. M.; Corkum, P. B. [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Levesque, J. [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); INRS-EMT, 1650 boulevard Lionel-Boulet, CP 1020, Varennes, Quebec J3X 1S2 (Canada); Zeidler, D. [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Carl Zeiss SMT AG, Oberkochen D-73447 (Germany); Comtois, D. [INRS-EMT, 1650 boulevard Lionel-Boulet, CP 1020, Varennes, Quebec J3X 1S2 (Canada)

    2006-12-22T23:59:59.000Z

    Temporal gating allows high accuracy time-resolved measurements of a broad range of ultrafast processes. By manipulating the interaction between an atom and an intense laser field, we extend gating into the nonlinear medium in which attosecond optical and electron pulses are generated. Our gate is an amplitude gate induced by ellipticity of the fundamental pulse. The gate modulates the spectrum of the high harmonic emission and we use the measured modulation to characterize the sub-laser-cycle dynamics of the recollision electron wave packet.

  4. Gate Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide andNationalall petroleumGate

  5. Billiards Digest February, 2010 David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES

    E-Print Network [OSTI]

    Alciatore, David G.

    Billiards Digest February, 2010 David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES "VEPS GEMS the 12-ball or 13-ball, or both, as demonstrated in NV B.68. #12;Billiards Digest February, 2010 8 11 Digest February, 2010 8 11 12 13 stun shot 90º tangent line "good-action" draw trisect direction medium

  6. Billiards Digest January, 2010 David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES

    E-Print Network [OSTI]

    Alciatore, David G.

    Billiards Digest January, 2010 David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES "VEPS GEMS" (i.e., "canned"). Now I feel like I have Billiards Digest "tenure." I can't believe it has been six and Position 1. cut shots 2. stun shots 3. follow shots #12;Billiards Digest January, 2010 4. draw shots 5. CB

  7. Billiards Digest April, 2011 David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES

    E-Print Network [OSTI]

    Alciatore, David G.

    Billiards Digest April, 2011 David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES "VEPS GEMS shots, Coriolis' system is a good place to start. #12;Billiards Digest April, 2011 a) side view b) top shot speed effects #12;Billiards Digest April, 2011 Diagram 3 (similar t

  8. Dave R.'s Guide to: Writing Your Thesis or Dissertation

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Dave R.'s Guide to: Writing Your Thesis or Dissertation A Basic Survival Manual By the time you or dissertation is your vehicle. Every research advisor has his or her own preferred writing style and research philosophy. In this guide I have applied my own personal preferences to the task of thesis/dissertation

  9. Division of Agricultural Sciences and Natural Resources Oklahoma State University Dave Marcouiller

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Division of Agricultural Sciences and Natural Resources · Oklahoma State University Dave).Theownersmanualwillalsoprovideyouwithgooddetailed information about recommended maintenance practices nec- essary to keep your saw running smoothly of burnt wood are also good indications that the chain is dull. Sharpening a chain is a relatively easy

  10. Program B.S. in Geology Assessment Coordinator for the program Dave Kreamer

    E-Print Network [OSTI]

    Hemmers, Oliver

    1 Program B.S. in Geology Assessment Coordinator for the program Dave Kreamer Department. Student Learning Outcomes for the program. By the end of the Geology program students will be able, and the environments in which they lived. 4. Recognize, in the field, various types of geologic structures, and be able

  11. David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES "Beer-goggle Effects"

    E-Print Network [OSTI]

    Alciatore, David G.

    David Alciatore, PhD ("Dr. Dave") ILLUSTRATED PRINCIPLES "Beer-goggle Effects" Note: Supporting and drinking beer with friends at bars and pool halls. People sometimes complain to me that I use too many shown is the "beer goggle" curve that illustrates the level of desire for unattractive members

  12. Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin energy has made wind turbine technology a suitable candidate for pollution-free energy. With its great that received many complaints from the residents living near the large wind turbine poles. Many scientists

  13. Remote quantum gates mediated by spin chains

    E-Print Network [OSTI]

    R. Ronke; I. D'Amico; T. P. Spiller

    2010-03-09T23:59:59.000Z

    There has been much recent study on the application of spin chains to quantum state transfer and communication. Here we demonstrate that spin chains set up for perfect quantum state transfer can be utilised to generate remote quantum gates, between spin qubits injected at the ends of the chain. The natural evolution of the system across different excitation number sectors generates a maximally-entangling and universal gate between the injected qubits, independent of the length of the chain.

  14. Microsoft Word - QER Dave Caldwell 21 April 2014.doc

    Office of Environmental Management (EM)

    40-50% more energy efficiency than that of the current building code, not including alternative energy generation. By all outward appearances, the house located at 25 Edies...

  15. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, Christopher L. (Los Alamos, NM); Idzorek, George C. (Los Alamos, NM); Atencio, Leroy G. (Espanola, NM)

    1987-01-01T23:59:59.000Z

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  16. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19T23:59:59.000Z

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  17. Range gated imaging experiments using gated intensifiers

    SciTech Connect (OSTI)

    McDonald, T.E. Jr.; Yates, G.J.; Cverna, F.H.; Gallegos, R.A.; Jaramillo, S.A.; Numkena, D.M.; Payton, J.; Pena-Abeyta, C.R.

    1999-03-01T23:59:59.000Z

    A variety of range gated imaging experiments using high-speed gated/shuttered proximity focused microchannel plate image intensifiers (MCPII) are reported. Range gated imaging experiments were conducted in water for detection of submerged mines in controlled turbidity tank test and in sea water for the Naval Coastal Sea Command/US Marine Corps. Field experiments have been conducted consisting of kilometer range imaging of resolution targets and military vehicles in atmosphere at Eglin Air Force Base for the US Air Force, and similar imaging experiments, but in smoke environment, at Redstone Arsenal for the US Army Aviation and Missile Command (AMCOM). Wavelength of the illuminating laser was 532 nm with pulse width ranging from 6 to 12 ns and comparable gate widths. These tests have shown depth resolution in the tens of centimeters range from time phasing reflected LADAR images with MCPII shutter opening.

  18. From: Dave Ulery To: Congestion Study Comments Subject: 2014 Congestion Study Comment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOEScienceNIETCMunson RossMonday,CurtDanDave

  19. 06.27.14 SRS Retirees Town Hall Meeting-Dave Hepner Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are ABOUT USJune 2015 TheMeeting-Dave

  20. Adiabatically implementing quantum gates

    SciTech Connect (OSTI)

    Sun, Jie; Lu, Songfeng, E-mail: lusongfeng@hotmail.com; Liu, Fang [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-14T23:59:59.000Z

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  1. DEFINITION OF MOTIONLESS PHASES FOR MONITORING GATED RECONSTRUCTION

    E-Print Network [OSTI]

    Boyer, Edmond

    of gating signals that are generated from an abdominal pressure variation signal. This method is considering at the beginning of steady phase of studied organs Objectives Study Protocol Abdominal pressure signal and Gating Average period of pressure variation µ0 = 770, 86 ms Standard deviation 10 = 72,25 ms : High value due

  2. Learning Methods for Lung Tumor Markerless Gating in Image-Guided Radiotherapy

    E-Print Network [OSTI]

    Dy, Jennifer G.

    Learning Methods for Lung Tumor Markerless Gating in Image-Guided Radiotherapy Ying Cui Dept. For gated lung cancer radiotherapy, it is difficult to generate ac- curate gating signals due to the large techniques, we apply them on five sequences of fluoroscopic images from five lung cancer patients against

  3. Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S. Walker, and Geraldine L. Richmond*

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S remediation. The carbon tetrachloride-water interface in particular has been the subject of numerous the density profile across the interface. No detailed studies of the carbon tetrachloride structure

  4. Human Factors Analysis of Predator B Crash Geoff Carrigan, Dave Long, M.L. Cummings, John Duffner

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    accident analysis. While it has been used to analyze many manned aircraft accidents, its use for UAS accident analysis is limited. Thus, this report provides background into the Unmanned Aerial Vehicle (UAVHuman Factors Analysis of Predator B Crash Geoff Carrigan, Dave Long, M.L. Cummings, John Duffner

  5. Cellular Gate Technology

    E-Print Network [OSTI]

    Knight, Thomas F.

    1998-01-05T23:59:59.000Z

    We propose a biochemically plausible mechanism for constructing digital logic signals and gates of significant complexity within living cells. These mechanisms rely largely on co-opting existing biochemical machinery and ...

  6. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans (Monongahela, PA); West, Shawn Michael (West Mifflin, PA); Fabean, Robert J. (Donora, PA)

    2009-08-04T23:59:59.000Z

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  7. Cardiac gated ventilation

    SciTech Connect (OSTI)

    Hanson, C.W. III [Hospital of the Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. Anesthesia; Hoffman, E.A. [Univ. of Iowa College of Medicine, Iowa City, IA (United States). Div. of Physiologic Imaging

    1995-12-31T23:59:59.000Z

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

  8. Gated x-ray detector for the National Ignition Facility

    SciTech Connect (OSTI)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); VI Control Systems Ltd., Los Alamos, New Mexico 87544 (United States)

    2006-10-15T23:59:59.000Z

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections.

  9. Penn State DOE GATE Program

    SciTech Connect (OSTI)

    Anstrom, Joel

    2012-08-31T23:59:59.000Z

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  10. A Sequence of Quantum Gates

    E-Print Network [OSTI]

    Yorick Hardy; Willi-Hans Steeb

    2012-02-10T23:59:59.000Z

    We study a sequence of quantum gates in finite-dimensional Hilbert spaces given by the normalized eigenvectors of the unitary operators. The corresponding sequence of the Hamilton operators is also given. From the Hamilton operators we construct another hierarchy of quantum gates via the Cayley transform.

  11. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-03T23:59:59.000Z

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  12. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  13. Ultrafast, high precision gated integrator

    SciTech Connect (OSTI)

    Wang, X.

    1995-01-01T23:59:59.000Z

    An ultrafast, high precision gated integrator has been developed by introducing new design approaches that overcome the problems associated with earlier gated integrator circuits. The very high speed is evidenced by the output settling time of less than 50 ns and 20 MHz input pulse rate. The very high precision is demonstrated by the total output offset error of less than 0.2mV and the output droop rate of less than 10{mu}V/{mu}s. This paper describes the theory of this new gated integrator circuit operation. The completed circuit test results are presented.

  14. A proposal for the realization of universal quantum gates via superconducting qubits inside a cavity

    SciTech Connect (OSTI)

    Obada, A.-S.F. [Faculty of Science, Al-Azhar University, Nasr City, Cairo (Egypt)] [Faculty of Science, Al-Azhar University, Nasr City, Cairo (Egypt); Hessian, H.A. [Faculty of Science, Assiut University, Assiut (Egypt)] [Faculty of Science, Assiut University, Assiut (Egypt); Mohamed, A.-B.A. [Faculty of Science, Assiut University, Assiut (Egypt) [Faculty of Science, Assiut University, Assiut (Egypt); Community College, Salman Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Homid, Ali H., E-mail: alihimad@yahoo.com [Faculty of Science, Al-Azhar University, Assiut (Egypt)

    2013-07-15T23:59:59.000Z

    A family of quantum logic gates is proposed via superconducting (SC) qubits coupled to a SC-cavity. The Hamiltonian for SC-charge qubits inside a single mode cavity is considered. Three- and two-qubit operations are generated by applying a classical magnetic field with the flux. Therefore, a number of quantum logic gates are realized. Numerical simulations and calculation of the fidelity are used to prove the success of these operations for these gates. -- Highlights: •A family of quantum logic gates is proposed via SC-qubits coupled to a cavity. •Three- and two-qubit operations are generated via a classical field with the flux. •Numerical simulations and calculation of the fidelity are used to prove the success of these operations for these gates.

  15. Hafnium-doped tantalum oxide high-k gate dielectric films for future CMOS technology 

    E-Print Network [OSTI]

    Lu, Jiang

    2007-04-25T23:59:59.000Z

    A novel high-k gate dielectric material, i.e., hafnium-doped tantalum oxide (Hf-doped TaOx), has been studied for the application of the future generation metal-oxidesemiconductor field effect transistor (MOSFET). The ...

  16. Non-Hermitian quantum gates are more common than Hermitian quantum gates

    E-Print Network [OSTI]

    Anirban Pathak

    2013-09-16T23:59:59.000Z

    Most of the frequently used quantum gates (e.g., NOT, Hadamard, CNOT, SWAP, Toffoli, Fredkin and Pauli gates) are self-inverse (Hermitian). However, with a simple minded argument it is established that most of the allowed quantum gates are non-Hermitian (non-self-inverse). It is also shown that the % of non-Hermitian gates increases with the dimension. For example, 58.33% of the 2-qubit gates, 98.10% of the 3-qubit gates and 99.99% of the 4-qubit gates are non-Hermitian. As classical reversible gates are essentially permutation gates so the above statistics is strictly valid for classical reversible gates. Further, since Hermiticity is not of much interest in context of the classical reversible gate, hence the result implies that most of the allowed classical reversible gates are non-self-inverse.

  17. Radar Vehicle Detection Within Four Quadrant Gate Crossings

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    of the exit gate · Less delay between entry and exit gate descent · Extends the exit gate delay only) Methodology 4) Results 5) Conclusions 6) Acknowledgments Exit Gate Operating Modes (EGOM) Radar Vehicle

  18. Ferroelectric-gated terahertz plasmonics on graphene

    E-Print Network [OSTI]

    Jin, Dafei

    Inspired by recent advancement of ferroelectric-gated memories and transistors, we propose a design of ferroelectric-gated nanoplasmonic devices based on graphene sheets clamped in ferroelectric crystals. We show that the ...

  19. Repeat-until-success cubic phase gate for universal continuous-variable quantum computation

    E-Print Network [OSTI]

    Kevin Marshall; Raphael Pooser; George Siopsis; Christian Weedbrook

    2014-12-01T23:59:59.000Z

    In order to achieve universal quantum computation using continuous variables, one needs to jump out of the set of Gaussian operations and have a non-Gaussian element, such as the cubic phase gate. However, such a gate is currently very difficult to implement in practice. Here we introduce an experimentally viable 'repeat-until-success' approach to generating the cubic phase gate, which is achieved using sequential photon subtractions and Gaussian operations. We find that our scheme offers benefits in terms of the expected time until success, although we require a primitive quantum memory.

  20. Composite two-qubit quantum gates

    E-Print Network [OSTI]

    Svetoslav S. Ivanov; Nikolay V. Vitanov

    2015-03-30T23:59:59.000Z

    We design composite two-qubit gates, based on the Ising-type interaction. The gates are robust against systematic errors in the qubits' interaction strength and the gate's implementation time. We give composite sequences, which cancel the error up to 6th order, and give a method to achieve even higher accuracy. Our sequences can compensate either relative or absolute errors. For relative error compensation the number of the ingredient gates grows linearly with the desired accuracy, while for absolute compensation only two gates are required to achieve infinitely accurate gates. We also consider an ion-trap implementation of our composite gates, where our sequences achieve simultaneous cancellation of the error in both the pulse area and the detuning.

  1. Advanced Gate Drive for the SNS High Voltage Converter Modulator

    SciTech Connect (OSTI)

    Nguyen, M.N.; Burkhart, C.; Kemp, M.A.; /SLAC; Anderson, D.E.; /Oak Ridge

    2009-05-07T23:59:59.000Z

    SLAC National Accelerator Laboratory is developing a next generation H-bridge switch plate [1], a critical component of the SNS High Voltage Converter Modulator [2]. As part of that effort, a new IGBT gate driver has been developed. The drivers are an integral part of the switch plate, which are essential to ensuring fault-tolerant, high-performance operation of the modulator. The redesigned driver improves upon the existing gate drive in several ways. The new gate driver has improved fault detection and suppression capabilities; suppression of shoot-through and over-voltage conditions, monitoring of dI/dt and Vce(sat) for fast over-current detection and suppression, and redundant power isolation are some of the added features. In addition, triggering insertion delay is reduced by a factor of four compared to the existing driver. This paper details the design and performance of the new IGBT gate driver. A simplified schematic and description of the construction are included. The operation of the fast over-current detection circuits, active IGBT over-voltage protection circuit, shoot-through prevention circuitry, and control power isolation breakdown detection circuit are discussed.

  2. Remote controlled-NOT gate of d-dimension

    E-Print Network [OSTI]

    Gui-Fang Dang; Heng Fan

    2008-01-23T23:59:59.000Z

    Single qubit rotation gate and the controlled-NOT (CNOT) gate constitute a complete set of gates for universal quantum computation. In general the CNOT gate are only for two nearby qubits. For two qubits which are remote from each other, we need a series of swap gates to transfer these two qubits to the nearest neighboring sites, and then after the CNOT gate we should transfer them to their original sites again. However, a series of swap gates are resource for quantum information processing. One economy way which does not consume so much resource is to implement CNOT gate remotely. The remote CNOT gate is to implement the CNOT gate for two remotely separated qubits with the help of one additional maximally entangled state. The original remote CNOT gate is for two qubits, here we will present the d-dimensional remote CNOT gate. The role of quantum teleportation is identified in the process of the remote CNOT gate.

  3. Nonvolatile memory disturbs due to gate and junction leakage currents

    E-Print Network [OSTI]

    Schroder, Dieter K.

    ) from traps within the gate oxides. Such low gate leakage currents can lead to sufficient charge; accepted 10 September 2002 Abstract We address disturbs due to gate oxide and junction leakage currents in floating gate nonvolatile memories (NVM). The junction leakage is important, because the gate oxide current

  4. 2006 29 1 New Capacitorless 1T DRAM Cells : Surrounding Gate and Double Gate MOSFET With

    E-Print Network [OSTI]

    Lee, Jong Duk

    storage node silicon body floating . , double gate back gate negative bias excess hole back induced drain leakage . hole body cell state "1" hole body-drain forward bias cell state "0 source/drain SiN lithography pillar fin pattern . gate channel implantation 0.1µm . SiN hard

  5. TIME DEPENDENT BREAKDOWN OF GATE OXIDE AND PREDICTION OF OXIDE GATE LIFETIME

    E-Print Network [OSTI]

    Mahmoodi, Hamid

    TIME DEPENDENT BREAKDOWN OF GATE OXIDE AND PREDICTION OF OXIDE GATE LIFETIME A thesis submitted Masters of Science In Engineering: Embedded System by Bin Wu San Francisco, California May, 2012 #12;CERTIFICATION OF APPROVAL I certify that I have read Time dependent Breakdown of Gate Oxide and Prediction

  6. Bielectron vortices in gated graphene

    E-Print Network [OSTI]

    C. A. Downing; M. E. Portnoi

    2015-06-14T23:59:59.000Z

    We study the formation of bound two-particle states in gapless monolayer graphene in gated structures. We find that, even in the regime of massless Dirac fermions, coupling can occur at zero-energy for different or same charge quasiparticles. These bipartite states must have a non-zero internal angular momentum, meaning that they only exist as stationary vortices. We propose a new picture of the experimentally seen Fermi velocity renormalization as a manifestation of these pairs, suggest the possibility of a condensate of these novel quasiparticles.

  7. Gate Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place: Newport,Gate Solar Jump to:

  8. Cavity-QED-based quantum phase gate

    E-Print Network [OSTI]

    Zubairy, M. Suhail; Kim, M.; Scully, Marlan O.

    2003-01-01T23:59:59.000Z

    We describe a quantum phase gate in which the two qubits are represented by the photons in the two modes of the cavity field. The gate is implemented by passing a three-level atom in a cascade configuration through the cavity. The upper levels...

  9. Gate-tunable exchange coupling between cobalt clusters on graphene...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Gate-tunable exchange coupling between cobalt clusters on graphene Citation Details Title: Gate-tunable exchange coupling between cobalt clusters on...

  10. University of Illinois at Urbana-Champaign's GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel...

  11. Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Presentation given...

  12. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    current density, requires an understanding of liquid water transport in gas diffusion media * Research by students that have completed GATE center coursework, used GATE labs,...

  13. Possible Dynamically Gated Conductance along Heme Wires in Bacterial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme Cytochromes. Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme...

  14. GATE Center of Excellence at UAB in Lightweight Materials for...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications 2011 DOE...

  15. Vehicle Technologies Office Merit Review 2014: GATE Center of...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit. ti026vaidya2014p.pdf More Documents & Publications GATE...

  16. Vehicle Technologies Office Merit Review 2015: Gate Driver Optimizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gate Driver Optimization for WBG Applications Vehicle Technologies Office Merit Review 2015: Gate Driver Optimization for WBG Applications Presentation given by Oak Ridge National...

  17. GATE Center of Excellence at UAB in Lightweight Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence at UAB in Lightweight Materials for...

  18. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and...

  19. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect (OSTI)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30T23:59:59.000Z

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  20. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    None

    2011-07-31T23:59:59.000Z

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  1. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  2. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  3. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect (OSTI)

    Jeffrey Hodgson; David Irick

    2005-09-30T23:59:59.000Z

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  4. Compact, Intelligent, Digitally Controlled IGBT Gate Drivers for a PEBB-Based ILC Marx Modulator

    SciTech Connect (OSTI)

    Nguyen, M.N.; Burkhart, C.; Olsen, J.J.; Macken, K.; /SLAC; ,

    2010-06-07T23:59:59.000Z

    SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from over-voltage and over-current, detection of gate-emitter open and short circuit conditions, and monitoring of IGBT degradation (based on collector-emitter saturation voltage). Gate drive control, diagnostic processing capabilities, and communication are digitally implemented using an FPGA. This paper details the design of the gate driver circuitry, component selection, and construction layout. In addition, experimental results are included to illustrate the effectiveness of the protection circuit.

  5. Time-resolved imaging with OKE-based time-gate: enhancement in spatial resolution using low-coherence ultra-short illumination

    E-Print Network [OSTI]

    Purwar, Harsh; Rozé, Claude; Blaisot, Jean-Bernard

    2015-01-01T23:59:59.000Z

    We propose a collinear optical Kerr effect (OKE) based time-gate configuration with low coherence illumination source, derived from the supercontinuum (SC) generated by focusing the femtosecond laser pulses inside water. At first the spectral broadening in SC generation and corresponding changes in its coherence properties are studied and then a narrow band of wavelengths is extracted to use as the probe beam in the OKE-based time-gate configuration. The gate timings and spatial resolution of the time-gated images are also investigated. The low coherence of the probe ensures that the artifacts due to speckles from the laser are reduced to a minimum. To illustrate this a comparison of the time-resolved images of the fuel sprays obtained with this configuration has been made with the images obtained with the collinear, dual color configuration of the optical gate with coherent illumination.

  6. A p-cell approach to integer gate sizing

    E-Print Network [OSTI]

    Doddannagari, Uday

    2009-05-15T23:59:59.000Z

    uniformly spaced gate sizes would result in a large number of gate sizes and maintaining the huge volume of data for this number of gate sizes is difficult. This thesis aims to propose a practical approach to implement integer gate sizes. A parameterized...

  7. High level compilation for gate reconfigurable architectures

    E-Print Network [OSTI]

    Babb, Jonathan William

    2001-01-01T23:59:59.000Z

    A continuing exponential increase in the number of programmable elements is turning management of gate-reconfigurable architectures as "glue logic" into an intractable problem; it is past time to raise this abstraction ...

  8. Sandia National Laboratories: i-GATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners, investors, and technical resources isn't generally an easy task for start-up companies. But for clients of the i-GATE (Innovation for Green Advanced Transportation...

  9. Gate potential control of nanofluidic devices

    E-Print Network [OSTI]

    Le Coguic, Arnaud

    2005-01-01T23:59:59.000Z

    The effect of an external gate potential control on the nanofluidic nanochannels was experimentally investigated in this work. Like in the field effect transistors (FET) in microelectronics, molecular transport in ...

  10. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

    2009-06-23T23:59:59.000Z

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  11. Gate fidelity fluctuations and quantum process invariants

    SciTech Connect (OSTI)

    Magesan, Easwar; Emerson, Joseph [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Blume-Kohout, Robin [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-07-15T23:59:59.000Z

    We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.

  12. Engineering a C-Phase quantum gate: optical design and experimental realization

    E-Print Network [OSTI]

    Andrea Chiuri; Chiara Greganti; Paolo Mataloni

    2012-04-12T23:59:59.000Z

    A two qubit quantum gate, namely the C-Phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the Phased Dicke states are also discussed in detail.

  13. Dave Cowley | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cowley Instruments Computing: Data File Storage (Aurora) (GB) Aurora, EMSL's scientific data archive, is a dedicated computer system specifically designed for long-term storage of...

  14. Employee Spotlight: Dave Keller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwo

  15. Dave Roberts POBox

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. Martin andandTop Science News of

  16. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    SciTech Connect (OSTI)

    Erickson, Paul

    2012-05-31T23:59:59.000Z

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davisâ??s existing GATE centers have become the campusâ??s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  17. Sliding-gate valve for use with abrasive materials

    DOE Patents [OSTI]

    Ayers, Jr., William J. (Morgantown, WV); Carter, Charles R. (Fairmont, WV); Griffith, Richard A. (Morgantown, WV); Loomis, Richard B. (Bruceton Mills, WV); Notestein, John E. (Morgantown, WV)

    1985-01-01T23:59:59.000Z

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  18. Engineering integrated photonics for heralded quantum gates

    E-Print Network [OSTI]

    T. Meany; D. N. Biggerstaff; M. A. Broome; A. Fedrizzi; M. Delanty; A. Gilchrist; G. D. Marshall; M. J. Steel; A. G. White; M. J. Withford

    2015-02-11T23:59:59.000Z

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate implementation of the optimal known gate design which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show that device performance is more sensitive to the small deviations in the coupler reflectivity, arising due to the tolerance values of the fabrication method, than phase variations in the circuit. The mode fidelity was also shown to be less sensitive to reflectivity and phase errors than process fidelity. Our best device achieves a fidelity of 0.931+/-0.001 with the ideal 4x4 unitary circuit and a process fidelity of 0.680+/-0.005 with the ideal computational-basis process.

  19. Efficient Generation of Generic Entanglement

    E-Print Network [OSTI]

    R. Oliveira; O. C. O. Dahlsten; M. B. Plenio

    2007-04-03T23:59:59.000Z

    We find that generic entanglement is physical, in the sense that it can be generated in polynomial time from two-qubit gates picked at random. We prove as the main result that such a process generates the average entanglement of the uniform (Haar) measure in at most $O(N^3)$ steps for $N$ qubits. This is despite an exponentially growing number of such gates being necessary for generating that measure fully on the state space. Numerics furthermore show a variation cut-off allowing one to associate a specific time with the achievement of the uniform measure entanglement distribution. Various extensions of this work are discussed. The results are relevant to entanglement theory and to protocols that assume generic entanglement can be achieved efficiently.

  20. Electroluminescence in ion gel gated organic polymer semiconductor transistors

    E-Print Network [OSTI]

    Bhat, Shrivalli

    2011-07-12T23:59:59.000Z

    This thesis reports the light emission in ion gel gated, thin film organic semiconductor transistors and investigates the light emission mechanism behind these devices. We report that ion gel gated organic polymer semiconductor transistors emit...

  1. Compact modeling of quantum effects in double gate MOSFETs

    E-Print Network [OSTI]

    Wang, Wei

    2007-01-01T23:59:59.000Z

    However, ultrathin gate oxide will lead to high gate leakagethe high enough oxide barrier confinement leads to zero waveoxide becomes significant. The random dopant fluctuation effects increase with shrinking device size and leads

  2. abnormal sensorimotor gating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the bilayer...

  3. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles

    E-Print Network [OSTI]

    Matthew Grace; Constantin Brif; Herschel Rabitz; Ian A. Walmsley; Robert L. Kosut; Daniel A. Lidar

    2007-04-16T23:59:59.000Z

    Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions.

