Sample records for date reference material

  1. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In

  2. REFERENCE CHECK QUESTIONS Candidate Name:_____________________ Date of Reference:_____________

    E-Print Network [OSTI]

    Provancher, William

    are the candidate's most significant strengths? Any areas for improvement? If you were in a position to hire:_____________ Reference Name:_____________________ Company:____________________ Conducted by:_______________________ Phone (name) handle conflict? How about pressure? Stress? Describe the candidate's productivity, commitment

  3. Economic Impact of Standard Reference Materials

    E-Print Network [OSTI]

    00-1 Planning Report Economic Impact of Standard Reference Materials for Sulfur in Fossil Fuels Administration #12;February 2000 Economic Impact of Standard Reference Materials for Sulfur in Fossil Fuels Final-006 Economic Impact of Standard Reference Materials for Sulfur in Fossil Fuels Final Report February 2000

  4. DATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING

    E-Print Network [OSTI]

    Short Title ADMIXTURES _____ 02/A35 ASTM C233 Testing Air-Entraining Admixtures for Concrete _____ 02/A MATERIALS TESTING APPLICATION (REV. 2014-08-25) PAGE 2 OF 10 #12;DATE : NVLAP LAB CODE: CONCRETE _____ 02/ADATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING TEST METHOD SELECTION LIST Instructions

  5. High Precision Radiometric Dating of Sedimentary Materials

    SciTech Connect (OSTI)

    Hanson, G. N.

    2006-09-19T23:59:59.000Z

    To develop field, petrographic and geochemical criteria to allow high precision U-Pb dating of sedimentary minerals within rapidly deposited sequences of carbonate and clastic rocks.

  6. Material Stock Requests 9.1 Version Date: April 2013

    E-Print Network [OSTI]

    Material Stock Requests 9.1 HCSD Version Date: April 2013 Revision Date: April 2013 #12;Training be responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use Guide HCSD Page iii Table of Contents Material Stock Requests HCSD

  7. NBS SPEC. PUBL. 260 -16 Standard Reference Materials

    E-Print Network [OSTI]

    NBS SPEC. PUBL. 260 - 16 Standard Reference Materials: HOMOGENEITY CHARACTERIZATION OF NBS Materials: Homogeneity Characterization of NBS Spectrometric Standards IV: Preparation and Microprobe. L. Vieth Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

  8. Material Stock Requests -SH Version Date: June 2013

    E-Print Network [OSTI]

    Material Stock Requests - SH Version Date: June 2013 #12;Training Guide Material Stock Requests injury. If you use this software in dangerous applications, then you shall be responsible to take all Stock Requests - SH Page iii Table of Contents Material Stock Requests - SH

  9. Corrosion reference for geothermal downhole materials selection

    SciTech Connect (OSTI)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01T23:59:59.000Z

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  10. CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Estimated Project End Date

    E-Print Network [OSTI]

    Pennycook, Steve

    CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Phone Numbers: Project Manager: Field Representative: SHEST Representative: List of Hazardous Materials: Estimated Project End Date: Contractor/Service Subcontractor Name: Contractor/Service Subcontractor Address

  11. Revision Date: May 22, 2014 MATERIAL & DISBURSEMENT SERVICES, DISBURSEMENT SERVICES

    E-Print Network [OSTI]

    Crews, Stephen

    Revision Date: May 22, 2014 MATERIAL & DISBURSEMENT SERVICES, DISBURSEMENT SERVICES Web Vendor Purpose: The web vendor system is an electronic solution for departments to update and add a vendor with Online Check Request, Web Travel, and InDEPTh. #12;Material & Disbursement Services Training for Web

  12. NERSC/DOE BER Requirements Workshop Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReference Materials ReferenceReference Materials Reference

  13. NERSC/DOE FES Requirements Workshop Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReference MaterialsReferenceReference Materials Reference

  14. NERSC/DOE BES Requirements Workshop Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReference MaterialsReference Materials Reference Materials

  15. Plutonium Certified Reference Materials Price List | U.S. DOE...

    Office of Science (SC) Website

    Reference Materials (CRM) Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL)...

  16. ITER & Fusion Research Reference: MEMO/10/165 Date: 05/05/2010

    E-Print Network [OSTI]

    ITER & Fusion Research Reference: MEMO/10/165 Date: 05/05/2010 HTML: EN PDF: EN DOC: EN MEMO/10/165 Brussels, 5th May 2010 ITER & Fusion Research The Commission has adopted a Communication to the European for International Thermonuclear Experimental Reactor (ITER), which have more than doubled the costs for Europe (to

  17. NERSC/DOE ASCR Requirements Workshop Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReference Materials Reference Materials Large Scale Computing

  18. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    SciTech Connect (OSTI)

    Amy Wong; Denise Thronas; Robert Marshall

    1998-11-04T23:59:59.000Z

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  19. Material Safety Data Sheet Ashland Chemical Co. Date Prepared: 01/06/98

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Material Safety Data Sheet Ashland Chemical Co. Date Prepared: 01/06/98 Date Printed: 06/23/99 MSDS General or Generic ID: BLEND Company Emergency Telephone Number: Ashland Chemical Co. 1-800-ASHLAND (1

  20. NGATS ATM-Airportal Project Reference Material (External Release) Next Generation Air Transportation System

    E-Print Network [OSTI]

    NGATS ATM-Airportal Project Reference Material (External Release) Next Generation Air Transportation System (NGATS) Air Traffic Management (ATM) - Airportal Project Reference Material May 23, 2007 Manager NASA Mike Madson Project Scientist NASA #12;NGATS ATM-Airportal Project Reference Material

  1. Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date General Degree to Electric Circuits ENGR 245, 245L Intro to Materials Science & Engineering & Lab 3 3 3 4 MATH 175 Calculus Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Materials Analysis

  2. Reference material manufacture and certification for the AVNG

    SciTech Connect (OSTI)

    Hauck, Danielle K [Los Alamos National Laboratory; Mac Arthur, Duncan [Los Alamos National Laboratory; Thron, Jonathan L [Los Alamos National Laboratory; Livke, Alexander [VNIIEF; Kondratov, Sergey [VNIIEF; Razinkov, Sergey [VNIIEF

    2010-01-01T23:59:59.000Z

    Testing and demonstration of any radiation measurement system requires the use of appropriate radioactive sources. The AVNG implementation that we describe is an attribute measurement system built by RFNC - VNIIEF in Sarov, Russia. The AVNG detects neutron and gamma radiation signatures and displays the three unclassified attributes of 'plutonium presence,' 'plutonium mass > 2 kg,' and 'plutonium isotopic ratio ({sup 240}Pu to {sup 239}Pu) < 0.1.' The AVNG was tested using a number of reference material (RM) sources with masses and isotopic ratios above and below these thresholds. The AVNG was demonstrated in June 2009 using several of these sources in addition to detector calibration sources. Since the AVNG was designed to measure multi-kg plutonium sources, the RM was manufactured specifically for use with this system. In addition, the RM was used to test the thresholds in the AVNG, so the size and composition of each RM was certified prior to use. In this presentation, we will describe the various steps in the manufacture and certification of these RM sources.

  3. Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date General Degree Science & Engineering & Lab 3-4 3 3 4 MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH Electrical Properties of Materials 3 MSE 312 Mechanical Behavior of Materials 3 MSE 380 Materials Science

  4. Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date General Degree of Materials MSE 312 Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Science & Engineering & Lab MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH 333

  5. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revised: 6122014 Template Reviewed: 6122014 Operated for the U.S. Department of Energy by Sandia Corporation P.O. Box 5800 MS-1461 Albuquerque, New Mexico 87185-1461 Date...

  6. DATE:

    Office of Environmental Management (EM)

    Year 2013 SUMMARY: With reference to Acquisition Letter (AL) 2012-08 and Financial Assistance Letter (FAL) 2012-02 regarding Section 301(b) Congressional Notification of...

  7. Preparation of certified working reference material sources for the national TRU waste performance demonstration program.

    SciTech Connect (OSTI)

    Mecklenburg, S. L. (Sandra L.); Thronas, D. L. (Denise L.); Wong, A. S. (Amy S.); Marshall, Robert S.,; Becker, G. K.

    2003-01-01T23:59:59.000Z

    Traceable non-destructive assay (NDA) standards containing a variety of radionuclides including uranium, americium, and plutonium oxides mixed with an inert matrix were prepared and certified for use in the U .S. Department of Energy's National TRU Waste Program (NTWP) . The NTWP requires traceable nuclear material standards of the Working Reference Material (WRM) class for qualification of NDA instrumentation that is used to quantify nuclear material in DOE-generated waste before the waste is shipped for final disposition at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico . Qualification and approval of measurement systems is accomplished in part through successful participation in the Non-Destructive Assay (NDA) Performance Demonstration Program (PDP) and is required for DOE and EPA regulatory compliance . An overview of the PDP program highlighting the role of the certified WRMs fabricated at LANL is presented, as well as a summary of the WRM fabrication process and an overview of the inventory of over 175 WRMs fabricated and deployed to DOE measurement facilities to date .

  8. DATE

    Broader source: Energy.gov (indexed) [DOE]

    4 SECTION A. Project Title: Materials and Fuels Complex (MFC) Infrastructure Upgrades - Technical Support Building SECTION B. Project Description: Materials and Fuels Complex (MFC)...

  9. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122 DATE:

  10. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122 DATE:2-

  11. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 20112219 DATE:

  12. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09 DATE:

  13. www.blackwellreference.com Your destination for authoritative reference materials

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    ;Quick Search Enter your search term in the search bar in the top corner of the home page, e within these results: Enter the more specific term in the search bar, e.g. Coca-Cola or Select their library's OPAC, or through Blackwell Reference Online's sophisticated tools for browsing, searching

  14. DATE

    Broader source: Energy.gov (indexed) [DOE]

    5 SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Modular Office Units SECTION B. Project Description: MFC Infrastructure Upgrades - General The...

  15. DATE

    Broader source: Energy.gov (indexed) [DOE]

    Title: MFC Dial Room Replacement Project SECTION B. Project Description: The proposed project is to construct and operate a new dial room at the Materials and Fuels Complex...

  16. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011 TO:

  17. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011 TO:4

  18. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011

  19. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122

  20. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 20112219

  1. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122194

  2. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011221948

  3. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 20112219489

  4. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,

  5. NERSC/DOE HEP Requirements Workshop Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop Agenda Large

  6. Revision Date: 02.10.2009 MATERIAL & DISBURSEMENT SERVICES, TRAVEL SERVICES

    E-Print Network [OSTI]

    Crews, Stephen

    Revision Date: 02.10.2009 MATERIAL & DISBURSEMENT SERVICES, TRAVEL SERVICES Web Travel Purpose: The web travel system is an electronic solution for departments to submit for approval and generate, and Travel Reimbursements. Web travel is also used in conjunction with the Central Airfare Billing System

  7. What is compost? Composting refers to biological decomposition and stabilization of organic materials by microorganisms under

    E-Print Network [OSTI]

    Mukhtar, Saqib

    What is compost? Composting refers to biological decomposition and stabilization of organic materials by microorganisms under aerobic conditions (in the presence of oxygen). During the composting is production of good-quality compost that is biologically stable, relatively uniform in appearance, free

  8. ALPHA SPECTROMETRIC EVALUATION OF SRM-995 AS A POTENTIAL URANIUM/THORIUM DOUBLE TRACER SYSTEM FOR AGE-DATING URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D.

    2011-12-06T23:59:59.000Z

    Uranium-233 (t{sub 1/2} {approx} 1.59E5 years) is an artificial, fissile isotope of uranium that has significant importance in nuclear forensics. The isotope provides a unique signature in determining the origin and provenance of uranium-bearing materials and is valuable as a mass spectrometric tracer. Alpha spectrometry was employed in the critical evaluation of a {sup 233}U standard reference material (SRM-995) as a dual tracer system based on the in-growth of {sup 229}Th (t{sub 1/2} {approx} 7.34E3 years) for {approx}35 years following radiochemical purification. Preliminary investigations focused on the isotopic analysis of standards and unmodified fractions of SRM-995; all samples were separated and purified using a multi-column anion-exchange scheme. The {sup 229}Th/{sup 233}U atom ratio for SRM-995 was found to be 1.598E-4 ({+-} 4.50%) using recovery-corrected radiochemical methods. Using the Bateman equations and relevant half-lives, this ratio reflects a material that was purified {approx} 36.8 years prior to this analysis. The calculated age is discussed in contrast with both the date of certification and the recorded date of last purification.

  9. Reference materials for water and wastewater analyses in USEPA (U. S. Environmental Protection Agency)

    SciTech Connect (OSTI)

    Winter, J.A.

    1984-01-01T23:59:59.000Z

    The Environmental Monitoring and Support Laboratory at Cincinnati provides quality assurance support for EPA's water-related programs in response to the Clean Water Act, the Safe Drinking Water Act, the Marine Protection, Research and Sanctuaries Act, the Resources Conservation and Recovery Act, the Comprehensive Environmental Response Compensation and Liability Act, and the Toxic Substances Control Act. Two important segments of this support are: (1) the Quality Control (QC) Sample Program which provides samples of known concentrations for use as independent Hazardous Materials which provides calibration standards for trace organic analyses of interest to the Agency. The samples and standards are prepared as stable concentrated solutions in all-glass ampuls. Each series contains one or more related analyses, each with a true or reference value. These are provided for dilution to volume and analyses as needed by EPA, EPA contractor/grantees, and other federal, state and local agencies.