  4. Negative quantum capacitance in graphene nanoribbons with lateral gates

    E-Print Network [OSTI]

    Florian, Libisch

    Negative quantum capacitance in graphene nanoribbons with lateral gates R. Reiter1, , U. Derra2 , S numerical simulations of the capacitive coupling between graphene nanoribbons of various widths and gate electrodes in different configurations. We compare the influence of lateral metallic or graphene side gate

  5. Entangling power and local invariants of two-qubit gates

    E-Print Network [OSTI]

    S Balakrishnan; R Sankaranarayanan

    2010-09-07T23:59:59.000Z

    We show a simple relation connecting entangling power and local invariants of two-qubit gates. From the relation, a general condition under which gates have same entangling power is arrived. The relation also helps in finding the lower bound of entangling power for perfect entanglers, from which the classification of gates as perfect and nonperfect entanglers is obtained in terms of local invariants.

  6. Entangling power and local invariants of two-qubit gates

    E-Print Network [OSTI]

    Balakrishnan, S

    2010-01-01T23:59:59.000Z

    We show a simple relation connecting entangling power and local invariants of two-qubit gates. From the relation, a general condition under which gates have same entangling power is arrived. The relation also helps to find the lower bound of entangling power for perfect entangler, from which a new classification of gates in terms of local invariants is obtained.

  7. Clustering of cyclic-nucleotide-gated channels in olfactory cilia

    E-Print Network [OSTI]

    French, Donald A.

    Clustering of cyclic-nucleotide-gated channels in olfactory cilia Richard J. Flannery* , Donald A channel clusters in olfactory cilia Key words: olfaction, receptor neuron, cyclic-nucleotide-gated channel of olfactory signal transduction, including a high density of cyclic-nucleotide-gated (CNG) channels. CNG

  8. Quantum Logic Gates using q-deformed Oscillators

    E-Print Network [OSTI]

    Debashis Gangopadhyay; Mahendra Nath Sinha Roy

    2006-07-14T23:59:59.000Z

    We show that the quantum logic gates, {\\it viz.} the single qubit Hadamard and Phase Shift gates, can also be realised using q-deformed angular momentum states constructed via the Jordan-Schwinger mechanism with two q-deformed oscillators. {\\it Keywords :} quantum logic gates ; q-deformed oscillators ; quantum computation {\\it PACS:} 03.67.Lx ; 02.20.Uw

  9. The gated community: residents' crime experience and perception of safety behind gates and fences in the urban area

    E-Print Network [OSTI]

    Kim, Suk Kyung

    2006-10-30T23:59:59.000Z

    ' perceptions of safety. Gated community residents reported a higher crime rate than nongated community residents. In addition to gates and fences that define apartment territory, such elements as patrol services, bright lighting, direct emergency buttons...

  10. Quantum gates via relativistic remote control

    E-Print Network [OSTI]

    Eduardo Martin-Martinez; Chris Sutherland

    2014-10-30T23:59:59.000Z

    We harness general relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build universal quantum gates.

  11. Retention and switching kinetics of protonated gate field effect transistors

    SciTech Connect (OSTI)

    DEVINE,R.A.B.; HERRERA,GILBERT V.

    2000-05-23T23:59:59.000Z

    The switching and memory retention time has been measured in 50 {micro}m gatelength pseudo-non-volatile memory MOSFETS containing, protonated 40 nm gate oxides. Times of the order of 3.3 seconds are observed for fields of 3 MV cm{sup {minus}1}. The retention time with protons placed either at the gate oxide/substrate or gate oxide/gate electrode interfaces is found to better than 96{percent} after 5,000 seconds. Measurement of the time dependence of the source-drain current during switching provides clear evidence for the presence of dispersive proton transport through the gate oxide.

  12. Retention and Switching Kinetics of Protonated Gate Field Effect Transistors

    SciTech Connect (OSTI)

    DEVINE,R.A.B.; HERRERA,GILBERT V.

    2000-06-27T23:59:59.000Z

    The switching and memory retention time has been measured in 50 {micro}m gatelength pseudo-non-volatile memory MOSFETs containing, protonated 40 nm gate oxides. Times of the order of 3.3 seconds are observed for fields of 3 MV cm{sup {minus}1}. The retention time with protons placed either at the gate oxide/substrate or gate oxide/gate electrode interfaces is found to better than 96% after 5,000 seconds. Measurement of the time dependence of the source-drain current during switching provides clear evidence for the presence of dispersive proton transport through the gate oxide.

  13. Characterizing the geometrical edges of nonlocal two-qubit gates

    E-Print Network [OSTI]

    S. Balakrishnan; R. Sankaranarayanan

    2009-05-30T23:59:59.000Z

    Nonlocal two-qubit gates are geometrically represented by tetrahedron known as Weyl chamber within which perfect entanglers form a polyhedron. We identify that all edges of the Weyl chamber and polyhedron are formed by single parametric gates. Nonlocal attributes of these edges are characterized using entangling power and local invariants. In particular, SWAP (power)alpha family of gates constitutes one edge of the Weyl chamber with SWAP-1/2 being the only perfect entangler. Finally, optimal constructions of controlled-NOT using SWAP-1/2 gate and gates belong to three edges of the polyhedron are presented.

  14. Classification of transversal gates in qubit stabilizer codes

    E-Print Network [OSTI]

    Jonas T. Anderson; Tomas Jochym-O'Connor

    2014-09-29T23:59:59.000Z

    This work classifies the set of diagonal gates that can implement a single or two-qubit transversal logical gate for qubit stabilizer codes. We show that individual physical gates on the underlying qubits that compose the code are restricted to have entries of the form $e^{i \\pi c/2^k}$ along their diagonal, resulting in a similarly restricted class of logical gates that can be implemented in this manner. Moreover, we show that all diagonal logical gates that can be implemented transversally by individual physical diagonal gates must belong to the Clifford hierarchy. Furthermore, we can use this result to prove a conjecture about transversal gates made by Zeng et al. in 2007.

  15. Method for voltage-gated protein fractionation

    DOE Patents [OSTI]

    Hatch, Anson (Tracy, CA); Singh, Anup K. (Danville, CA)

    2012-04-24T23:59:59.000Z

    We report unique findings on the voltage dependence of protein exclusion from the pores of nanoporous polymer exclusion membranes. The pores are small enough that proteins are excluded from passage with low applied electric fields, but increasing the field enables proteins to pass through. The requisite field necessary for a change in exclusion is protein-specific with a correlation to protein size. The field-dependence of exclusion is important to consider for preconcentration applications. The ability to selectively gate proteins at exclusion membranes is also a promising means for manipulating and characterizing proteins. We show that field-gated exclusion can be used to selectively remove proteins from a mixture, or to selectively trap protein at one exclusion membrane in a series.

  16. A laser-programmable gate array

    E-Print Network [OSTI]

    Gullette, James Benjamin

    1985-01-01T23:59:59.000Z

    was investigated. A novel approach to the personalization of digital NMOS semicustom devices using laser re- structuring techinques was developed to expand the capabilities of current devices. A laser-programmable device offers logic designers an alternative... are determined the metal mask is designed and the final product is produced by completing the metallizat, ion on the preprocessed chips. B. Trade-ops Gate arrays have many advantages over fully custom integrated circuits 11''. This semicustom approach...

  17. Measures of operator entanglement of two-qubit gates

    E-Print Network [OSTI]

    Balakrishnan, S

    2011-01-01T23:59:59.000Z

    Two different measures of operator entanglement of two-qubit gates, namely, Schmidt strength and linear entropy, are studied. While these measures are shown to have one-to-one relation between them for Schmidt number 2 class of gates, no such relation exists for Schmidt number 4 class, implying that the measures are inequivalent in general. Further, we establish a simple relation between linear entropy and local invariants of two-qubit gates. The implication of the relation is discussed.

  18. Classification of nonlocal two-qubit gates using Schmidt number

    E-Print Network [OSTI]

    S Balakrishnan; Leona J Felicia; R Sankaranarayanan

    2010-03-31T23:59:59.000Z

    It is known from Schmidt decomposition that Schmidt number of nonlocal two-qubit quantum gates is 2 or 4. We identify conditions on geometrical points of a gate to have Schmidt number 2. A simple analysis reveals that Schmidt number 2 corresponds to controlled unitary gates with CNOT being the only perfect entangler. Further, it is shown that Schmidt strength and entangling power are maximum only for CNOT in the controlled unitary family.

  19. Classification of nonlocal two-qubit gates using Schmidt number

    E-Print Network [OSTI]

    Balakrishnan, S; Sankaranarayanan, R

    2009-01-01T23:59:59.000Z

    It is known from Schmidt decomposition that Schmidt number of nonlocal two-qubit quantum gates is 2 or 4. We identify conditions on geometrical points of a gate to have Schmidt number 2. A simple analysis reveals that Schmidt number 2 corresponds to controlled unitary gates with CNOT being the only perfect entangler. Further, it is shown that Schmidt strength and entangling power are maximum only for CNOT in the controlled unitary family.

  20. Measures of operator entanglement of two-qubit gates

    E-Print Network [OSTI]

    S. Balakrishnan; R. Sankaranarayanan

    2011-06-21T23:59:59.000Z

    Two different measures of operator entanglement of two-qubit gates, namely, Schmidt strength and linear entropy, are studied. While these measures are shown to have one-to-one relation between them for Schmidt number 2 class of gates, no such relation exists for Schmidt number 4 class, implying that the measures are inequivalent in general. Further, we establish a simple relation between linear entropy and local invariants of two-qubit gates. The implication of the relation is discussed.

  1. 2012 ARPA-E Energy Innovation Summit: Fireside Chat with Steven Chu and Bill Gates

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Department of Energy Secretary); Gates, Bill (Microsoft, Chairman); Podesta, John (Center for American Progress, Chair and Counselor)

    2012-03-21T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. This video captures a session called 'Fireside Chat' that featured Steven Chu, the Secretary of Energy, and Bill Gates, Chairman of Microsoft Corporation. The session is moderated by John Podesta, Chair of the Center for American Progress. Energy Secretary Steven Chu and Microsoft Founder and Chairman Bill Gates exchanged ideas about how small businesses and innovators can overcome the challenges that face many startups.

  2. 2012 ARPA-E Energy Innovation Summit: Fireside Chat with Steven Chu and Bill Gates

    SciTech Connect (OSTI)

    Chu, Steven (U.S. Department of Energy Secretary) [U.S. Department of Energy Secretary; Gates, Bill (Microsoft, Chairman) [Microsoft, Chairman; Podesta, John (Center for American Progress, Chair and Counselor) [Center for American Progress, Chair and Counselor

    2012-02-28T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. This video captures a session called 'Fireside Chat' that featured Steven Chu, the Secretary of Energy, and Bill Gates, Chairman of Microsoft Corporation. The session is moderated by John Podesta, Chair of the Center for American Progress. Energy Secretary Steven Chu and Microsoft Founder and Chairman Bill Gates exchanged ideas about how small businesses and innovators can overcome the challenges that face many startups.

  3. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS)...

  4. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Energy Savers [EERE]

    Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used...

  5. GATE Center of Excellence at UAB in Lightweight Materials for...

    Broader source: Energy.gov (indexed) [DOE]

    February 28, 2008 GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications Uday Vaidya (Principal Investigator) & J. Barry Andrews (Project Director)...

  6. An elementary optical gate for expanding entanglement web

    E-Print Network [OSTI]

    Toshiyuki Tashima; Sahin Kaya Ozdemir; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto

    2008-03-13T23:59:59.000Z

    We introduce an elementary optical gate for expanding polarization entangled W states, in which every pair of photons are entangled alike. The gate is composed of a pair of 50:50 beamsplitters and ancillary photons in the two-photon Fock state. By seeding one of the photons in an $n$-photon W state into this gate, we obtain an $(n+2)$-photon W state after post-selection. This gate gives a better efficiency and a simpler implementation than previous proposals for $\\rm W$-state preparation.

  7. Optical Determination of Gate--Tunable Bandgap in Bilayer Graphene

    E-Print Network [OSTI]

    Zhang, Yuanbo

    2010-01-01T23:59:59.000Z

    Tunable Bandgap in Bilayer Graphene Yuanbo Zhang* 1 , Tsung-gate-tunable bandgap in graphene bilayers with magnitude asbands. In two- dimensional graphene bilayers this bandgap

  8. Vehicle Technologies Office Merit Review 2014: GATE Center of...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit. lm081vaidya2014o.pdf More Documents & Publications...

  9. GATE Center of Excellence at UAB for Lightweight Materials and...

    Broader source: Energy.gov (indexed) [DOE]

    at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for...

  10. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education...

  11. Gate Fidelities, Quantum Broadcasting, and Assessing Experimental Realization

    E-Print Network [OSTI]

    Hyang-Tag Lim; Young-Sik Ra; Yong-Su Kim; Yoon-Ho Kim; Joonwoo Bae

    2011-06-29T23:59:59.000Z

    We relate gate fidelities of experimentally realized quantum operations to the broadcasting property of their ideal operations, and show that the more parties a given quantum operation can broadcast to, the higher gate fidelities of its experimental realization are in general. This is shown by establishing the correspondence between two operational quantities, quantum state shareability and quantum broadcasting. This suggests that, to assess an experimental realization using gate fidelities, the worst case of realization such as noisy operations should be taken into account and then compared to obtained gate fidelities. In addition, based on the correspondence, we also translate results in quantum state shareability to their counterparts in quantum operations.

  12. An overview of the gate and panel industry

    E-Print Network [OSTI]

    Fisher, C. West

    2000-01-01T23:59:59.000Z

    OF CONTENTS I. Introduction II. Market Review lll Critical Factors IV. Gate and Panel Fvaluation A Table 1. Light Duty Gate B. Table 2. Medium Duty Gate C. Table 3. Heavy Duty Gate D. Table 4 Light Duty Panel B Table 5. Medium Duty Panel R Table 6... of their cost and convience. MARKET REVIEW There are a multitude of companies that manufacture portable handling facilities from the basic panel components to complete corral layouts. Just like with cattle breeds, there are a wide variety of manufactured...

  13. Gate-teleportation-based blind quantum computation

    E-Print Network [OSTI]

    Mear M. R. Koochakie

    2014-12-25T23:59:59.000Z

    Blind quantum computation (BQC) is a model in which a computation is performed on a server by a client such that the server is kept blind about the input, the algorithm, and the output of the computation. Here we layout a general framework for BQC which, unlike the previous BQC models, does not constructed on specific computational model. A main ingredient of our construction is gate teleportation. We demonstrate that our framework can be straightforwardly implemented on circuit-based models as well as measurement-based models of quantum computation. We illustrate our construction by showing that universal BQC is possible on correlation-space measurement-based quantum computation models.

  14. Gates, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,|GasconadeOhio: EnergyGates,

  15. An FPGA Architecture Supporting Dynamically Controlled Power Gating

    E-Print Network [OSTI]

    Wilton, Steve

    An FPGA Architecture Supporting Dynamically Controlled Power Gating Assem A. M. Bsoul 1 and Steven at reducing leakage power. However, previous techniques focus on statically- controlled power gating. In this paper, we propose a modification to the fabric of an FPGA that enables dynamically-controlled power

  16. University of Illinois at Urbana Champaigns GATE Center forAdvanced...

    Energy Savers [EERE]

    of Illinois at Urbana Champaigns GATE Center forAdvanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana Champaigns GATE Center forAdvanced...

  17. University of Illinois at Urbana-Champaigns GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel...

  18. US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing

    E-Print Network [OSTI]

    Lee, Dongwon

    US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing in the automotive industry and academia. Develop relationships between GATE students, faculty, employers

  19. Ballistic Imaging of High-Pressure Fuel Sprays using Incoherent, Ultra- short Pulsed Illumination with an Ultrafast OKE-based Time Gating

    E-Print Network [OSTI]

    Purwar, Harsh; Rozé, Claude; Blaisot, Jean-Bernard

    2015-01-01T23:59:59.000Z

    We present an optical Kerr effect based time-gate with the collinear incidence of the pump and probe beams at the Kerr medium, liquid carbon disulfide, for ballistic imaging of the high-pressure fuel sprays. The probe pulse used to illuminate the object under study is extracted from the supercontinuum generated by tightly focusing intense femtosecond laser pulses inside water, thereby destroying their coherence. The optical imaging spatial resolution and gate timings are investigated and compared with a similar setup without supercontinuum generation, where the probe is still coherent. And finally, a few ballistic images of the fuel sprays using coherent and incoherent illumination with the proposed time-gate are presented and compared qualitatively.

  20. Graphene terahertz modulators by ionic liquid gating

    E-Print Network [OSTI]

    Wu, Yang; Qiu, Xuepeng; Liu, Jingbo; Deorani, Praveen; Banerjee, Karan; Son, Jaesung; Chen, Yuanfu; Chia, Elbert E M; Yang, Hyunsoo

    2015-01-01T23:59:59.000Z

    Graphene based THz modulators are promising due to the conical band structure and high carrier mobility of graphene. Here, we tune the Fermi level of graphene via electrical gating with the help of ionic liquid to control the THz transmittance. It is found that, in the THz range, both the absorbance and reflectance of the device increase proportionately to the available density of states due to intraband transitions. Compact, stable, and repeatable THz transmittance modulation up to 93% (or 99%) for a single (or stacked) device has been demonstrated in a broad frequency range from 0.1 to 2.5 THz, with an applied voltage of only 3 V at room temperature.

  1. Decomposition of bipartite and multipartite unitary gates into the product of controlled unitary gates

    E-Print Network [OSTI]

    Lin Chen; Li Yu

    2015-03-18T23:59:59.000Z

    We show that any unitary operator on the $d_A\\times d_B$ system ($d_A\\ge 2$) can be decomposed into the product of at most $4d_A-5$ controlled unitary operators. The number can be reduced to $2d_A-1$ when $d_A$ is a power of two. We also prove that three controlled unitaries can implement a bipartite complex permutation operator, and discuss the connection to an analogous result on classical reversible circuits. We further show that any $n$-partite unitary on the space $\\mathbb{C}^{d_1}\\otimes...\\otimes\\mathbb{C}^{d_n}$ is the product of at most $[2\\prod^{n-1}_{j=1}(2d_j-2)-1]$ controlled unitary gates, each of which is controlled from $n-1$ systems. The number can be further reduced for $n=4$. We also decompose any bipartite unitary into the product of a simple type of bipartite gates and some local unitaries. We derive dimension-independent upper bounds for the CNOT-gate cost or entanglement cost of bipartite permutation unitaries (with the help of ancillas of fixed size) as functions of the Schmidt rank of the unitary. It is shown that such costs under a simple protocol are related to the log-rank conjecture in communication complexity theory via the link of nonnegative rank.

  2. Scanning Gate Spectroscopy and Its Application to Carbon Nanotube Defects

    E-Print Network [OSTI]

    Collins, Philip G

    2011-01-01T23:59:59.000Z

    24) Sarid, D. Exploring Scanning Probe Microscopy withS. V. ; Gruverman, A. Scanning probe microscopy: electricalLETTER pubs.acs.org/NanoLett Scanning Gate Spectroscopy and

  3. Micro-mechanical logic for field produceable gate arrays

    E-Print Network [OSTI]

    Prakash, Manu

    2005-01-01T23:59:59.000Z

    A paradigm of micro-mechanical gates for field produceable logic is explored. A desktop manufacturing system is sought after which is capable of printing functional logic devices in the field. A logic scheme which induces ...

  4. A comprehensive test method for reprogammable field programmable gate arrays

    E-Print Network [OSTI]

    Ashen, David Glen

    1996-01-01T23:59:59.000Z

    In this thesis, a new test algorithm for reprogrammable field programmable gate arrays (FPGAs) is developed. The fault models consisting of stuck-at faults, bridge faults, programmable switch stuck-on, and stuck-off faults, are utilized. Both...

  5. Dr. Dave Danielson Assistant Secretary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Renewable Energy U.S. Department of Energy Mr. Bryan Dods Executive & Chief Engineer GE Power & Water Dr. Mark Johnson Director Advanced Manufacturing Office U.S. Department of...

  6. Rapidly reconfigurable all-optical universal logic gate

    DOE Patents [OSTI]

    Goddard, Lynford L. (Hayward, CA); Bond, Tiziana C. (Livermore, CA); Kallman, Jeffrey S. (Pleasanton, CA)

    2010-09-07T23:59:59.000Z

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  7. Ultrafast gating of proximity-focused microchannel-plate intensifiers

    SciTech Connect (OSTI)

    Lundy, A.S.; Iverson, A.E.

    1982-01-01T23:59:59.000Z

    Proximity-focused, microchannel-plate (MCP) image intensifiers have been used at Los Alamos for many years to allow single frame film and video exposure times in the range of 2.5 to 10 ns. There is now a program to reduce gating times to < 1 ns. This paper reviews previous work and the problems in achieving good resolution with gating times of < 1 ns. The key problems involve applying fast electrical gating signals to the tube elements. We present computer modeling studies of the combined tube, tube connection, and pulser system and show that low photocathode surface resistivity must be obtained to permit fast gating between the photocathode and the MCP input. We discuss ways of making low-resistivity S20 photocathodes, using gallium arsenide photocathodes, and various means of gating the tubes. A variety of pulser designs are being experimentally evaluated including spark gaps, avalanche transistors, Krytron tubes with sharpening gaps, step recovery diodes, and photoconductive elements (PCEs). The results of these studies are presented. Because of the high capacitances involved in most gating schemes, the tube connection geometry must be of low-impedance design, and our solution is presented. Finally, ways of testing these high-speed camera systems are discussed.

  8. Optimal Fusion Transformations for Linear Optical Cluster State Generation

    E-Print Network [OSTI]

    D. B. Uskov; P. Lougovski; P. M. Alsing; M. L. Fanto; L. Kaplan; A. M. Smith

    2014-07-22T23:59:59.000Z

    We analyze the generation of linear optical cluster states (LOCS) via addition of one and two qubits. Existing approaches employ the stochastic linear optical two-qubit CZ gate with success rate of 1/9 per fusion operation. The question of optimality of the CZ gate with respect to LOCS generation remains open. We report that there are alternative schemes to the CZ gate that are exponentially more efficient and show that sequential LOCS growth is globally optimal. We find that the optimal cluster growth operation is a state transformation on a subspace of the full Hilbert space. We show that the maximal success rate of fusing n photonic qubits or m Bell pairs is 1/2^n-1 and 1/4^m-1 respectively and give an explicit optical design.

  9. Filter design for hybrid spin gates

    E-Print Network [OSTI]

    Andreas Albrecht; Martin B. Plenio

    2015-04-14T23:59:59.000Z

    The impact of control sequences on the environmental coupling of a quantum system can be described in terms of a filter. Here we analyze how the coherent evolution of two interacting spins subject to periodic control pulses, at the example of a nitrogen vacancy center coupled to a nuclear spin, can be described in the filter framework in both the weak and the strong coupling limit. A universal functional dependence around the filter resonances then allows for tuning the coupling type and strength. Originally limited to small rotation angles, we show how the validity range of the filter description can be extended to the long time limit by time-sliced evolution sequences. Based on that insight, the construction of tunable, noise decoupled, conditional gates composed of alternating pulse sequences is proposed. In particular such an approach can lead to a significant improvement in fidelity as compared to a strictly periodic control sequence. Moreover we analyze the decoherence impact, the relation to the filter for classical noise known from dynamical decoupling sequences, and we outline how an alternating sequence can improve spin sensing protocols.

  10. Under-gate defect formation in Ni-gate AlGaN/GaN high electron mobility transistors

    E-Print Network [OSTI]

    Florida, University of

    energy loss spectroscopy [23]. In contrast, HEMTs utilizing a Pt liner layer did not show the same gate electrical contact to the 2DEG. However, when stressing occurs in O2 or air, the O2 present reacts

  11. Ge MOS Characteristics with CVD HfO2 Gate Dielectrics and TaN Gate Electrode W. P. Bai*, N. Lu*, J. Liu*, A. Ramirez**, D. L. Kwong*, D. Wristers**, A. Ritenour#

    E-Print Network [OSTI]

    Ge MOS Characteristics with CVD HfO2 Gate Dielectrics and TaN Gate Electrode W. P. Bai*, N. Lu*, J, we report for the first time Ge MOS characteristics with ultra thin rapid thermal CVD HfO2 gate dielectrics and TaN gate electrode. Using the newly developed pre- gate cleaning and NH3-based Ge surface

  12. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOE Patents [OSTI]

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28T23:59:59.000Z

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  13. Free-surface flow simulations for discharge-based operation of hydraulic structure gates

    E-Print Network [OSTI]

    Erdbrink, C D; Sloot, P M A

    2014-01-01T23:59:59.000Z

    We combine non-hydrostatic flow simulations of the free surface with a discharge model based on elementary gate flow equations for decision support in operation of hydraulic structure gates. A water level-based gate control used in most of today's general practice does not take into account the fact that gate operation scenarios producing similar total discharged volumes and similar water levels may have different local flow characteristics. Accurate and timely prediction of local flow conditions around hydraulic gates is important for several aspects of structure management: ecology, scour, flow-induced gate vibrations and waterway navigation. The modelling approach is described and tested for a multi-gate sluice structure regulating discharge from a river to the sea. The number of opened gates is varied and the discharge is stabilized with automated control by varying gate openings. The free-surface model was validated for discharge showing a correlation coefficient of 0.994 compared to experimental data. A...

  14. Tsunami Landslide Generation: Modelling and Experiments Francois Enet 1

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    -linear potential flow model of landslide tsunami generation. LABORATORY EXPERIMENTS Overview Experiments depth and 1 Formerly at URI. Now at Alkyon, Hydraulic Consultancy & Research, PO Box 248 8300 AE for tsunami landslide experiments and computations. mechanical system (gates with electric wire) at three

  15. Efficient Path Delay Test Generation with Boolean Satisfiability

    E-Print Network [OSTI]

    Bian, Kun

    2013-12-10T23:59:59.000Z

    delay test generator CodGen. A mixed structural-functional approach was implemented in CodGen where longest paths were detected using the K Longest Path Per Gate (KLPG) algorithm and path justification and dynamic compaction were handled with the SAT...

  16. Identification of a reversible quantum gate: assessing the resources

    E-Print Network [OSTI]

    Giulio Chiribella; Giacomo Mauro D'Ariano; Martin Roetteler

    2014-09-12T23:59:59.000Z

    We assess the resources needed to identify a reversible quantum gate among a finite set of alternatives, including in our analysis both deterministic and probabilistic strategies. Among the probabilistic strategies we consider unambiguous gate discrimination, where errors are not tolerated but inconclusive outcomes are allowed, and we prove that parallel strategies are sufficient to unambiguously identify the unknown gate with minimum number of queries. This result is used to provide upper and lower bounds on the query complexity and on the minimum ancilla dimension. In addition, we introduce the notion of generalized t-designs, which includes unitary t-designs and group representations as special cases. For gates forming a generalized t-design we give an explicit expression for the maximum probability of correct gate identification and we prove that there is no gap between the performances of deterministic strategies an those of probabilistic strategies. Hence, evaluating of the query complexity of perfect deterministic discrimination is reduced to the easier problem of evaluating the query complexity of unambiguous discrimination. Finally, we consider discrimination strategies where the use of ancillas is forbidden, providing upper bounds on the number of additional queries needed to make up for the lack of entanglement with the ancillas.

  17. Characterizing the geometrical edges of nonlocal two-qubit gates

    E-Print Network [OSTI]

    Balakrishnan, S

    2009-01-01T23:59:59.000Z

    Nonlocal two-qubit gates are geometrically represented by tetrahedron known as Weyl chamber within which the perfect entanglers form a polyhedron. We study the entangling power and local invariants of all the edges of the Weyl chamber and polyhedron. It is found that SWAP -alpha- family of gates with constitute one edge of the Weyl chamber. Using circuit equivalence, it is shown that Controlled-NOT can be constructed from SWAP-1/2, the only perfect entangler in the above family. Further, the three edges of the polyhedron possessing the entangling power of 1/6 are also capable of constructing CNOT. It is observed that all the edges of the geometry are formed by single parametric two-qubit gates.