  10. Reference Material for Radionuclides in Sediment, IAEA-384 (Fangataufa Lagoon Sediment)

    SciTech Connect (OSTI)

    Povinec, P; Pham, M; Barci-Funel, G; Bojanawski, R; Boshkova, T; Burnett, W; Carvalho, F; Chapeyron, B; Cunha, I; Dahlgaard, H; Galabov, N; Gastaud, J; Geering, J; Gomez, I; Green, N; Hamilton, T; Ibanez, F; Majah, M I; John, M; Kanisch, G; Kenna, T; Kloster, M; Korun, M; Wee Kwong, L L; La Rosa, J; Lee, S; Levy-Palomo, I; Malatova, M; Maruo, Y; Mitchell, P; Murciano, I; Nelson, R; Oh, J; Oregioni, B; Petit, G L; Pettersson, H; Reineking, A; Smedley, P; Suckow, A; der Struijs, T v; Voors, P; Yoshimizu, K; Wyse, E

    2005-09-23T23:59:59.000Z

    The IAEA Marine Environment Laboratory (IAEA-MEL) in Monaco has conducted intercomparison exercises on radionuclides in marine samples for many years as part of its contribution to the IAEA's program of Analytical Quality Control Services (AQCS). An important part of the AQCS program has been a production of Reference Materials (RMs) and their provision to radioanalytical laboratories. The RMs have been developed for different marine matrices (sediment, water, biota), with accuracy and precision required for the present state of the art of radiometrics and mass spectrometry methods. The RMs have been produced as the final products of world-wide intercomparison exercises organized during last 30 years. A total of 44 intercomparison exercises were undertaken and 39 RMs were produced for radionuclides in the marine environment. All required matrices (seawater, biota, sediment) have been covered with radionuclide concentrations ranging from typical environmental levels to elevated levels affected by discharges from nuclear reprocessing plants. The long-term availability of RMs (over 10 years) requires the use of very specific techniques to collect and pretreat large quantities of material (e.g., in excess of 100 kg) in order to ensure sample stability and homogenization of any analytes of interest. The production of a RM is therefore a long process, covering the identification of needs, sample collection, pre-treatment, homogenization, bottling, distribution to laboratories, evaluation of data, preliminary reporting, additional analyses in expert laboratories, certification of the material, and finally issuing the RM. In this paper we describe a reference material IAEA-384, Fangataufa lagoon sediment, designed for determination of anthropogenic and natural radionuclides in the marine environment. This RM has been prepared with the aim of testing the performance of analytical laboratories to measure the activity of these radionuclides in a sediment sample contaminated by elevated levels of fallout from nuclear weapons tests. Participating laboratories were requested to determine as many radionuclides as possible by radiometric (alpha, beta and gamma-spectrometry) as well as by mass spectrometry methods (e.g., ICPMS - Inductively Coupled Plasma Mass Spectrometry, TIMS - Thermal Ionization Mass Spectrometry, AMS - Accelerator Mass Spectrometry).

  11. Ar dating of Apollo 12 regolith: Implications for the age of Copernicus and the source of nonmare materials

    E-Print Network [OSTI]

    40 Ar/39 Ar dating of Apollo 12 regolith: Implications for the age of Copernicus and the source; accepted in revised form 20 September 2006 Abstract Twenty-one 2­4 mm rock samples from the Apollo 12 and source of nonmare materials at the Apollo 12 site. Among the samples analyzed are: 2 felsites, 11 KREEP

  12. Nuclear Forensic Reference Materials (RM) for Attribution of Urban Nuclear Terrorism

    E-Print Network [OSTI]

    Perkins, Richard A.

    Transport Target Event Nonproliferation- Counterproliferation · Respond to illicit trafficking · Detection of illicit programs · Cooperative Threat Reduction Nuclear Materials · Fuel cycles · Limit fissile material · Identify transit routes · Monitor choke points · Monitor smuggling gaps · Nuclear detection programs

  13. Comprehensive guideline for procurement of products containing recovered materials. Effective date: May 1, 1996

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    In Section 6002 of the Resource Conservation and Recovery Act (RCRA) Congress acknowledges the importance of recycling by mandating that government agencies increase their purchases of products containing recovered materials (i.e., waste materials and by-products that have been recovered or diverted from solid waste, not including materials and by-products generated from and commonly reused within an original manufacturing process). To further that mandate, RCRA specifies that the Environmental Protection Agency (EPA) develop and issue procurement guidelines that designate specific items that are or can be made with recovered materials, and recommend practices with respect to the procurement of recovered materials and items containing such materials. Procuring agencies (Federal, State, and agencies of political subdivisions of States that use appropriated Federal funds) and their contractors are required to buy designated items with the highest recovered material content practicable. This Regulatory Bulletin describes the first Comprehensive Procurement Guideline (CPG) (with 19 newly designated items) and Recovered Materials Advisory Notices (RMANs) (with recommendations for purchasing the items) developed by EPA using this new process.

  14. ECUT energy data reference series: high-temperature materials for advanced heat engines

    SciTech Connect (OSTI)

    Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

    1984-07-01T23:59:59.000Z

    Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

  15. Examples of reference material data needed for LBB analysis derived from WGCS-EC-DGXI studies

    SciTech Connect (OSTI)

    Petrequin, P.; Houssin, B.; Guinovart, J.

    1997-04-01T23:59:59.000Z

    Mechanical data collected through the sponsorship of the Activity Group 3 <<Materials>> of the Working Group Codes and Standards of DG XI European Commission are pointed out to illustrate their potential use for Leak Before Break analyses. Most of the tensile, fatigue, creep and fracture toughness data have been generated for stainless steels, mainly on modified type 316 L (N), selected for the Super Phoenix LMFBR. Trends for ongoing programs and future works on C-Mn and MnNiMo low alloy steels are provided.

  16. Evaluation of the Thermophysical Properties of Poly(MethylMethacrylate): A Reference Material for the Development of a flammability Test for Micro-Gravity Environments 

    E-Print Network [OSTI]

    Steinhaus, Thomas

    1999-01-01T23:59:59.000Z

    A study has been conducted using PMMA (Poly(methyl methacrylate)) as a reference material in the development process of the Forced Flow and flame Spread Test (FIST). This test attempts to establish different criteria for ...

  17. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01T23:59:59.000Z

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 {+-} 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 {+-} 0.0006 wt. % {sup 234}U, 19.8336 {+-} 0.0059 wt. % {sup 235}U, 0.1337 {+-} 0.0006 wt. % {sup 236}U, and 79.9171 {+-} 0.0057 wt. % {sup 238}U.

  18. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    SciTech Connect (OSTI)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25T23:59:59.000Z

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  19. A study of the lipid composition of two varieties of Iraqi dates and changes in lipid materials during storage

    E-Print Network [OSTI]

    Hussain, Baha Al-Deen

    1970-01-01T23:59:59.000Z

    -Deen Hussain, University of Baghdad Directed by: Dr. C. W. Dill Two varieties of Iraqi dates were analysed by thin layer and gas liquid chromatography for their lipid classes end their fatty acid composition. Phospholipids and free fatty acids represented... variety ( 11$), A study of the fatty acid composition of the lipid classes revealed that palmitic, stearic, oleic, and linoleic acids are the most prevalent fatty acids in date lipids and represent approximately 80$ of the acids present...

  20. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    SciTech Connect (OSTI)

    Kuzminski, Jozef [Los Alamos National Laboratory; Nesuhoff, J [NBL; Cratto, P [NBL; Pfennigwerth, G [Y12 NATIONAL SEC. COMPLEX; Mikhailenko, A [ULBA METALLURGICAL PLANT; Maliutina, I [ULBA METALLURGICAL PLANT; Nations, J [GREGG PROTECTION SERVICES

    2009-01-01T23:59:59.000Z

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  1. Jupiter Laser Facility Target Fab Request Requester: Date...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sketches: Jupiter Laser Facility Target Fab Request Requester: Date Requested: Phone or E-Mail: Date Required: Target Name: Reference : Laser System: Project: Task:...

  2. Incompatible Chemicals The following list is to be used only as a general guideline. Please refer to your Material Safety

    E-Print Network [OSTI]

    Slatton, Clint

    , butane, methane, propane(or other petroleum gases), hydrogen, sodium carbide, benzene, finely divided other chemicals Hydrocarbons (such as butane, propane, benzene) Fluorine, chlorine, bromine, chromic) Tellurides Reducing Agents #12;CHEMICAL STORAGE GUIDELINES STORE MATERIALS OUTLINED BY BOXES SEPARATELY

  3. DATE: __________________________ NVLAP LAB CODE: _________________ NVLAP THERMAL INSULATION MATERIALS APPLICATION (REV. 2013-11-13) PAGE 1 OF 8

    E-Print Network [OSTI]

    : _________________ _________________________________________________________________________________________________________________ NVLAP THERMAL INSULATION MATERIALS APPLICATION (REV. 2013-11-13) PAGE 1 OF 8 Test Method Designation Short Title ______ 01/C01 ASTM C739 (Sec. 9) Cellulosic Fiber (Wood-Base) Loose-Fill Thermal Insulation (Corrosiveness) ______ 01/C02 16 CFR-Part 1209.5 Cellulose Insulation Test Procedures for Corrosiveness (Loose

  4. DATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING APPLICATION (REV. 2011-07-21) PAGE 1 OF 10

    E-Print Network [OSTI]

    Testing Air-Entraining Admixtures for Concrete _____ 02/A36 ASTM C311 Sampling and Testing Fly Ash Masonry Mortar Cylinders and Cubes _____ 02/A52 ASTM C1019 Sampling and Testing Grout CONCRETE _____ 02/ADATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING APPLICATION (REV. 2011-07-21) PAGE 1 OF 10

  5. Radiocarbon Dating

    SciTech Connect (OSTI)

    Buchholz, B A

    2007-12-20T23:59:59.000Z

    Radiocarbon dating can be used to determine the age of objects that contain components that were once alive. In the case of human remains, a radiocarbon date can distinguish between a crime scene and an archeological site. Documents, museum artifacts and art objects can be dated to determine if their age is correct for the historical context. A radiocarbon date does not confirm authenticity, but it can help identify a forgery.

  6. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques

    E-Print Network [OSTI]

    Dremeau, Angelique; Martina, David; Katz, Ori; Schulke, Christophe; Krzakala, Florent; Gigan, Sylvain; Daudet, Laurent

    2015-01-01T23:59:59.000Z

    This paper investigates experimental means of measuring the transmission matrix (TM) of a highly scattering medium, with the simplest optical setup. Spatial light modulation is performed by a digital micromirror device (DMD), allowing high rates and high pixel counts but only binary amplitude modulation. We used intensity measurement only, thus avoiding the need for a reference beam. Therefore, the phase of the TM has to be estimated through signal processing techniques of phase retrieval. Here, we compare four different phase retrieval principles on noisy experimental data. We validate our estimations of the TM on three criteria : quality of prediction, distribution of singular values, and quality of focusing. Results indicate that Bayesian phase retrieval algorithms with variational approaches provide a good tradeoff between the computational complexity and the precision of the estimates.

  7. Physical fitness training reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    SciTech Connect (OSTI)

    Arzino, P.A.; Caplan, C.S.; Goold, R.E. (California State Univ., Hayward, CA (United States). Foundation)

    1991-09-01T23:59:59.000Z

    The recommendations contained throughout this NUREG are being provided to the Nuclear Regulatory Commission (NRC) as a reference manual which can be used by licensee management as they develop a program plan for the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The recommendations in this NUREG are similar in part to those contained within the Department of Energy (DOE) Medical and Fitness Implementation Guide which was published in March 1991. The guidelines contained in this NUREG are not requirements, and compliance is not required. 25 refs.

  8. Date Created: March 2008 Date Amended: March 2009

    E-Print Network [OSTI]

    Subramanian, Sriram

    Date Created: March 2008 Date Amended: March 2009 DYSLEXIA POLICY.doc- 1 - DYSLEXIA POLICY 1 (both written and spoken) reading, memory and organisation associated with the terms dyslexia, dyspraxia this document the term `dyslexia' will be used in a comprehensive way to refer to all of the above. The College

  9. CONCRETE PAVEMENT Reference Manual

    E-Print Network [OSTI]

    CONCRETE PAVEMENT Reference Manual Prepared for Federal Highway Administration Office of Pavement by National Concrete Pavement Technology Center at Iowa State University 2711 South Loop Drive, Suite 4700 No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date February 2008 Concrete Pavement

  10. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31T23:59:59.000Z

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  11. Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration

    E-Print Network [OSTI]

    Cong Tam Nguyen; Jozsef Zsigrai

    2005-07-21T23:59:59.000Z

    A non-destructive, gamma-spectrometric method for uranium age-dating is presented which is applicable to material of any physical form and geometrical shape. It relies on measuring the daughter/parent activity ratio 214Bi/234U by low-background, high-resolution gamma-spectrometry using intrinsic efficiency calibration. The method does not require the use of any reference materials nor the use of an efficiency calibrated geometry.

  12. DATE: TO:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 - DATE:

  13. DATE: TO:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 - DATE:41

  14. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous...

  15. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, L.; Bloom, I.D.

    1988-01-21T23:59:59.000Z

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  16. Safeguards and Security Program References

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    The manual establishes definitions for terms related to the Department of Energy Safeguards and Security (S&S) Program and includes lists of references and acronyms/abbreviations applicable to S&S Program directives. Cancels the Safeguards and Security Glossary of Terms, dated 12-18-95. Current Safeguards and Security Program References can also be found at Safeguards and Security Policy Information Resource (http://pir.pnl.gov/)

  17. DATE: PAGE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09

  18. Poroelastic references

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christina Morency

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  19. Poroelastic references

    SciTech Connect (OSTI)

    Christina Morency

    2014-12-12T23:59:59.000Z

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  20. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  1. Reference Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In About |

  2. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  3. Taylor & Francis Reference Style F Chicago Author-Date

    E-Print Network [OSTI]

    social sciences and sciences disciplines. For full information on this style, see The Chicago Manual of Style (15th edn) or

  4. Refer to website for latest dates The Westin Melbourne

    E-Print Network [OSTI]

    Liley, David

    Identify the relevant information and reports required to make effective financial decisions Consolidate managerial accounting reports and decisions. This program provides relevant accounting and finance participants to practise accounting and finance tasks. Solutions to these activities are also provided

  5. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21T23:59:59.000Z

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC uncertainty, the analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. Upon reviewing historical data and current site conditions, it has been determined that no further characterization is required at USW G3 (CAS 25-99-16) to select the appropriate corrective action. A cesium-137 source was encased in cement within the vadous zone during the drilling of the well (CAS 25-99-16). A corrective action of closure in place with a land-use restriction for drilling near USW G3 is appropriate. This corrective action will be documented in the Corrective Action Decision Document (CADD) for CAU 168. The results of the remaining field investigation will support a defensible evaluation of corrective action alternatives for the other CASs within CAU 168 in this CADD.

  6. IN NRC PUBLICATIONS NRC Reference Material

    E-Print Network [OSTI]

    Decommissioning Process

    1999-01-01T23:59:59.000Z

    Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. NRC publications in the NUREG series, NRC regulations, and Title 10, Energy, in the Code of Federal Regulations may also be purchased from one of these two sources.

  7. Property:Reference material | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Positionmaterial Jump to: navigation,

  8. Category:Reference Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL"projectsOR

  9. Category:Reference Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL"projectsOR

  10. Emergency Responder Radioactive Material Quick Reference Sheet

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office ofEnergyFinalEnergyEVProposed PenaltyEnergylinesDEPARTMENT OF

  11. Technical Reference for Hydrogen Compatibility of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL15/2008

  12. Technical Reference on Hydrogen Compatibility of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL15/2008Type

  13. Technical Reference on Hydrogen Compatibility of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL15/2008Type1

  14. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  15. Date:28 January 2008 Review Date: Assessment Reference: UNIVERSITY OF CAMBRIDGE

    E-Print Network [OSTI]

    Cambridge, University of

    are the hazards and risks?): Explosion or asphyxiation, Fire or explosion caused by chemicals, Toxicity or severe burning. Risk implications: Is there any substance used or formed that might give rise to explosion (e.g. flammable gases/liquids)? Yes If yes, how can you ensure that no explosion occurs? Add Acid to solvent, keep

  16. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  17. Helpful links for materials transport, safety, etc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

  18. REPLACEMENT/STALE DATED CHEQUE REQUEST FORM Date: ____________________________ Student Number: _________________________

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    REPLACEMENT/STALE DATED CHEQUE REQUEST FORM Date: ____________________________ Student: _________________________ Cheque Date: _____________________ CHEQUE AMOUNT: ________________________ REASON FOR REPLACEMENT Building at the address below. Please indicate how you would like to receive your replacement cheque

  19. Dating the Vinland Map

    ScienceCinema (OSTI)

    None

    2013-07-17T23:59:59.000Z

    Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

  20. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  1. Sandia National Laboratories: blade NDI reference sample library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NDI reference sample library Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...

  2. The Eutrophication programme will provide an up-to-date picture of the eutrophication sources and their development over time. A key element is to provide material for monitoring achie-

    E-Print Network [OSTI]

    The Eutrophication programme will provide an up-to-date picture of the eutrophication sources of measures taken in various sectors of society. PP R O G R A M M e Eutrophication FOCUS "SLU has particular help to reverse the trend."" Holger Johnsson coordinator of the Eutrophication programme Priorities

  3. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, R.; Kotter, D.

    1994-04-26T23:59:59.000Z

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  4. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17T23:59:59.000Z

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

  5. DATE: | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1DATE:

  6. Application Protocol Reference Architecture Application Protocol Reference Architecture

    E-Print Network [OSTI]

    van Sinderen, Marten

    Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

  7. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect (OSTI)

    Kutschera, W.

    1982-01-01T23:59:59.000Z

    The discussion reviews the use of accelerators originally intended for nuclear physics to do high resolution mass spectrometry for the purpose of isotope dating and age estimation of materials. (GHT)

  8. Dental Materials BIOMATERIALS

    E-Print Network [OSTI]

    Dental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant measurement methods to facilitate a rational approach to dental materials design, thus enabling improvements in the clinical performance of dental materials. In particular, methods for determining long-term performance

  9. Procedure No: Approval Date

    E-Print Network [OSTI]

    : Redding City Council Resolution: 10/15/2013 Date: 10/15/2013 #12;RPS-001 RPS ENFORCEMENT PROGRAM 1 2 TABLE: ................................................................ 5 D. Portfolio Balance Requirement Reduction: ................................................. 6 3 in California to acquire 33 percent of their annual unmet energy needs from renewable resources by 2020

  10. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  11. Value of Information References

    SciTech Connect (OSTI)

    Morency, Christina

    2014-12-12T23:59:59.000Z

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  12. Precision displacement reference system

    DOE Patents [OSTI]

    Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

    2000-02-22T23:59:59.000Z

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  13. LFS SFA (Rev. 5, 4/5/13) Subcontract Form of Agreement Dated 5-20-13

    E-Print Network [OSTI]

    [Dated 5-20-13] Exhibit "D" Scope of Work and Technical Specifications [Dated TBD] Exhibit "F to satisfactorily perform the Work in accordance with Exhibit "D" Scope of Work and Technical Specifications. 3 Appendix SFA-1, FAR & DEAR Clauses Incorporated By Reference [Dated 5-20-13] Exhibit "A" General

  14. PROTESTING RETALIATION Date: ___________________________

    E-Print Network [OSTI]

    Bogaerts, Steven

    with the landlord. Since I have recently engage in protected activity, I believe that your action(s) of of the law. Thank you for your attention to this matter. Sincerely, Tenant. (Effective 10/1/01). Please take time to read this and keep it in your records for future reference

  15. Date [Rev 10/99] Name [MODEL LETTER OF INTENT

    E-Print Network [OSTI]

    Baker, Chris I.

    Date [Rev 10/99] Name [MODEL LETTER OF INTENT] Title Company Name Address Reference: Proposed CRADA CRADA Dear _____________________: Per our discussions, this Letter of Intent confirms our understanding and Development Agreement (CRADA) by the CRADA Subcommittee and approval by the Director, National Institute

  16. Materials 1 Faculty of Engineering, Department of

    E-Print Network [OSTI]

    Materials 1 Faculty of Engineering, Department of --Materials This publication refers syllabuses Materials The Department occupies newly refurbished premises over four floors of the Royal School and research in materials science and engineering, in particular nanomaterials, structural ceramics, theory

  17. Policy No.: Approval Date

    E-Print Network [OSTI]

    Laval, Bernard

    Eco-Efficiency Workshop, sponsored by the Commission of European Communities and the U.N. Environment Program, in November 1993, was: 1.2.1. "Industrialised world reductions in material throughout, energy use to minimize the energy and material intensity of university activities and reducing waste. 2.1.4. UBC has

  18. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 -

  19. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 ->

  20. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 ->09-32

  1. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928

  2. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282 May

  3. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282 May0-7,

  4. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282

  5. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282-7' August

  6. DATE: TO: FROM: SUBJECT:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1 .-

  7. DATE: TO: FROM: SUBJECT:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1 .-~

  8. DATE: TO: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1

  9. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15T23:59:59.000Z

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  10. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, L.; Vissers, D.R.

    1981-12-30T23:59:59.000Z

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  11. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, D.R.

    1988-08-16T23:59:59.000Z

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  12. Aluminum reference electrode

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1988-01-01T23:59:59.000Z

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  13. Multifunctional reference electrode

    DOE Patents [OSTI]

    Redey, Laszlo (Lisle, IL); Vissers, Donald R. (Naperville, IL)

    1983-01-01T23:59:59.000Z

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  14. Hazard Communication Program 1.0 REFERENCE

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Communication Program 1.0 REFERENCE California Code of Regulations, Title 8, Sections 337 the properties and potential safety and health hazards of the materials which they use or to which they are exposed. Employees who use or may be exposed to potentially hazardous substances or harmful physical

  15. BC Reference number ISO/IEC 14882:1998(E)

    E-Print Network [OSTI]

    Graham, Nick

    of International Standardization Organization (ISO), International Electrotechnical Commission (IEC), AmericanBC Reference number ISO/IEC 14882:1998(E) INTERNATIONAL STANDARD ISO/IEC 14882 First edition 1998 by ANSI as an American National Standard. Date of ANSI Approval: 7/27/98 Published by American National

  16. Grant Reference Lead / Sole

    E-Print Network [OSTI]

    Rank Overall Score Grant Reference Lead / Sole Grant Grant Holder Research Organisation Project of Birmingham Controls on Soil Carbon Export revealed by Novel Tracers on multiple timescales (SCENT) Standard Grant DEC12 8 8 NE/K011871/1 N Melanie Leng NERC British Geological Survey A 500,000-year environmental

  17. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  18. MSL ENTERANCE REFERENCE AREA

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    MSL ENTERANCE LOBBY ELEV STAIRS SSL-019 REFERENCE AREA SSL-021 GROUP STUDY SSL-018 STUDY ROOM SSL-029 SSL-020 COPY ROOM SSL-022 GROUP STUDY SSL-026 STACKS SSL-023 GROUP STUDY SSL-024 GROUP STUDY SSL TBL-014 TBL-014A STAIRS SSL-007 GIS/ WORKROOM SSL-011 SSL-008 SSL-009 SSL-010 SSL-014 SSL-017 STAIRS

  19. Cisco Reference Configurations for

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    ............................................................................................. 10 EMC VNX5500 Storage Layout.0 with EMC VNX5500 Series Storage Systems White Paper November 2012 © 2012 Cisco and/or its affiliates. AllCisco Reference Configurations for Microsoft SQL Server 2012 Fast Track Data Warehouse 4.0 with EMC

  20. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N. [National Research and Development Institute for Microtechnologies (IMT-Bucuresti), Bucharest, 126A Erou Iancu Nicolae Street, 077190 (Romania)

    2014-06-16T23:59:59.000Z

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  1. Reference Undulator Measurement Results

    SciTech Connect (OSTI)

    Wolf, Zachary; Levashov, Yurii; /SLAC; ,

    2011-08-18T23:59:59.000Z

    The LCLS reference undulator has been measured 22 times during the course of undulator tuning. These measurements provide estimates of various statistical errors. This note gives a summary of the reference undulator measurements and it provides estimates of the undulator tuning errors. We measured the reference undulator many times during the tuning of the LCLS undulators. These data sets give estimates of the random errors in the tuned undulators. The measured trajectories in the reference undulator are stable and straight to within {+-}2 {micro}m. Changes in the phase errors are less than {+-}2 deg between data sets. The phase advance in the cell varies by less than {+-}2 deg between data sets. The rms variation between data sets of the first integral of B{sub x} is 9.98 {micro}Tm, and the rms variation of the second integral of B{sub x} is 17.4 {micro}Tm{sup 2}. The rms variation of the first integral of B{sub y} is 6.65 {micro}Tm, and the rms variation of the second integral of B{sub y} is 12.3 {micro}Tm{sup 2}. The rms variation of the x-position of the fiducialized beam axis is 35 {micro}m in the final production run This corresponds to an rms uncertainty in the K value of {Delta}K/K = 2.7 x 10{sup -5}. The rms variation of the y-position of the fiducialized beam axis is 4 {micro}m in the final production run.

  2. STEP Intern Reference Check Sheet

    Broader source: Energy.gov [DOE]

    STEP Intern Reference Check Sheet, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  3. Dates Fact Sheet.cdr

    Office of Environmental Management (EM)

    DATES is a detection and security informationevent management (SIEM) solution enabling asset owners to protect their energy control systems at the network, host, and device level...

  4. Earth Day Save the Date

    Broader source: Energy.gov (indexed) [DOE]

    Save the Date April 22, 2014 Forrestal & Germantown Working together to reduce our environmental footprint... * USPS, USDA, EPA, and GSA will join DOE this year * DOE Program...

  5. Inspection Date: Inspected By

    E-Print Network [OSTI]

    Isaacs, Rufus

    . Corrosive materials are stored low to the ground. Carcinogen storage area(s) is labeled. Chemicals CHECKLIST GENERAL Yes No NA Yes No NA Yes No NA Yes No NA Yes No NA Yes No NA Yes No NA CHEMICAL STORAGE and corrosive storage areas are labeled. Flammables are kept away from sources of heat, ignition, flames, etc

  6. Type Policy Title Here Effective Date: [Insert Date

    E-Print Network [OSTI]

    Salzman, Daniel

    Type Policy Title Here Effective Date: [Insert Date] Policy Statement [Type Statement Text Here] Reason(s) for the Policy [Type Reason Text Here] Primary Guidance to Which This Policy Responds [Type Primary Policy Here ­ If there is NOT a Primary Policy indicate that] Responsible University Office

  7. Optomechanical reference accelerometer

    E-Print Network [OSTI]

    Gerberding, Oliver; Melcher, John; Pratt, Jon; Taylor, Jacob

    2015-01-01T23:59:59.000Z

    We present an optomechanical accelerometer with high dynamic range, high bandwidth and read-out noise levels below 8 {\\mu}g/$\\sqrt{\\mathrm{Hz}}$. The straightforward assembly and low cost of our device make it a prime candidate for on-site reference calibrations and autonomous navigation. We present experimental data taken with a vacuum sealed, portable prototype and deduce the achieved bias stability and scale factor accuracy. Additionally, we present a comprehensive model of the device physics that we use to analyze the fundamental noise sources and accuracy limitations of such devices.

  8. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference

  9. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference4

  10. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E4 Reference46

  11. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E44 Reference

  12. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference

  13. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference4

  14. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference46

  15. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor2 Reference464

  16. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference

  17. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference6

  18. Appendix A: Reference case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2CubiccurrentFor24 Reference68

  19. REFERENCES Baines, W. D.

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurvesSpeedingScientificof ScientificQ LA-UR- " "REFERENCES

  20. References to Astrophysics Papers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired SolarReferences to

  1. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Chg 1, dated 8-14-06. Canceled by DOE O 474.2.

  2. Antares Reference Telescope System

    SciTech Connect (OSTI)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01T23:59:59.000Z

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 ..mu..m in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10/sup -6/ torr) chamber. The design goal is to position the targets to within 10 ..mu..m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.

  3. CH 6 REFERENCES.DOC 6-1 6 References

    E-Print Network [OSTI]

    REFERENCES.DOC Allan, S., A. R. Buckley, and J. E. Meacham. 2001. Atlas of Oregon. Second Edition. William J

  4. Nuclear Science References Database

    E-Print Network [OSTI]

    B. Pritychenko; E. B?ták; B. Singh; J. Totans

    2014-07-08T23:59:59.000Z

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

  5. Long life reference electrode

    DOE Patents [OSTI]

    Yonco, R.M.; Nagy, Z.

    1987-07-30T23:59:59.000Z

    An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

  6. Ris National Laboratory Materials Research Department

    E-Print Network [OSTI]

    : date / Revised version: date Send offprint requests to: A. Andreasen Present address: Materials. Department of Energy for hydrogen storage materials regarding hydrogen density and stabillity viz. H2 (m) > 6 from slow kinetics. Still, magnesium has been the subject of extensive research during the past decades

  7. Landscapes as references for design

    E-Print Network [OSTI]

    Batchelor, James P

    1981-01-01T23:59:59.000Z

    This is a study of the ways in which the forms in landscapes - natural terrain adapted and inhabited - can serve as references in architectural design. As references for design, landscapes provide a richness of responses ...

  8. Date: Review Date: Assessment Reference: Chemical Hazard Risk Assessment Form HSD 030C University of Cambridge Revised July 2004

    E-Print Network [OSTI]

    Cambridge, University of

    Yes Glove box / isolator No Chemical apron No Safety cabinet No Gloves Yes Local exhaust ventilation/mixtures, asphyxiation in confined spaces) Ensure adequate ventilation Ensure absence of ignition sources When mixing

  9. Date: Review Date: Assessment Reference: Chemical Hazard Risk Assessment Form HSD 030C University of Cambridge Revised July 2004

    E-Print Network [OSTI]

    Cambridge, University of

    No Gloves Yes Local exhaust ventilation No Eye Protection Yes #12;Chemical Hazard Risk Assessment Form HSD Ensure adequate ventilation Ensure room is large enough Disposal measures to be used during and after

  10. Date: Review Date: Assessment Reference: Chemical Hazard Risk Assessment Form HSD 030C University of Cambridge Revised July 2004

    E-Print Network [OSTI]

    Cambridge, University of

    if necessary): Containment: Personal Protective Equipment: Fume cupboard Yes Lab coat / overalls Yes Glove box down the sink with plenty of running water. Large amounts of nitric acid require neutralising following of vapour. Remove spillage using diatomaceous earth/dry sand or dilute with water and neutralise

  11. Budget Reconciliation Procedures Reference Guide

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Budget Reconciliation Procedures Reference Guide eDev Course Number FMS723 Subject Area Budget Northwestern University #12;Reference Guide Budget Reconciliation Table of Contents Helpful Contacts....................................................................................... 14 723QuickRefGuidev1.4 2 of 14 #12;Reference Guide Budget Reconciliation Helpful Contacts Below

  12. Effective Date: MEMORANDUM OF UNDERSTANDING

    E-Print Network [OSTI]

    Effective Date: MEMORANDUM OF UNDERSTANDING Between DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION IN AVIATION AND SPACE TRANSPORTATION I. PURPOSE The Department of TransportatiodFederal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA), hereinafter "the Parties

  13. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01T23:59:59.000Z

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  14. Chapter 29 References

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCeriumfor the 20122-19-13-16-18-19-1

  15. Chapter 32 References

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCeriumfor theChapter 3 -

  16. Chapter 6 - References

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCeriumfor theChapter 3 -4-16-1 CHAPTER 6

  17. COSY INFINITY reference manual

    SciTech Connect (OSTI)

    Berz, M.