  18. Double Gated Single Molecular Transistor for Charge Detection

    E-Print Network [OSTI]

    S. J. Ray; R. Chowdhury

    2014-11-09T23:59:59.000Z

    The electrostatic behaviour of an 1,3-Cyclobutadiene (C$_{4}$H$_{4}$) based Single Molecular Transistor (SMT) has been investigated using the first principle calculation based on Density functional Theory and non-equilibrium Green's function approach. While the molecule is placed on top of a dielectric layer (backed by a metallic gate) and weakly coupled between the Source/Drain electrodes, the charge stability diagram revealed the presence of individual charge states in the Coulomb Blockade regime. This gets affected significantly on addition of an another gate electrode placed on the top of the molecule. This modified double-gated geometry allows additional control of the total energy of the system that is sensitive to the individual charge states of the molecule which can be used as a charge sensing technique operational at room temperature.

  19. Controlled-NOT Gate Interferometer with a Thermal Source

    E-Print Network [OSTI]

    Vincenzo Tamma; Johannes Seiler

    2015-05-05T23:59:59.000Z

    We demonstrate a multiphoton interferometer able to reproduce, by using only a thermal source, the operation of a quantum logic gate known as controlled-NOT gate. We show how 100%-visibility correlations typical of any Bell state can be obtained by performing polarization correlation measurements in the fluctuation of the number of photons at the interferometer output. The physics of multiphoton interference at the heart of this proposal can be readily used, in general, for the implementation of arbitrary-dimension bosonic networks leading to arbitrary-order entanglement-like correlations.

  20. Self-aligned submicron gate length gallium arsenide MESFET 

    E-Print Network [OSTI]

    Huang, Hsien-Ching

    1987-01-01T23:59:59.000Z

    38 21. Proximity cap annealing . 22. Temperature profile of post implant anneal 46 47 23. 24. 25. 26. 27. 28. 29. 30. "Pits" or holes in GaAs post implant anneal without sacrificial cap Silicon monoxide source (bafile box) used.... 16(b)). The bottom resist layer is then further etched in the oxygen plasma to produce undercutting for the desire gate structure. The amount of undercut is determined by the desired length of the gate and is the width of the remaining resist...

  1. Fabrication of a gated gallium arsenide heterostructure resonant tunneling diode

    E-Print Network [OSTI]

    Kinard, William Brian

    1989-01-01T23:59:59.000Z

    , . ' 'CONTACT PAD' PLANAR I ZED POLYAM I DE RECTIFYI CONTACT N DBHS Pig. 2. f'utavvay vieiv of a gated gallium arsenide heterostructure resonant tunneling diode 1018 graded from 10 18 io" 10? (lightly doped) units=cm 8 ?graded from 10 to 18...FABRICATION OF A GATED GALLIL". tl ARSEXIDE HETEROSTRL CTL RF. RESONANT TF'XXELI'XG DIODE A Thesis bt ttrILLIAAI BRIA'. s KI'iARD Subnut ted to the Office of Graduate Studies of Texas AE;M Eniverstty tn partial fulfillment of the requirements...

  2. SAVE THIS | EMAIL THIS | Close Bill and Melinda Gates go back to school

    E-Print Network [OSTI]

    Knaust, Helmut

    Powered by SAVE THIS | EMAIL THIS | Close Bill and Melinda Gates go back to school Their crusade, is essential, Melinda Gates insisted, "if we're going to make any dent in poverty in America." The idea

  3. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE...

    Energy Savers [EERE]

    UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence Presentation...

  4. Gate-all-around silicon nanowire MOSFETs : top-down fabrication and transport enhancement techniques

    E-Print Network [OSTI]

    Hashemi, Pouya

    2010-01-01T23:59:59.000Z

    Scaling MOSFETs beyond 15 nm gate lengths is extremely challenging using a planar device architecture due to the stringent criteria required for the transistor switching. The top-down fabricated, gate-all-around architecture ...

  5. Penn State DOE GATE Center of Exellence for In-Vehicle, High...

    Energy Savers [EERE]

    Penn State DOE GATE Center of Exellence for In-Vehicle, High-Power Energy Storage Systems Penn State DOE GATE Center of Exellence for In-Vehicle, High-Power Energy Storage Systems...

  6. Case Studies on Variation Tolerant and Low Power Design Using Planar Asymmetric Double Gate Transistor

    E-Print Network [OSTI]

    Singh, Amrinder

    2011-10-21T23:59:59.000Z

    . ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? Front gate Source Back gate Drain n+n+ p- Body Fig. I.1. Planar double gate NFET DGFETs can be broadly classified into two categories: ? Symmetric: In symmetrical DGFET, the front and the back gate are identical, having same oxide thickness... nanometer regime. In short channel devices, Vth decreases with reduction in channel length. This phenomenon is also known as Vth roll-off. It can lead to significant increase in leakage power. Drain induced barrier lowering (DIBL) is another phenomenon...

  7. Electrical gating effects on the magnetic properties of (Ga,Mn)As diluted magnetic semiconductors

    E-Print Network [OSTI]

    Owen, Man Hon Samuel

    2010-11-16T23:59:59.000Z

    -effect transistor (FET) based on low-doped Ga0.975Mn0.025As was fabricated. It has an in-built n-GaAs back-gate, which, in addition to being a normal gate, enhances the gating effects, especially in the depletion of the epilayer, by decreasing the effective channel...

  8. A FOUR-QUADRANT FLOATING-GATE SYNAPSE Paul Hasler, Chris Diorio, and Bradley A. Minch

    E-Print Network [OSTI]

    Diorio, Chris

    and to the drain. We present experi- mental measurements from a oating-gate synapse that si- multaniously computes, typical of hebbian and backpropagation learning rules, between the input and drain voltages. Our four gate; the form of this rule depends on how various error signals are fed back to the oating gate. 1

  9. Tradeoffs between Gate Oxide Leakage and Delay for Dual ToxToxTox Circuits

    E-Print Network [OSTI]

    Sapatnekar, Sachin

    lead to gate oxide leakage current (Igate), are coming into play from the 90nm node onwards. AccordingTradeoffs between Gate Oxide Leakage and Delay for Dual ToxToxTox Circuits Anup Kumar Sultania Department of ECE University of Minnesota Minneapolis, MN 55455. sachin@ece.umn.edu ABSTRACT Gate oxide

  10. Worry Is Associated With Impaired Gating of Threat From Working Memory

    E-Print Network [OSTI]

    Larson, Christine L.

    Emotion Worry Is Associated With Impaired Gating of Threat From Working Memory Daniel M. Stout, C. L. (2014, August 25). Worry Is Associated With Impaired Gating of Threat From Working Memory Is Associated With Impaired Gating of Threat From Working Memory Daniel M. Stout University of Wisconsin

  11. Gate-First AlGaN/GaN HEMT Technology for High-Frequency Applications

    E-Print Network [OSTI]

    Piner, Edwin L.

    This letter describes a gate-first AlGaN/GaN high-electron mobility transistor (HEMT) with a W/high-k dielectric gate stack. In this new fabrication technology, the gate stack is deposited before the ohmic contacts, and ...

  12. Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches

    SciTech Connect (OSTI)

    Pärs, Martti; Köhler, Jürgen, E-mail: juergen.koehler@uni-bayreuth.de [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany)] [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Gräf, Katja; Bauer, Peter; Thelakkat, Mukundan [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)] [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)

    2013-11-25T23:59:59.000Z

    The emission of millions of fluorescence photons from a chromophore is controlled by the absorption of a few tens of photons in a photochromic molecule. The parameters that determine the efficiency of this process are investigated, providing insights for the development of an all-optical gate.

  13. Gating and regulation of connexin 43 (Cx43) hemichannels

    E-Print Network [OSTI]

    Newman, Eric A.

    Gating and regulation of connexin 43 (Cx43) hemichannels Jorge E. Contreras* , Juan C. Sa Connexin 43 (Cx43) nonjunctional or ``unapposed'' hemichannels can open under physiological or pathological conditions. We char- acterize hemichannels comprised of Cx43 or Cx43-EGFP (Cx43 with enhanced GFP fused

  14. Three-qubit phase gate based on cavity quantum electrodynamics

    E-Print Network [OSTI]

    Chang, Jun-Tao; Zubairy, M. Suhail

    2008-01-01T23:59:59.000Z

    We describe a three-qubit quantum phase gate which is implemented by passing a four-level atom in a cascade configuration initially in its ground state through a three-mode optical cavity. The three qubits are represented by the photons in the three...

  15. Review Article Gate-Level Circuit Reliability Analysis: A Survey

    E-Print Network [OSTI]

    Chen, Chunhong

    electronic components (such as single electron devices) have demonstrated their nondeterministic characReview Article Gate-Level Circuit Reliability Analysis: A Survey Ran Xiao and Chunhong Chen. Circuit reliability has become a growing concern in today's nanoelectronics, which motivates strong

  16. ECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    imaging techniques to improve both the safety and the efficacy of coronary angiography interventions the ground for a platform dedicated to the planning and execution of percutaneous coronary inter- ventionsECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography Yining HU, Lizhe XIE

  17. An overview of the gate and panel industry 

    E-Print Network [OSTI]

    Fisher, C. West

    2000-01-01T23:59:59.000Z

    acquiring raw materials, its pre-fabrication, welding, touch-up, and delivery of the product. My first major responsibility for Texas Gate and Panel was to expand its sales territory. It soon became obvious that a thorough knowledge of my competitors...

  18. Design, Simulation and Modeling of Insulated Gate Bipolar Transistor

    E-Print Network [OSTI]

    Gupta, Kaustubh

    2013-07-09T23:59:59.000Z

    The market for Insulated Gate Bipolar Transistor (IGBT) is growing and there is a need for techniques to improve the design, modeling and simulation of IGBT. In this thesis, we first developed a new method to optimize the layout and dimensions...

  19. Controlling Wild Mobile Robots Using Virtual Gates and Discrete Transitions

    E-Print Network [OSTI]

    LaValle, Steven M.

    Controlling Wild Mobile Robots Using Virtual Gates and Discrete Transitions Leonardo Bobadilla purposely design them to execute wild motions, which means each will strike every open set infinitely often, "wildly behaving" robots that move more-or-less straight until a wall is contacted. They then pick

  20. TECH FORUM: [VERIFIED RTL TO GATES] Efficient RC power grid

    E-Print Network [OSTI]

    Najm, Farid N.

    TECH FORUM: [VERIFIED RTL TO GATES] Efficient RC power grid verification using node elimination proposes a novel approach to systematically reduce the power grid and accurately compute an upper bound on the voltage drops at power grid nodes that are retained. Furthermore, acriterion for the safety of nodes

  1. Compressed sensing quantum process tomography for superconducting quantum gates

    E-Print Network [OSTI]

    Andrey V. Rodionov; Andrzej Veitia; R. Barends; J. Kelly; Daniel Sank; J. Wenner; John M. Martinis; Robert L. Kosut; Alexander N. Korotkov

    2014-07-03T23:59:59.000Z

    We apply the method of compressed sensing (CS) quantum process tomography (QPT) to characterize quantum gates based on superconducting Xmon and phase qubits. Using experimental data for a two-qubit controlled-Z gate, we obtain an estimate for the process matrix $\\chi$ with reasonably high fidelity compared to full QPT, but using a significantly reduced set of initial states and measurement configurations. We show that the CS method still works when the amount of used data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with numerically added noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix $\\chi$ is approximately sparse, and show that the resulting estimates of the process matrices match each ther with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by not only its process matrix and fidelity, but also by the corresponding standard deviation, defined via variation of the state fidelity for different initial states.

  2. Molecular doping for control of gate bias stress in organic thin film transistors

    SciTech Connect (OSTI)

    Hein, Moritz P., E-mail: hein@iapp.de; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany)] [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Zakhidov, Alexander A. [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)] [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany); Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany) [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)

    2014-01-06T23:59:59.000Z

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  3. Single photoelectron spin detection and angular momentum transfer in a gate defined quantum dot

    E-Print Network [OSTI]

    Takafumi Fujita; Kazuhiro Morimoto; Haruki Kiyama; Giles Allison; Marcus Larsson; Arne Ludwig; Sascha R. Valentin; Andreas D. Wieck; Akira Oiwa; Seigo Tarucha

    2015-04-14T23:59:59.000Z

    Recent innovations in fabricating nanoscale confined spin systems have enabled investigation of fundamental quantum correlations between single quanta of photons and matter states. Realization of quantum state transfer from photon polarization to electron spin using gate defined quantum dots (QDs) may give evidence of preserved coherence of angular momentum basis states at the photon-spin interface. The interface would enlarge the concept of quantum information technology, in which single photogenerated electron spins are manipulated with the dots, but this remains a serious challenge. Here, we report the detection of single electron spins generated by polarized single photons via a double QD (DQD) to verify the angular momentum transfer from single photons to single electrons. Pauli spin blockade (PSB) is used to project the photoelectron spin state onto the up or down spin state. Our result promises the realization of coherent quantum state transfer and development of hybrid photon and spin quantum technology.

  4. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-05-26T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  5. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-05-26T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  6. A real-time respiration position based passive breath gating equipment for gated radiotherapy: A preclinical evaluation

    SciTech Connect (OSTI)

    Hu Weigang; Xu Anjie; Li Guichao; Zhang Zhen; Housley, Dave; Ye Jinsong [Department of Radiation Oncology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Department of Radiation Oncology, Swedish Cancer Institute, Seattle, Washington 98104 (United States)

    2012-03-15T23:59:59.000Z

    Purpose: To develop a passive gating system incorporating with the real-time position management (RPM) system for the gated radiotherapy. Methods: Passive breath gating (PBG) equipment, which consists of a breath-hold valve, a controller mechanism, a mouthpiece kit, and a supporting frame, was designed. A commercial real-time positioning management system was implemented to synchronize the target motion and radiation delivery on a linear accelerator with the patient's breathing cycle. The respiratory related target motion was investigated by using the RPM system for correlating the external markers with the internal target motion while using PBG for passively blocking patient's breathing. Six patients were enrolled in the preclinical feasibility and efficiency study of the PBG system. Results: PBG equipment was designed and fabricated. The PBG can be manually triggered or released to block or unblock patient's breathing. A clinical workflow was outlined to integrate the PBG with the RPM system. After implementing the RPM based PBG system, the breath-hold period can be prolonged to 15-25 s and the treatment delivery efficiency for each field can be improved by 200%-400%. The results from the six patients showed that the diaphragm motion caused by respiration was reduced to less than 3 mm and the position of the diaphragm was reproducible for difference gating periods. Conclusions: A RPM based PBG system was developed and implemented. With the new gating system, the patient's breath-hold time can be extended and a significant improvement in the treatment delivery efficiency can also be achieved.

  7. Experimental implementation of optimal linear-optical controlled-unitary gates

    E-Print Network [OSTI]

    Karel Lemr; Karol Bartkiewicz; Antonín ?ernoch; Miloslav Dušek; Jan Soubusta

    2014-10-16T23:59:59.000Z

    We show that it is possible to reduce the number of two-qubit gates needed for the construction of an arbitrary controlled-unitary transformation by up to two times using a tunable controlled-phase gate. On the platform of linear optics, where two-qubit gates can only be achieved probabilistically, our method significantly reduces the amount of components and increases success probability of a two-qubit gate. The experimental implementation of our technique presented in this paper for a controlled single-qubit unitary gate demonstrates that only one tunable controlled-phase gate is needed instead of two standard controlled-NOT gates. Thus, not only do we increase success probability by about one order of magnitude (with the same resources), but also avoid the need for conducting quantum non-demolition measurement otherwise required to join two probabilistic gates. Subsequently, we generalize our method to a higher order, showing that n-times controlled gates can be optimized by replacing blocks of controlled-NOT gates with tunable controlled-phase gates.

  8. A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion

    SciTech Connect (OSTI)

    Jani, Shyam S., E-mail: sjani@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California (United States); Robinson, Clifford G. [Department of Radiation Oncology, Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri (United States); Dahlbom, Magnus [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California (United States); White, Benjamin M.; Thomas, David H.; Gaudio, Sergio; Low, Daniel A.; Lamb, James M. [Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California (United States)

    2013-11-01T23:59:59.000Z

    Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ?2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating.

  9. Effectiveness of Using Supply Voltage as Back-Gate Bias in Ground Plane SOI Chris H. Kim1

    E-Print Network [OSTI]

    Kim, Chris H.

    -gate insulator thickness (2nm) for low drain-to-back- gate capacitance and effective tuning of Vt. The front gateEffectiveness of Using Supply Voltage as Back-Gate Bias in Ground Plane SOI MOSFET's Chris H. Kim1 designer has to ensure that this forward bias current through the psub-nwell and drain-body junctions (Fig

  10. Presented at the 2003 USSD Annual Lecture, Charleston, South Carolina. April 2003. SPILLWAY GATE RELIABILITY IN THE CONTEXT OF

    E-Print Network [OSTI]

    Bowles, David S.

    and operations are listed and illustrated through their application to the Thames Flood Barrier gates

  11. Part I:Part I: Degradation in 3.2 nm Gate Oxides:Degradation in 3.2 nm Gate Oxides: Effects on Inverter Performance and MOSFETEffects on Inverter Performance and MOSFET

    E-Print Network [OSTI]

    Anlage, Steven

    1 Part I:Part I: Degradation in 3.2 nm Gate Oxides:Degradation in 3.2 nm Gate Oxides: Effects--Thin GateThin Gate Oxide DegradationOxide Degradation #12;2 AcknowledgmentsAcknowledgments University), ECE Miles Wiscombe (UG), ECE #12;3 Part I:Part I: Degradation in 3.2 nm Gate Oxides:Degradation in 3

  12. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 effects are called the thermoelectric effects. The mechanisms of thermoelectricity were not understood. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large

  13. Fast adiabatic qubit gates using only $?_z$ control

    E-Print Network [OSTI]

    John M. Martinis; Michael R. Geller

    2014-07-17T23:59:59.000Z

    A controlled-phase gate was demonstrated in superconducting Xmon transmon qubits with fidelity reaching 99.4%, relying on the adiabatic interaction between the |11> and |02> states. Here we explain the theoretical concepts behind this protocol that achieves fast gate times with only $\\sigma_z$ control of the Hamiltonian, based on a theory of non-linear mapping of state errors to a power spectral density and use of optimal window functions. With a solution given in the Fourier basis, optimization is shown to be straightforward for practical cases of an arbitrary state change and finite bandwidth of control signals. We find that errors below $10^{-4}$ are readily achievable for realistic control waveforms.

  14. Improved phase gate reliability in systems with neutral Ising anyons

    E-Print Network [OSTI]

    David J. Clarke; Kirill Shtengel

    2010-09-01T23:59:59.000Z

    Recent proposals using heterostructures of superconducting and either topologically insulating or semiconducting layers have been put forth as possible platforms for topological quantum computation. These systems are predicted to contain Ising anyons and share the feature of having only neutral edge excitations. In this note, we show that these proposals can be combined with the recently proposed "sack geometry" for implementation of a phase gate in order to conduct robust universal quantum computation. In addition, we propose a general method for adjusting edge tunneling rates in such systems, which is necessary for the control of interferometric devices. The error rate for the phase gate in neutral Ising systems is parametrically smaller than for a similar geometry in which the edge modes carry charge: it goes as $T^3$ rather than $T$ at low temperatures. At zero temperature, the phase variance becomes constant at long times rather than carrying a logarithmic divergence.

  15. Gate-Tunable Graphene Quantum Dot and Dirac Oscillator

    E-Print Network [OSTI]

    Abdelhadi Belouad; Ahmed Jellal; Youness Zahidi

    2015-05-29T23:59:59.000Z

    We obtain the solution of the Dirac equation in (2+1) dimensions in the presence of a constant magnetic field normal to the plane together with a two-dimensional Dirac-oscillator potential coupling. We study the energy spectrum of graphene quantum dot (QD) defined by electrostatic gates. We give discussions of our results based on different physical settings, whether the cyclotron frequency is similar or larger/smaller compared to the oscillator frequency. This defines an effective magnetic field that produces the effective quantized Landau levels. We study analytically such field in gate-tunable graphene QD and show that our structure allow us to control the valley degeneracy. Finally, we compare our results with already published work and also discuss the possible applications of such QD.

  16. Gate-Tunable Graphene Quantum Dot and Dirac Oscillator

    E-Print Network [OSTI]

    Belouad, Abdelhadi; Zahidi, Youness

    2015-01-01T23:59:59.000Z

    We obtain the solution of the Dirac equation in (2+1) dimensions in the presence of a constant magnetic field normal to the plane together with a two-dimensional Dirac-oscillator potential coupling. We study the energy spectrum of graphene quantum dot (QD) defined by electrostatic gates. We give discussions of our results based on different physical settings, whether the cyclotron frequency is similar or larger/smaller compared to the oscillator frequency. This defines an effective magnetic field that produces the effective quantized Landau levels. We study analytically such field in gate-tunable graphene QD and show that our structure allow us to control the valley degeneracy. Finally, we compare our results with already published work and also discuss the possible applications of such QD.

  17. Reducing the quantum computing overhead with complex gate distillation

    E-Print Network [OSTI]

    Guillaume Duclos-Cianci; David Poulin

    2014-03-20T23:59:59.000Z

    In leading fault-tolerant quantum computing schemes, accurate transformation are obtained by a two-stage process. In a first stage, a discrete, universal set of fault-tolerant operations is obtained by error-correcting noisy transformations and distilling resource states. In a second stage, arbitrary transformations are synthesized to desired accuracy by combining elements of this set into a circuit. Here, we present a scheme which merges these two stages into a single one, directly distilling complex transformations. We find that our scheme can reduce the total overhead to realize certain gates by up to a few orders of magnitude. In contrast to other schemes, this efficient gate synthesis does not require computationally intensive compilation algorithms, and a straightforward generalization of our scheme circumvents compilation and synthesis altogether.

  18. Entangling characterization of (SWAP)1/m and Controlled unitary gates

    E-Print Network [OSTI]

    Balakrishnan, S

    2008-01-01T23:59:59.000Z

    We study the entangling power and perfect entangler nature of (SWAP)1/m, for m>=1, and controlled unitary (CU) gates. It is shown that (SWAP)1/2 is the only perfect entangler in the family. On the other hand, a subset of CU which is locally equivalent to CNOT is identified. It is shown that the subset, which is a perfect entangler, must necessarily possess the maximum entangling power.

  19. Entangling characterization of (SWAP)1/m and Controlled unitary gates

    E-Print Network [OSTI]

    S. Balakrishnan; R. Sankaranarayanan

    2009-01-05T23:59:59.000Z

    We study the entangling power and perfect entangler nature of (SWAP)1/m, for m>=1, and controlled unitary (CU) gates. It is shown that (SWAP)1/2 is the only perfect entangler in the family. On the other hand, a subset of CU which is locally equivalent to CNOT is identified. It is shown that the subset, which is a perfect entangler, must necessarily possess the maximum entangling power.

  20. Photon-photon gates in Bose-Einstein condensates

    E-Print Network [OSTI]

    Arnaud Rispe; Bing He; Christoph Simon

    2010-09-30T23:59:59.000Z

    It has recently been shown that light can be stored in Bose-Einstein condensates for over a second. Here we propose a method for realizing a controlled phase gate between two stored photons. The photons are both stored in the ground state of the effective trapping potential inside the condensate. The collision-induced interaction is enhanced by adiabatically increasing the trapping frequency and by using a Feshbach resonance. A controlled phase shift of $\\pi$ can be achieved in one second.

  1. Polar Express Cards Can Only Exit Onto 3rd Ave at the Main Entry/Exit Gate, Not on 2nd Ave gate.

    E-Print Network [OSTI]

    Wagner, Diane

    Polar Express Cards Can Only Exit Onto 3rd Ave at the Main Entry/Exit Gate, Not on 2nd Ave gate Parking with UAF Polar Express Cards: Basic Explanation: Use Your Polar Express Card for Entry and Exit. Problems? If card entry doesn't work, just pull a normal parking ticket and stop in at the booth or main

  2. Optical Determination of Gate--Tunable Bandgap in Bilayer Graphene

    SciTech Connect (OSTI)

    Zhang, Yuanbo; Tang, Tsung-Ta; Girit, Caglar; Hao, Zhao; Martin, Michael C.; Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng

    2009-08-11T23:59:59.000Z

    The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p-n junctions, transistors, photodiodes and lasers. A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET) and infrared microspectroscopy, we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping and provides direct evidence of a widely tunable bandgap -- spanning a spectral range from zero to mid-infrared -- that has eluded previous attempts. Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene.

  3. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect (OSTI)

    Douglas Nelson

    2011-05-31T23:59:59.000Z

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: â?¢ Expanded and updated fuel cell and vehicle technologies education programs; â?¢ Conducted industry directed research in three thrust areas â?? development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; â?¢ Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; â?¢ Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Techâ??s comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  4. Use of dMLC for implementation of dynamic respiratory-gated radiation therapy

    SciTech Connect (OSTI)

    Pepin, Eric W.; Wu, Huanmei [Purdue School of Engineering Technology, IUPUI, Indianapolis, Indiana 46202 (United States)] [Purdue School of Engineering Technology, IUPUI, Indianapolis, Indiana 46202 (United States); Shirato, Hiroki [Hokkaido University School of Medicine, Sapporo 060-8638 (Japan)] [Hokkaido University School of Medicine, Sapporo 060-8638 (Japan)

    2013-10-15T23:59:59.000Z

    Purpose: To simulate and evaluate the use of dynamic multileaf collimators (dMLC) in respiratory gating to compensate for baseline drift.Methods: Tumor motion tracking data from 30 lung tumors over 322 treatment fractions was analyzed with the finite state model. A dynamic respiratory gating window was established in real-time by determining the average positions during the previous two end-of-expiration breathing phases and centering the dMLC aperture on a weighted average of these positions. A simulated dMLC with physical motion constraints was used in dynamic gating treatment simulations. Fluence maps were created to provide a statistical description of radiation delivery for each fraction. Duty cycle was also calculated for each fraction.Results: The average duty cycle was 2.3% greater under dynamic gating conditions. Dynamic gating also showed higher fluences and less tumor obstruction. Additionally, dynamic gating required fewer beam toggles and each delivery period was longer on average than with static gating.Conclusions: The use of dynamic gating showed better performance than static gating and the physical constraints of a dMLC were shown to not be an impediment to dynamic gating.

  5. Operator-Schmidt decomposition and the geometrical edges of two-qubit gates

    E-Print Network [OSTI]

    S. Balakrishnan; R. Sankaranarayanan

    2011-06-30T23:59:59.000Z

    Nonlocal two-qubit quantum gates are represented by canonical decomposition or equivalently by operator-Schmidt decomposition. The former decomposition results in geometrical representation such that all the two-qubit gates form tetrahedron within which perfect entanglers form a polyhedron. On the other hand, it is known from the later decomposition that Schmidt number of nonlocal gates can be either 2 or 4. In this work, some aspects of later decomposition are investigated. It is shown that two gates differing by local operations possess same set of Schmidt coefficients. Employing geometrical method, it is established that Schmidt number 2 corresponds to controlled unitary gates. Further, all the edges of tetrahedron and polyhedron are characterized using Schmidt strength, a measure of operator entanglement. It is found that one edge of the tetrahedron possesses the maximum Schmidt strength, implying that all the gates in the edge are maximally entangled.

  6. Operator-Schmidt decomposition and the geometrical edges of two-qubit gates

    E-Print Network [OSTI]

    Balakrishnan, S

    2010-01-01T23:59:59.000Z

    Nonlocal two-qubit quantum gates are represented by canonical decomposition or equivalently by operator-Schmidt decomposition. The former decomposition results in geometrical representation such that all the two-qubit gates form tetrahedron within which perfect entanglers form a polyhedron. On the other hand, it is known from the later decomposition that Schmidt number of nonlocal gates can be either 2 or 4. In this work, some aspects of later decomposition are investigated. It is shown that two gates differing by local operations possess same set of Schmidt coefficients. Employing geometrical method, it is established that Schmidt number 2 corresponds to controlled unitary gates. Further, all the edges of tetrahedron and polyhedron are characterized using Schmidt strength, a measure of operator entanglement. It is found that one edge of the tetrahedron possesses the maximum Schmidt strength, implying that all the gates in the edge are maximally entangled.

  7. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Contolini, Robert J. (Lake Oswego, OR)

    2001-01-01T23:59:59.000Z

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  8. Positive bias temperature instability in p-type metal-oxide-semiconductor devices with HfSiON/SiO{sub 2} gate dielectrics

    SciTech Connect (OSTI)

    Samanta, Piyas, E-mail: piyas@vcfw.org [Department of Physics, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata 700 006 (India); Huang, Heng-Sheng; Chen, Shuang-Yuan [Institute of Mechatronic Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Liu, Chuan-Hsi [Department of Mechatronic Technology, National Taiwan Normal University, No. 162, Sec. 1, He-Ping E. Rd., Taipei 106, Taiwan (China); Cheng, Li-Wei [Central R and D Division, United Microelectronics Corporation, No. 3, Li-Hsin Rd. II, Hsinchu 300, Taiwan (China)

    2014-02-21T23:59:59.000Z

    We present a detailed investigation on positive-bias temperature stress (PBTS) induced degradation of nitrided hafnium silicate (HfSiON)/SiO{sub 2} gate stack in n{sup +}-poly crystalline silicon (polySi) gate p-type metal-oxide-semiconductor (pMOS) devices. The measurement results indicate that gate dielectric degradation is a composite effect of electron trapping in as-fabricated as well as newly generated neutral traps, resulting a significant amount of stress-induced leakage current and generation of surface states at the Si/SiO{sub 2} interface. Although, a significant amount of interface states are created during PBTS, the threshold voltage (V{sub T}) instability of the HfSiON based pMOS devices is primarily caused by electron trapping and detrapping. It is also shown that PBTS creates both acceptor- and donor-like interface traps via different depassivation mechanisms of the Si{sub 3}???SiH bonds at the Si/SiO{sub 2} interface in pMOS devices. However, the number of donor-like interface traps ?N{sub it}{sup D} is significantly greater than that of acceptor-like interface traps ?N{sup A}{sub it}, resulting the PBTS induced net interface traps as donor-like.

  9. U.S. Department of Energy awards $200 million for next-generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Click to view larger.) Speakers at the press conference, from left: Vice President Intel Data Center Group Dave Patterson, U.S. Congressman Dan Lipinski, DOE Under Secretary for...

  10. Error Compensation of Single-Qubit Gates in a Surface Electrode Ion Trap Using Composite Pulses

    E-Print Network [OSTI]

    Emily Mount; Chingiz Kabytayev; Stephen Crain; Robin Harper; So-Young Baek; Geert Vrijsen; Steven Flammia; Kenneth R. Brown; Peter Maunz; Jungsang Kim

    2015-04-06T23:59:59.000Z

    The trapped atomic ion qubits feature desirable properties for use in a quantum computer such as long coherence times (Langer et al., 2005), high qubit measurement fidelity (Noek et al., 2013), and universal logic gates (Home et al., 2009). The quality of quantum logic gate operations on trapped ion qubits has been limited by the stability of the control fields at the ion location used to implement the gate operations. For this reason, the logic gates utilizing microwave fields (Brown et al., 2011; Shappert et al., 2013; Harty et al., 2014) have shown gate fidelities several orders of magnitude better than those using laser fields (Knill et al., 2008; Benhelm et al., 2008; Ballance et al., 2014). Here, we demonstrate low-error single-qubit gates performed using stimulated Raman transitions on an ion qubit trapped in a microfabricated chip trap. Gate errors are measured using a randomized benchmarking protocol (Knill et al., 2008; Wallman et al., 2014; Magesan et al., 2012), where amplitude error in the control beam is compensated using various pulse sequence techniques (Wimperis, 1994; Low et al., 2014). Using B2 compensation (Wimperis, 1994), we demonstrate single qubit gates with an average error per randomized Clifford group gate of $3.6(3)\\times10^{-4}$. We also show that compact palindromic pulse compensation sequences (PD$n$) (Low et al., 2014) compensate for amplitude errors as designed.

  11. 2006-2010 GATE program at Ohio State University Center for Automotive...

    Energy Savers [EERE]

    Ohio State University Center for Automotive Research: Modeling, control and system integration of advanced automotive propulsion systems 2006-2010 GATE program at Ohio State...

  12. How to Successfully Implement a Knowledge Management System for the Mechanical Engineering Department at Gating Incorporated

    E-Print Network [OSTI]

    Mudd, John

    2009-05-15T23:59:59.000Z

    , utilizing some of the strategies, for the implementation of a Knowledge Management System for the Mechanical Engineering Department at Gating Incorporated....

  13. Bill Gates and Deputy Secretary Poneman Discuss the Energy Technology Landscape

    Broader source: Energy.gov [DOE]

    Bill Gates and Deputy Secretary of Energy Daniel Poneman discuss the future of energy technology during the twenty-second Plenary Meeting of the Nuclear Suppliers Group.

  14. Sandia Energy - ECIS and i-GATE: Innovation Hub Connects Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and James Bartridge (CEC) discuss electric vehicle technologies with Fraser Murison Smith (right) of i-GATE NEST client, ElectraDrive. The collaborative effort is...

  15. International Agriculture Fellowship: A Gates Foundation Grand Challenges Exploration in Endophytic Biological Control

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    International Agriculture Fellowship: A Gates Foundation Grand Challenges Exploration in Endophytic Challenges Explorations Grant (see program overview) to develop crop seeds with endophytic fungal

  16. Fast Out of the Gate: How Developing Asian Countries can Prepare...

    Open Energy Info (EERE)

    TOOL Name: Fast Out of the Gate: How Developing Asian Countries can Prepare to Access International Green Growth Financing AgencyCompany Organization: USAID ComplexityEase...

  17. Local implementations of non-local quantum gates in linear entangled channel

    E-Print Network [OSTI]

    Debashis Saha; Sanket Nandan; Prasanta K. Panigrahi

    2014-08-03T23:59:59.000Z

    In this paper, we demonstrate n-party controlled unitary gate implementations locally on arbitrary remote state through linear entangled channel where control parties share entanglement with the adjacent control parties and only one of them shares entanglement with the target party. In such a network, we describe the protocol of simultaneous implementation of controlled-Hermitian gate starting from three party scenario. We also explicate the implementation of three party controlled-Unitary gate, a generalized form of To?oli gate and subsequently generalize the protocol for n-party using minimal cost.

  18. University of Illinois at Urbana Champaigns GATE Center forAdvanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Research Domains for GATE * Biofuels and Properties * Fuel Injection Control and Optimization * Electrospray Systems for Fuels * Fuel Injection, Ignition, Combustion and...

  19. Ocean Gate, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity, NewGate, New Jersey:

  20. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version) The U.S.short version)Gate

  1. ReRack: Power Simulation for Data Centers with Renewable Energy Generation

    E-Print Network [OSTI]

    Renau, Jose

    ReRack: Power Simulation for Data Centers with Renewable Energy Generation Michael Brown and Jose://masc.cse.ucsc.edu ABSTRACT Data centers operating cost are dominated by their power consump- tion. Renewable energy sources factors, but the model should be extensive to consider other factors like power gating support. This paper

  2. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect (OSTI)

    Riley, Craig [Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 (United States)] [Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 (United States); Yang, Yong, E-mail: yangy2@upmc.edu; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States)] [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States)

    2014-01-15T23:59:59.000Z

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were seen when gated therapy was performed on the patient plans that could only be attributed to differences in patient respiratory patterns. Patients whose plans had the largest percentage of pixels failing the gamma statistics exhibited irregular breathing patterns including substantial interpatient variation in depth of respiration. Conclusions: The interplay effect has a limited impact on gated RapidArc therapy when evaluated with a linear phantom. Variations in patient breathing patterns, however, are of much greater clinical significance. Caution must be taken when evaluating patients’ respiratory efforts for gated arc therapy.

  3. SU-E-J-45: Design and Study of An In-House Respiratory Gating Phantom Platform for Gated Radiotherapy

    SciTech Connect (OSTI)

    Senthilkumar, S [Madurai Medical College ' Govt. Rajaji Hospital, Madurai (India)

    2014-06-01T23:59:59.000Z

    Purpose: The main purpose of this work was to develop an in-house low cost respiratory motion phantom platform for testing the accuracy of the gated radiotherapy system and analyze the dosimetric difference during gated radiotherapy. Methods: An in-house respiratory motion platform(RMP) was designed and constructed for testing the targeting accuracy of respiratory tracking system. The RMP consist of acrylic Chest Wall Platform, 2 DC motors, 4 IR sensors, speed controller circuit, 2 LED and 2 moving rods inside the RMP. The velocity of the movement can be varied from 0 to 30 cycles per minute. The platform mounted to a base using precision linear bearings. The base and platform are made of clear, 15mm thick polycarbonate plastic and the linear ball bearings are oriented to restrict the platform to a movement of approximately 50mm up and down with very little friction. Results: The targeting accuracy of the respiratory tracking system was evaluated using phantom with and without respiratory movement with varied amplitude. We have found the 5% dose difference to the PTV during the movement in comparison with stable PTV. The RMP can perform sinusoidal motion in 1D with fixed peak to peak motion of 5 to 50mm and cycle interval from 2 to 6 seconds. The RMP was designed to be able to simulate the gross anatomical anterior posterior motion attributable to respiration-induced motion of the thoracic region. Conclusion: The unique RMP simulates breathing providing the means to create a comprehensive program for commissioning, training, quality assurance and dose verification of gated radiotherapy treatments. Create the anterior/posterior movement of a target over a 5 to 50 mm distance to replicate tumor movement. The targeting error of the respiratory tracking system is less than 1.0 mm which shows suitable for clinical treatment with highly performance.

  4. Workshop on gate valve pressure locking and thermal binding

    SciTech Connect (OSTI)

    Brown, E.J.

    1995-07-01T23:59:59.000Z

    The purpose of the Workshop on Gate Valve Pressure Locking and Thermal Binding was to discuss pressure locking and thermal binding issues that could lead to inoperable gate valves in both boiling water and pressurized water reactors. The goal was to foster exchange of information to develop the technical bases to understand the phenomena, identify the components that are susceptible, discuss actual events, discuss the safety significance, and illustrate known corrective actions that can prevent or limit the occurrence of pressure locking or thermal binding. The presentations were structured to cover U.S. Nuclear Regulatory Commission staff evaluation of operating experience and planned regulatory activity; industry discussions of specific events, including foreign experience, and efforts to determine causes and alleviate the affects; and valve vendor experience and recommended corrective action. The discussions indicated that identifying valves susceptible to pressure locking and thermal binding was a complex process involving knowledge of components, systems, and plant operations. The corrective action options are varied and straightforward.

  5. Investigation of hole mobility in gate-all-around Si nanowire p-MOSFETs with high-k/metal-gate: Effects of hydrogen thermal annealing and nanowire shape

    E-Print Network [OSTI]

    Hashemi, Pouya

    A detailed study of hole mobility is presented for gate-all-around Si nanowire p-MOSFETs with conformal high-?/MG and various high-temperature hydrogen annealing processes. Hole mobility enhancement relative to planar SOI ...

  6. Design and characterization of a signal insulation coreless transformer integrated in a CMOS gate driver chip

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and characterization of a signal insulation coreless transformer integrated in a CMOS gate the implementation of numerous distinct power transistor gate drivers, the control signal insulation is becoming more results will be shown in order to validate the functionality. I. INTRODUCTION An insulation system

  7. Classification : Original Article VOLTAGE-GATED SODIUM CHANNELS POTENTIATE THE INVASIVE

    E-Print Network [OSTI]

    Boyer, Edmond

    - gated sodium channels in non-small-cell lung cancer cell lines. Functional voltage-gated sodium channels cancerous cell lines H23, H460 and Calu-1 possess functional sodium channels while normal and weakly metastatic cell lines do not. While all the cell lines expressed mRNA for numerous sodium channel isoforms

  8. [ ]February 2014 The original 1957 Gates pile driving formula is an empirically derived dynamic formula

    E-Print Network [OSTI]

    Harms, Kyle E.

    [ ]February 2014 PROBLEM The original 1957 Gates pile driving formula is an empirically derived dynamic formula that is used to predict pile capacity in the field during pile installation.The original Gates formula tends to over-predict pile capacity for low driving resistances and under-predict pile

  9. Gated Si nanowires for large thermoelectric power factors Neophytos Neophytou1

    E-Print Network [OSTI]

    1 Gated Si nanowires for large thermoelectric power factors Neophytos Neophytou1 and Hans Kosina2 1.Neophytou@warwick.ac.uk Abstract We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectric coefficients

  10. Fiber-Optic Stethoscope: A Cardiac Monitoring and Gating System for Magnetic Resonance Microscopy

    E-Print Network [OSTI]

    Fiber-Optic Stethoscope: A Cardiac Monitoring and Gating System for Magnetic Resonance Microscopy monitoring and gating purposes. The fiber-optic stethoscope system offers a novel approach to measuring cardiac activity that, unlike the ECG, is immune to electromagnetic effects. The fiber-optic stethoscope

  11. An Array-Based Test Circuit for Fully Automated Gate Dielectric Breakdown Characterization

    E-Print Network [OSTI]

    Kim, Chris H.

    An Array-Based Test Circuit for Fully Automated Gate Dielectric Breakdown Characterization John for efficiently characterizing gate dielectric breakdown. Such a design is highly beneficial when studying this statistical process, where up to thousands of samples are needed to create an accurate time to breakdown

  12. Gating Currents from Kv7 Channels Carrying Neuronal Hyperexcitability Mutations in the Voltage-Sensing Domain

    E-Print Network [OSTI]

    Bezanilla, Francisco

    unable to provide a detailed assessment of the structural rearrangements underlying channel gating.2 channels both functionally and structurally, were used for these experiments. The data obtained showed activation of gating-pore currents at depolarized potentials. These results reveal that distinct molecular

  13. Coherent molecular transistor: Control through variation of the gate wave function

    SciTech Connect (OSTI)

    Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca [Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Quebec H3C 3J7 (Canada)] [Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Quebec H3C 3J7 (Canada)

    2014-03-21T23:59:59.000Z

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  14. Controlling the Performance of a Three-Terminal Molecular Transistor: Conformational versus Conventional Gating

    E-Print Network [OSTI]

    Pandey, Ravi

    University, Houghton, Michigan 49931, United States Shashi P. Karna* U.S. Army Research Laboratory, Weapons *S Supporting Information ABSTRACT: The effect of conformational changes in the gate arm of a three of the gate field. The current modulation is found to reach its maximum only under exclusive effect of voltage

  15. Graphene field-effect transistors based on boron nitride gate dielectrics Inanc Meric1

    E-Print Network [OSTI]

    Shepard, Kenneth

    Graphene field-effect transistors based on boron nitride gate dielectrics Inanc Meric1 , Cory Dean1, 10027 Tel: (212) 854-2529, Fax: (212) 932-9421, Email: shepard@ee.columbia.edu Abstract Graphene field of graphene, as the gate dielectric. The devices ex- hibit mobility values exceeding 10,000 cm2 /V

  16. Microfluidic logic gates and timers{ Michael W. Toepke, Vinay V. Abhyankar and David J. Beebe*

    E-Print Network [OSTI]

    Beebe, David J.

    Microfluidic logic gates and timers{ Michael W. Toepke, Vinay V. Abhyankar and David J. Beebe to create a number of microfluidic analogs to electronic circuit components. Three classes of components are demonstrated: (1) OR/AND, NOR/NAND, and XNOR digital microfluidic logic gates; (2) programmable, autonomous

  17. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits

    E-Print Network [OSTI]

    Madsen, Martin John

    Probabilistic quantum gates between remote atoms through interference of optical frequency qubits L gates on remote trapped atom qubits through interference of optical frequency qubits. The method does be localized well under the Lamb-Dicke limit through laser cooling in a strong trap, the elimination

  18. High Performance Polycrystalline SiGe Thin Film Transistors Using Al2O3 Gate Insulator

    E-Print Network [OSTI]

    1 High Performance Polycrystalline SiGe Thin Film Transistors Using Al2O3 Gate Insulator Zhonghe as the gate insulator for low temperature (SiGe thin film transistors (TFTs) has been between the Al2O3 and the SiGe channel layer is sufficiently passivated to make Al2O3 a better alternative

  19. Analytical approach to swift non-leaky entangling gates in superconducting qubits

    E-Print Network [OSTI]

    Sophia E. Economou; Edwin Barnes

    2014-11-03T23:59:59.000Z

    We develop schemes for designing pulses that implement fast and precise entangling quantum gates in superconducting qubit systems despite the presence of nearby harmful transitions. Our approach is based on purposely involving the nearest harmful transition in the quantum evolution instead of trying to avoid it. Using analytical tools, we design simple microwave control fields that implement maximally entangling gates with fidelities exceeding 99% in times as low as 40 ns. We demonstrate our approach in a two-qubit circuit QED system by designing the two most important quantum entangling gates: a conditional-NOT gate and a conditional-Z gate. Our results constitute an important step toward overcoming the problem of spectral crowding, one of the primary challenges in controlling multi-qubit systems.

  20. Experimental Estimation of Average Fidelity of a Clifford Gate on a 7-qubit Quantum Processor

    E-Print Network [OSTI]

    Dawei Lu; Hang Li; Denis-Alexandre Trottier; Jun Li; Aharon Brodutch; Anthony P. Krismanich; Ahmad Ghavami; Gary I. Dmitrienko; Guilu Long; Jonathan Baugh; Raymond Laflamme

    2014-11-28T23:59:59.000Z

    Quantum gates in experiment are inherently prone to errors that need to be characterized before they can be corrected. Full characterization via quantum process tomography is impractical and often unnecessary. For most practical purposes, it is enough to estimate more general quantities such as the average fidelity. Here we use a unitary 2-design and twirling protocol for efficiently estimating the average fidelity of Clifford gates, to certify a 7-qubit entangling gate in a nuclear magnetic resonance quantum processor. Compared with more than $10^8$ experiments required by full process tomography, we conducted 1656 experiments to satisfy a statistical confidence level of 99%. The average fidelity of this Clifford gate in experiment is 55.1%, and rises to 87.5% if the infidelity due to decoherence is removed. The entire protocol of certifying Clifford gates is efficient and scalable, and can easily be extended to any general quantum information processor with minor modifications.

  1. Investigation of buffer traps in AlGaN/GaN-on-Si devices by thermally stimulated current spectroscopy and back-gating measurement

    SciTech Connect (OSTI)

    Yang, Shu; Zhou, Chunhua; Jiang, Qimeng; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Lu, Jianbiao; Huang, Baoling [Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)] [Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-01-06T23:59:59.000Z

    Thermally stimulated current (TSC) spectroscopy and high-voltage back-gating measurement are utilized to study GaN buffer traps specific to AlGaN/GaN lateral heterojunction structures grown on a low-resistivity Si substrate. Three dominating deep-level traps in GaN buffer with activation energies of ?E{sub T1}???0.54?eV, ?E{sub T2}???0.65?eV, and ?E{sub T3}???0.75?eV are extracted from TSC spectroscopy in a vertical GaN-on-Si structure. High back-gate bias applied to the Si substrate could influence the drain current in an AlGaN/GaN-on-Si high-electron-mobility transistor in a way that cannot be explained with a simple field-effect model. By correlating the trap states identified in TSC with the back-gating measurement results, it is proposed that the ionization/deionization of both donor and acceptor traps are responsible for the generation of buffer space charges, which impose additional modulation to the 2DEG channel.

  2. Investigation of the novel attributes of a single-halo double gate SOI MOSFET: 2D simulation study

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    of single halo to the double gate structure results in threshold voltage roll-up, reduced DIBL, high drain the drain voltage variations. This work illustrates the benefits of high performance DG-SH SOI MOS devices gate pþ poly and back gate nþ poly) are becoming popular since this type of structure provides

  3. A CAD tool for the power estimation of CMOS, BiCMOS and BiNMOS gates

    E-Print Network [OSTI]

    Islam, Kazi Inamul

    1995-01-01T23:59:59.000Z

    This thesis describes a CAD tool for the power estimation of CMOS, BiCMOS and BiNMOS gates. Using analytical models for the transient behavior of the gates, accurate estimates of the power dissipated by each type of gate during a typical transition...

  4. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounselGeneral User Generation

  5. New insights into self-heating in double-gate transistors by solving Boltzmann transport equations

    SciTech Connect (OSTI)

    Thu Trang Nghiêm, T., E-mail: tthutrang.nghiem@gmail.com [Institute of Fundamental Electronics, UMR 8622, CNRS-University of Paris-Sud, Orsay (France); The Center for Thermal Sciences of Lyon, UMR 5008, CNRS–INSA–University of Lyon 1, Villeurbanne (France); Saint-Martin, J.; Dollfus, P. [Institute of Fundamental Electronics, UMR 8622, CNRS-University of Paris-Sud, Orsay (France)

    2014-08-21T23:59:59.000Z

    Electro-thermal effects become one of the most critical issues for continuing the downscaling of electron devices. To study this problem, a new efficient self-consistent electron-phonon transport model has been developed. Our model of phonon Boltzmann transport equation (pBTE) includes the decay of optical phonons into acoustic modes and a generation term given by electron-Monte Carlo simulation. The solution of pBTE uses an analytic phonon dispersion and the relaxation time approximation for acoustic and optical phonons. This coupled simulation is applied to investigate the self-heating effects in a 20?nm-long double gate MOSFET. The temperature profile per mode and the comparison between Fourier temperature and the effective temperature are discussed. Some significant differences occur mainly in the hot spot region. It is shown that under the influence of self-heating effects, the potential profile is modified and both the drain current and the electron ballisticity are reduced because of enhanced electron-phonon scattering rates.

  6. GATE Center of Excellence at UAB for Lightweight Materials and...

    Broader source: Energy.gov (indexed) [DOE]

    Agency (EDPA) Material Suppliers & End-Users Alabama Manufacturers National Composite Center American Chemical Council Next Generation Renewable Materials for...

  7. Electrically-gated near-field radiative thermal transistor

    E-Print Network [OSTI]

    Yang, Yue

    2015-01-01T23:59:59.000Z

    In this work, we propose a near-field radiative thermal transistor made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. Thick SiC plates serve as the thermal "source" and "drain", while graphene sheets function as the "gate" to modulate the near-field photon tunneling by tuning chemical potential with applied voltage biases symmetrically or asymmetrically. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials, which can tune the coupling between graphene plasmon across the vacuum gap. Thermal modulation, switching, and amplification, which are the key features required for a thermal transistor, are theoretically realized and analyzed. This work will pave the way to active thermal management, thermal circuits, and thermal computing.

  8. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1994-06-07T23:59:59.000Z

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  9. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1994-06-07T23:59:59.000Z

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  10. After-gate attack on a quantum cryptosystem

    E-Print Network [OSTI]

    Carlos Wiechers; Lars Lydersen; Christoffer Wittmann; Dominique Elser; Johannes Skaar; Christoph Marquardt; Vadim Makarov; Gerd Leuchs

    2010-09-14T23:59:59.000Z

    We present a method to control the detection events in quantum key distribution systems that use gated single-photon detectors. We employ bright pulses as faked states, timed to arrive at the avalanche photodiodes outside the activation time. The attack can remain unnoticed, since the faked states do not increase the error rate per se. This allows for an intercept-resend attack, where an eavesdropper transfers her detection events to the legitimate receiver without causing any errors. As a side effect, afterpulses, originating from accumulated charge carriers in the detectors, increase the error rate. We have experimentally tested detectors of the system id3110 (Clavis2) from ID Quantique. We identify the parameter regime in which the attack is feasible despite the side effect. Furthermore, we outline how simple modifications in the implementation can make the device immune to this attack.

  11. Experimental implementation of the optimal linear-optical controlled phase gate

    E-Print Network [OSTI]

    Karel Lemr; Antonin Cernoch; Jan Soubusta; Konrad Kieling; Jens Eisert; Miloslav Dusek

    2010-07-27T23:59:59.000Z

    We report on the first experimental realization of optimal linear-optical controlled phase gates for arbitrary phases. The realized scheme is entirely flexible in that the phase shift can be tuned to any given value. All such controlled phase gates are optimal in the sense that they operate at the maximum possible success probabilities that are achievable within the framework of any postselected linear-optical implementation. The quantum gate is implemented using bulk optical elements and polarization encoding of qubit states. We have experimentally explored the remarkable observation that the optimum success probability is not monotone in the phase.

  12. Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene

    E-Print Network [OSTI]

    Lin-Jun Wang; Guo-Ping Guo; Da Wei; Gang Cao; Tao Tu; Ming Xiao; Guang-Can Guo; A. M. Chang

    2011-04-22T23:59:59.000Z

    Here we report the fabrication and quantum transport measurements of gates controlled parallel-coupled double quantum dot on both bilayer and single layer graphene. It is shown that the interdot coupling strength of the parallel double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the graphene parallel-coupled double dot can be extracted from the honeycomb charge stability diagrams revealed through the transport measurements.

  13. DAVE MCBEAIN Senior Director, Innovation & Technical Excellence

    E-Print Network [OSTI]

    Minnesota, University of

    as the Senior Project Manager for Solvay Animal Health. In 1995 he joined Malt-O-Meal (MOM, as employees

  14. PMOS Revisited Fred Brown and Dave Munro

    E-Print Network [OSTI]

    Munro, David S.

    Object Space, PMOS, garbage collection algorithm is designed to incrementally collect all garbage of garbage into small enough units so that disruption to the running system is insignificant. PMOS is able to collect the small units in arbitrary orders whilst eliminating cyclic garbage and being able to guarantee

  15. Optimized Generation of Data-path from C Codes for FPGAs Zhi Guo Betul Buyukkurt Walid Najjar

    E-Print Network [OSTI]

    Najjar, Walid A.

    on FPGAs, more specifically on CSoCs. It generates RTL level HDLs from frequently executing kernels System- on-a-Chip (CSoC), which has one or more microprocessors integrated with a field-programmable gate in the way of wider acceptance of CSoC platforms is their programmability. Application developers must have

  16. Integrated Quantum Controlled-NOT Gate Based on Dielectric-Loaded Surface Plasmon Polariton Waveguide

    E-Print Network [OSTI]

    S. M. Wang; Q. Q. Cheng; Y. X. Gong; P. Xu; L. Li; T. Li; S. N. Zhu

    2014-08-09T23:59:59.000Z

    It has been proved that surface plasmon polariton (SPP) can well conserve and transmit the quantum nature of entangled photons. Therefore, further utilization and manipulation of such quantum nature of SPP in a plasmonic chip will be the next task for scientists in this field. In quantum logic circuits, the controlled-NOT (CNOT) gate is the key building block. Here, we implement the first plasmonic quantum CNOT gate with several-micrometer footprint by utilizing a single polarization-dependent beam-splitter (PDBS) fabricated on the dielectric-loaded SPP waveguide (DLSPPW). The quantum logic function of the CNOT gate is characterized by the truth table with an average fidelity of. Its entangling ability to transform a separable state into an entangled state is demonstrated with the visibilities of and for non-orthogonal bases. The DLSPPW based CNOT gate is considered to have good integratability and scalability, which will pave a new way for quantum information science.