    1990-07-01T23:59:59.000Z

    This is a reference manual for the arbitrary order particle optics and beam dynamics code COSY INFINITY. It is current as of June 28, 1990. COSY INFINITY is a code to study and design particle optical systems, including beamlines, spectrometers, and particle accelerators. At its core it is using differential algebraic (DA) methods, which allow a very systematic and simple calculation of high order effects. At the same time, it allows the computation of dependences on system parameters, which is often interesting in its own right and can also be used for fitting. COSY INFINITY has a full structured object oriented language environment. This provides a simple interface for the casual user. At the same time, it offers the demanding user a very flexible and powerful tool for the study and design of systems, and more generally, the utilization of DA methods. The power and generality of the environment is perhaps best demonstrated by the fact that the physics routines of COSY INFINITY are written in its own input language and are very compact. The approach also considerably facilitates the implementation of new features because they are incorporated with the same commands that are used for design and study. 26 refs.

  18. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01T23:59:59.000Z

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  19. MATERIALS MANAGEMENT OFFICE SUPPLY REQUEST FORM -MM-4

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT OFFICE SUPPLY REQUEST FORM - MM-4 REQUESTER'S NAME: DEPARTMENT: TTILE: MAIL. Include the justification with this form when faxing or mailing to Materials Management. Fax 679: ________________ University Director of Materials Management: _________________________________________________________ Date

  20. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  1. NOTICE OF REGULATION REPEAL Date: June 9, 2014

    E-Print Network [OSTI]

    Pattanaik, Sumanta N.

    NOTICE OF REGULATION REPEAL Date: June 9, 2014 REGULATION TITLE: REGULATION NO.: Tenure UCF-3.011 SUMMARY OF REGULATION REPEAL: This regulation is proposed for repeal because the material contained in this regulation has been moved to regulation UCF-3.015. AUTHORITY: BOG Regulations 1.001 NAME OF PERSON WHO

  2. NOTICE OF REGULATION REPEAL Date: May 24, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: May 24, 2010 REGULATION TITLE: REGULATION NO.: Conflict of Interest 6C7-3.008 SUMMARY OF REGULATION REPEAL: This regulation is proposed for repeal, because the material contained in this regulation has been moved to regulation UCF-3.018 AUTHORITY: BOG Regulation 1

  3. NOTICE OF REGULATION REPEAL Date: June 9, 2014

    E-Print Network [OSTI]

    Pattanaik, Sumanta N.

    NOTICE OF REGULATION REPEAL Date: June 9, 2014 REGULATION TITLE: REGULATION NO.: Promotion of Tenured and Tenure-earning faculty UCF-3.017 SUMMARY OF REGULATION REPEAL: This regulation is proposed for repeal because the material contained in this regulation has been moved to regulation UCF-3

  4. Publish date: 06/27/2011 ECE 4345: Pulsed Power

    E-Print Network [OSTI]

    Gelfond, Michael

    (gas, vacuum, liquid, solid, and surface) - 3 hours High power switching (closing and opening) - 5Publish date: 06/27/2011 ECE 4345: Pulsed Power Credit / Contact hours: 3 / 3 Course coordinator: Hermann Krompholz Textbook(s) and/or other required material: Pai and Zhang, Introduction to High Power

  5. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  6. Optical probe with reference fiber

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Chase, Charles L. (Dublin, CA)

    2006-03-14T23:59:59.000Z

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  7. FAQS Reference Guide- Chemical Processing

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  8. FAQS Reference Guide – Emergency Management

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the January 2004 edition of DOE-STD-1177-2004, Emergency Management Functional Area Qualification Standard.

  9. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  10. FAQS Reference Guide – Construction Management

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the March 2004 edition of DOE-STD-1180-2004, Construction Management Functional Area Qualification Standard.

  11. FAQS Reference Guide – Environmental Compliance

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the June 2011 edition of DOE-STD-1156-2011, Environmental Compliance Functional Area Qualification Standard.

  12. Ris Energy Report 6 References Reference list for Chapter 3

    E-Print Network [OSTI]

    Risø Energy Report 6 References Reference list for Chapter 3 1. European Commission. (2007). Communication from the Commis- sion to the European Council and the European Parliament ­ An energy policy of the Brussels European Council 8/9 March 2007. Brussels. (7224/1/07 Rev. 1). 3. Danish Energy authority. (2007

  13. HAZARDOUS MATERIAL SAFETY Effective Date: January 1, 1992

    E-Print Network [OSTI]

    Cui, Yan

    to Hazardous Chemicals in Laboratories, as noted in Subject H. Laboratory Safety. Items in the CHP include hazardous waste (see sample CHP for definitions), it is subject to the RCRA generator rules which are found

  14. OFFICE of MATERIALS & LOGISTICS MANAGEMENT CAPITAL ASSET INVENTORY CERTIFICATE --IC-10

    E-Print Network [OSTI]

    Oliver, Douglas L.

    OFFICE of MATERIALS & LOGISTICS MANAGEMENT CAPITAL ASSET INVENTORY CERTIFICATE -- IC-10 DATE: From: Jack Ferraro University Director Office of Materials & Logistics Management (MLM) LB058, MC 2012

  15. UPS 300.004 1 Effective Date: 7-28-09

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.004 1 Effective Date: 7-28-09 UPS 300.004 POLICY ON COURSE OUTLINES Course outlines which to include examinations dates, "make up" policy (if any), required materials and equipment, penalties://www.fullerton.edu/senate/PDF/300/UPS300-021.pdf ); 8. Actions students should take in an emergency (http

  16. Appendix E References | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NEPA Reading Room SEIS for the Production of Tritium in a Commercial Light Water Reactor Reference Documents Appendix E References Appendix E References Crosswalk of...

  17. Age Dating of Mixed SNM--Preliminary Investigations

    SciTech Connect (OSTI)

    Yuan, D., Guss, P. P., Yfantis, E., Klingensmith, A., Emer, D.

    2011-12-01T23:59:59.000Z

    Recently we investigated the nuclear forensics problem of age determination for mixed special nuclear material (SNM). Through limited computational mixing experiments and interactive age analysis, it was observed that age dating results are generally affected by the mixing of samples with different assays or even by small radioactive material contamination. The mixing and contamination can be detected through interactive age analysis, a function provided by the Decay Interaction, Visualization and Analysis (DIVA) software developed by NSTec. It is observed that for mixed SNM with two components, the age estimators typically fall into two distinct clusters on the time axis. This suggests that averaging or other simple statistical methods may not always be suitable for age dating SNM mixtures. Instead, an interactive age analysis would be more suitable for age determination of material components of such SNM mixtures. This work was supported by the National Center for Nuclear Security (NCNS).

  18. 2014 NEJC Save the Date (English)

    Broader source: Energy.gov [DOE]

    2014 National Environmental Justice Conference and Training Program  Save the Date, March 26 to 28, 2014

  19. 2014 NEJC Save the Date (Spanish)

    Broader source: Energy.gov [DOE]

    2014 National Environmental Justice Conference and Training Program Save the Date, March 26 to 28, 2014

  20. FM006_r1_10_Material Request.doc 03/10/09 CNS Material Request Form

    E-Print Network [OSTI]

    to fill out the Form: 3.1. Complete Material Name: Chemical/material/product name that is on the bottle (i.2. Container Type & Size: how will material be brought into lab and how stored. For example, 4 liter glass bottle, 5 gram syringe, one gallon plastic ... 3.5. Proposed Date to Bring into Lab: What date do you

  1. POET with C++ Reference Manual

    E-Print Network [OSTI]

    Buhr, Peter Allan

    POET with #22;C++ Reference Manual University of Waterloo David Taylor and Peter A. Buhr c #3; 1996 July 23, 2006 #3; Permission is granted to make copies for personal or educational use #12; 2 POET Reference Manual Contents 1 Introduction 3 2 Before Starting POET 3 3 Accessing POET 3 4 User Interface 3 5

  2. NIST Cloud Computing Reference Architecture

    E-Print Network [OSTI]

    Perkins, Richard A.

    NIST Cloud Computing Reference Architecture Recommendations of the National Institute of Standards Publication 500-292 #12;i NIST Special Publication 500-292 NIST Cloud Computing Reference Architecture, John Messina, Lee Badger and Dawn Leaf Information Techonology Laboratory Cloud Computing Program

  3. FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission

    E-Print Network [OSTI]

    McDonald, Kirk

    FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission and Fusion Reactor Materials Applications David Wootan - david.wootan@pnnl.gov, 1-509-372-6865 Radiation Damage

  4. October 30, 2008, Visiting Speakers Program - ASTRA Reference Materials

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM Policy AcquisitionWeatherizationDepartment ofFraud andASTRA

  5. Comments on: Technical Reference for Hydrogen Compatibility of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April

  6. Emergency Responder Radioactive Material Quick Reference Sheet | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Department ofNotices |Notice TheThreeCommitteeElenaCommission |

  7. Emergency Responder Radioactive Material Quick Reference Sheet | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Department ofNotices |Notice TheThreeCommitteeElenaCommission |of

  8. 2015 DOE Earth Day Reference Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5 Annual EM/NE/SC SQA5April 17,

  9. Technical Reference on Hydrogen Compatibility of Materials Austenitic Stainless Steels:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home |

  10. Technical Reference on Hydrogen Compatibility of Materials Austenitic Stainless Steels:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home |21-6-9 (code 2202)

  11. Technical Reference on Hydrogen Compatibility of Materials Austenitic Stainless Steels:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home |21-6-9 (code

  12. Department of Energy Construction Safety Reference Guide

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  13. Determination of Insoluble Solids in Pretreated Biomass Material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Report Determination of Insoluble NRELTP-510-42627 Solids in Pretreated Biomass March 2008 Material Laboratory Analytical Procedure (LAP) Issue Date: 03212008 A....

  14. Advanced Ceramic Materials and Packaging Technologies for Realizing...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Hydraulic Laboratory Project start date: November 15, 2012 Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power...

  15. DATE:

    Office of Environmental Management (EM)

    has been revised. The subject form has been posted on the DOE Financial Assistance web page on the Recipients Page under the Financial Assistance Forms and Information for...

  16. DATE:

    Office of Legacy Management (LM)

    intent to eliminate the site. Please call me at 353-1281 if you have +ny questions. cc: J. Wagoner D. Tonkay file FUSRAP NY.59 ------...

  17. DATE

    Office of Environmental Management (EM)

    emissions to the atmosphere and generate hazardous, mixed, radioactive, and industrial waste. Project activities may involve samples for analysis or R&D activity from outside the...

  18. DATE

    Broader source: Energy.gov (indexed) [DOE]

    2 SECTION A. Project Title: INL - Off-Road ATV Use In Support of Engineering Surveys SECTION B. Project Description The proposed action will allow for off-road ATV use near T-24...

  19. DATE

    Broader source: Energy.gov (indexed) [DOE]

    SECTION B. Project Description The proposed activities are intended to render CPP-684 Remote Analytical Laboratory (RAL) as a limited access area by removing existing...

  20. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    Agreements and Acknowledgments SUMMARY: Acquisition Letter (AL) 2013-08 and Financial Assistance Letter (FAL) 2013-05 provide Contracting Officers with notice of the recently...

  1. DATE:

    Office of Environmental Management (EM)

    of American Recovery and Reinvestment Act Reporting Requirements. SUMMARY: Financial Assistance Letter (FAL) 2014-xx provides COs with: 1) notice of the recession of the...

  2. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    Act, 2014, Pub. L. No. 113-76. SUMMARY: Acquisition Letter (AL) 2014-04 and Financial Assistance Letter (FAL) 2014-01 have been revised to remove language from Section 502 that...

  3. DATE:

    Office of Environmental Management (EM)

    Act, 2013, Pub. L. No.113-6 SUMMARY: Acquisition Letter (AL) 2013-06 and Financial Assistance Letter (FAL) 2013-04 provides implementing instructions and guidance for Division...

  4. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    Act, 2015, Pub.L. No 113-235. SUMMARY: Acquisition Letter (AL) 2015-04 and Financial Assistance Letter (FAL) 2015-03 provide implementing instructions and guidance for Division...

  5. DATE

    Broader source: Energy.gov (indexed) [DOE]

    replacement of conductors of the same nominal voltage, poles, circuit breakers, transformers, capacitors, crossarms, insulators, and downed transmission lines N. Routine...

  6. DATE

    Office of Environmental Management (EM)

    welded, must have the paint removed in accordance with the National Association of Corrosion Engineers standard. All work on surfaces or equipment that are suspected of being...

  7. DATE

    Broader source: Energy.gov (indexed) [DOE]

    Resources: The proposed size of the lagoons is based upon IDAPA regulations and engineering standards for the population planned for MFC. The design also accounts for the...

  8. DATE

    Broader source: Energy.gov (indexed) [DOE]

    by March 15 for the preceding year. 4. Chemical Use and Storage - Chemicals, such as petroleum products, grout, and other concrete products will be used in support of the proposed...

  9. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA

  10. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53

  11. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53 61

  12. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53 611

  13. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53 6115

  14. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53

  15. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA534-35

  16. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications

  17. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic andRECORDD O E F 1325.8 .

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I S1

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I S112

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I S11242

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8 SECTION

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80 SECTION

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I802

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8023

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80234

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I802345

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8023456

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80234567

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I802345678

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 SECTION

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 SECTION3

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 SECTION35

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 CX

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 CXEC

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021 SECTION

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021 SECTION2

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D0214 SECTION

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D0214

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02146

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021467

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021467CX

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION A.

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION A.EC

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION3

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION34

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION345

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION34516

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 1 of 2 CX

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 1 of 2

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 1 of

  1. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDanielDTN DataTemplate Revised:

  2. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAsAmandaRev. 1)Projects1Form gathers data5-01

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFuture

  4. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE

  5. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE28 am,

  6. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE28

  7. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE288:05

  8. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE288:050

  9. Dated:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. Martin andand AnalyticsDatabases

  10. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d!Qwner*. ( -RL5-

  11. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d!Qwner*. (

  12. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d!Qwner*. (OOE F

  13. Date:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCDBaseline0419 1 JA JN

  14. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated Award Date: TBD

  15. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated Award Date:

  16. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated Award Date:5

  17. FAQS Reference Guide – Occupational Safety

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the July 2011 version of DOE-STD-1160-2011, Occupational Safety Functional Area Qualification Standard.

  18. REFERENCES

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P U T Edelivery205.1B

  19. Employment Counseling Action Plan Today's Date

    E-Print Network [OSTI]

    Myers, Lawrence C.

    Employment Counseling Action Plan Today's Date: Action Item: Due Date: Resources: Progress: Prepare or revise resume Prepare sample cover letters Register with several staffing agencies Seek out employment opportunities Practice interviewing techniques Review internal and external job opportunities Contact employers

  20. MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

  1. Trainee: _________________________________ PI: _________________________________ Employee Start Date: ______________________

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    ______ ______ Identify acceptable areas for food storage and consumption ______ ______ Know proper storage of hazardous work with any hazardous materials in UCSC laboratories, all researchers must: 1. Complete mandatory EH, protective gloves) ______ ______ Know which materials, processes, and/or areas require additional PPE

  2. DATE: TO: FROM: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282-7'

  3. DATE: TO: FROM: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282-7'4

  4. DATE: TO: FROM: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May

  5. MEMORANDUM I TO: FILE DATE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGY DATE---

  6. REFERENCE: The Blue Planet An Introduction to Earth System

    E-Print Network [OSTI]

    Gilbes, Fernando

    REFERENCE: The Blue Planet An Introduction to Earth System Science. Brian J. Skinner and Barbara of the Earth system. · Describe the cycles of the materials and energy through the Earth system. · Learn how science works and how models are used in Earth system science. #12;"It is the science that studies

  7. Property:GreenButtonReference | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate Jump to: navigation,GreenButtonReference Jump

  8. Vehicle arrived for disposal Date Disposal of Asset form approved (copy required) Date

    E-Print Network [OSTI]

    Botea, Adi

    Colour Engine (ltrs) Fuel (ulp/diesel) Transmission (auto/manual) Compliance date Kilometres Additions

  9. Reference: RGL 84-11 Subject: PUBLIC NOTICE-RIVER INVENTORY

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Reference: RGL 84-11 Subject: PUBLIC NOTICE-RIVER INVENTORY Title: NATIONWIDE RIVERS INVENTORY FOR WORK ON RIVERS IN THE NATIONAL RIVERS INVENTORY. 1. In October 1980, Regional Directors, National Park Inventory and the Consultative Procedures Directive dated 10 August 1980, which the Council on Environmental

  10. C++ References Kenneth I. Joy

    E-Print Network [OSTI]

    California at Davis, University of

    . It enabled me to see how to use the language to accomplish what I wanted to do. ffl Scott Meyer's Book gave plate'' member functions came very close to the ``complete class'' paradigm, that I developed from Meyer that I attempt to utilize. #12; C++ References Page 2 of 3 Lippman, Stanley B., C++ Primer, 2nd Edition

  11. ACAA fly ash basics: quick reference card

    SciTech Connect (OSTI)

    NONE

    2006-07-01T23:59:59.000Z

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  12. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

  13. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    The Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability (MC&A) program within the U.S. Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), and for DOE owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). Admin Chg 3, dated 5-15-15 cancels Admin Chg 2.

  14. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; et al

    2015-02-10T23:59:59.000Z

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature’s armor, is renowned for its unusual combination of strength and toughness. Nature’s wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer’s deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribemore »the ‘‘J-curve’’ mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.« less

  15. The Consumption of Reference Resources

    E-Print Network [OSTI]

    G. A. White; J. A. Vaccaro; H. M. Wiseman

    2008-11-22T23:59:59.000Z

    Under the operational restriction of the U(1)-superselection rule, states that contain coherences between eigenstates of particle number constitute a resource. Such resources can be used to facilitate operations upon systems that otherwise cannot be performed. However, the process of doing this consumes reference resources. We show this explicitly for an example of a unitary operation that is forbidden by the U(1)-superselection rule.

  16. HANFORD WASTE MINERALOGY REFERENCE REPORT

    SciTech Connect (OSTI)

    DISSELKAMP RS

    2010-06-29T23:59:59.000Z

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  17. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    SciTech Connect (OSTI)

    DISSELKAMP RS

    2010-06-18T23:59:59.000Z

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  18. Microgrid cyber security reference architecture.

    SciTech Connect (OSTI)

    Veitch, Cynthia K.; Henry, Jordan M.; Richardson, Bryan T.; Hart, Derek H.

    2013-07-01T23:59:59.000Z

    This document describes a microgrid cyber security reference architecture. First, we present a high-level concept of operations for a microgrid, including operational modes, necessary power actors, and the communication protocols typically employed. We then describe our motivation for designing a secure microgrid; in particular, we provide general network and industrial control system (ICS)-speci c vulnerabilities, a threat model, information assurance compliance concerns, and design criteria for a microgrid control system network. Our design approach addresses these concerns by segmenting the microgrid control system network into enclaves, grouping enclaves into functional domains, and describing actor communication using data exchange attributes. We describe cyber actors that can help mitigate potential vulnerabilities, in addition to performance bene ts and vulnerability mitigation that may be realized using this reference architecture. To illustrate our design approach, we present a notional a microgrid control system network implementation, including types of communica- tion occurring on that network, example data exchange attributes for actors in the network, an example of how the network can be segmented to create enclaves and functional domains, and how cyber actors can be used to enforce network segmentation and provide the neces- sary level of security. Finally, we describe areas of focus for the further development of the reference architecture.

  19. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL

    2011-12-01T23:59:59.000Z

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship.

  20. COLLOQUIUM: NOTE SPECIAL DATE - THURSDAY: Unique Vulnerability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DATE - THURSDAY: Unique Vulnerability of the New YorkNew Jersey Metro Region to Hurricane Destruction - A New Perspective Based on Recent Research on Irene 2011 and Sandy...

  1. Version Date: July 2012 COPYRIGHT & TRADEMARKS

    E-Print Network [OSTI]

    WEB Clock Version Date: July 2012 #12;COPYRIGHT & TRADEMARKS Copyright © 1998, 2011, Oracle and Guide WEB Clock Page iii Table of Contents WEB Clock ........................................................................................................................ 1 WEB Clock Procedure

  2. INTEGRATED APPLICATION Page 1 ----------------------------SIGNATURE APPLICANT & DATE

    E-Print Network [OSTI]

    de Villiers, Marienne

    -Scientific / Veterinarian Sell / Trade / Buy / Receive / Donate Research #12;INTEGRATED APPLICATION Page 2 WEAPON (vii) HUNTING METHOD I. SIGNATURE OF APPLICANT / PROPERTY / LAND OWNER: Signature Date #12;

  3. Winter -Semester 2007 Speaker Department Date Title

    E-Print Network [OSTI]

    Winter - Semester 2007 Speaker Department Date Title Dr. Armin Peter Eawag, Fishecology & Evolution & Eawag, Fishecology & Evolution 19.12.07 Comparing nuclear and mitochondrial genetic signatures

  4. UTCA Project Number Report Date

    E-Print Network [OSTI]

    Pitt, Robert E.

    hazards, case studies, chemical accidents 18. Distribution Statement 19. Security Classif (of this report a variety of studies have been conducted on aspects of major transportation accidents, few have attempted associated with the transport of hazardous materials. While a variety of studies have been conducted on as

  5. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  6. Reference electrode for electrolytic cell

    DOE Patents [OSTI]

    Kessie, R.W.

    1988-07-28T23:59:59.000Z

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  7. PVWatts Version 1 Technical Reference

    SciTech Connect (OSTI)

    Dobos, A. P.

    2013-10-01T23:59:59.000Z

    The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.

  8. Tips: References | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & SolarLaundryReferences Tips:

  9. References | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2A en7/%2ANationalReferences

  10. Tips: References | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir DuctsTips:References Tips:

  11. Fusion Engineering and Design 46 (1999) 177183 ITER reference breeding blanket design

    E-Print Network [OSTI]

    Raffray, A. René

    1999-01-01T23:59:59.000Z

    breeding blanket with a lithium ceramic as breeder material and beryllium as neutron multiplierFusion Engineering and Design 46 (1999) 177­183 ITER reference breeding blanket design M. Ferrari a The ITER reference breeding blanket design is water-cooled and is characterised by the use of the neutronic

  12. Transportation technology quick reference file

    SciTech Connect (OSTI)

    Shepherd, E.W. (ed.)

    1981-05-01T23:59:59.000Z

    This publication is a collection of items written by different authors on subjects relating to the transportation of radioactive materials. The purpose of the document is to meet the continuing need for information on specific subjects for dissemination to the public at their request. The subjects included were selected on the basis of the questions most often asked about radioactive materials and their transportation. Additional subjects are being considered and will be included in the future. The loose-leaf notebook format is used to facilitate the updating of this material. The data used in many of the papers represent the best available at time of publication and will be updated as more current information becomes available.

  13. Range Creek Calibrated Dates Beta-202190

    E-Print Network [OSTI]

    Provancher, William

    Range Creek Calibrated Dates 0 200 400 600 800 1000 1200 1400 Beta-202190 Beta-175753 Beta-175755 Beta-235067 Beta-202189 Beta-214831 Beta-202188 Beta-202191 Beta-203630 Beta-214832 Beta-175754 Beta a Carbon-14 calibrated date (95% CI) between 1000 and 1200 C.E. (Figure 5: Beta-235067). The calibrated

  14. date 04/2009 Waste Management

    E-Print Network [OSTI]

    fibres #12;date 04/2009 Waste Incineration Plant at Munich North ­ Using Combined Heat and Power production of electrical power · 792,351 MWh production of heat for district heating · 238,000 t reductiondate 04/2009 Waste Management In The City Of Munich #12;date 04/2009 Waste Management Corporation

  15. Summer Academy Scholarship Application Name: Date

    E-Print Network [OSTI]

    Schaefer, Marcus

    Summer Academy Scholarship Application Name: Date: Address: City: State: Zip Code: Please for this scholarship? In the spirit of St. Vincent DePaul, Summer Academy scholarships are distributed based on both Date Apply online to the Summer Academy before submitting your scholarship application. You must first

  16. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  17. High stability wavefront reference source

    DOE Patents [OSTI]

    Feldman, M.; Mockler, D.J.

    1994-05-03T23:59:59.000Z

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.

  18. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  19. Corrosion behavior of duplex and reference cladding in NPP Grohnde

    SciTech Connect (OSTI)

    Besch, O.A. [PreussenElektra AG, Hannover (Germany); Yagnik, S.K. [Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power Group; Woods, K.N. [Siemens Power Corp., Richland, WA (United States); Eucken, C.M. [Teledyne Wah Chang, Albany, OR (United States); Bradley, E.R. [Sandvik Special Metals Corp., Kennewick, WA (United States)

    1996-12-31T23:59:59.000Z

    The Nuclear Fuel Industry Research (NFIR) Group undertook a lead test assembly (LTA) program in NPP Grohnde PWR in Germany to assess the corrosion performance of duplex and reference cladding. Two identical 16 by 16 LTAs, each containing 32 peripheral test rods, completed four reactor cycles, reaching a peak rod burnup of 46 MWd/kgU. The results from poolside examinations performed at the end of each cycle, together with power histories and coolant chemistry, are reported. Five different cladding materials were characterized during fabrication. The corrosion performance of the cladding materials was tracked in long-term tests in high-pressure, high-temperature autoclaves. The relative ranking of corrosion behavior in such tests corresponded well with the in-reactor corrosion performance. The extent and distribution of hydriding in duplex and reference specimens during the autoclave testing has been characterized. The in-reactor corrosion data indicate that the low-tin Zircaloy-4 reference cladding, R2, had an improved corrosion resistance compared to high-tin Zircaloy-4 reference cladding, R1. Two types of duplex cladding, D1 (Zr-2.5% Nb) and D2 (Zr-0.4% Fe-0.5% Sn), showed an even further improvement in corrosion resistance compared to R2 cladding. The third duplex cladding, D3 (Zr-4 + 1.0% Nb), had significantly less corrosion resistance, which was inferior to R1. The in-reactor and out-reactor corrosion performances have been ranked.

  20. MSE Concurrent Enrollment Materials Science & Engineering IOWA STATE UNIVERSITY Assistantship Increase Form

    E-Print Network [OSTI]

    Vaswani, Namrata

    01/10 MSE Concurrent Enrollment Materials Science & Engineering · IOWA STATE UNIVERSITY professor as noted below. Signature Date Concurrent BS/Graduate Approvals Academic Advisor This student has

  1. National Environmental Information Infrastructure Reference Architecture

    E-Print Network [OSTI]

    Greenslade, Diana

    National Environmental Information Infrastructure Reference Architecture Consultation Draft Environmental Information Infrastructure Reference Architecture: Consultation Draft Environmental Information Architecture: Consultation Draft, Bureau of Meteorology, Canberra, Australia, pp. 52. With the exception

  2. Cross-References Applications of Nanofluidics

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Cross-References Applications of Nanofluidics Electrokinetic Fluid Flow in Nanostructures Micro/Nano Flow Characterization Techniques Nanochannels for Nanofluidics: Fabrication Aspects Rapid Electrokinetic Patterning References 1. Conlisk, A.T.: Essentials of Micro and Nanofluidics with Application

  3. Reference Phase of Fresnel Zone Plates

    E-Print Network [OSTI]

    G. W. Webb

    2003-02-28T23:59:59.000Z

    The standard zone plate assumes that the shortest ray connecting a radiation source and a detection point has a phase of 0 deg thereby defining a reference phase. Here we examine the experimental consequences of varying this reference phase from 0 deg to 360 deg. It is concluded that reference phase is an intrinsic and useful property of zone plates.