  17. Organic Nanodielectrics for Low Voltage Carbon Nanotube Thin Film Transistors and Complementary Logic Gates

    E-Print Network [OSTI]

    Rogers, John A.

    illustrates the device layout which includes patterned metal source and drain electrodes, a random SWNT serving as substrate and back gate. The SAS nanodielectric multilayer was deposited via solution methods- lithographic patterning of source and drain electrodes

  18. The robustness of magic state distillation against errors in Clifford gates

    E-Print Network [OSTI]

    Jochym-O'Connor, Tomas; Helou, Bassam; Laflamme, Raymond

    2012-01-01T23:59:59.000Z

    Quantum error correction and fault-tolerance have provided the possibility for large scale quantum computations without a detrimental loss of quantum information. A very natural class of gates for fault-tolerant quantum computation is the Clifford gate set and as such their usefulness for universal quantum computation is of great interest. Clifford group gates augmented by magic state preparation give the possibility of simulating universal quantum computation. However, experimentally one cannot expect to perfectly prepare magic states. Nonetheless, it has been shown that by repeatedly applying operations from the Clifford group and measurements in the Pauli basis, the fidelity of noisy prepared magic states can be increased arbitrarily close to a pure magic state [1]. We investigate the robustness of magic state distillation to perturbations of the initial states to arbitrary locations in the Bloch sphere due to noise. Additionally, we consider a depolarizing noise model on the quantum gates in the decoding ...

  19. Electrolyte-gated graphene field-effect transistors : modeling and applications

    E-Print Network [OSTI]

    Mackin, Charles Edward

    2015-01-01T23:59:59.000Z

    This work presents a model for electrolyte-gated graphene field-effect transistors (EGFETs) that incorporates the effects of the double layer capacitance and the quantum capacitance of graphene. The model is validated ...

  20. Vehicle Technologies Office Merit Review 2014: DOE GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE GATE Center of...

  1. Vehicle Technologies Office Merit Review 2015: GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    Presentation given by The Ohio State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE: energy...

  2. pH sensing properties of graphene solution-gated field-effect transistors

    E-Print Network [OSTI]

    Mailly-Giacchetti, Benjamin

    2013-01-01T23:59:59.000Z

    The use of graphene grown by chemical vapor deposition to fabricate solution-gated field-effect transistors (SGFET) on different substrates is reported. SGFETs were fabricated using graphene transferred on poly(ethylene ...

  3. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE center of excellence...

  4. All-Optical Switch and Transistor Gated by One Stored Photon

    E-Print Network [OSTI]

    Chen, Wenlan

    The realization of an all-optical transistor, in which one “gate” photon controls a “source” light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical ...

  5. A linear programming solution to the gate assignment problem at airport terminals

    E-Print Network [OSTI]

    Mangoubi, Rami

    1980-01-01T23:59:59.000Z

    This research solves the flight-to-gate assignment problem at airports in such a way as to minimize, or at least reduce, walking distances for passengers inside terminals. Two solution methods are suggested. The first is ...

  6. Vehicle Technologies Office Merit Review 2015: GATE Center for Electric Drive Transportation

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  7. Lessons learned in the design and erection of box girder bridges from the West Gate collapse

    E-Print Network [OSTI]

    Burton, Alia Christine

    2007-01-01T23:59:59.000Z

    The West Gate Bridge, intended to span the Yarra River in Australia, collapsed during its third year of construction in 1970. Investigation into the project revealed numerous issues in the bridge's design and construction. ...

  8. Energy-aware architectures, circuits and CAD for field programmable gate arrays

    E-Print Network [OSTI]

    Honoré, Francis

    2006-01-01T23:59:59.000Z

    Field Programmable Gate Arrays (FPGAs) are a class of hardware reconfigurable logic devices based on look-up tables (LUTs) and programmable interconnect that have found broad acceptance for a wide range of applications. ...

  9. The civic forum in ancient Israel : the form, function, and symbolism of city gates

    E-Print Network [OSTI]

    Frese, Daniel Allan

    2012-01-01T23:59:59.000Z

    of City Gates by Daniel Allan Frese Doctor of Philosophy inC. Michael Hall, and Allan M. Williams. Oxford: Blackwell,in History by Daniel Allan Frese Committee in Charge:

  10. Penn State DOE GATE Center of Exellence for In-Vehicle, High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GATE CENTER OF EXCELLENCE FOR IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS DOE Merit Review, February 28, 2008 Joel Anstrom, Director "This presentation does not...

  11. Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    Presentation given by Ohio State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE: energy efficient...

  12. Transient Turbulent Flow Simulation with Water Model Validation and Application to Slide Gate Dithering

    E-Print Network [OSTI]

    Thomas, Brian G.

    ) 244-6534 Email: bgthomas@illinois.edu Bruce Forman and Hongbin Yin ArcelorMittal Global R&D East) 399-3899 Email: bruce.forman@arcelormittal.com, Hongbin.Yin@arcelormittal.com ABSTRACT Slide gate

  13. X-ray lithographic alignment and overlay applied to double-gate MOSFET fabrication

    E-Print Network [OSTI]

    Meinhold, Mitchell W., 1972-

    2003-01-01T23:59:59.000Z

    Double-gate MOSFETs represent a significant solution to transistor scaling problems and promise a dramatic improvement in both performance and power consumption. In this work, a planar lithographic process is presented ...

  14. Scheme for a linear-optical controlled-phase gate with programmable phase shift

    E-Print Network [OSTI]

    Karel Lemr; Karol Bartkiewicz; Antonín ?ernoch

    2015-03-20T23:59:59.000Z

    We propose a linear-optical scheme for a controlled-phase gate with tunable phase shift set by a program qubit. Analysis of the scheme is provided with considerations for experimental feasibility. We also discuss options for increasing the success probability up to 1/12 which is close the the optimal success probability of a non-programmable tunable controlled-phase gate.

  15. Photon-photon gate via the interaction between two collective Rydberg excitations

    E-Print Network [OSTI]

    Mohammadsadegh Khazali; Khabat Heshami; Christoph Simon

    2014-07-28T23:59:59.000Z

    We propose a scheme for a deterministic controlled-phase gate between two photons based on the strong interaction between two stationary collective Rydberg excitations in an atomic ensemble. The distance-dependent character of the interaction causes both a momentum displacement of the collective excitations and unwanted entanglement between them. We show that these effects can be overcome by swapping the collective excitations in space and by optimizing the geometry, resulting in a photon-photon gate with high fidelity and efficiency.

  16. Surface mobility near threshold and other parameters of insulated gate field effect transistors

    E-Print Network [OSTI]

    Gnadinger, Alfred P.

    1970-01-01T23:59:59.000Z

    SURFACE MOBILITY NEAR THRESHOLD AND OTHER PARAMETERS OF INSULATED GATE FIELD EFFECT TRANSISTORS BY Alfred P. Gnadinger Dipl. El. Ing. ETH Swiss Federal Institute of Technology, Zurich, 1965 M.S.E.E, University of Kansas, Lawrence, 1968... Committee: May, 1970 RD0107 4S0S0 TO MY WIFE AND OUR PARENTS i ABSTRACT The mobility of the mobile carriers in the inversion layer of an Insulated Gate Field Effect Transistor (IGFET) has been investigated with particular...

  17. Rooted-tree network for optimal non-local gate implementation

    E-Print Network [OSTI]

    Nilesh Vyas; Debashis Saha; Prasanta K. Panigrahi

    2015-06-28T23:59:59.000Z

    A general quantum network for implementing non-local control-unitary gates, between remote parties at minimal entanglement cost, is shown to be a rooted-tree structure. Starting from a five party scenario, we demonstrate the local implementation of simultaneous control-Hermitian and multiparty control-unitary gates in an arbitrary n-party network. Previously established networks are shown to be special cases of this general construct.

  18. Fault-tolerant logical gates in quantum error-correcting codes

    E-Print Network [OSTI]

    Fernando Pastawski; Beni Yoshida

    2014-08-07T23:59:59.000Z

    Recently, Bravyi and K\\"onig have shown that there is a tradeoff between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant depth geometrically local circuit and are thus fault-tolerant by construction. In particular, they shown that, for local stabilizer codes in D spatial dimensions, locality preserving gates are restricted to a set of unitary gates known as the D-th level of the Clifford hierarchy. In this paper, we elaborate this idea and provide several extensions and applications of their characterization in various directions. First, we present a new no-go theorem for self-correcting quantum memory. Namely, we prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a non-Clifford gate cannot have a macroscopic energy barrier. Second, we prove that the code distance of a D-dimensional local stabilizer code with non-trivial locality-preserving m-th level Clifford logical gate is upper bounded by $O(L^{D+1-m})$. For codes with non-Clifford gates (m>2), this improves the previous best bound by Bravyi and Terhal. Third we prove that a qubit loss threshold of codes with non-trivial transversal m-th level Clifford logical gate is upper bounded by 1/m. As such, no family of fault-tolerant codes with transversal gates in increasing level of the Clifford hierarchy may exist. This result applies to arbitrary stabilizer and subsystem codes, and is not restricted to geometrically-local codes. Fourth we extend the result of Bravyi and K\\"onig to subsystem codes. A technical difficulty is that, unlike stabilizer codes, the so-called union lemma does not apply to subsystem codes. This problem is avoided by assuming the presence of error threshold in a subsystem code, and the same conclusion as Bravyi-K\\"onig is recovered.

  19. Magic State Distillation and Gate Compilation in Quantum Algorithms for Quantum Chemistry

    E-Print Network [OSTI]

    Colin J. Trout; Kenneth R. Brown

    2015-01-29T23:59:59.000Z

    Quantum algorithms for quantum chemistry map the dynamics of electrons in a molecule to the dynamics of a coupled spin system. To reach chemical accuracy for interesting molecules, a large number of quantum gates must be applied which implies the need for quantum error correction and fault-tolerant quantum computation. Arbitrary fault-tolerant operations can be constructed from a small, universal set of fault-tolerant operations by gate compilation. Quantum chemistry algorithms are compiled by decomposing the dynamics of the coupled spin-system using a Trotter formula, synthesizing the decomposed dynamics using Clifford operations and single-qubit rotations, and finally approximating the single-qubit rotations by a sequence of fault-tolerant single-qubit gates. Certain fault-tolerant gates rely on the preparation of specific single-qubit states referred to as magic states. As a result, gate compilation and magic state distillation are critical for solving quantum chemistry problems on a quantum computer. We review recent progress that has improved the efficiency of gate compilation and magic state distillation by orders of magnitude.

  20. New VLSI complexity results for threshold gate comparison

    SciTech Connect (OSTI)

    Beiu, V.

    1996-12-31T23:59:59.000Z

    The paper overviews recent developments concerning optimal (from the point of view of size and depth) implementations of COMPARISON using threshold gates. We detail a class of solutions which also covers another particular solution, and spans from constant to logarithmic depths. These circuit complexity results are supplemented by fresh VLSI complexity results having applications to hardware implementations of neural networks and to VLSI-friendly learning algorithms. In order to estimate the area (A) and the delay (T), as well as the classical AT{sup 2}, we shall use the following {open_quote}cost functions{close_quote}: (i) the connectivity (i.e., sum of fan-ins) and the number-of-bits for representing the weights and thresholds are used as closer approximations of the area; while (ii) the fan-ins and the length of the wires are used for closer estimates of the delay. Such approximations allow us to compare the different solutions-which present very interesting fan-in dependent depth-size and area-delay tradeoffs - with respect to AT{sup 2}.

  1. Understanding and Managing Generation Y

    E-Print Network [OSTI]

    Wallace, Kevin

    2007-12-14T23:59:59.000Z

    There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

  2. Atomically flat La-silicate/Si interface using tungsten carbide gate electrode with nano-sized grain

    SciTech Connect (OSTI)

    Tuokedaerhan, K.; Natori, K.; Iwai, H. [Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Kakushima, K., E-mail: kakushima@ep.titech.ac.jp; Kataoka, Y.; Nishiyama, A.; Sugii, N.; Wakabayashi, H.; Tsutsui, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2014-01-13T23:59:59.000Z

    Interface properties of La-silicate gate dielectrics on Si substrates with W or nano-sized grain W{sub 2}C gate electrodes have been investigated. A low interface state density of 2.5?×?10{sup 11}?cm{sup ?2}/eV has been achieved with W{sub 2}C gate electrodes, which is one third of those with W gate electrode. An interface roughness of 0.33?nm with spatial frequency comparable to the grain size of W gate electrode has been observed. Besides, an atomically flat interface of 0.12?nm has been obtained with W{sub 2}C gate electrode. The origin of flat interface may be attributed to the elimination of inhomogeneous stress by grains in metal electrode.

  3. Compressed Gated Range Sensing Grigorios Tsagkatakisa, Arnaud Woiselleb, George Tzagkarakisc,

    E-Print Network [OSTI]

    Tsakalides, Panagiotis

    emitting diode (LED), and an imaging sensor in order to generate a 2D depth map of a scene. Time. INTRODUCTION Active Range Imaging systems employ an active illumination source, typically a laser or a light

  4. Reduce, reuse, recycle, for robust cluster state generation

    E-Print Network [OSTI]

    Clare Horsman; Katherine L. Brown; William J. Munro; Vivien M. Kendon

    2011-05-03T23:59:59.000Z

    Efficient generation of cluster states is crucial for engineering large-scale measurement-based quantum computers. Hybrid matter-optical systems offer a robust, scalable path to this goal. Such systems have an ancilla which acts as a bus connecting the qubits. We show that by generating smaller cluster "Lego bricks", reusing one ancilla per brick, the cluster can be produced with maximal efficiency, requiring fewer than half the operations compared with no bus reuse. By reducing the time required to prepare sections of the cluster, bus reuse more than doubles the size of the computational workspace that can be used before decoherence effects dominate. A row of buses in parallel provides fully scalable cluster state generation requiring only 20 CPhase gates per bus use.

  5. Exact solutions for a universal set of quantum gates on a family of iso-spectral spin chains

    E-Print Network [OSTI]

    V. Karimipour; N. Majd

    2005-09-25T23:59:59.000Z

    We find exact solutions for a universal set of quantum gates on a scalable candidate for quantum computers, namely an array of two level systems. The gates are constructed by a combination of dynamical and geometrical (non-Abelian) phases. Previously these gates have been constructed mostly on non-scalable systems and by numerical searches among the loops in the manifold of control parameters of the Hamiltonian.

  6. R t f N l C t T ti Di i GReport of Nuclear Component Testing Discussion Group National Spherical Torus ProgramNational Spherical Torus Program

    E-Print Network [OSTI]

    Abdou, Mohamed Fusion nuclear technology, VNS UCLA Gates, Dave NSTX plasma experimentation PPPL Hegna 100 IEA ST Agreement, FPCC, 2/27-28/07 3 Tritium self-sufficiency goal (%) ~0 ~100 100 # Abdou et al

  7. Si and SiGe based double top gated accumulation mode single electron transistors for quantum bits.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Ten Eyck, Gregory A.; Childs, Kenton David; Celler, G. (SOITEC); Eng, Kevin; Eriksson, Mark A. (University of Wisconsin); Kluskiewicz, Dan (University of New Mexico); Stevens, Jeffrey; Carroll, Malcolm S.; Nordberg, Eric; Lilly, Michael Patrick; Lemp, Thomas; Sheng, Josephine Juin-Jye

    2008-10-01T23:59:59.000Z

    There is significant interest in forming quantum bits (qubits) out of single electron devices for quantum information processing (QIP). Information can be encoded using properties like charge or spin. Spin is appealing because it is less strongly coupled to the solid-state environment so it is believed that the quantum state can better be preserved over longer times (i.e., that is longer decoherence times may be achieved). Long spin decoherence times would allow more complex qubit operations to be completed with higher accuracy. Recently spin qubits were demonstrated by several groups using electrostatically gated modulation doped GaAs double quantum dots (DQD) [1], which represented a significant breakthrough in the solid-state field. Although no Si spin qubit has been demonstrated to date, work on Si and SiGe based spin qubits is motivated by the observation that spin decoherence times can be significantly longer than in GaAs. Spin decoherence times in GaAs are in part limited by the random spectral diffusion of the non-zero nuclear spins of the Ga and As that couple to the electron spin through the hyperfine interaction. This effect can be greatly suppressed by using a semiconductor matrix with a near zero nuclear spin background. Near zero nuclear spin backgrounds can be engineered using Si by growing {sup 28}Si enriched epitaxy. In this talk, we will present fabrication details and electrical transport results of an accumulation mode double top gated Si metal insulator semiconductor (MIS) nanostructure, Fig 1 (a) & (b). We will describe how this single electron device structure represent a path towards forming a Si based spin qubit similar in design as that demonstrated in GaAs. Potential advantages of this novel qubit structure relative to previous approaches include the combination of: no doping (i.e., not modulation doped); variable two-dimensional electron gas (2DEG) density; CMOS compatible processes; and relatively small vertical length scales to achieve smaller dots. A primary concern in this structure is defects at the insulator-silicon interface. The Sandia National Laboratories 0.35 {micro}m fab line was used for critical processing steps including formation of the gate oxide to examine the utility of a standard CMOS quality oxide silicon interface for the purpose of fabricating Si qubits. Large area metal oxide silicon (MOS) structures showed a peak mobility of 15,000 cm{sup 2}/V-s at electron densities of {approx}1 x 10{sup 12} cm{sup -2} for an oxide thickness of 10 nm. Defect density measured using standard C-V techniques was found to be greater with decreasing oxide thickness suggesting a device design trade-off between oxide thickness and quantum dot size. The quantum dot structure is completed using electron beam lithography and poly-silicon etch to form the depletion gates, Fig 1 (a). The accumulation gate is added by introducing a second insulating Al{sub 2}O{sub 3} layer, deposited by atomic layer deposition, followed by an Al top gate deposition, Fig. 1 (b). Initial single electron transistor devices using SiO{sub 2} show significant disorder in structures with relatively large critical dimensions of the order of 200-300 nm, Fig 2. This is not uncommon for large silicon structures and has been cited in the literature [2]. Although smaller structures will likely minimize the effect of disorder and well controlled small Si SETs have been demonstrated [3], the design constraints presented by disorder combined with long term concerns about effects of defects on spin decoherence time (e.g., paramagnetic centers) motivates pursuit of a 2nd generation structure that uses a compound semiconductor approach, an epitaxial SiGe barrier as shown in Fig. 2 (c). SiGe may be used as an electron barrier when combined with tensilely strained Si. The introduction of strained-Si into the double top gated device structure, however, represents additional fabrication challenges. Thermal budget is potentially constrained due to concerns related to strain relaxation. Fabrication details related to the introduction of st

  8. Realization and Properties of Biochemical-Computing Biocatalytic XOR Gate Based on Enzyme Inhibition by a Substrate

    E-Print Network [OSTI]

    Jan Halamek; Vera Bocharova; Mary A. Arugula; Guinevere Strack; Vladimir Privman; Evgeny Katz

    2011-05-25T23:59:59.000Z

    We consider a realization of the XOR logic gate in a process biocatalyzed by an enzyme (here horseradish peroxidase: HRP), the function of which can be inhibited by a substrate (hydrogen peroxide for HRP), when the latter is inputted at large enough concentrations. A model is developed for describing such systems in an approach suitable for evaluation of the analog noise amplification properties of the gate. The obtained data are fitted for gate quality evaluation within the developed model, and we discuss aspects of devising XOR gates for functioning in "biocomputing" systems utilizing biomolecules for information processing.

  9. Charge noise analysis of metal oxide semiconductor dual-gate Si/SiGe quantum point contacts

    SciTech Connect (OSTI)

    Kamioka, J.; Oda, S. [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1-S9-11, Ookayama, Meguro-ku, Tokyo, 152-8552 (Japan); Kodera, T., E-mail: kodera.t.ac@m.titech.ac.jp [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1-S9-11, Ookayama, Meguro-ku, Tokyo, 152-8552 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-25, Ookayama, Meguro-ku, Tokyo, 152-8552 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Takeda, K.; Obata, T. [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tarucha, S. [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science (CEMS), 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-05-28T23:59:59.000Z

    The frequency dependence of conductance noise through a gate-defined quantum point contact fabricated on a Si/SiGe modulation doped wafer is characterized. The 1/f{sup 2} noise, which is characteristic of random telegraph noise, is reduced by application of a negative bias on the global top gate to reduce the local gate voltage. Direct leakage from the large global gate voltage also causes random telegraph noise, and therefore, there is a suitable point to operate quantum dot measurement.

  10. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01T23:59:59.000Z

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  11. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOE Patents [OSTI]

    Gorlov, Alexander M. (Brookline, MA)

    1991-01-01T23:59:59.000Z

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  12. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  13. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOE Patents [OSTI]

    Sappey, Andrew D. (Golden, CO)

    1998-04-14T23:59:59.000Z

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  14. Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels

    E-Print Network [OSTI]

    Andrei S. Kozlov; Thomas Risler; A. J. Hudspeth

    2009-02-16T23:59:59.000Z

    The hair cell's mechanoreceptive organelle, the hair bundle, is highly sensitive because its transduction channels open over a very narrow range of displacements. The synchronous gating of transduction channels also underlies the active hair-bundle motility that amplifies and tunes responsiveness. The extent to which the gating of independent transduction channels is coordinated depends on how tightly individual stereocilia are constrained to move as a unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that thermal movements of stereocilia located as far apart as a bundle's opposite edges display high coherence and negligible phase lag. Because the mechanical degrees of freedom of stereocilia are strongly constrained, a force applied anywhere in the hair bundle deflects the structure as a unit. This feature assures the concerted gating of transduction channels that maximizes the sensitivity of mechanoelectrical transduction and enhances the hair bundle's capacity to amplify its inputs.

  15. Noise-Protected Gate for Six-Electron Double-Dot Qubits

    E-Print Network [OSTI]

    Sebastian Mehl; David P. DiVincenzo

    2014-08-05T23:59:59.000Z

    Singlet-triplet spin qubits in six-electron double quantum dots, in moderate magnetic fields, can show superior immunity to charge noise. This immunity results from the symmetry of orbitals in the second energy shell of circular quantum dots: singlet and triplet states in this shell have identical charge distributions. Our phase-gate simulations, which include $1/f$ charge noise from fluctuating traps, show that this symmetry is most effectively exploited if the gate operation switches rapidly between sweet spots deep in the (3,3) and (4,2) charge stability regions; fidelities very close to one are predicted if subnanosecond switching can be performed.

  16. High-Performance Solution-Processed Amorphous-Oxide-Semiconductor TFTs with Organic Polymeric Gate Dielectrics

    E-Print Network [OSTI]

    Pecunia, Vincenzo; Banger, Kulbinder; Sirringhaus, Henning

    2015-01-13T23:59:59.000Z

    energy offsets (? 1 eV) between the conduction/valence bands of the semiconductor and the gate dielectric are needed to confine the charge carriers at the active interface and minimize undesirable charge injection from the semiconductor into the gate... in solution, all the other polymers came in the form of pellets or powder and were dissolved in suitable anhydrous organic solvents: P?MS was dissolved in xylene at a concentration of 60 mg mL-1; SAN in butyronitrile at 40 mg mL-1; PC in 1,2-dichlorobenzene...

  17. Grating-gate tunable plasmon absorption in InP and GaN based R. E. Peale*a

    E-Print Network [OSTI]

    Peale, Robert E.

    Grating-gate tunable plasmon absorption in InP and GaN based HEMTs R. E. Peale*a , H. Saxenaa , W, Inc., 1195 Atlas Road, Columbia SC, USA 29209 ABSTRACT Gate-voltage tunable plasmon resonances incident THz radiation into 2D plasmons. Narrow-band resonant absorption of THz radiation was observed

  18. A Technique for Low Power Dynamic Circuit Design in 32nm Double-Gate FinFET Technology

    E-Print Network [OSTI]

    Ayers, Joseph

    the leakage current (this is accomplished by connecting the back gate to the clock signal of the dynamic. By taking advantage of the independent double gate FinFET, Vth is controlled dynamically by biasing the back and drain of a device are connected to those of the other device. Drain Source Figure 1. FinFET structure

  19. Abstract--Bias temperature instability, hot-carrier injection, and gate-oxide wearout will cause severe lifetime degradation in

    E-Print Network [OSTI]

    Lipasti, Mikko H.

    affect device performance and lead to timing violations; as well as gate-oxide wearout [3] which can probability of oxide breakdown, leading to a hard failure of a device that exceeds its intended (or targetedAbstract--Bias temperature instability, hot-carrier injection, and gate-oxide wearout will cause

  20. Electrophoretic-like Gating Used To Control Metal-Insulator Transitions in Electronically Phase Separated Manganite Wires

    E-Print Network [OSTI]

    Tennessee, University of

    traditional carrier doping and by inducing electroresistive phase transitions in the material. In the case, and an electric field applied to the gate acts to change the material's access to electrons. This switchingElectrophoretic-like Gating Used To Control Metal-Insulator Transitions in Electronically Phase

  1. Trapping in deep defects under substrate hot electron stress in TiN/Hf-silicate based gate stacks

    E-Print Network [OSTI]

    Misra, Durgamadhab "Durga"

    Trapping in deep defects under substrate hot electron stress in TiN/Hf-silicate based gate stacks N. Zaslavsky Abstract Substrate hot electron stress was applied on n+ -ringed n-channel MOS capacitors with TiN/Hf-silicate. Introduction Hafnium silicate based high-j gate dielectrics have been put forth as the leading candidates

  2. Generation to Generation: The Heart of Family Medicine

    E-Print Network [OSTI]

    Winter, Robin O

    2012-01-01T23:59:59.000Z

    Ageism in the Workplace. Generations Spring, 5. Westman,of caring for multiple generations simultaneously. StronglyGeneration to Generation: The Heart of Family Medicine

  3. An energy relaxation tolerant approach to quantum entanglement, information transfer, and gates with superconducting-quantum-interference-device qubits in cavity QED

    E-Print Network [OSTI]

    Yang, Chuiping; Chu, Shih-I; Han, Siyuan

    2004-03-31T23:59:59.000Z

    A scheme is proposed for realizing quantum entanglement, information transfer, CNOT gates, and SWAP gates with supercoiiducting-quantum-interference-device (SQUID) qubits in cavity QED. In the scheme, the two logical states ...

  4. Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED

    E-Print Network [OSTI]

    Yang, Chui-Ping; Chu, Shih-I; Han, Siyuan

    2003-04-17T23:59:59.000Z

    We present a scheme to achieve maximally entangled states, controlled phase-shift gate, and SWAP gate for two superconducting-quantum-interference-device (SQUID) qubits, by placing SQUIDs in a microwave cavity. We also ...

  5. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27T23:59:59.000Z

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  6. Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability

    SciTech Connect (OSTI)

    Fakhri, M.; Theisen, M.; Behrendt, A.; Görrn, P.; Riedl, T. [Institute of Electronic Devices, University of Wuppertal, Wuppertal 42119 (Germany)

    2014-06-23T23:59:59.000Z

    Top gated metal-oxide thin-film transistors (TFTs) provide two benefits compared to their conventional bottom-gate counterparts: (i) The gate dielectric may concomitantly serve as encapsulation layer for the TFT channel. (ii) Damage of the dielectric due to high-energetic particles during channel deposition can be avoided. In our work, the top-gate dielectric is prepared by ozone based atomic layer deposition at low temperatures. For ultra-low gas permeation rates, we introduce nano-laminates of Al{sub 2}O{sub 3}/ZrO{sub 2} as dielectrics. The resulting TFTs show a superior environmental stability even at elevated temperatures. Their outstanding stability vs. bias stress is benchmarked against bottom-gate devices with encapsulation.