  4. Material Analysis for a Fire Assessment.

    SciTech Connect (OSTI)

    Brown, Alexander; Nemer, Martin

    2014-08-01T23:59:59.000Z

    This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

  5. Particle Suspension Mechanisms - Supplemental Material

    SciTech Connect (OSTI)

    Dillon, M B

    2011-03-03T23:59:59.000Z

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  6. Oklahoma 4-H Enrollment Form Today's Date: ___________________

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    - wind, electric, hydro, solar, gas, oil, coal, etc. EOklahoma 4-H Enrollment Form Today's Date: ___________________ Personal Information First Name student/child to receive direct electric/USP communications from 4-H / OCES staff for educational

  7. INTERNATIONAL TRAVEL REIMBURSEMENT REQUEST Date: Dept: Preparer

    E-Print Network [OSTI]

    El Karoui, Noureddine

    INTERNATIONAL TRAVEL REIMBURSEMENT REQUEST Date: Dept: Preparer: UC Employee Student Vendor Other: Name: Emp/Stu/Ven ID: Address: City/ST/Zip: E-Mail: Phone: US Citizen/Permanent Resident? Yes No Fax

  8. RESIDENTIAL BURGLARY DATE: November 25, 2014

    E-Print Network [OSTI]

    Rose, Michael R.

    RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

  9. ILC cryogenic systems reference design

    SciTech Connect (OSTI)

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; /Fermilab; Parma, V.; Tavian, L.; /CERN

    2008-01-01T23:59:59.000Z

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  10. NO. REV. NO. Systems Division DATE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    -~ NO. REV. NO. EATM-15 PAGE OF ~ Systems Division DATE EASEP /PSEP Solar Panel Development Design+"'--.:L'_;;;J....;::::::..··-=·~::!!:!!!e::...._ K. Hsi #12;NO. REV. NO. EATM-15 EASEP/PSEP Solar Panel Development ~ Systems Division Design of the EASE-PSEP Solar Panel Array~PA::G:,:E:..::=l=~o:F~=2=7= DATE 20 Nov. 1968 1. 0 SUMMARY Electrical power

  11. 230Th-234U Age-Dating Uranium by Mass Spectrometry

    SciTech Connect (OSTI)

    Williams, R W; Gaffney, A M

    2012-04-18T23:59:59.000Z

    This is the standard operating procedure used by the Isotope Ratio Mass Spectrometry Group of the Chemical Sciences Division at LLNL for the preparation of a sample of uranium oxide or uranium metal for {sup 230}Th-{sup 234}U age-dating. The method described here includes the dissolution of a sample of uranium oxide or uranium metal, preparation of a secondary dilution, spiking of separate aliquots for uranium and thorium isotope dilution measurements, and purification of uranium and thorium aliquots for mass spectrometry. This SOP may be applied to uranium samples of unknown purity as in a nuclear forensic investigation, and also to well-characterized samples such as, for example, U{sub 3}O{sub 8} and U-metal certified reference materials. The sample of uranium is transferred to a quartz or PFA vial, concentrated nitric acid is added and the sample is heated on a hotplate at approximately 100 C for several hours until it dissolves. The sample solution is diluted with water to make the solution approximately 4 M HNO{sub 3} and hydrofluoric acid is added to make it 0.05 M HF. A secondary dilution of the primary uranium solution is prepared. Separate aliquots for uranium and thorium isotope dilution measurements are taken and spiked with {sup 233}U and {sup 229}Th, respectively. The spiked aliquot for uranium isotope dilution analysis is purified using EiChrom UTEVA resin. The spiked aliquot for thorium isotope dilution analysis is purified by, first, a 1.8 mL AG1x8 resin bed in 9 M HCl on which U adsorbs and Th passes through; second, adsorbing Th on a 1 mL AG1x8 resin bed in 8 M HNO{sub 3} and then eluting it with 9 M HCl followed by 0.1 M HCl + 0.005 M HF; and third, by passing the Th through a final 1.0 mL AG1x8 resin bed in 9 M HCl. The mass spectrometry is performed using the procedure 'Th and U Mass Spectrometry for {sup 230}Th-{sup 234}U Age Dating'.

  12. Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree Chemical waste materials must be handled as hazardous unless they are on the Non-Hazardous Waste List. Used hazardous materials containers are an exception, however. They have their own resource

  13. APPROVED MATERIALS FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Tables: Table I - Acceptable Metals and Their Alloys 6 Table I-A - Aluminum Alloys: Foil, Strip, Sheet and Plate 7 Table I-B - Aluminum Alloys: Rod and Bar 8 Table I-C - Aluminum Alloys: Tubing and Pipe 9 Table I-D - Aluminum Alloys: Shapes 10 SECTION II NONMETALLIC MATERIALS 1.0 2.0 3.0 References Tables

  14. Aqueous Processing Material Accountability Instrumentation

    SciTech Connect (OSTI)

    Robert Bean

    2007-09-01T23:59:59.000Z

    Increased use of nuclear power will require new facilities. The U.S. has not built a new spent nuclear fuel reprocessing facility for decades. Reprocessing facilities must maintain accountability of their nuclear fuel. This survey report on the techniques used in current aqueous reprocessing facilities, and provides references to source materials to assist facility design efforts.

  15. Chronological information and uncertainty Radiocarbon dating & calibration -Paula Reimer

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    naked body'. Robert Boyle 1663 Includes ­ Thermoluminescence (TL), Optically stimulated luminescenceSUPRA-net: Chronological information and uncertainty Radiocarbon dating & calibration - Paula Tephrochronology ­ David Lowe U series dating ­ David Richards* Combining multiple dating techniques ­ Andrew

  16. Publish date: 06/27/2011 ECE 3353: Feedback Control Systems

    E-Print Network [OSTI]

    Gelfond, Michael

    coordinator: Vittal Rao Textbook(s) and/or other required material: Modern Control Systems by Richard C. DorfPublish date: 06/27/2011 ECE 3353: Feedback Control Systems Credit / Contact hours: 3 / 3 Course to the analysis and design of automatic control systems. Control system concepts and controller design. Pre

  17. Publish date: 06/27/2011 ECE 4362: Modern Optics for Engineers

    E-Print Network [OSTI]

    Gelfond, Michael

    Publish date: 06/27/2011 ECE 4362: Modern Optics for Engineers Credit / Contact hours: 3 / 3 Course coordinator: Ayrton Bernussi Textbook(s) and/or other required material: Introduction to Optics, Frank L-13- 149933-5 Catalog description: Modern concepts in optics related to engineering applications. Geometrical

  18. NON-DESTRUCTIVE RADIOCARBON DATING: NATURALLY MUMMIFIED INFANT BUNDLE FROM SW TEXAS

    SciTech Connect (OSTI)

    Steelman, K L; Rowe, M W; Turpin, S A; Guilderson, T P; Nightengale, L

    2004-09-07T23:59:59.000Z

    Plasma oxidation was used to obtain radiocarbon dates on six different materials from a naturally mummified baby bundle from the Lower Pecos River region of southwest Texas. This bundle was selected because it was thought to represent a single event and would illustrate the accuracy and precision of the plasma oxidation method. Five of the materials were clearly components of the original bundle with 13 dates combined to yield a weighted average of 2135 {+-} 11 B.P. Six dates from a wooden stick of Desert Ash averaged 939 {+-} 14 B.P., indicating that this artifact was not part of the original burial. Plasma oxidation is shown to be a virtually non-destructive alternative to combustion. Because only sub-milligram amounts of material are removed from an artifact over its exposed surface, no visible change in fragile materials has been observed, even under magnification. The method is best applied when natural organic contamination is unlikely and serious consideration of this issue is needed in all cases. If organic contamination is present, it will have to be removed before plasma oxidation to obtain accurate radiocarbon dates.

  19. PPPL3157 Preprint Date: March 1996, UC421, 423, 426 Investigations of the Tritium Recycling

    E-Print Network [OSTI]

    1 PPPL­3157 ­ Preprint Date: March 1996, UC­421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

  20. PPPL-3157 -Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling

    E-Print Network [OSTI]

    1 PPPL-3157 - Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

  1. EL Program: Sustainable Engineered Materials Program Manager: Aaron Forster, Division

    E-Print Network [OSTI]

    1 EL Program: Sustainable Engineered Materials Program Manager: Aaron Forster, Division Associate Program Manager: None Strategic Goal: Sustainable and Energy-Effic Infrastructure 731 ient Manufacturing, Materials, and Date Prepared: May 31, 2013 Summary: The standards used to classify and specify materials

  2. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    SciTech Connect (OSTI)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15T23:59:59.000Z

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets with CS/LN/TM combined waste stream with Mo and Zr removed. Waste streams that contain Mo must be produced in reducing environments to avoid Cs-Mo oxide phase formation. Waste streams without Mo have the ability to be melt processed in air. A path forward for further optimizing the processing steps needed to form the targeted phase assemblages is outlined in this report. Processing modifications including melting in a reducing atmosphere, and controlled heat treatment schedules are anticipated to improve the targeted elemental partitioning.

  3. Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic...

    Energy Savers [EERE]

    Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives Dep...

  4. NEMA Lighting, CCE Overview and Update presentation, dated 05...

    Broader source: Energy.gov (indexed) [DOE]

    Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011 NEMA Distribution Transformers, CCE Overview and Update presentation, dated 05242011...

  5. Characterization of Nanoscale Reinforced Polymer Composites as Active Materials 

    E-Print Network [OSTI]

    Deshmukh, Sujay

    2012-02-14T23:59:59.000Z

    Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

  6. Characterization of Nanoscale Reinforced Polymer Composites as Active Materials

    E-Print Network [OSTI]

    Deshmukh, Sujay

    2012-02-14T23:59:59.000Z

    Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

  7. Frontiers in Catalysis Science and Engineering Materials Science

    E-Print Network [OSTI]

    Frontiers in Catalysis Science and Engineering Materials Science Chemical Imaging Date: May 13 the quality of human life but also critical to our survival. To power the planet for a better future

  8. QUICK REFERENCE GUIDE HOW TO GET ASSISTANCE

    E-Print Network [OSTI]

    account information that you can view & edit. 3 Save all changes. HOW TO CHANGE YOUR TIME ZONE, DATE on the Display Settings Tab. 3 Update as applicable. 4 Save your Changes. HOW TO MAKE A TRAVEL RESERVATION

  9. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14T23:59:59.000Z

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  10. Date:14/9/2013 Review Date: Assessment Reference: Chemical Hazard Risk Assessment Form HSD 030C University of Cambridge Revised July 2004

    E-Print Network [OSTI]

    Cambridge, University of

    / No Local exhaust ventilation Yes / No Eye Protection Yes / No Respiratory protective equipment Yes / No. Make sure room is big enough. Make sure there is adequate ventilation. Disposal measures to be used

  11. Date:14/9/2013 Review Date: Assessment Reference: Chemical Hazard Risk Assessment Form HSD 030C University of Cambridge Revised July 2004

    E-Print Network [OSTI]

    Cambridge, University of

    2004 Local exhaust ventilation Yes / No Eye Protection Yes / No Respiratory protective equipment Yes ventilation Ensure absence of ignition sources Add nitric acid slowly to methanol whilst stirring the solution

  12. Date: 14 Oct 2013 Review Date: Assessment Reference: Chemical Hazard Risk Assessment Form HSD 030C University of Cambridge Revised July 2004

    E-Print Network [OSTI]

    Cambridge, University of

    No Chemical apron Yes Safety cabinet Yes Gloves Yes Local exhaust ventilation No Eye Protection Yes Other or uncontrolled release: Clean up spills immediately, isolate area and deny entry. Provide ventilation

  13. Date:09-01-2013 Review Date: Assessment Reference: Chemical Hazard Risk Assessment Form HSD 030C University of Cambridge Revised July 2004

    E-Print Network [OSTI]

    Cambridge, University of

    : Fume cupboard Yes Lab coat / overalls Yes Glove box / isolator No Chemical apron Yes Safety cabinet Yes-products and washings) Small amount down the skin with plenty of running water. Large amount of Nitric acid require. Remove spillage using diatomaceous earth/dry sand or dilute with water and neutralise with calcium

  14. A Short Reference Grammar of Standard Slovene

    E-Print Network [OSTI]

    Greenberg, Marc L.

    2006-01-01T23:59:59.000Z

    A reference grammar of the Slovene language designed for advanced-level language users and linguists to compare semantic categories across languages.

  15. Sandia National Laboratories: Reference Model 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Model 3 Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim On July 29, 2014, in Computational Modeling & Simulation, Energy, News, News &...

  16. FAQS Reference Guide – General Technical Base

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the December 2007 edition of DOE-STD-1146-2007, General Technical Base Functional Area Qualification Standard.

  17. Sandia National Laboratories: Reference Model Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  18. Sandia National Laboratories: marine hydrokinetic reference models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  19. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  20. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  1. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  2. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  3. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  4. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    field Area III core course in any field 3-5 4 4 MUS 119 Materials of Music I MUS 120 Materials of Music II MUS 121 Ear Training I MUS 122 Ear Training II MUS 219 Materials of Music III MUS 220 Materials 3 MUS-APL 10 Concert Class* MUS-APL 108, 109 Class Piano Senior Recital** OR Senior Project*** *8

  5. FAQS Reference Guide - Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    Reference Guide - Quality Assurance FAQS Reference Guide - Quality Assurance This reference guide has been developed to address the competency statements in the April 2002 edition...

  6. LOS ALAMOS NATIONAL LABORATORY MATERIAL TRANSFER AGREEMENT

    E-Print Network [OSTI]

    LOS ALAMOS NATIONAL LABORATORY MATERIAL TRANSFER AGREEMENT THISMATERIALTRANSFERAGREEMENT("Agreement to as the "RECIPIENT," the parties to this Agreement being referred to individually as a "Party," and collectively Nuclear Security Administration. Certain MATERIAL has been developed in the course of the PROVIDER

  7. Method and apparatus for assessing material properties of sheet-like materials

    DOE Patents [OSTI]

    Telschow, Kenneth L. (Idaho Falls, ID); Deason, Vance A. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  8. Archived Reference Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  9. Archived Reference Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  10. Physics 321 Accelerating Reference Frames II

    E-Print Network [OSTI]

    Hart, Gus

    Physics 321 Hour 25 Accelerating Reference Frames II Consider an accelerating train car Proof 0 and S is a frame rotating with angular velocity . Examples Handout rotation.nb #12;Physics 321 Hour 26 Accelerating Reference Frames III Velocities in Rotating Frames in S0 basis in S' basis In S' basis in S0 basis

  11. Archived Reference Building Type: Outpatient health care

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  12. Archived Reference Building Type: Outpatient health care

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  13. Degradation of a quantum reference frame

    E-Print Network [OSTI]

    Stephen D. Bartlett; Terry Rudolph; Robert W. Spekkens; Peter S. Turner

    2006-04-20T23:59:59.000Z

    We investigate the degradation of reference frames, treated as dynamical quantum systems, and quantify their longevity as a resource for performing tasks in quantum information processing. We adopt an operational measure of a reference frame's longevity, namely, the number of measurements that can be made against it with a certain error tolerance. We investigate two distinct types of reference frame: a reference direction, realized by a spin-j system, and a phase reference, realized by an oscillator mode with bounded energy. For both cases, we show that our measure of longevity increases quadratically with the size of the reference system and is therefore non-additive. For instance, the number of measurements that a directional reference frame consisting of N parallel spins can be put to use scales as N^2. Our results quantify the extent to which microscopic or mesoscopic reference frames may be used for repeated, high-precision measurements, without needing to be reset - a question that is important for some implementations of quantum computing. We illustrate our results using the proposed single-spin measurement scheme of magnetic resonance force microscopy.

  14. Libraries Reference Copyright 1996 -2003 Intel Corporation

    E-Print Network [OSTI]

    Fossati, Giovanni

    Intel® Fortran Libraries Reference Copyright © 1996 - 2003 Intel Corporation All Rights Reserved PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustain- ing applications. This Intel® Fortran Libraries Reference as well as the software described in it is furnished

  15. Archived Reference Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  16. Archived Reference Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  17. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  18. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  19. Archived Reference Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  20. Archived Reference Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  1. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  2. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  3. Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

  4. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

  5. 2011 TRAINING DATES January 10-12

    E-Print Network [OSTI]

    2011 TRAINING DATES January 10-12 March 1-3 April 11-13 June 7-9 July 26-28 September 6-8 November: Tools and Functionality Professional Development Training Course OVERVIEW ArcGIS Desktop II: Tools come- first serve basis. · The workshop registration cost is $650. Payment is due prior to the training

  6. DATE: AUGUST 10, 2011 UNIVERSITY OF VICTORIA

    E-Print Network [OSTI]

    Herwig, Falk

    DATE: AUGUST 10, 2011 UNIVERSITY OF VICTORIA FACULTY CURRICULUM VITAE NAME BRUNT JOHN HOWARD TO APPOINTMENT AT UNIVERSITY OF VICTORIA 2004-2007 Vice-President (Academic and Provost), University of Northern British Columbia 1999-2004 Associate Vice-President Research, University of Victoria 1997-2004 Professor

  7. 2014 Summer Housing Summer Housing dates

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    2014 Summer Housing FACT SHEET Summer Housing dates: May 19, 2014 ­ August 9, 2014 "Rochester Shines in the Summer Time" Please read all of the information thoroughly. Once signed, your housing contract is binding. *We will begin accepting Summer Housing contracts Monday, April 7, 2014 GENERAL

  8. AMS Internship Program Student Application Date: ______________________

    E-Print Network [OSTI]

    Pulfrey, David L.

    AMS Internship Program ­ Student Application Date: ______________________ Full Name: Student Number the following questions in as much detail as possible. Applications [form +resume] for summer internships are due March 4th 1) Why are you interested in the Internship Program? What do you expect to gain from

  9. Date: April 1, 2013 Citizenship: Israel, USA

    E-Print Network [OSTI]

    Levit, Anna

    , Haifa, Israel Marital status: Married, four daughters, four grandchildren Web site: http://iew3.technion.Sc. Industrial Engineering and Management Faculty of Industrial Engineering and Management Technion, IIT, Haifa Laboratory, Technion, IIT, Haifa, Israel. 2009 - date Visiting Professor, Engineering Systems Division

  10. Constitution Organization: ASME Date: 5 September, 2014

    E-Print Network [OSTI]

    Firestone, Jeremy

    Constitution Organization: ASME Date: 5 September, 2014 Preamble We, the students at the University of Delaware, do hereby form the organization known as the American Society of Mechanical Engineers for the purpose of the advancement and dissemination of knowledge of the theory and practice of mechanical

  11. DRUG STUDY QUESTIONNAIRE PROGRAM DIRECTOR:______________________________________ DATE:_____________________________

    E-Print Network [OSTI]

    Acton, Scott

    DRUG STUDY QUESTIONNAIRE PROGRAM DIRECTOR:______________________________________ DATE and/or efficacy of a drug? A. If yes, is the testing, study, evaluation or research primarily for use in pharmaceutical pre-market clearance applications to the Food and Drug Administration? 2. Is drug administered

  12. Material Symbols 

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  13. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  14. Statistical methods for nuclear material management

    SciTech Connect (OSTI)

    Bowen W.M.; Bennett, C.A. (eds.) [eds.

    1988-12-01T23:59:59.000Z

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  15. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    Equations with Matrix Theory MATH 360 Engineering Statistics OR MATH 361 Probability and Statistics I 8 4 4 to Electric Circuits ENGR 245, 245L Introduction to Materials Science and Engineering and Lab 3 3 3 4 MATH 170 MSE 380 Materials Science and Engineering Lab MSE 404 Materials Analysis OR PHYS 423 Physical Methods

  16. Ecological evaluation of proposed reference sites in the New York Bight, Great South Bay, and Ambrose Light, New York

    SciTech Connect (OSTI)

    Gardiner, W.W.; Barrows, E.S.; Word, J.Q. [Battelle Marine Research Lab., Sequim, WA (United States)

    1996-10-01T23:59:59.000Z

    The current reference site used in evaluations of dredged material proposed for open water disposal in the New York Bight is the Mud Dump Reference Site. The sediment at this reference site is predominantly sand. The US Army Corps of Engineers New York District is considering designation of a new reference site that (1) includes a fine-grained component, believed to be necessary for adequate amphipod survival in laboratory tests, (2) better reflects the physical characteristics of the fine-grained sediment dredged from the New York/New Jersey Harbor and (3) is further removed from the Mud Dump Site than the current Mud Dump Reference Site. The Battelle Marine Science Laboratory was requested to characterize sediment collected from seven candidate reference sites during two study phases. This report presents the results of physical, chemical, and toxicological characterizations of sediment from these sites in comparisons with those of the original Mud Dump Reference Site.

  17. Introducing Reference Semantics via Refinement Graeme Smith

    E-Print Network [OSTI]

    Smith, Graeme

    Introducing Reference Semantics via Refinement Graeme Smith Software Verification Research Centre, University of Queensland, Australia smith@svrc.uq.edu.au Abstract. Two types of semantics have been given

  18. An expectation model of referring expressions

    E-Print Network [OSTI]

    Kræmer, John, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis introduces EMRE, an expectation-based model of referring expressions. EMRE is proposed as a model of non-syntactic dependencies - in particular, discourse-level semantic dependencies that bridge sentence gaps. ...

  19. Archive Reference Buildings by Building Type: Supermarket

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  20. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  1. Generating and interpreting referring expressions in context

    E-Print Network [OSTI]

    Smith, Dustin Arthur

    2013-01-01T23:59:59.000Z

    Referring expressions with vague and ambiguous modifiers, such as "a quick visit" and "the big meeting," are difficult for computers to interpret because their meanings are defined in part by context. For the hearer to ...

  2. Clause chaining, switch reference and coordination

    E-Print Network [OSTI]

    Nonato, Rafael

    2014-01-01T23:59:59.000Z

    In this thesis I ponder over a constellation of phenomena that revolve around switch reference and coordination, drawing mainly on their instantiation in Kisedje (Je, Brazil). I start by investigating Klsedje's case system. ...

  3. Libraries Reference Document Number: 253262-002

    E-Print Network [OSTI]

    Talbot, James P.

    Intel® Fortran Libraries Reference Document Number: 253262-002 World Wide Web: http PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustain- ing.................................................................................... xxiv Chapter 1 Overview of the Libraries Portability Routines

  4. Integrating Referring and Informing in NP Planning 

    E-Print Network [OSTI]

    O'Donnell, Michael; Knott, Alistair; Hitzeman, Janet; Cheng, Hua

    Two of the functions of an NP are to refer (identify a particular entity) and to inform (provide new information about an entity). While many NPs may serve only one of these functions, some NPs conflate the functions, ...

  5. FAQS Reference Guide – Safety Software Quality Assurance

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the (March 2011) edition of DOE-STD-1172-2011, Safety Software Quality Assurance Functional Area Qualification Standard.

  6. Defining Reference Information for Restoring Ecologically Rare

    E-Print Network [OSTI]

    . In particular, we assess the constraints that arise when refer- ence information from various sources is ei type that occurs across temperate and tropical regions and is characterized by scattered, open- grown

  7. Quantum communication, reference frames and gauge theory

    E-Print Network [OSTI]

    S. J. van Enk

    2006-04-26T23:59:59.000Z

    We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model.

  8. "Analysis of SOFCs using reference electrodes?

    SciTech Connect (OSTI)

    Finklea, Harry; Chen,Xiaoke; Gerdes,Kirk; Pakalapati, Suryanarayana; Celik, Ismail

    2013-07-01T23:59:59.000Z

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  9. Reference number of working document: ISO/IEC JTC1/SC22/WG20 N??? Date: 1999-06-11

    E-Print Network [OSTI]

    Kuhn, Markus

    30 ISO (the International Organization for Standardization) and IEC (the International31'information -- Document type: International standard Document subtype: if applicable Document stage: (40) Enquiry Document that are members of ISO or IEC participate in the development of33 International Standards through technical

  10. Reference Letter from Geri Rothman-Serot and James E. O'Mara dated October 29, 1991, Contaminated Water Treatment.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct' RIDGE NATIONAL4

  11. High-temperature potentiometric oxygen sensor with internal reference

    DOE Patents [OSTI]

    Routbort, Jules L. (Hinsdale, IL); Singh, Dileep (Naperville, IL); Dutta, Prabir K. (Worthington, OH); Ramasamy, Ramamoorthy (North Royalton, OH); Spirig, John V. (Columbus, OH); Akbar, Sheikh (Hilliard, OH)

    2011-11-15T23:59:59.000Z

    A compact oxygen sensor is provided, comprising a mixture of metal and metal oxide an enclosure containing said mixture, said enclosure capable of isolating said mixture from an environment external of said enclosure, and a first wire having a first end residing within the enclosure and having a second end exposed to the environment. Also provided is a method for the fabrication of an oxygen sensor, the method comprising confining a metal-metal oxide solid mixture to a container which consists of a single material permeable to oxygen ions, supplying an electrical conductor having a first end and a second end, whereby the first end resides inside the container as a reference (PO.sub.2).sup.ref, and the second end resides outside the container in the atmosphere where oxygen partial pressure (PO.sub.2).sup.ext is to be measured, and sealing the container with additional single material such that grain boundary sliding occurs between grains of the single material and grains of the additional single material.

  12. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  13. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  14. Systems and methods for predicting materials properties

    DOE Patents [OSTI]

    Ceder, Gerbrand (Wellesley, MA); Fischer, Chris (Somerville, MA); Tibbetts, Kevin (Winchester, MA); Morgan, Dane (Madison, WI); Curtarolo, Stefano (Durham, NC)

    2007-11-06T23:59:59.000Z

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  15. Low energy cyclotron for radiocarbon dating

    SciTech Connect (OSTI)

    Welch, J.J.

    1984-12-01T23:59:59.000Z

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  16. Material Stock Requests 9.1 BRFHS and BRFHM

    E-Print Network [OSTI]

    Material Stock Requests 9.1 BRFHS and BRFHM Version Date: January 2014 #12;Training Guide BRFHS injury. If you use this software in dangerous applications, then you shall be responsible to take all and BRFHM Page iii Table of Contents Material_Stock_Requests_9_1_BRFHS

  17. Form Date 4/4/01 Refrigerant Service Order Form

    E-Print Network [OSTI]

    Russell, Lynn

    Form Date 4/4/01 Refrigerant Service Order Form Service ID: Owner: Work Order #: Building: Date: Issued: Completed: Equipment ID: Technicians: Location: Model: Manufact: Serial #: Refrigerant Type Minor Maintenance Recovery Vacuum: __________Inches Dispose of Unit Refrigerant Conversion Major

  18. SCHOOL OF EDUCATION Exam Code Exam Name Day Exam date Time Exam Hall

    E-Print Network [OSTI]

    Glasgow, University of

    SCHOOL OF EDUCATION Exam Code Exam Name Day Exam date Time Exam Hall EDUC1050_1 Electricity and Electronics T1 Fri 25/04/2014 09:30 - 11:30 Room 237 St Andrew's Building EDUC1013_1 Fundamentals in Education 1B Tue 29/04/2014 14:00 - 16:00 Gym St. Andrews Building EDUC4047_1 Materials and Processes T3 Thu

  19. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Fuel Cell Technologies Publication and Product Library (EERE)

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevan

  20. Carbon Based Nano-Materials Research, Development and Applications in Optoelectronics

    E-Print Network [OSTI]

    Wang, Feihu

    2012-01-01T23:59:59.000Z

    Lett. Granqvist, C. G. Electrochromic Materials: Out of aA Feasibility Study of Electrochromic Windows in Vehicles.active layer in electrochromic smart windows. References:

  1. Dietetic Internship Program Deadlines for the January 2015 Start Date

    E-Print Network [OSTI]

    Hemmers, Oliver

    Dietetic Internship Program Deadlines for the January 2015 Start Date Application Deadline to change). Check back for specific due date. Internship Dates January 12, 2015 to August 17, 2015 (subject (Dietetic Internship Centralized Application Services). Go to https://portal.dicas.org for more information

  2. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Certification of Compliance - Leases 6C7-7.216 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal because the subject matter of the regulation is not needed and is out of date. AUTHORITY: BOG Resolution dated January

  3. PR.NO.: 13568A DATE: 5/09/03

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    Grass Calamagrostis acutiflora cv. `Overdam' REASON: Height Control SOIL TYPE OR TYPE OF POTTING MIX: UC Mix % SAND 30 % SILT % CLAY % OM 70 pH 6.5 SEEDING DATE EMERGENCE DATE TRANSPLANTING DATE: 3 matter and 30% sand (UC Mix). The plants were grown on in the same glasshouse as one-gallon plants for 6

  4. UPS 300.019 Effective Date: 3-25-08

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.019 Effective Date: 3-25-08 UPS 300.019 ACADEMIC RESPONSIBILITY FOR MISSED INSTRUCTION DUE of the absence. Given prior notice, instructors are encouraged to allow students to make up class work, complete-25-08 EFFECTIVE DATE: March 25, 2008 Supersedes: UPS 300.019 dated 6-19-02 and ASD 07-177 University Policy

  5. UPS 420.105 Effective Date: 4-14-14

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 420.105 Effective Date: 4-14-14 UPS 420.105 RIGHT OF NON-COMPLIANCE, RISK ACTIVITIES Certain EFFECTIVE DATE: April 14, 2014 Supersedes: UPS 420.105 dated 10-3-75 and ASD 14-35 University Policy

  6. UPS 420.105 Effective Date: 10-3-75

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 420.105 Effective Date: 10-3-75 UPS 420.105 RIGHT OF NON-COMPLIANCE, RISK ACTIVITIES Certain, or both. EFFECTIVE DATE: October 3, 1975 Supersedes: UPS 420.105 dated 12-15-74 and FCD 74-175 University

  7. DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING

    E-Print Network [OSTI]

    DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST for reasons outside the scope of this document. #12;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY

  8. Exhibit G Off-site Moderate Risk Cloud Computing Services (Rev 0, 2/27/2014) P.R. No. * Date*

    E-Print Network [OSTI]

    Exhibit G Off-site Moderate Risk Cloud Computing Services (Rev 0, 2/27/2014) P.R. No. * Date* Subcontract No. or PO No. * 1 EXHIBIT G OFF-SITE MODERATE RISK CLOUD COMPUTING SERVICES SECURITY REQUIREMENTS Clauses Incorporated By Reference #12;Exhibit G Off-site Moderate Risk Cloud Computing Services (Rev 0, 2

  9. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Energy Materials &...