  7. Diminished Short Channel Effects in Nanoscale Double-Gate Silicon-on-Insulator MetalOxideSemiconductor Field-Effect-Transistors

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    ) and the back-gate oxide (tb) thickness is 2 nm. The doping in the p-type body and n+ source/drain regions­Oxide­Semiconductor Field-Effect-Transistors due to Induced Back-Gate Step Potential M. Jagadesh KUMAR Ã and G. Venkateshwar surface potential profile at the back gate of an asymmetrical double gate (DG) silicon-on-insulator (SOI

  8. IEEE ELECTRON DEVICE LETTERS, VOL. 21, NO. 12, DECEMBER 2000 549 Dual-Gate AlGaN/GaN Modulation-Doped

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    IEEE ELECTRON DEVICE LETTERS, VOL. 21, NO. 12, DECEMBER 2000 549 Dual-Gate AlGaN/GaN Modulation--We demonstrate dual-gate AlGaN/GaN modula- tion-doped field-effect transistors (MODFETs) with gate-lengths of 0 power amplifiers. Index Terms--AlGaN/GaN, broadband power amplifiers, dual-gate FETs. I. INTRODUCTION

  9. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  10. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  12. Power gating is usually driven by a predictive control, and frequent mispredictions can counter-productively lead to a large increase in

    E-Print Network [OSTI]

    Sorin, Daniel J.

    frames it can consume 70% more energy than a system without power gating. When adding a feature of the most promising mechanisms for reducing leakage energy is power gating, whereby leakage energy is saved is power gated off, some energy is needed for turning the component off and then on again. If the power

  13. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-30T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. 20 figs.

  14. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.

  15. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-06-01T23:59:59.000Z

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  16. Are global trade negotiations behind a fragmented world of "gated globalization"?

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Are global trade negotiations behind a fragmented world of "gated globalization"? James Lake In a very simple three country model where global trade negotiations precede a sequential Free Trade. Even though sequential FTA for- mation may lead to global free trade if governments have not previously

  17. Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate Ludovic Cassan1 Abstract: The article describes the hydraulic functioning of a mixed water level control hydro- mechanical of the model to reproduce the functioning of this complex hydro-mechanical system. CE database Subject headings

  18. Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints

    E-Print Network [OSTI]

    Kolodny, Avinoam

    Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints Yoni in a fast circuit by the same factor does not yield an energy-efficient design, and we characterize efficient. A design implementation is considered to be energy efficient when it has the highest performance

  19. Implementation of Power Transmission Lines to Field Programmable Gate Array ICs for Managing Signal

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    Implementation of Power Transmission Lines to Field Programmable Gate Array ICs for Managing Signal employs power transmission lines (PTL) that supply power to integrated circuits instead of using is able to reduce SSN and enhance power and signal integrity. Pseudo-balanced power transmission line (PB

  20. Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent regime

    E-Print Network [OSTI]

    Recanati, Catherine

    Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent as promising thermoelectric devices1 . In comparison to their bulk counterparts, they provide opportunities of thermoelectric conversion at a given temperature T . Indeed, they allow to reduce the phonon contribution ph

  1. Phase transitions in Dual-Gated Bilayer Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Phase transitions in Dual-Gated Bilayer Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility Bilayer graphene, consisting of two layers of carbon atoms of the degeneracy of the electronic states in the graphene bilayer. Resistivity plotted as a function of the front

  2. Neural mechanisms of saccade target selection: gated accumulator model of the visualmotor cascade

    E-Print Network [OSTI]

    Schall, Jeffrey D.

    Neural mechanisms of saccade target selection: gated accumulator model of the visual­motor cascade, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA Keywords: accumulator neurons in the frontal eye field as evidence for stimulus salience that is accumulated in a network

  3. ERK2: a logical AND gate critical for drug-induced plasticity? Truncated title

    E-Print Network [OSTI]

    1 Title: ERK2: a logical AND gate critical for drug-induced plasticity? Truncated title: ERK2 signal-regulated kinase (ERK) plays an important role in the underlying molecular mechanisms. ERK. Blockade of ERK activation prevents long- lasting behavioral changes, including psychomotor sensitization

  4. Accuracy of gates in a quantum computer based on vibrational eigenstates Dmitri Babikov

    E-Print Network [OSTI]

    Reid, Scott A.

    of quantum gates in such a system. Optimal control theory and numerical time-propagation of vibrational wave the computational sciences:2 ``Quantum computing would be to ordinary com- puting what nuclear energy is to fire'' consisting of two states 0 and 1 that have been harnessed for running quantum computing algorithms, setting

  5. Na K -pump ligands modulate gating of palytoxin-induced ion channels

    E-Print Network [OSTI]

    Gadsby, David

    Na K -pump ligands modulate gating of palytoxin-induced ion channels Pablo Artigas and David C (received for review September 26, 2002) The Na K pump is a ubiquitous P-type ATPase that binds three -ion occlusion to phosphorylation of the pump by ATP and of K -ion occlusion to its dephosphorylation

  6. Spin transistor operation driven by the Rashba spin-orbit coupling in the gated nanowire

    SciTech Connect (OSTI)

    Wójcik, P.; Adamowski, J., E-mail: adamowski@fis.agh.edu.pl; Spisak, B. J.; Wo?oszyn, M. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, Kraków (Poland)

    2014-03-14T23:59:59.000Z

    A theoretical description has been proposed for the operation of the spin transistor in the gate-controlled InAs nanowire. The calculated current-voltage characteristics show that the electron current flowing from the source (spin injector) to the drain (spin detector) oscillates as a function of the gate voltage, which results from the precession of the electron spin caused by the Rashba spin-orbit interaction in the vicinity of the gate. We have studied the operation of the spin transistor under the following conditions: (A) the full spin polarization of electrons in the contacts, zero temperature, and the single conduction channel corresponding to the lowest-energy subband of the transverse motion and (B) the partial spin polarization of the electrons in the contacts, the room temperature, and the conduction via many transverse subbands taken into account. For case (A), the spin-polarized current can be switched on/off by the suitable tuning of the gate voltage, for case (B) the current also exhibits the pronounced oscillations but with no-zero minimal values. The computational results obtained for case (B) have been compared with the recent experimental data and a good agreement has been found.

  7. Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors

    E-Print Network [OSTI]

    Dekker, Cees

    Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors Iddo-walled carbon nanotubes (SWNTs) and graphene can function as highly sensitive nanoscale (bio)sensors in solution. Here, we compare experimentally how SWNT and graphene transistors respond to changes in the composition

  8. REAL-TIME DUAL-MICROPHONE SPEECH ENHANCEMENT USING FIELD PROGRAMMABLE GATE ARRAYS

    E-Print Network [OSTI]

    Sheikholeslami, Ali

    REAL-TIME DUAL-MICROPHONE SPEECH ENHANCEMENT USING FIELD PROGRAMMABLE GATE ARRAYS David Halupka@eecg}.toronto.edu ABSTRACT This paper discusses an implementation of a dual- microphone phase-based speech enhancement or irrelevant conversations, are present has fueled research interest in the areas of speech enhancement

  9. Hafnium-doped tantalum oxide high-k gate dielectric films for future CMOS technology

    E-Print Network [OSTI]

    Lu, Jiang

    2007-04-25T23:59:59.000Z

    of the doped films were explained by their compositions and bond structures. The Hf-doped TaOx film is a potential high-k gate dielectric for future MOS transistors. A 5 Ã?Â? tantalum nitride (TaNx) interface layer has been inserted between the Hf-doped Ta...

  10. Method and system for measuring gate valve clearances and seating force

    DOE Patents [OSTI]

    Casada, Donald A. (Knoxville, TN); Haynes, Howard D. (Knoxville, TN); Moyers, John C. (Oak Ridge, TN); Stewart, Brian K. (Burns, TN)

    1996-01-01T23:59:59.000Z

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner.

  11. Lanthanum silicate gate dielectric stacks with subnanometer equivalent oxide thickness utilizing an interfacial silica consumption reaction

    E-Print Network [OSTI]

    Garfunkel, Eric

    Lanthanum silicate gate dielectric stacks with subnanometer equivalent oxide thickness utilizing-8087 Received 13 April 2005; accepted 6 June 2005; published online 26 July 2005 A silicate reaction between process route to interface elimination, while producing a silicate dielectric with a higher temperature

  12. Elsevier Science 1 Use of the GATE Monte Carlo package for dosimetry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Elsevier Science 1 Use of the GATE Monte Carlo package for dosimetry applications D. Visvikis, a* M Angeles, USA Abstract One of the roles for MC simulation studies is in the area of dosimetry. A number of different codes dedicated to dosimetry applications are available and widely used today, such as MCNP

  13. Validation of GATE 6.1 for targeted radiotherapy of metastic melanoma I-labeled benzamide

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Validation of GATE 6.1 for targeted radiotherapy of metastic melanoma using 131 I for the treatment of malignant melanoma after injection of a new specific radiopharmaceutical labeled with iodine, named ICF01012, selected to treat35 the malignant melanoma [Chezal et al 2008]. 131 I-labeled ICF01012

  14. New approach to manufacturing field emitter arrays with sub-half-micron gate apertures

    E-Print Network [OSTI]

    Lee, Jong Duk

    insulator by local oxidation of silicon LOCOS , resulting in the reduction of the gate hole size due. Considering the cathode current level required for flat panel display applications and the measured emission-to-peak. © 1996 American Vacuum Society. I. INTRODUCTION Recently, much attention1,2 has been given to studying

  15. Evidence of gating in hundred nanometer diameter pores: an experimental and theoretical study

    SciTech Connect (OSTI)

    Letant, S E; Schaldach, C M; Johnson, M R; Sawvel, A; Bourcier, W L; Wilson, W D

    2006-01-11T23:59:59.000Z

    We report on the observation of an unexpected gating mechanism at the 100 nm scale on track-etched polycarbonate membranes. Transport measurements of methyl viologen performed by absorption spectroscopy under various pH conditions demonstrated that perfect gating was achieved for 100 nm diameter pores at pH 2, while the positively charged molecular ions moved through the membrane according to diffusion laws at pH 5. An oppositely charged molecular ion, naphthalene disulfonate, in the same membrane, showed the opposite trend: diffusion of the negative ion at pH 2 and perfect gating at pH 5. The influence of parameters such as ionic strength and membrane surface coating were also investigated. A theoretical study of the system shows that at this larger length scale the magnitude of the electric field in the vicinity of the pores is too small to account for the experimental observations, rather, it is the surface trapping of the mobile ion (Cl{sup -} or Na{sup +}) which gives rise to the gating phenomena. This surprising effect might have potential applications for high-throughput separation of large molecules and bio-organisms.

  16. Membrane Tension, Lipid Adaptation, Conformational Changes, and Energetics in MscL Gating

    E-Print Network [OSTI]

    Rui, Huan; Kumar, Ritesh; Im, Wonpil

    2011-08-03T23:59:59.000Z

    -MscL) is used as a model system; Tb-MscL acts as a safety valve by releasing small osmolytes through the channel opening under extreme hypoosmotic conditions. Based on the assumption that the channel gating involves tilting of the transmembrane (TM) helices, we...

  17. Gate Voltage Control of Oxygen Diffusion on Graphene Dr. Jorge O. Sofo

    E-Print Network [OSTI]

    Bjørnstad, Ottar Nordal

    Gate Voltage Control of Oxygen Diffusion on Graphene Dr. Jorge O. Sofo Associate Professor conductivity (twice that of diamond). Due to Carbon's affinity for tetrahedral bonding, its surface is amenable atoms. Our research focuses on the attachment and diffusion of different atomic species to the surface

  18. Needle-based reflection refractometry of scattering samples using coherence-gated

    E-Print Network [OSTI]

    Boppart, Stephen

    effects of internal refractive index variation in near-infrared optical tomography: a finite element, and K. D. Paulsen, "Effects of refractive index on near- infrared tomography of the breast," Appl. OptNeedle-based reflection refractometry of scattering samples using coherence-gated detection Adam M

  19. Gate Delay Calculation Considering the Crosstalk Capacitances Soroush Abbaspour and Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    . As the victim line switches, the impedance of its driving gate changes by orders of magnitude, thereby the various R and C parasitics as well as the capacitive coupling between interconnect lines. However, since of capacitances. For example, for opposite direction switching of two identical coupled lines, switching

  20. A PVT Aware Accurate Statistical Logic Library for High-Metal-Gate Nano-CMOS

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    (T) which may be due to the environment, through self-heating effects or a combination of the two- tion which leads to high electric field and a high GIDL current [16]. (2) The high- gate dielectric and SiO2 spacers meet at the surface of the drain region, causing a high electric field leading to a high

  1. Method and system for measuring gate valve clearances and seating force

    DOE Patents [OSTI]

    Casada, D.A.; Haynes, H.D.; Moyers, J.C.; Stewart, B.K.

    1996-01-30T23:59:59.000Z

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner. 8 figs.

  2. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    SciTech Connect (OSTI)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States) and Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States)

    2012-11-15T23:59:59.000Z

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor excursion outside of the gating window, which, for our study group, is mainly caused by baseline shift, i.e., the change in general trend of the motion curve during extended period of treatment time. Conclusions: The dose deviation in PTV and CTV due to target motion is not always negligible in gated SBRT. Although CTVs are covered sufficiently with prescribed dose in most cases, some are on the verge of underdose due to large tumor excursion caused by factors such as baseline shift.

  3. Oxygen migration in TiO{sub 2}-based higher-k gate stacks

    SciTech Connect (OSTI)

    Kim, Sang Bum; Brown, Stephen L.; Rossnagel, Stephen M.; Bruley, John; Copel, Matthew; Hopstaken, Marco J. P.; Narayanan, Vijay; Frank, Martin M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States)

    2010-03-15T23:59:59.000Z

    We report on the stability of high-permittivity (high-k) TiO{sub 2} films incorporated in metal-oxide-silicon capacitor structures with a TiN metal gate electrode, focusing on oxygen migration. Titanium oxide films are deposited by either Ti sputtering [physical vapor deposition (PVD)] followed by radical shower oxidation or by plasma-enhanced atomic layer deposition (PEALD) from titanium isopropoxide (Ti{l_brace}OCH(CH{sub 3}){sub 2{r_brace}4}) and O{sub 2} plasma. Both PVD and PEALD films result in near-stoichiometric TiO{sub 2} prior to high-temperature annealing. We find that dopant activation anneals of TiO{sub 2}-containing gate stacks at 1000 deg. C cause 5 A or more of additional SiO{sub 2} to be formed at the gate-dielectric/Si-channel interface. Furthermore, we demonstrate for the first time that oxygen released from TiO{sub 2} diffuses through the TiN gate electrode and oxidizes the poly-Si contact. The thickness of this upper SiO{sub 2} layer continues to increase with increasing TiO{sub 2} thickness, while the thickness of the regrown SiO{sub 2} at the gate-dielectric/Si interface saturates. The upper SiO{sub 2} layer degrades gate stack capacitance, and simultaneously the oxygen-deficient TiO{sub x} becomes a poor insulator. In an attempt to mitigate O loss from the TiO{sub 2}, top and bottom Al{sub 2}O{sub 3} layers are added to the TiO{sub 2} gate dielectric as oxygen barriers. However, they are found to be ineffective, due to Al{sub 2}O{sub 3}-TiO{sub 2} interdiffusion during activation annealing. Bottom HfO{sub 2}/Si{sub 3}N{sub 4} interlayers are found to serve as more effective oxygen barriers, reducing, though not preventing, oxygen downdiffusion.

  4. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

  5. SU-E-J-185: Gated CBCT Imaging for Positioning Moving Lung Tumor in Lung SBRT Treatment

    SciTech Connect (OSTI)

    Li, X; Li, T; Zhang, Y; Burton, S; Karlovits, B; Clump, D; Heron, D; Huq, M [University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2014-06-01T23:59:59.000Z

    Purpose: Lung stereo-tactic body radiotherapy(SBRT) treatment requires high accuracy of lung tumor positioning during treatment, which is usually accomplished by free breathing Cone-Beam computerized tomography (CBCT) scan. However, respiratory motion induced image artifacts in free breathing CBCT may degrade such positioning accuracy. The purpose of this study is to investigate the feasibility of gated CBCT imaging for lung SBRT treatment. Methods: Six Lung SBRT patients were selected for this study. The respiratory motion of the tumors ranged from 1.2cm to 3.5cm, and the gating windows for all patients were set between 35% and 65% of the respiratory phases. Each Lung SBRT patient underwent free-breathing CBCT scan using half-fan scan technique. The acquired projection images were transferred out for off-line analyses. An In-house semi-automatic algorithm was developed to trace the diaphragm movement from those projection images to acquire a patient's specific respiratory motion curve, which was used to correlate respiratory phases with each projection image. Afterwards, a filtered back-projection algorithm was utilized to reconstruct the gated CBCT images based on the projection images only within the gating window. Results: Target volumes determined by free breathing CBCT images were 71.9%±72% bigger than the volume shown in gated CBCT image. On the contrary, the target volume differences between gated CBCT and planning CT images at exhale stage were 5.8%±2.4%. The center to center distance of the targets shown in free breathing CBCT and gated CBCT images were 9.2±8.1mm. For one particular case, the superior boundary of the target was shifted 15mm between free breathing CBCT and gated CBCT. Conclusion: Gated CBCT imaging provides better representation of the moving lung tumor with less motion artifacts, and has the potential to improve the positioning accuracy in lung SBRT treatment.

  6. Linear-optical generation of eigenstates of the two-site XY model

    E-Print Network [OSTI]

    Stefanie Barz; Borivoje Dakic; Yannick Ole Lipp; Frank Verstraete; James D. Whitfield; Philip Walther

    2014-10-04T23:59:59.000Z

    Much of the anticipation accompanying the development of a quantum computer relates to its application to simulating dynamics of another quantum system of interest. Here we study the building blocks for simulating quantum spin systems with linear optics. We experimentally generate the eigenstates of the XY Hamiltonian under an external magnetic field. The implemented quantum circuit consists of two CNOT gates, which are realized experimentally by harnessing entanglement from a photon source and by applying a CPhase gate. We tune the ratio of coupling constants and magnetic field by changing local parameters. This implementation of the XY model using linear quantum optics might open the door to the future studies of quenching dynamics using linear optics.

  7. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13T23:59:59.000Z

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  8. Creating a Cognitive Agent in a Virtual World: Planning, Navigation, and Natural Language Generation

    E-Print Network [OSTI]

    Hewlett, William

    2013-01-01T23:59:59.000Z

    Generation . . . . . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . . . . .

  9. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  10. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  11. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  12. Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  13. Cerebellar Purkinje cell death in the P/Q -type voltage-gated calcium ion channel mutant mouse, leaner 

    E-Print Network [OSTI]

    Frank-Cannon, Tamy Catherine

    2006-04-12T23:59:59.000Z

    Mutations of the á1A subunit of P/Q-type voltage-gated calcium channels are responsible for several inherited disorders affecting humans, including familial hemiplegic migraine, episodic ataxia type 2 and spinocerebellar ...

  14. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    SciTech Connect (OSTI)

    Sarrut, David, E-mail: david.sarrut@creatis.insa-lyon.fr [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France) [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France); Université Lyon 1 (France); Centre Léon Bérard (France)] [France; Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France)] [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France); Boussion, Nicolas [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France)] [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France); Freud, Nicolas; Létang, Jean-Michel [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France)] [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France); Jan, Sébastien [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France)] [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France); Loudos, George [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece)] [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece); Maigne, Lydia; Perrot, Yann [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France)] [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France); Papadimitroulas, Panagiotis [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece)] [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece); Pietrzyk, Uwe [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany)] [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany); Robert, Charlotte [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France)] [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France); and others

    2014-06-15T23:59:59.000Z

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  15. Regulation of N-type Voltage-Gated Calcium Channels and Presynaptic Function by Cyclin-Dependent Kinase 5

    E-Print Network [OSTI]

    Su, Susan C.

    N-type voltage-gated calcium channels localize to presynaptic nerve terminals and mediate key events including synaptogenesis and neurotransmission. While several kinases have been implicated in the modulation of calcium ...

  16. Cerebellar Purkinje cell death in the P/Q -type voltage-gated calcium ion channel mutant mouse, leaner

    E-Print Network [OSTI]

    Frank-Cannon, Tamy Catherine

    2006-04-12T23:59:59.000Z

    . The leaner mutation causes reduced calcium ion influx upon activation of P/Q-type voltage-gated calcium channels. This disrupts calcium homeostasis and leads to a loss of cerebellar neurons, including cerebellar Purkinje cells. Because of its similarities...

  17. Pulse-controlled quantum gate sequences on a strongly coupled qubit chain

    E-Print Network [OSTI]

    Holger Frydrych; Michael Marthaler; Gernot Alber

    2015-02-12T23:59:59.000Z

    We propose a selective dynamical decoupling scheme on a chain of permanently coupled qubits, which is capable of dynamically suppressing any coupling in the chain by applying sequences of local pulses to the individual qubits. We demonstrate how this pulse control can be used to implement a sequence of quantum gates on the chain which entangles all the qubits. We find that high entanglement fidelities can be achieved as long as the total number of coupled qubits is not too large. We discuss the applicability of our model specifically for superconducting flux qubits which can be strongly coupled to allow for the fast implementation of two-qubit gates. Since dynamically modifying the couplings between flux qubits is challenging, they are a natural candidate for our approach.

  18. A communication-efficient nonlocal measurement with application to communication complexity and bipartite gate capacities

    E-Print Network [OSTI]

    Aram W. Harrow; Debbie W. Leung

    2011-03-04T23:59:59.000Z

    Two dual questions in quantum information theory are to determine the communication cost of simulating a bipartite unitary gate, and to determine their communication capacities. We present a bipartite unitary gate with two surprising properties: 1) simulating it with the assistance of unlimited EPR pairs requires far more communication than with a better choice of entangled state, and 2) its communication capacity is far lower than its capacity to create entanglement. This suggests that 1) unlimited EPR pairs are not the most general model of entanglement assistance for two-party communication tasks, and 2) the entangling and communicating abilities of a unitary interaction can vary nearly independently. The technical contribution behind these results is a communication-efficient protocol for measuring whether an unknown shared state lies in a specified rank-one subspace or its orthogonal complement.

  19. Air-gap gating of MgZnO/ZnO heterostructures

    SciTech Connect (OSTI)

    Tambo, T.; Falson, J., E-mail: falson@kwsk.t.u-tokyo.ac.jp; Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Maryenko, D. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2014-08-28T23:59:59.000Z

    The adaptation of “air-gap” dielectric based field-effect transistor technology to controlling the MgZnO/ZnO heterointerface confined two-dimensional electron system (2DES) is reported. We find it possible to tune the charge density of the 2DES via a gate electrode spatially separated from the heterostructure surface by a distance of 5??m. Under static gating, the observation of the quantum Hall effect suggests that the charge carrier density remains homogeneous, with the 2DES in the 3?mm square sample the sole conductor. The availability of this technology enables the exploration of the charge carrier density degree of freedom in the pristine sample limit.

  20. Formation of low resistivity titanium silicide gates in semiconductor integrated circuits

    DOE Patents [OSTI]

    Ishida, Emi (Sunnyvale, CA)

    1999-08-10T23:59:59.000Z

    A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.

  1. A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots

    E-Print Network [OSTI]

    D. M. Zajac; T. M. Hazard; X. Mi; K. Wang; J. R. Petta

    2015-02-05T23:59:59.000Z

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35-70 microeV. By energizing two additional gates we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  2. Phase gate and readout with an atom/molecule hybrid platform

    E-Print Network [OSTI]

    Elena Kuznetsova; Marko Gacesa; Susanne F. Yelin; Robin Côté

    2009-08-31T23:59:59.000Z

    We suggest a combined atomic/molecular system for quantum computation, which takes advantage of highly developed techniques to control atoms and recent experimental progress in manipulation of ultracold molecules. We show that two atoms of different species in a given site, {\\it e.g.}, in an optical lattice, could be used for qubit encoding, initialization and readout, with one atom carrying the qubit, the other enabling a gate. In particular, we describe how a two-qubit phase gate can be realized by transferring a pair of atoms into the ground rovibrational state of a polar molecule with a large dipole moment, and allowing two molecules to interact via their dipole-dipole interaction. We also discuss how the reverse process of coherently transferring a molecule into a pair of atoms could be used as a readout tool for molecular quantum computers.

  3. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  4. SNE TRAFIC GENERATOR

    Energy Science and Technology Software Center (OSTI)

    003027MLTPL00 Network Traffic Generator for Low-rate Small Network Equipment Software  http://eln.lbl.gov/sne_traffic_gen.html 

  5. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Cycle Shown for ATB SteamCarbon 3 * ATB reforming * Steamcarbon 3 * Syngas generated during reforming * 70% H 2 * 20% CO * Syngas composition agrees with...

  6. Probing spin entanglement by gate-voltage-controlled interference of current correlation in quantum spin Hall insulators

    E-Print Network [OSTI]

    Wei Chen; Z. D. Wang; R. Shen; D. Y. Xing

    2014-05-21T23:59:59.000Z

    We propose an entanglement detector composed of two quantum spin Hall insulators and a side gate deposited on one of the edge channels. For an ac gate voltage, the differential noise contributed from the entangled electron pairs exhibits the nontrivial step structures, from which the spin entanglement concurrence can be easily obtained. The possible spin dephasing effects in the quantum spin Hall insulators are also included.

  7. Tri-Gate Bulk CMOS Technology for Improved SRAM Scalability Changhwan Shin, Borivoje Nikoli, Tsu-Jae King Liu

    E-Print Network [OSTI]

    Nikolic, Borivoje

    ] is an example of such a design; it utilizes a gate electrode that is physically wrapped around the top portion along a poly-Si gate electrode in an SRAM array, for 15nm nominal STI recess depth. The sequence), pull- 570nm 263nm 570nm 263nm PG1 PD1 PU1 PU2 PD2 PG2 (a) 570nm 263nm 570nm 263nm PG1 PD1 PU1 PU2 PD2

  8. Next-generation transcriptome assembly

    E-Print Network [OSTI]

    Martin, Jeffrey A.

    2012-01-01T23:59:59.000Z

    technologies - the next generation. Nat Rev Genet 11, 31-algorithms for next-generation sequencing data. Genomicsassembly from next- generation sequencing data. Genome Res

  9. Unified approach to topological quantum computation with anyons: From qubit encoding to Toffoli gate

    E-Print Network [OSTI]

    Haitan Xu; J. M. Taylor

    2011-08-01T23:59:59.000Z

    Topological quantum computation may provide a robust approach for encoding and manipulating information utilizing the topological properties of anyonic quasi-particle excitations. We develop an efficient means to map between dense and sparse representations of quantum information (qubits) and a simple construction of multi-qubit gates, for all anyon models from Chern-Simons-Witten SU(2)$_k$ theory that support universal quantum computation by braiding ($k\\geq 3,\\ k \

  10. Gated current integrator for the beam in the RR barrier buckets

    SciTech Connect (OSTI)

    A. Cadorn; C. Bhat; J. Crisp

    2003-06-10T23:59:59.000Z

    At the Fermilab Recycler Ring (RR), the antiproton (pbar) beam will be stored azimuthally in different segments created by barrier buckets. The beam in each segment may have widely varying intensities. They have developed a gated integrator system to measure the beam intensity in each of the barrier bucket. Here they discuss the design of the system and the results of beam measurements using the integrator.

  11. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    SciTech Connect (OSTI)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01T23:59:59.000Z

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  12. A comparison of the full custom, standard cell and gate array design methodologies

    E-Print Network [OSTI]

    Kwan, King-Wai

    1990-01-01T23:59:59.000Z

    A COMPARISON OF THE FULL CUSTOM, STANDARD CELL AND GATE ARRAY DESIGN METHODOLOGIES A Thesis by KING-WAI I&WAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulffllment of the requirements for the degree... approaches, the designers can select appropriate cells in the libraries which meet their specific requirements such as driving capability and power consumption. But standard cell designs can be used to implement specialized macros such as multi-port...