  10. DATE: TO: FROM: SUBJECT: SUMMARY: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1 .-~TO:

  11. Property:Modification date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate JumpAuth3LinkTechMin JumpProperty Edit

  12. Property:PublicationDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDatePropertyWavemaking Jump to:This is

  13. Nuclear Speed-Dating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclear Speed-Dating Nuclear

  14. Collected References, available on-line as , updated 23-Feb-14 References for: Gio Wiederhold

    E-Print Network [OSTI]

    Stanford University

    .6] [Abba:97] Wayne Abba: "Earned Value Management: Reconciling Government and Commercial Practices-14 1 References for: Gio Wiederhold: Valuing Intellectual Capital, Multinationals and Taxhavens is italicized. Entries cited and listed in the Reference section of Valuing Intelectual Capital have [bold

  15. NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties--

    E-Print Network [OSTI]

    Magee, Joseph W.

    -Conditioning and Refrigeration Technology Institute and the U.S. Department of Energy. The development of the models on which#12;NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties Properties Division National Institute of Standards and Technology Boulder, Colorado 80305 April, 2007 U

  16. NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties--

    E-Print Network [OSTI]

    Technology Institute and the U.S. Department of Energy. Model development and measurements at NIST have been#12;NIST Standard Reference Database 23 NIST Reference Fluid Thermodynamic and Transport Properties Division National Institute of Standards and Technology Boulder, Colorado 80305 November, 2010 U

  17. Kyoto University Libraries Reference Guide 1. Compare the reference style of books and journals

    E-Print Network [OSTI]

    Takada, Shoji

    Kyoto University Libraries Reference Guide 1. Compare the reference style of books and journals Ex Publisher Year of Publications Pages Ex.3) The basic style of journal articles Fidel, Raya; Green, Maurice -Distinguishing kinds of documents- Ver.1.1, 2008.03.26, Yumi Sugimoto (Eng.Arch.Library), Ver.2.0, 2014

  18. Measurement and characterization techniques for thermoelectric materials

    SciTech Connect (OSTI)

    Tritt, T.M.

    1997-07-01T23:59:59.000Z

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  19. MSU Extension Publication Archive Archive copy of publication, do not use for current recommendations. Up-to-date

    E-Print Network [OSTI]

    recommendations. Up-to-date information about many topics can be obtained from your local Extension office in this bulletin. 3. Read labels before using, and follow all instructions on labels. 4. Provide ventilation while ventilation during the use of all materials. FLY CONTROL IN BARNS AND BARNYARDS For best results, use

  20. INVESTIGATION Construction of Reference Chromosome-Scale

    E-Print Network [OSTI]

    Douches, David S.

    INVESTIGATION Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising and orientation within the pseudo- molecules are closely collinear with independently constructed high density

  1. Risk Management Steering Committee Terms of Reference

    E-Print Network [OSTI]

    Victoria, University of

    Risk Management Steering Committee Terms of Reference October 2009 1.0 Purpose The purposes Facilities Management Risk and Insurance Analyst Associate Vice-President Human Resources Administrative of the Steering Committee are: a) to follow a continuous process to understand and communicate risk from

  2. Previous Up Next Article From References: 0

    E-Print Network [OSTI]

    Stachó, László

    Previous Up Next Article Citations From References: 0 From Reviews: 0 MR561879 (81d:62015) 62E20 for the volume of the intersection of an n-dimensional simplex and an n-dimensional ball is also given. {For

  3. Previous Up Next Article From References: 0

    E-Print Network [OSTI]

    Stachó, László

    Previous Up Next Article Citations From References: 0 From Reviews: 0 MR1261496 (94k:49008) 49J35 of f on X × co(Y ). Here, co(Y ) is a certain simplex defined in the space of all real-valued functions

  4. Previous Up Next Article From References: 12

    E-Print Network [OSTI]

    Ghys, Étienne

    Previous Up Next Article Citations From References: 12 From Reviews: 3 MR939473 (89e:55015) 55N35(M, R) is the cohomology of singular cochains whose value on a singular simplex is bounded independent of the simplex. From the work of Gromov, one knows that bounded cohomology interacts in a delicate manner

  5. Positional reference system for ultraprecision machining

    DOE Patents [OSTI]

    Arnold, Jones B. (Knoxville, TN); Burleson, Robert R. (Clinton, TN); Pardue, Robert M. (Knoxville, TN)

    1982-01-01T23:59:59.000Z

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  6. Positional reference system for ultraprecision machining

    DOE Patents [OSTI]

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12T23:59:59.000Z

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  7. REFERENCE GUIDE ENERGY CONSERVATION ASSISTANCE ACT (ECAA)

    E-Print Network [OSTI]

    with this requirement. Waste management guidance and plan template can be downloaded at http://www.energy that generate waste. Attachments: Energy Commission Waste Management Plan Guidance Waste Management Plan1 REFERENCE GUIDE ENERGY CONSERVATION ASSISTANCE ACT (ECAA) STATE ENERGY PROGRAM (SEP) AMERICAN

  8. Ris Energy Report 2 References chapter 3

    E-Print Network [OSTI]

    8 Risø Energy Report 2 References chapter 3 1. IEA (2001), World Energy Outlook, OECD/IEA 2001. 2, Rome. 3. UNDP (2000): World Energy Assessment, NY 2000. 4. WEC (2001): Survey of energy resources. World Energy Council, Lon- don. 5. Kaltschmitt (2001): Martin Kaltschmitt, Hans Hartmann (Hrsg

  9. FOR OFFICE USE ONLY Referred to

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    : In Partial Fulfillment of the requirements of the degree of: in: REVIEW AND ACCEPTANCE - REQUIRED SIGNATURESFOR OFFICE USE ONLY Month/Year Graduation Referred to Approved Denied GRADUATE SCHOOL THESIS of this thesis or dissertation. EMBARGO REQUEST Instructions: Student may request a one-year embargo

  10. Terms of Reference Information Security Group

    E-Print Network [OSTI]

    Haase, Markus

    Terms of Reference Information Security Group Version 3.1 8 March 2011 © University of Leeds 2011 Security Group Information Security Management 3.1 (8/3/11) Page 2 of 4 Document Control Owner: Kevin Darley, IT Security Co-ordinator, Information Systems Services, University of Leeds Source Location: V

  11. Geoscience laser altimeter system - stellar reference system

    SciTech Connect (OSTI)

    Millar, Pamela S.; Sirota, J. Marcos [NASA Goddard Space Flight Center, Laser Remote Sensing Branch, Code 924, Greenbelt, Maryland, 20771 (United States); University of Maryland at Baltimore County, 5401 Wilkens Ave, Baltimore, Maryland, 21228-5398 (United States)

    1998-01-15T23:59:59.000Z

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with {approx}15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 kmx100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to {approx}5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  12. Run-Time Library Routines Reference

    E-Print Network [OSTI]

    California at San Diego, University of

    MDS Run-Time Library Routines Reference Manual February 1993 Software Version: MDS 5.2 VAX.S.A. The following are trademarks of Digitial Equipment Corporation: CDD DECnet VAX DATATRIEVE DECUS VAXcluster DEC MicroVAX VAX Information Architecture DEC/CMS MicroVMS VMS DEC/MMS Rdb/VMS VT IDL (Interactive Data

  13. R Reference Manual: A gentle overview

    E-Print Network [OSTI]

    Priestley, Jennifer Lewis

    , yet similar to SAS, R is a commands-driven programming environment to execute statistical analysisR Reference Manual: A gentle overview #12;2 Developed and maintained by the Center for Statistics statistical computing packages ­ Excel, SPSS, Minitab, R and SAS. 1 Readers of this manual are assumed to have

  14. SENATE COMMITTEE ON AWARDS TERMS OF REFERENCE

    E-Print Network [OSTI]

    Victoria, University of

    SENATE COMMITTEE ON AWARDS TERMS OF REFERENCE The committee shall: 1. Approve and recommend to Senate new or revised undergraduate and graduate student awards and the terms and conditions for those awards; 2. Consider and approve the student recipients nominated or recommended for undergraduate awards

  15. Xyce parallel electronic simulator : reference guide.

    SciTech Connect (OSTI)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Warrender, Christina E.; Keiter, Eric Richard; Pawlowski, Roger Patrick

    2011-05-01T23:59:59.000Z

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide. The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. It is targeted specifically to run on large-scale parallel computing platforms but also runs well on a variety of architectures including single processor workstations. It also aims to support a variety of devices and models specific to Sandia needs. This document is intended to complement the Xyce Users Guide. It contains comprehensive, detailed information about a number of topics pertinent to the usage of Xyce. Included in this document is a netlist reference for the input-file commands and elements supported within Xyce; a command line reference, which describes the available command line arguments for Xyce; and quick-references for users of other circuit codes, such as Orcad's PSpice and Sandia's ChileSPICE.

  16. Reference number ISO 8601:2004(E)

    E-Print Network [OSTI]

    Wu, Shiliang

    Reference number ISO 8601:2004(E) © ISO 2004 INTERNATIONAL STANDARD ISO 8601 Third edition 2004'heure #12;ISO 8601:2004(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems

  17. Documents and Briefcase Zimbra Quick Reference Card

    E-Print Network [OSTI]

    Portman, Douglas

    Documents and Briefcase Zimbra Quick Reference Card Documents ­ Workspace (http://z.rochester.edu) Documents Shortcuts Edit Refresh Show Shortcuts + Cancel Save + Go the `Shortcuts' tab on the left. Basic Briefcase Tasks What is Briefcase? It is a tool for managing files from

  18. Two-dimensional defects in amorphous materials

    E-Print Network [OSTI]

    Michael Moshe; Eran Sharon; Ido Levin; Hillel Aharoni; Raz Kupferman

    2014-09-09T23:59:59.000Z

    We present a new definition of defects which is based on a Riemannian formulation of incompatible elasticity. Defects are viewed as local deviations of the material's reference metric field, $\\bar{\\mathfrak{g}}$, from a Euclidian metric. This definition allows the description of defects in amorphous materials and the formulation of the elastic problem, using a single field, $\\bar{\\mathfrak{g}}$. We provide a multipole expansion of reference metrics that represent a large family of two-dimensional (2D) localized defects. The case of a dipole, which corresponds to an edge dislocation is studied analytically, experimentally and numerically. The quadrupole term, which is studied analytically, as well as higher multipoles of curvature carry local deformations. These multipoles are good candidates for fundamental strain carrying entities in plasticity theories of amorphous materials and for a continuous modeling of recently developed meta-materials.

  19. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01T23:59:59.000Z

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  20. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  1. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  2. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National NuclearMaterial Misfits

  3. FORM FOR ESPC CASE STUDIES AND REFERENCES | Department of Energy

    Office of Environmental Management (EM)

    FORM FOR ESPC CASE STUDIES AND REFERENCES FORM FOR ESPC CASE STUDIES AND REFERENCES Document features a template, sample, and instructions to help Federal agencies develop case...

  4. asce standardized reference: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lux (of 26 INSTALLATION AND UNCERTAINTY EVALUATION OF REFERENCE HARDNESS STANDARD OF CROATIA CiteSeer Summary: Abstract ? Reference hardness standard with HV1 HV50 measuring...

  5. analytical reference standards: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lux (of 27 INSTALLATION AND UNCERTAINTY EVALUATION OF REFERENCE HARDNESS STANDARD OF CROATIA CiteSeer Summary: Abstract ? Reference hardness standard with HV1 HV50 measuring...

  6. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reference Buildings by Climate Zone and Representative City: 4B Albuquerque, New Mexico Reference Buildings by Climate Zone and Representative City: 4B Albuquerque, New...

  7. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado Reference Buildings by Climate Zone and Representative...

  8. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington Reference Buildings by Climate Zone and Representative...

  9. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Climate Zone and Representative...

  10. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative...

  11. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative...

  12. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3B Las Vegas, Nevada Reference Buildings by Climate Zone and Representative...

  13. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Reference Buildings by Climate Zone and Representative City: 4A Baltimore, Maryland Reference Buildings by Climate Zone and Representative...

  14. Reference Buildings by Climate Zone and Representative City:...

    Broader source: Energy.gov (indexed) [DOE]

    akfairbankspre1980v1-47-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone...

  15. Reference Buildings by Climate Zone and Representative City:...

    Broader source: Energy.gov (indexed) [DOE]

    minneapolispre1980v1-47-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota Reference Buildings by...

  16. Layoff Plan Mining Engineering Posting Date: June 16, 2014 Contemplated Layoff Effective Date: August 11, 2014

    E-Print Network [OSTI]

    Layoff Plan ­ Mining Engineering FY 2014-15 Posting Date: June 16, 2014 Contemplated Layoff-15, the Mining Engineering department's formerly allotted support staff positions have been reduced from two of Colorado School of Mines service, time in current classification, and length of continuous State service

  17. DATE OF INITIAL ADOPTION AND EFFECTIVE DATE 5/21/2008 APPLICABILITY/ACCOUNTABILITY

    E-Print Network [OSTI]

    Glebov, Leon

    of access control and security protection, whether in storage or in transit. Further defined in UCF policy 4, and process information that is essential to the academic, research, and administrative functions, mainframes, data storage systems, and similar SUBJECT: Effective Date: Policy Number: 5/13/2014 4-002.1 Use

  18. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  19. Apparatus configured for identification of a material and method of identifying a material

    DOE Patents [OSTI]

    Slater, John M. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID); Frickey, Dean A. (Idaho Falls, ID)

    2001-01-01T23:59:59.000Z

    The present invention relates to an apparatus configured for identification of a material and method of identifying a material. One embodiment of the present invention provides an apparatus configured for identification of a material including a first region configured to receive a first sample and output a first spectrum responsive to exposure of the first sample to radiation; a signal generator configured to provide a reference signal having a reference frequency and a modulation signal having a modulation frequency; a modulator configured to selectively modulate the first spectrum using the modulation signal according to the reference frequency; a second region configured to receive a second sample and output a second spectrum responsive to exposure of the second sample to the first spectrum; and a detector configured to detect the second spectrum.

  20. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Electron