  13. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOE Patents [OSTI]

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06T23:59:59.000Z

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  14. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    SciTech Connect (OSTI)

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Youngkyoo, E-mail: ykimm@knu.ac.kr [Organic Nanoelectronics Laboratory, Department of Chemical Engineering and Graduate School of Applied Chemical Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Kim, Hwajeong [Organic Nanoelectronics Laboratory, Department of Chemical Engineering and Graduate School of Applied Chemical Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Priority Research Center, Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Lee, Joon-Hyung [School of Materials Science and Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Park, Soo-Young; Kang, Inn-Kyu [Department of Polymer Science and Engineering and Graduate School of Applied Chemical Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of)

    2014-09-15T23:59:59.000Z

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 ?m thick LC layer (4-cyano-4{sup ?}-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 ?l/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm{sup 2}/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V{sub D}) and gate (V{sub G}) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V{sub D} and V{sub G}. The best voltage combination was V{sub D} = ?0.2 V and V{sub G} = ?1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  15. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    SciTech Connect (OSTI)

    Sanne, A.; Movva, H. C. P.; Kang, S.; McClellan, C.; Corbet, C. M.; Banerjee, S. K. [Microelectronics Research Center, University of Texas, Austin, Texas 78758 (United States)

    2014-02-24T23:59:59.000Z

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (?130?°C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k?=?3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriers as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.

  16. Second generation PFB for advanced power generation

    SciTech Connect (OSTI)

    Robertson, A.; Van Hook, J.

    1995-11-01T23:59:59.000Z

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  17. Contracting for wind generation

    E-Print Network [OSTI]

    Newbery, David

    The UK Government proposes offering long-term Feed-in-Tariffs (FiTs) to low-carbon generation to reduce risk and encourage new entrants. Their preference is for a Contract-for-Difference (CfD) or a premium FiT (pFiT) for all generation regardless...

  18. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  19. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  20. The fifth generation computer

    SciTech Connect (OSTI)

    Moto-Oka, T.; Kitsuregawa, M.

    1985-01-01T23:59:59.000Z

    The leader of Japan's Fifth Generation computer project, known as the 'Apollo' project, and a young computer scientist elucidate in this book the process of how the idea came about, international reactions, the basic technology, prospects for realization, and the abilities of the Fifth Generation computer. Topics considered included forecasting, research programs, planning, and technology impacts.

  1. Respiration Induced Heart Motion and Indications of Gated Delivery for Left-Sided Breast Irradiation

    SciTech Connect (OSTI)

    Qi, X. Sharon, E-mail: xiangrong.qi@ucdenver.edu [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Hu, Angela [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Wang Kai [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Newman, Francis [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Crosby, Marcus; Hu Bin; White, Julia; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2012-04-01T23:59:59.000Z

    Purpose: To investigate respiration-induced heart motion for left-sided breast irradiation using a four-dimensional computed tomography (4DCT) technique and to determine novel indications to assess heart motion and identify breast patients who may benefit from a gated treatment. Methods and Materials: Images of 4DCT acquired during free breathing for 20 left-sided breast cancer patients, who underwent whole breast irradiation with or without regional nodal irradiation, were analyzed retrospectively. Dose distributions were reconstructed in the phases of 0%, 20%, and 50%. The intrafractional heart displacement was measured in three selected transverse CT slices using D{sub LAD} (the distance from left ascending aorta to a fixed line [connecting middle point of sternum and the body] drawn on each slice) and maximum heart depth (MHD, the distance of the forefront of the heart to the line). Linear regression analysis was used to correlate these indices with mean heart dose and heart dose volume at different breathing phases. Results: Respiration-induced heart displacement resulted in observable variations in dose delivered to the heart. During a normal free-breathing cycle, heart-induced motion D{sub LAD} and MHD changed up to 9 and 11 mm respectively, resulting in up to 38% and 39% increases of mean doses and V{sub 25.2} for the heart. MHD and D{sub LAD} were positively correlated with mean heart dose and heart dose volume. Respiratory-adapted gated treatment may better spare heart and ipsilateral-lung compared with the conventional non-gated plan in a subset of patients with large D{sub LAD} or MHD variations. Conclusion: Proposed indices offer novel assessment of heart displacement based on 4DCT images. MHD and D{sub LAD} can be used independently or jointly as selection criteria for respiratory gating procedure before treatment planning. Patients with great intrafractional MHD variations or tumor(s) close to the diaphragm may particularly benefit from the gated treatment.

  2. On the interest of carbon-coated plasma reactor for advanced gate stack etching processes

    SciTech Connect (OSTI)

    Ramos, R.; Cunge, G.; Joubert, O. [Freescale Semiconductor Inc., 850 Rue Jean Monnet, 38921 Crolles Cedex (France) and Laboratoire des Technologies de la Microelectronique, CNRS, 17 Rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France); Laboratoire des Technologies de la Microelectronique, CNRS, 17 Rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France)

    2007-03-15T23:59:59.000Z

    In integrated circuit fabrication the most wide spread strategy to achieve acceptable wafer-to-wafer reproducibility of the gate stack etching process is to dry-clean the plasma reactor walls between each wafer processed. However, inherent exposure of the reactor walls to fluorine-based plasma leads to formation and accumulation of nonvolatile fluoride residues (such as AlF{sub x}) on reactor wall surfaces, which in turn leads to process drifts and metallic contamination of wafers. To prevent this while keeping an Al{sub 2}O{sub 3} reactor wall material, a coating strategy must be used, in which the reactor is coated by a protective layer between wafers. It was shown recently that deposition of carbon-rich coating on the reactor walls allows improvements of process reproducibility and reactor wall protection. The authors show that this strategy results in a higher ion-to-neutral flux ratio to the wafer when compared to other strategies (clean or SiOCl{sub x}-coated reactors) because the carbon walls load reactive radical densities while keeping the same ion current. As a result, the etching rates are generally smaller in a carbon-coated reactor, but a highly anisotropic etching profile can be achieved in silicon and metal gates, whose etching is strongly ion assisted. Furthermore, thanks to the low density of Cl atoms in the carbon-coated reactor, silicon etching can be achieved almost without sidewall passivation layers, allowing fine critical dimension control to be achieved. In addition, it is shown that although the O atom density is also smaller in the carbon-coated reactor, the selectivity toward ultrathin gate oxides is not reduced dramatically. Furthermore, during metal gate etching over high-k dielectric, the low level of parasitic oxygen in the carbon-coated reactor also allows one to minimize bulk silicon reoxidation through HfO{sub 2} high-k gate dielectric. It is then shown that the BCl{sub 3} etching process of the HfO{sub 2} high-k material is highly selective toward the substrate in the carbon-coated reactor, and the carbon-coating strategy thus allows minimizing the silicon recess of the active area of transistors. The authors eventually demonstrate that the carbon-coating strategy drastically reduces on-wafer metallic contamination. Finally, the consumption of carbon from the reactor during the etching process is discussed (and thus the amount of initial deposit that is required to protect the reactor walls) together with the best way of cleaning the reactor after a silicon etching process.

  3. Dual amplitude pulse generator for radiation detectors

    DOE Patents [OSTI]

    Hoggan, Jerry M. (Idaho Falls, ID); Kynaston, Ronnie L. (Blackfoot, ID); Johnson, Larry O. (Island Park, ID)

    2001-01-01T23:59:59.000Z

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  4. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  5. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22T23:59:59.000Z

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  6. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09T23:59:59.000Z

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  7. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA) [Castro Valley, CA; Page, Ralph H. (Castro Valley, CA) [Castro Valley, CA; Ebbers, Christopher A. (Livermore, CA) [Livermore, CA; Beach, Raymond J. (Livermore, CA) [Livermore, CA

    2008-06-10T23:59:59.000Z

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  8. Graph Generator Survey

    SciTech Connect (OSTI)

    Lothian, Josh [ORNL; Powers, Sarah S [ORNL; Sullivan, Blair D [ORNL; Baker, Matthew B [ORNL; Schrock, Jonathan [ORNL; Poole, Stephen W [ORNL

    2013-12-01T23:59:59.000Z

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  9. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  10. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  11. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  12. Energy and Mass Generation

    E-Print Network [OSTI]

    Burra G. Sidharth

    2010-03-11T23:59:59.000Z

    Modifications in the energy momentum dispersion laws due to a noncommutative geometry, have been considered in recent years. We examine the oscillations of extended objects in this perspective and find that there is now a "generation" of energy.

  13. Local entropy generation analysis

    SciTech Connect (OSTI)

    Drost, M.K.; White, M.D.

    1991-02-01T23:59:59.000Z

    Second law analysis techniques have been widely used to evaluate the sources of irreversibility in components and systems of components but the evaluation of local sources of irreversibility in thermal processes has received little attention. While analytical procedures for evaluating local entropy generation have been developed, applications have been limited to fluid flows with analytical solutions for the velocity and temperature fields. The analysis of local entropy generation can be used to evaluate more complicated flows by including entropy generation calculations in a computational fluid dynamics (CFD) code. The research documented in this report consists of incorporating local entropy generation calculations in an existing CFD code and then using the code to evaluate the distribution of thermodynamic losses in two applications: an impinging jet and a magnetic heat pump. 22 refs., 13 figs., 9 tabs.

  14. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  15. Monte Carlo event generators

    SciTech Connect (OSTI)

    Frixione, Stefano [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2005-10-06T23:59:59.000Z

    I review recent progress in the physics of parton shower Monte Carlos, emphasizing the ideas which allow the inclusion of higher-order matrix elements into the framework of event generators.

  16. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  17. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01T23:59:59.000Z

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  18. Nonlocal biphoton generation in Werner state from a single semiconductor quantum dot

    E-Print Network [OSTI]

    H. Kumano; H. Nakajima; T. Kuroda; T. Mano; K. Sakoda; I. Suemune

    2014-08-01T23:59:59.000Z

    We demonstrate Werner-like polarization-entangled state generation disapproving local hidden variable theory from a single semiconductor quantum dot. By exploiting tomographic analysis with temporal gating, we find biphoton states are mapped on the Werner state, which is crucial for quantum information applications due to its versatile ramifications such as usefulness to teleportation. Observed time evolution of the biphoton state brings us systematic understanding on a relationship between tomographically reconstructed biphoton state and a set of parameters characterizing exciton state including fine-structure splitting and cross-dephasing time.

  19. Perfect Computational Equivalence between Quantum Turing Machines and Finitely Generated Uniform Quantum Circuit Families

    E-Print Network [OSTI]

    Harumichi Nishimura; Masanao Ozawa

    2008-12-05T23:59:59.000Z

    In order to establish the computational equivalence between quantum Turing machines (QTMs) and quantum circuit families (QCFs) using Yao's quantum circuit simulation of QTMs, we previously introduced the class of uniform QCFs based on an infinite set of elementary gates, which has been shown to be computationally equivalent to the polynomial-time QTMs (with appropriate restriction of amplitudes) up to bounded error simulation. This result implies that the complexity class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do not appear to equal their counterparts for uniform QCFs. In this paper, we introduce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on finite number of elementary gates and show that the class of finitely generated uniform QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can exactly simulate each other. This naturally implies that BQP as well as ZQP and EQP equal the corresponding complexity classes of the finitely generated uniform QCFs.

  20. Thermoelectric power factor enhancement with gate-all-around silicon nanowires

    SciTech Connect (OSTI)

    Curtin, Benjamin M., E-mail: bcurtin@ece.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Bowers, John E. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-04-14T23:59:59.000Z

    The thermoelectric properties of gate-all-around silicon nanowires (Si NWs) are calculated to determine the potential for significant power factor enhancement. The Boltzmann transport equation and relaxation time approximation are employed to develop an electron transport model used to determine the field-effect mobility, electrical conductivity, Seebeck coefficient, and power factor for Si NWs with cross-sectional areas between 4?nm?×?4?nm and 12?nm?×?12?nm and a range of gate biases. Electrical conductivity for the gated Si NWs was much higher than that of doped Si due to the lack of ionized impurities and correspondingly greater carrier mobility. A significant increase in electrical conductivity with decreasing Si NW cross-sectional area was also observed due to a large increase in the average carrier density. For all Si NWs, the Seebeck coefficient was lower than that of doped bulk Si due to the different energy dependence between ionized impurity and phonon-mediated scattering processes. This decrease was also confirmed with Seebeck coefficient measurements of multigated Si NWs and n-type Si thin-films. Quantum confinement was also found to increase the Seebeck coefficient for <8?nm?×?8?nm Si NWs and also at high charge densities. A maximum power factor of 6.8?×?10{sup ?3}?W m{sup ?1} K{sup ?2} was calculated for the 6?nm?×?6?nm Si NWs with typical Si/SiO{sub 2} interface roughness, which is 2–3?×?those obtained experimentally for bulk Si. The power factor was also found to greatly depend on surface roughness, with a root-mean-square roughness of <0.8?nm necessary for power factor enhancement. An increase in ZT may also be possible if a low thermal conductivity can be obtained with minimal surface roughness.

  1. Implementation of quantum gates based on geometric phases accumulated in the eigenstates of periodic invariant operators

    E-Print Network [OSTI]

    L. B. Shao; Z. D. Wang; D. Y. Xing

    2006-10-24T23:59:59.000Z

    We propose a new strategy to physically implement a universal set of quantum gates based on geometric phases accumulated in the nondegenerate eigenstates of a designated invariant operator in a periodic physical system. The system is driven to evolve in such a way that the dynamical phase shifts of the invariant operator eigenstates are the same (or {\\it mod} $2\\pi$) while the corresponding geometric phases are nontrivial. We illustrate how this strategy to work in a simple but typical NMR-type qubit system.

  2. Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates

    E-Print Network [OSTI]

    MacLeod, S. J.; See, A. M.; Hamilton, A. R.; Farrer, I.; Ritchie, D. A.; Ritzmann, J.; Ludwig, A.; Wieck, A. D.

    2015-01-06T23:59:59.000Z

    ;max) is chosen so the leakage current between the Ohmic contacts and top-gate is ? 10 pA (the resolution limit of the Source Measure Unit SMU) when V? = 2.5V. For the deep device VTG;max = 1V and for the shallow device VTG;max = 0.5V. Figure 2 is a plot... V, where s = 0.00308V is the standard deviation, and n = 5 is the num- ber of points. 34 The reported limit to the reproducability/stability of the SMU, `SMU = 2mV (2400 Series SourceMeter Users Manual, Keith- ley Instruments, Inc. Cleveland, Ohio, U...

  3. Excitation spectrum as a resource for efficient two-qubit entangling gates

    E-Print Network [OSTI]

    Dmitry Solenov; Sophia E. Economou; Thomas L. Reinecke

    2014-04-03T23:59:59.000Z

    Physical systems representing qubits typically have one or more accessible quantum states in addition to the two states that encode the qubit. We demonstrate that active involvement of such auxiliary states can be beneficial in constructing entangling two-qubit operations. We investigate the general case of two multi-state quantum systems coupled via a quantum resonator. The approach is illustrated with the examples of three systems: self-assembled InAs/GaAs quantum dots, NV-centers in diamond, and superconducting transmon qubits. Fidelities of the gate operations are calculated based on numerical simulations of each system.

  4. Field programmable gate array-assigned complex-valued computation and its limits

    SciTech Connect (OSTI)

    Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com [National Instruments, Ganghoferstrasse 70b, 80339 Munich (Germany); Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien (Austria); Zwick, Wolfgang; Klier, Jochen [National Instruments, Ganghoferstrasse 70b, 80339 Munich (Germany); Wenzel, Lothar [National Instruments, 11500 N MOPac Expy, Austin, Texas 78759 (United States); Gröschl, Martin [Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien (Austria)

    2014-09-15T23:59:59.000Z

    We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.

  5. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01T23:59:59.000Z

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  6. MCNP LWR Core Generator

    SciTech Connect (OSTI)

    Fischer, Noah A. [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  7. MHD Generating system

    DOE Patents [OSTI]

    Petrick, Michael (Joliet, IL); Pierson, Edward S. (Chicago, IL); Schreiner, Felix (Mokena, IL)

    1980-01-01T23:59:59.000Z

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  8. Using Backup Generators: Choosing the Right Backup Generator...

    Office of Environmental Management (EM)

    Choose the generator's fuel source-Backup generators are typically powered by either diesel fuel or natural gas, and both have associated advantages and disadvantages. Speak with...

  9. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  10. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21T23:59:59.000Z

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  11. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  12. Hyperbolic Graph Generator

    E-Print Network [OSTI]

    Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-01-01T23:59:59.000Z

    Networks representing many complex systems in nature and society share some common structural properties like heterogeneous degree distributions and strong clustering. Recent research on network geometry has shown that those real networks can be adequately modeled as random geometric graphs in hyperbolic spaces. In this paper, we present a computer program to generate such graphs. Besides real-world-like networks, the program can generate random graphs from other well-known graph ensembles, such as the soft configuration model, random geometric graphs on a circle, or Erd\\H{o}s-R\\'enyi random graphs. The simulations show a good match between the expected values of different network structural properties and the corresponding empirical values measured in generated graphs, confirming the accurate behavior of the program.

  13. Electron Transport Behavior on Gate Length Scaling in Sub-50 nm GaAs Metal Semiconductor Field Effect Transistors

    SciTech Connect (OSTI)

    Han, Jaeheon [Department of Electronic Engineering, Kangnam University, 111 Gugal-dong, Giheung-gu, Yongin-city, Gyeonggi-do, Korea 446-702 (Korea, Republic of)

    2011-12-23T23:59:59.000Z

    Short channel GaAs Metal Semiconductor Field Effect Transistors (MESFETs) have been fabricated with gate length to 20 nm, in order to examine the characteristics of sub-50 nm MESFET scaling. Here the rise in the measured transconductance is mainly attributed to electron velocity overshoot. For gate lengths below 40 nm, however, the transconductance drops suddenly. The behavior of velocity overshoot and its degradation is investigated and simulated by using a transport model based on the retarded Langevin equation (RLE). This indicates the existence of a minimum acceleration length needed for the carriers to reach the overshoot velocity. The argument shows that the source resistance must be included as an internal element, or appropriate boundary condition, of relative importance in any model where the gate length is comparable to the inelastic mean free path of the carriers.

  14. Extremely scaled high-k/In?.??Ga?.??As gate stacks with low leakage and low interface trap densities

    SciTech Connect (OSTI)

    Chobpattana, Varistha; Mikheev, Evgeny; Zhang, Jack Y.; Mates, Thomas E.; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2014-09-28T23:59:59.000Z

    Highly scaled gate dielectric stacks with low leakage and low interface trap densities are required for complementary metal-oxide-semiconductor technology with III-V semiconductor channels. Here, we show that a novel pre-deposition technique, consisting of alternating cycles of nitrogen plasma and tetrakis(dimethylamino)titanium, allows for HfO? and ZrO? gate stacks with extremely high accumulation capacitance densities of more than 5 ?F/cm? at 1 MHz, low leakage current, low frequency dispersion, and low midgap interface trap densities (10¹²cm?²eV?¹range). Using x-ray photoelectron spectroscopy, we show that the interface contains TiO? and small quantities of In?O?, but no detectable Ga- or As-oxides, or As-As bonding. The results allow for insights into the microscopic mechanisms that control leakage and frequency dispersion in high-k/III-V gate stacks.

  15. Physics of gate leakage current in N-polar InAlN/GaN heterojunction field effect transistors

    SciTech Connect (OSTI)

    Goswami, Arunesh; Trew, Robert J.; Bilbro, Griff L. [ECE Department, Box 7911, North Carolina State University, Raleigh, North Carolina 27695-7911 (United States)

    2014-10-28T23:59:59.000Z

    A physics based model of the gate leakage current in N-polar InAlN/GaN heterojunction field effect transistors is demonstrated. The model is based on the space charge limited current flow dominated by the effects of deep traps in the InAlN surface layer. The model predicts accurately the gate-leakage measurement data of the N-polar InAlN/GaN device with InAlN cap layer. In the pinch-off state, the gate leakage current conduction through the surface of the device in the drain access region dominates the current flow through the two dimensional electron gas channel. One deep trap level and two levels of shallow traps are extracted by fitting the model results with measurement data.

  16. The Generation Effect and Memory

    E-Print Network [OSTI]

    Rosner, Zachary Alexander

    2012-01-01T23:59:59.000Z

    M. A. (2007). The generation effect: A meta- analyticBjork, R. A. (1988). The generation effect: Support for aE. J. (2012). The next generation: The value of reminding.

  17. Options for Generating Steam Efficiently

    E-Print Network [OSTI]

    Ganapathy, V.

    This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

  18. Gate Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version) The U.S.short version)

  19. Single trap dynamics in electrolyte-gated Si-nanowire field effect transistors

    SciTech Connect (OSTI)

    Pud, S.; Li, J.; Offenhäusser, A.; Vitusevich, S. A., E-mail: s.vitusevich@fz-juelich.de [Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, 52425 Jülich (Germany); Gasparyan, F. [Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, 52425 Jülich (Germany); Department of Semiconductor Physics and Microelectronics, Yerevan State University, 1 Alex Manoogian St., 0025 Yerevan (Armenia); Petrychuk, M. [Radiophysics Faculty, T. Shevchenko National University of Kyiv, 60 Volodymyrska St., 01601 Kyiv (Ukraine)

    2014-06-21T23:59:59.000Z

    Liquid-gated silicon nanowire (NW) field effect transistors (FETs) are fabricated and their transport and dynamic properties are investigated experimentally and theoretically. Random telegraph signal (RTS) fluctuations were registered in the nanolength channel FETs and used for the experimental and theoretical analysis of transport properties. The drain current and the carrier interaction processes with a single trap are analyzed using a quantum-mechanical evaluation of carrier distribution in the channel and also a classical evaluation. Both approaches are applied to treat the experimental data and to define an appropriate solution for describing the drain current behavior influenced by single trap resulting in RTS fluctuations in the Si NW FETs. It is shown that quantization and tunneling effects explain the behavior of the electron capture time on the single trap. Based on the experimental data, parameters of the single trap were determined. The trap is located at a distance of about 2?nm from the interface Si/SiO{sub 2} and has a repulsive character. The theory of dynamic processes in liquid-gated Si NW FET put forward here is in good agreement with experimental observations of transport in the structures and highlights the importance of quantization in carrier distribution for analyzing dynamic processes in the nanostructures.

  20. Electrical behavior of atomic layer deposited high quality SiO{sub 2} gate dielectric

    SciTech Connect (OSTI)

    Pradhan, Sangram K.; Tanyi, Ekembu K.; Skuza, Jonathan R.; Xiao, Bo; Pradhan, Aswini K., E-mail: apradhan@nsu.edu [Center for Materials Research, Norfolk State University, 700 Park Ave., Norfolk, Virginia 23504 (United States)

    2015-01-01T23:59:59.000Z

    Comprehensive and systematic electrical studies were performed on fabrication of high quality SiO{sub 2} thin films MOS capacitor using the robust, novel, and simple atomic layer deposition (ALD) technique using highly reactive ozone and tris (dimethylamino) silane (TDMAS) precursors. Ideal capacitance–voltage curve exhibits a very small frequency dispersion and hysteresis behavior of the SiO{sub 2} MOS capacitor grown at 1?s TDMAS pulse, suggesting excellent interfacial quality and purity of the film as probed using x-ray photoelectron studies. The flat-band voltage of the device shifted from negative toward positive voltage axis with increase of TDMAS pulses from 0.2 to 2 s. Based on an equivalent oxide thickness point of view, all SiO{sub 2} films have gate leakage current density of (5.18?×?10{sup ?8} A/cm{sup 2}) as well as high dielectric break down fields of more than (?10 MV/cm), which is better and comparable to that of thermally grown SiO{sub 2} at temperatures above 800?°C. These appealing electrical properties of ALD grown SiO{sub 2} thin films enable its potential applications such as high-quality gate insulators for thin film MOS transistors, as well as insulators for sensor and nanostructures on nonsilicon substrates.

  1. Nucleotide-induced conformational motions and transmembrane gating dynamics in a bacterial ABC transporter

    E-Print Network [OSTI]

    Holger Flechsig

    2014-02-07T23:59:59.000Z

    ATP-binding cassette (ABC) transporters are integral membrane proteins that mediate the exchange of diverse substrates across membranes powered by ATP hydrolysis. We report results of coarse-grained dynamical simulations performed for the bacterial heme transporter HmuUV. Based on the nucleotide-free structure, we have constructed a ligand-elastic-network description for this protein and investigated ATP-induced conformational motions in structurally resolved computer experiments. As we found, interactions with nucleotides resulted in generic motions which are functional and robust. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact and the transmembrane domains were rotated. The heme channel was broadened in the ligand-bound complex and the gate to the cytoplasm, which was closed in the nucleotide-free conformation, was rendered open by a mechanism that involved tilting motions of essential transmembrane helices. Based on our findings we propose that the HmuUV transporter behaves like a `simple' mechanical device in which, induced by binding of ATP ligands, linear motions of the nucleotide-binding domains are translated into rotational motions and internal tilting dynamics of the transmembrane domains that control gating inside the heme pathway.

  2. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  3. Next-Generation Photovoltaic Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

  4. Conductance modulation in topological insulator Bi{sub 2}Se{sub 3} thin films with ionic liquid gating

    SciTech Connect (OSTI)

    Son, Jaesung; Banerjee, Karan; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Brahlek, Matthew; Koirala, Nikesh; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)] [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States); Lee, Seoung-Ki [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of) [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Jong-Hyun [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)] [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-11-18T23:59:59.000Z

    A Bi{sub 2}Se{sub 3} topological insulator field effect transistor is investigated by using ionic liquid as an electric double layer gating material, leading to a conductance modulation of 365% at room temperature. We discuss the role of charged impurities on the transport properties. The conductance modulation with gate bias is due to a change in the carrier concentration, whereas the temperature dependent conductance change is originated from a change in mobility. Large conductance modulation at room temperature along with the transparent optical properties makes topological insulators as an interesting (opto)electronic material.

  5. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee May 28, 2014 Steve Simmons Gillian Charles #12;2 9:30 AM plants 10:45 AM Break 11:00 AM Peaking Technologies Continued... 11:30 AM Combined Cycle Combustion Turbine and Utility Scale Solar PV Reference plant updates Levelized cost of energy 12:00 PM Lunch

  6. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee February 27, 2014 Steven Simmons and Gillian Charles Upcoming Symposium 9:15 am Natural Gas Peaking Technologies Technology Trends Proposed reference plant Costing, Economies of Scale, Normalizations Reference Plants 12:30 pm Discussion of Next GRAC Meetings

  7. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry

    2015-01-01T23:59:59.000Z

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.

  8. CONSULTANT REPORT DISTRIBUTED GENERATION

    E-Print Network [OSTI]

    an independent cost analysis to interconnect and integrate increased penetration levels of renewable distributed costs. The Energy Commission considers this study a first step toward the 2012 Integrated Energy Policy Generation Integration Cost Study: Analytical Framework. California Energy Commission. CEC2002013007. i

  9. Energy generation in stars

    E-Print Network [OSTI]

    B. V. Vasiliev

    2001-10-29T23:59:59.000Z

    It is a current opinion that thermonuclear fusion is the main source of the star activity. It is shown below that this source is not unique. There is another electrostatic mechanism of the energy generation which accompanies thermonuclear fusion. Probably, this approach can solve the solar neutrino problem.

  10. Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels

    E-Print Network [OSTI]

    Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin. The exfoliated crystalline TiTe2 films were used as the channel layers in the back-gated field-effect transistors-voltage characteristics revealed strongly non-linear behavior with signatures of the source-drain threshold voltage

  11. P-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low-temperature technology

    E-Print Network [OSTI]

    Boyer, Edmond

    is obtained. P-type and N-type vertical TFTs have shown symmetric electrical characteristics. DifferentP-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low) ABSTRACT P-type and N-type multi-gate vertical thin film transistors (vertical TFTs) have been fabricated

  12. Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: First-principles study

    E-Print Network [OSTI]

    Ceder, Gerbrand

    a promising gate oxide material to replace silicon dioxide in metal-oxide- semiconductor devices. Using-earth-doped lasers. Recently, Y2O3 has re- ceived attention as a promising candidate for replacing sili- con dioxide SiO2 as a gate dielectric material in metal- oxide-semiconductor MOS transistors.1­10 The continual

  13. Thermoelectric properties of electrically gated bismuth telluride nanowires I. Bejenari,1,2,* V. Kantser,2, and A. A. Balandin1,

    E-Print Network [OSTI]

    Thermoelectric properties of electrically gated bismuth telluride nanowires I. Bejenari,1,2,* V can modify thermoelectric properties of intrinsic, n-type and p-type bismuth telluride nanowires, and thermoelectric figure of merit on the nanowire thickness, gate voltage, and excess hole electron concentration

  14. Modulation of conductance and superconductivity by top-gating in LaAlO{sub 3}/SrTiO{sub 3} 2-dimensional electron systems

    SciTech Connect (OSTI)

    Eerkes, P. D.; Wiel, W. G. van der; Hilgenkamp, H. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)] [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-11-11T23:59:59.000Z

    We report the electrical top-gating of a 2-dimensional electron gas (2DEG) formed at the LaAlO{sub 3}/SrTiO{sub 3} interface, using electron-beam evaporated Au gate electrodes. In these structures, epitaxial LaAlO{sub 3} films grown by pulsed laser deposition induce the 2DEGs at the interface to the SrTiO{sub 3} substrate and simultaneously act as the gate dielectric. The structured top-gates enable a local tuning and complete on/off switching of the interface (super-)conductivity, while maintaining the usual, intrinsic characteristics for these LaAlO{sub 3}/SrTiO{sub 3} interfaces when no gate voltage is applied.

  15. Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville

    SciTech Connect (OSTI)

    Irick, David

    2012-08-30T23:59:59.000Z

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center’s focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

  16. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01T23:59:59.000Z

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  17. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01T23:59:59.000Z

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  18. Energy Replacement Generation Tax Exemption

    Broader source: Energy.gov [DOE]

    Under the Energy Replacement Generation Tax Exemption, the following facilities are exempt from the replacement tax:

  19. Generation of energy

    DOE Patents [OSTI]

    Kalina, Alexander I. (12214 Clear Fork, Houston, TX 77077)

    1984-01-01T23:59:59.000Z

    A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

  20. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  1. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  2. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  3. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  4. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29T23:59:59.000Z

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  5. Milliwatt Generator Project

    SciTech Connect (OSTI)

    Latimer, T.W.; Rinehart, G.H.

    1992-05-01T23:59:59.000Z

    This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

  6. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Eimerl, David (Pleasanton, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  7. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10T23:59:59.000Z

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  8. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31T23:59:59.000Z

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  9. Low-frequency noise for different gate dielectrics on state-of-the-art UTBOX SOI nMOSFETs

    E-Print Network [OSTI]

    Boyer, Edmond

    diameter of the wafer and in linear operation (drain voltage VDS=0.05 V), with the front (VGS) or back gate that also degrades the front-channel mobility. The back interface presents similar performance in both SiO2, offering the ability to control the VT based on the back biasing. Moreover, UTBOX devices present

  10. 250 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 4, NO. 4, AUGUST 2010 Digital Microfluidic Logic Gates and Their

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Microfluidic Logic Gates and Their Application to Built-in Self-Test of Lab-on-Chip Yang Zhao, Student Member for microfluidic lab-on-chip. Robust testing methods are therefore needed to ensure correct results. Previously prone. We present a built-in self-test (BIST) method for digital microfluidic lab-on-chip. This method

  11. Built-in Self-Test and Fault Diagnosis for Lab-on-Chip Using Digital Microfluidic Logic Gates

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Built-in Self-Test and Fault Diagnosis for Lab-on-Chip Using Digital Microfluidic Logic Gates Yang University, Durham, NC 27708, USA Abstract Dependability is an important system attribute for microfluidic are cumbersome and error-prone. We present a built-in self-test (BIST) method for digital microfluidic lab

  12. Reverse gate bias-induced degradation of AlGaN/GaN high electron mobility transistors

    E-Print Network [OSTI]

    Florida, University of

    , or temperature in- creases due to self-heating. For example, in the on-state stress condition, there may be strong self-heating of the HEMT and a high density of hot electrons in the channel, but accompanied and gate leakage, but should reduce contributions from hot electrons and self-heating.13

  13. 42 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 1, JANUARY 2004 Timing Driven Gate Duplication

    E-Print Network [OSTI]

    Kastner, Ryan

    42 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 1, JANUARY 2004 of transforming a set of boolean equations into a circuit comprising of gates that implement the logic while, and power) but the present work deals with delay optimization. Many timing optimization strategies have been

  14. From salience to saccades: Multiple-alternative gated stochastic accumulator model of visual Braden A. Purcell1,2,3

    E-Print Network [OSTI]

    Palmeri, Thomas

    1 From salience to saccades: Multiple-alternative gated stochastic accumulator model of visual: (615) 343-7900 fax: (615) 343-8449 We describe a stochastic accumulator model demonstrating that visual competing accumulators. The model quantitatively accounts for behavior and predicts neural dynamics

  15. Lifetime of high-k gate dielectrics and analogy with strength of quasibrittle Jia-Liang Le,1

    E-Print Network [OSTI]

    Bazant, Martin Z.

    , Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA 2 Department of Materials Science to breakdown i.e., the integral of the tunneling current over the lifetime .2,4 Re- cently, histogram testingLifetime of high-k gate dielectrics and analogy with strength of quasibrittle structures Jia

  16. International Conference on Internet Computing. Las Vegas, Nevada, p. 620 626. 23 26 June MONSTERS AT THE GATE

    E-Print Network [OSTI]

    Jansen, James

    , (2) Web agents are searching for a wide variety of information, with 60% of the terms used being: terms exactly as entered by the given user. Data Analysis With these three fields, we located initial June 2003. MONSTERS AT THE GATE: WHEN SOFTBOTS VISIT WEB SEARCH ENGINES Bernard J. Jansen and Amanda S

  17. Coupled electromechanical effects in wurtzite quantum dots with wetting layers in gate controlled electric fields: The multiband case

    E-Print Network [OSTI]

    Melnik, Roderick

    Coupled electromechanical effects in wurtzite quantum dots with wetting layers in gate controlled quantifies the electromechanical effects on the band structure of wurtzite quantum dots. c Systematic study on the band structure calculations of wurtzite AlN/GaN quantum dots with wetting layers (WLs). Based

  18. Dirac point and transconductance of top-gated graphene field-effect transistors operating at elevated temperature

    SciTech Connect (OSTI)

    Hopf, T.; Vassilevski, K. V., E-mail: k.vasilevskiy@ncl.ac.uk; Escobedo-Cousin, E.; King, P. J.; Wright, N. G.; O'Neill, A. G.; Horsfall, A. B.; Goss, J. P. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Wells, G. H.; Hunt, M. R. C. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-21T23:59:59.000Z

    Top-gated graphene field-effect transistors (GFETs) have been fabricated using bilayer epitaxial graphene grown on the Si-face of 4H-SiC substrates by thermal decomposition of silicon carbide in high vacuum. Graphene films were characterized by Raman spectroscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy, and Hall measurements to estimate graphene thickness, morphology, and charge transport properties. A 27?nm thick Al?O? gate dielectric was grown by atomic layer deposition with an e-beam evaporated Al seed layer. Electrical characterization of the GFETs has been performed at operating temperatures up to 100?°C limited by deterioration of the gate dielectric performance at higher temperatures. Devices displayed stable operation with the gate oxide dielectric strength exceeding 4.5 MV/cm at 100?°C. Significant shifting of the charge neutrality point and an increase of the peak transconductance were observed in the GFETs as the operating temperature was elevated from room temperature to 100?°C.

  19. Perfect electrical switching of edge channel transport in HgTe quantum wells controlled by gate voltage

    SciTech Connect (OSTI)

    Fu, Hua-Hua, E-mail: hhfu@mail.hust.edu.cn; Wu, Dan-Dan; Gu, Lei [College of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-14T23:59:59.000Z

    We present a proposal to realize a perfect electrical switching of topological edge-state transport in a HgTe quantum well (QW). In our device design, we place a strip-like top gate voltage in a conventional quantum-point-contact (QPC) region in the HgTe QW. The numerical calculations show that upon increasing the gate voltage, two new conductance channels are developed in the transport direction and just neighbouring the boundaries of the top gate. The quantum states in the new channels can couple with the edge states to open a gap in energy spectrum, and in turn the gap width can be adjusted by the gate voltage, indicating that switch-on/off of the edge channels can be manipulated in a controllable way. Our device can not only be considered as a development of the conventional QPC structure based on the HgTe QW but also provides a new route to realize topological electrical switchers.

  20. Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate insulator

    E-Print Network [OSTI]

    Boyer, Edmond

    Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate seeking desirable semi- conductor/insulator combinations [3]. In this study, we adopted an epoxy resin fabricated and characterized. SU-8, a reliable epoxy-based pho- toresist, is tested as a potential highly

  1. Test Set Reordering Using the Gate Exhaustive Test Metric Kyoung Youn Cho and Edward J. McCluskey

    E-Print Network [OSTI]

    Stanford University

    Test Set Reordering Using the Gate Exhaustive Test Metric Kyoung Youn Cho and Edward J. Mc kycho@crc.stanford.edu Abstract When a test set size is larger than desired, some patterns must be dropped. This paper presents a systematic method to reduce test set size; the method reorders a test set

  2. A Leadership-Class U.S. Domestic Stellarator Program Hutch Neilson, David Gates, and Michael Zarnstorff

    E-Print Network [OSTI]

    A Leadership-Class U.S. Domestic Stellarator Program Hutch Neilson, David Gates, and Michael concepts or because they lack the core capabilities for it. U.S. leadership in QS stellarators is both.S. leadership in stellarators requires a domestic program to pursue U.S. innovations targeted to materially

  3. Thermoelectric power factor enhancement with gate-all-around silicon nanowires Benjamin M. Curtin and John E. Bowers

    E-Print Network [OSTI]

    Bowers, John

    Thermoelectric power factor enhancement with gate-all-around silicon nanowires Benjamin M. Curtin and thermoelectric properties of very high power factor Fe3O4/SiO2/p-type Si(001) devices J. Appl. Phys. 115, 033709 (2014); 10.1063/1.4861729 A comprehensive study of thermoelectric and transport properties of -silicon

  4. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator

    E-Print Network [OSTI]

    Goldhaber-Gordon, David

    for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigera- tor for improved energy resolution for spec- troscopic measurements, as well as for investigating physical effects

  5. Role of hydrogen in Ge/HfO2/Al gate stacks subjected to negative bias temperature instability

    E-Print Network [OSTI]

    Misra, Durgamadhab "Durga"

    Role of hydrogen in Ge/HfO2/Al gate stacks subjected to negative bias temperature instability N 2007; published online 17 January 2008 This work investigates the role of hydrogen and nitrogen in a Ge. Virtually unchanged interface state density as a function of NBTI indicates no atomic hydrogen release from

  6. The Proton-Driven Rotor of ATP Synthase: Ohmic Conductance (10 fS), and Absence of Voltage Gating

    E-Print Network [OSTI]

    Junge, Wolfgang

    The Proton-Driven Rotor of ATP Synthase: Ohmic Conductance (10 fS), and Absence of Voltage Gating portion of F0F1-ATP synthase, F0, translocates protons by a rotary mechanism. Proton conduction by F0-induced voltage jump was monitored by electrochromic absorption transients to yield the unitary conductance of F0

  7. ANALOG-DECODER EXPERIMENTS WITH SUBTHRESHOLD CMOS SOFT-GATES Matthias Frey, Hans-Andrea Loeliger, Felix Lustenberger

    E-Print Network [OSTI]

    Loeliger, Hans-Andrea

    in a low-cost semi-custom 0.8 µm technology. These soft-gates allow, in particular, the real- ization given in [6] and [7, 8]; see also [9]. Since 1998, much effort has been spent towards turning BiCMOS technology. Winstead et al. [11] have fabricated a decoder of the (8,4,4) Hamming code in 0

  8. Linguistic Alignment in Natural Language Generation

    E-Print Network [OSTI]

    Halberg, Gabrielle Manya

    2013-01-01T23:59:59.000Z

    that are instantiated at generation time. . . . . . . . .that are instantiated at generation time. . Illustration ofin Natural Language Generation by Gabrielle Halberg

  9. Renewable Energy: Distributed Generation Policies and Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Policies & Programs Renewable Energy: Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation...

  10. Effects of rapid thermal annealing on the electrical properties of the AlGaN/AlN/GaN heterostructure field-effect transistors with Ti/Al/Ni/Au gate electrodes

    SciTech Connect (OSTI)

    Zhao, Jingtao; Lin, Zhaojun, E-mail: linzj@sdu.edu.cn; Luan, Chongbiao; Zhou, Yang; Yang, Ming [School of Physics, Shandong University, Jinan 250100 (China); Lv, Yuanjie; Feng, Zhihong [National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051 (China)

    2014-08-25T23:59:59.000Z

    In this study, we investigated the electrical properties of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with Ti/Al/Ni/Au gate electrodes using the measured capacitance-voltage, current-voltage characteristics, and micro-Raman spectroscopy. We found that the uneven distribution of the strain caused by the Schottky metals was a major factor that generates the polarization Coulomb field scattering in AlGaN/AlN/GaN HFETs, and after appropriate rapid thermal annealing (RTA) processes, the polarization Coulomb field scattering was greatly weakened and the two-dimensional electron gas electron mobility was improved. We also found that the Schottky barrier height and the DC characteristics of the devices became better after appropriate RTA. Of course, the electrical performances mentioned above became deteriorated after excessive annealing.

  11. Ultrafast control of nuclear spins using only microwave pulses: towards switchable solid-state quantum gates

    E-Print Network [OSTI]

    George Mitrikas; Yiannis Sanakis; Georgios Papavassiliou

    2009-10-13T23:59:59.000Z

    We demonstrate the control of the alpha-proton nuclear spin, I=1/2, coupled to the stable radical CH(COOH)2, S=1/2, in a gamma-irradiated malonic acid single crystal using only microwave pulses. We show that, depending on the state of the electron spin mS=+/-1/2, the nuclear spin can be locked in a desired state or oscillate between mI=+1/2 and mI=-1/2 on the nanosecond time scale. This approach provides a fast and efficient way of controlling nuclear spin qubits and also enables the design of switchable spin-based quantum gates by addressing only the electron spin.

  12. A Strained Organic Field-Effect-Transistor with a Gate-Tunable Superconducting Channel

    E-Print Network [OSTI]

    Hiroshi M. Yamamoto; Masaki Nakano; Masayuki Suda; Yoshihiro Iwasa; Masashi Kawasaki; Reizo Kato

    2013-09-02T23:59:59.000Z

    In state-of-the-art silicon devices, mobility of the carrier is enhanced by the lattice strain from the back substrate. Such an extra control of device performance is significant in realizing high performance computing and should be valid for electric-field-induced superconducting devices, too. However, so far, the carrier density is the sole parameter for field-induced superconducting interfaces. Here we show an active organic superconducting field-effect-transistor whose lattice is modulated by the strain from the substrate. The soft organic lattice allows tuning of the strain by a choice of the back substrate to make an induced superconducting state accessible at low temperature with a paraelectric solid gate. An active three terminal Josephson junction device thus realized is useful both in advanced computing and in elucidating a direct connection between filling-controlled and bandwidth-controlled superconducting phases in correlated materials.

  13. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    SciTech Connect (OSTI)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui [Physics Department, Zhejiang University, Hangzhou, 310027 (China)

    2012-09-15T23:59:59.000Z

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  14. Calibration of a gated flat field spectrometer as a function of x-ray intensity

    SciTech Connect (OSTI)

    Xiong, Gang; Yang, Guohong; Li, Hang; Zhang, Jiyan, E-mail: zhangjiyanzjy@sina.com; Zhao, Yang; Hu, Zhimin; Wei, Minxi; Qing, Bo; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900 (China)

    2014-04-15T23:59:59.000Z

    We present an experimental determination of the response of a gated flat-field spectrometer at the Shenguang-II laser facility. X-rays were emitted from a target that was heated by laser beams and then were divided into different intensities with a step aluminum filter and collected by a spectrometer. The transmission of the filter was calibrated using the Beijing Synchrotron Radiation Facility. The response characteristics of the spectrometer were determined by comparing the counts recorded by the spectrometer with the relative intensities of the x-rays transmitted through the step aluminum filter. The response characteristics were used to correct the transmission from two shots of an opacity experiment using the same samples. The transmissions from the two shots are consistent with corrections, but discrepant without corrections.

  15. Revealing Carrier-Envelope Phase through Frequency Mixing and Interference in Frequency Resolved Optical Gating

    E-Print Network [OSTI]

    Snedden, Edward W; Jamison, Steven P

    2015-01-01T23:59:59.000Z

    We demonstrate that full temporal characterisation of few-cycle electromagnetic pulses, including retrieval of the carrier envelope phase (CEP), can be directly obtained from Frequency Resolved Optical Gating (FROG) techniques in which the interference between non-linear frequency mixing processes is resolved. We derive a framework for this scheme, defined Real Domain-FROG (ReD-FROG), as applied to the cases of interference between sum and difference frequency components and between fundamental and sum/difference frequency components. A successful numerical demonstration of ReD-FROG as applied to the case of a self-referenced measurement is provided. A proof-of-principle experiment is performed in which the CEP of a single-cycle THz pulse is accurately obtained and demonstrates the possibility for THz detection beyond the bandwidth limitations of electro-optic sampling.

  16. Nucleotide-induced conformational motions and transmembrane gating dynamics in a bacterial ABC transporter

    E-Print Network [OSTI]

    Flechsig, Holger

    2014-01-01T23:59:59.000Z

    ATP-binding cassette (ABC) transporters are integral membrane proteins that mediate the exchange of diverse substrates across membranes powered by ATP hydrolysis. We report results of coarse-grained dynamical simulations performed for the bacterial heme transporter HmuUV. Based on the nucleotide-free structure, we have constructed a ligand-elastic-network description for this protein and investigated ATP-induced conformational motions in structurally resolved computer experiments. As we found, interactions with nucleotides resulted in generic motions which are functional and robust. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact and the transmembrane domains were rotated. The heme channel was broadened in the ligand-bound complex and the gate to the cytoplasm, which was closed in the nucleotide-free conformation, was rendered open by a mechanism that involv...

  17. Gate induced g-factor control and dimensional transition for donors in multi-valley semiconductors

    E-Print Network [OSTI]

    Rajib Rahman; Seung H. Park; Timothy B. Boykin; Gerhard Klimeck; Sven Rogge; Lloyd C. L. Hollenberg

    2009-05-19T23:59:59.000Z

    The dependence of the g-factors of semiconductor donors on applied electric and magnetic fields is of immense importance in spin based quantum computation and in semiconductor spintronics. The donor g-factor Stark shift is sensitive to the orientation of the electric and magnetic fields and strongly influenced by the band-structure and spin-orbit interactions of the host. Using a multimillion atom tight-binding framework the spin-orbit Stark parameters are computed for donors in multi-valley semiconductors, silicon and germanium. Comparison with limited experimental data shows good agreement for a donor in silicon. Results for gate induced transition from 3D to 2D wave function confinement show that the corresponding g-factor shift in Si is experimentally observable.

  18. A New Gated X-Ray Detector for the Orion Laser Facility

    SciTech Connect (OSTI)

    Clark, David D. [Los Alamos National Laboratory; Aragonez, Robert J. [Los Alamos National Laboratory; Archuleta, Thomas N. [Los Alamos National Laboratory; Fatherley, Valerie E. [Los Alamos National Laboratory; Hsu, Albert H. [Los Alamos National Laboratory; Jorgenson, H. J. [Los Alamos National Laboratory; Mares, Danielle [Los Alamos National Laboratory; Oertel, John A. [Los Alamos National Laboratory; Oades, Kevin [Atomic Weapons Establishment; Kemshall, Paul [Atomic Weapons Establishment; Thomas, Philip [Atomic Weapons Establishment; Young, Trevor [Atomic Weapons Establishment; Pederson, Neal [VI Control Systems

    2012-08-08T23:59:59.000Z

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  19. Ripple gate drive circuit for fast operation of series connected IGBTs

    DOE Patents [OSTI]

    Rockot, Joseph H.; Murray, Thomas W.; Bass, Kevin C.

    2005-09-20T23:59:59.000Z

    A ripple gate drive circuit includes a plurality of transistors having their power terminals connected in series across an electrical potential. A plurality of control circuits, each associated with one of the transistors, is provided. Each control circuit is responsive to a control signal and an optical signal received from at least one other control circuit for controlling the conduction of electrical current through the power terminals of the associated transistor. The control circuits are responsive to a first state of the control circuit for causing each transistor in series to turn on sequentially and responsive to a second state of the control signal for causing each transistor in series to turn off sequentially.

  20. On-demand generation of aqueous two-phase microdroplets with reversible phase transitions

    SciTech Connect (OSTI)

    Boreyko, Jonathan B [ORNL; Mruetusatorn, Prachya [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL

    2013-01-01T23:59:59.000Z

    Aqueous two-phase systems contained entirely within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microgel states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.

  1. Development of a super high speed motor-generator and controller

    SciTech Connect (OSTI)

    Hong, Do-Kwan, E-mail: dkhong@keri.re.kr; Ahn, Min-Hyuk; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun [Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2014-05-07T23:59:59.000Z

    To develop a super high speed motor-generator, it is essential to deal with magnetic analysis, dynamic analysis, and experimental evaluation of the heart of the MTG (Microturbine Generator) system, the motor-generator. An amorphous core is applied to a stator core for reduction of iron loss at high speed, and the motor-generator is analyzed with considerations focused on magnetic losses and the statistical optimum design. The performance of the amorphous core is validated by the analysis and experiment by back-to-back tests considering the AC load. Rotor dynamics is performed for dynamic stability at high speed using transient analysis orbit diagrams and compared with the experimental results. The simulation results of the generator are compared with the experiment. Also a super high speed controller of the MTG system is developed using a sensorless algorithm, power stack, gate driver, digital signal processing, analog circuit, and radiation heat design. Based on these results, a high speed motor-generator and controller are successfully developed.

  2. Computer generated holographic microtags

    DOE Patents [OSTI]

    Sweatt, W.C.

    1998-03-17T23:59:59.000Z

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

  3. Spin Seebeck power generators

    SciTech Connect (OSTI)

    Cahaya, Adam B.; Tretiakov, O. A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Bauer, Gerrit E. W. [Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577 (Japan); Kavli Institute of NanoScience, TU Delft Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2014-01-27T23:59:59.000Z

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  4. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, H.S.; Clark, M.L.

    1981-11-03T23:59:59.000Z

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  5. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

    1982-01-01T23:59:59.000Z

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  6. Energy Generation by State and Technology (2009) - Energy Generation...

    Open Energy Info (EERE)

    Energy Generation by Fuel ... Download Energy Generation by Fuel Source and State, 2009 URL: http:en.openei.orgdatasetsdataset03f65dc9-ddc9-41ce-806f-edafad486a1fresource...

  7. Using polymer electrolyte gates to set-and-freeze threshold voltage and local potential in nanowire-based devices and thermoelectrics

    E-Print Network [OSTI]

    Sofia Fahlvik Svensson; Adam M. Burke; Damon J. Carrad; Martin Leijnse; Heiner Linke; Adam P. Micolich

    2014-11-11T23:59:59.000Z

    We use the strongly temperature-dependent ionic mobility in polymer electrolytes to 'freeze in' specific ionic charge environments around a nanowire using a local wrap-gate geometry. This enables us to set both the threshold voltage for a conventional doped substrate gate and the local disorder potential at temperatures below 200 Kelvin, which we characterize in detail by combining conductance and thermovoltage measurements with modeling. Our results demonstrate that local polymer electrolyte gates are compatible with nanowire thermoelectrics, where they offer the advantage of a very low thermal conductivity, and hold great potential towards setting the optimal operating point for solid-state cooling applications.

  8. Damage threshold and focusability of mid-infrared free-electron laser pulses gated by a plasma mirror with nanosecond switching pulses

    SciTech Connect (OSTI)

    Wang, Xiaolong; Nakajima, Takashi; Zen, Heishun; Kii, Toshiteru; Ohgaki, Hideaki [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)] [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2013-11-04T23:59:59.000Z

    The presence of a pulse train structure of an oscillator-type free-electron laser (FEL) results in the immediate damage of a solid target upon focusing. We demonstrate that the laser-induced damage threshold can be significantly improved by gating the mid-infrared FEL pulses with a plasma mirror. Although the switching pulses we employ have a nanosecond duration which does not guarantee the clean wavefront of the gated FEL pulses, the high focusability is experimentally confirmed through the observation of spectral broadening by a factor of 2.1 when we tightly focus the gated FEL pulses onto the Ge plate.

  9. SiO2 Passivation Effects on the Leakage Current in Dual-Gate AlGaN/GaN High Electron Mobility Transistors

    E-Print Network [OSTI]

    Seo, Kwang Seok

    was grown on c-plane sapphire substrate by MOCVD. Undoped 30 nm-thick Al0.26Ga0.74N and Fe-doped 3 m GaN substrate 3 nm undoped GaN 0.26 0.74 Source DrainMain-GateSiO2 2DEG SiO2 SiO2 Additional Gate 5 m3 m3 m 3 mSiO2 Passivation Effects on the Leakage Current in Dual-Gate AlGaN/GaN High Electron Mobility

  10. Energy Generation Project Permitting (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered...

  11. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  12. Transition-fault test generation

    E-Print Network [OSTI]

    Cobb, Bradley Douglas

    2013-02-22T23:59:59.000Z

    . One way to detect these timing defects is to apply test patterns to the integrated circuit that are generated using the transition-fault model. Unfortunately, industry's current transition-fault test generation schemes produce test sets that are too...

  13. Steam generator tube rupture study

    E-Print Network [OSTI]

    Free, Scott Thomas

    1986-01-01T23:59:59.000Z

    This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

  14. Self-assembling software generator

    DOE Patents [OSTI]

    Bouchard, Ann M. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    2011-11-25T23:59:59.000Z

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  15. Thermoacoustic generation in anisotropic media

    E-Print Network [OSTI]

    Hildebrand, John A

    1986-01-01T23:59:59.000Z

    John Hildebrand: A. Thermoacoustic generation anisotropicsubstantial variation thermoacoustic in gen- erationisstress-strain relationfor thermoacoustic genera- tion and,if

  16. A Perspective on MGI Dave McDowell, Executive Director

    E-Print Network [OSTI]

    Nair, Sankar

    for Universities · Innovation infrastructure (shared resources and cyber infrastructure for materials data, infrastructure, communications, security · Economic Impact ­ future workforce, 21st century economy #12;Cabinet · Strategic Industry Relations · Distributed facilities · Web portal, search/access · Teaming #12;Some

  17. Eshan V. Dave,1 Andrew F. Braham,2

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    of a Flattened Indirect Tension Test for Asphalt Concrete ABSTRACT: The indirect tension test (IDT) is frequently is proposed for indirect tension testing of asphalt concrete. In place of the standard loading heads of three asphalt concrete mixtures in two flattened configurations. This integrated modeling and testing

  18. Y-12s Training and Technology ? TAT and Dave Miller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parlor and started a conversation with the new owner Herman Wyrick. Herman was also a welding instructor in a new program called Training and Technology (TAT)and NDT was taught...

  19. Dave, Corbus, Energy Reliability in a Changing Landscape

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY LABORATORY Flexibility Options for Improved RE Integration 7 NATIONAL RENEWABLE ENERGY LABORATORY Late 1990's Control Centers (ComED) NATIONAL RENEWABLE ENERGY LABORATORY...

  20. Dave Thomson, 29th September 2010 Crown copyright Met Office

    E-Print Network [OSTI]

    response dispersion predictions for nuclear incidentsfor nuclear incidents Model now has much wider range of applications Nuclear and chemical releases Volcanic ash Disease spread (foot and mouth, blue tongue disease using Mastin et al s (2009) emission rate v. plume rise curve, making agreement best where VAFTAD