Sample records for das standard modell

  1. Das GARCH Modell zur Modellierung von Finanzmarktzeitreihen

    E-Print Network [OSTI]

    Alsmeyer, Gerold

    Das GARCH Modell zur Modellierung von Finanzmarktzeitreihen Seminararbeit von Frauke Heuermann Juni ARCH(1)-Prozess . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Der GARCH-Prozess 5 2.1 Der GARCH(1,1)-Prozess . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Das vierte Moment und die W

  2. The Standard Model

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-12T23:59:59.000Z

    Fermilab scientist Don Lincoln describes the Standard Model of particle physics, covering both the particles that make up the subatomic realm and the forces that govern them.

  3. Beyond the Standard Model

    SciTech Connect (OSTI)

    Lykken, Joseph D.; /Fermilab

    2010-05-01T23:59:59.000Z

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest - to those who get close enough to listen - new directions for BSM model building. Contrary to popular shorthand jargon, supersymmetry (SUSY) is not a BSM model: it is a symmetry principle characterizing a BSM framework with an infinite number of models. Indeed we do not even know the full dimensionality of the SUSY parameter space, since this presumably includes as-yet-unexplored SUSY-breaking mechanisms and combinations of SUSY with other BSM principles. The SUSY framework plays an important role in BSM physics partly because it includes examples of models that are 'complete' in the same sense as the Standard Model, i.e. in principle the model predicts consequences for any observable, from cosmology to b physics to precision electroweak data to LHC collisions. Complete models, in addition to being more explanatory and making connections between diverse phenomena, are also much more experimentally constrained than strawman scenarios that focus more narrowly. One sometimes hears: 'Anything that is discovered at the LHC will be called supersymmetry.' There is truth behind this joke in the sense that the SUSY framework incorporates a vast number of possible signatures accessible to TeV colliders. This is not to say that the SUSY framework is not testable, but we are warned that one should pay attention to other promising frameworks, and should be prepared to make experimental distinctions between them. Since there is no formal classification of BSM frameworks I have invented my own. At the highest level there are six parent frameworks: (1) Terascale supersymmetry; (2) PNGB Higgs; (3) New strong dynamics; (4) Warped extra dimensions; (5) Flat extra dimensions; and (6) Hidden valleys. Here is the briefest possible survey of each framework, with the basic idea, the generic new phenomena, and the energy regime over which the framework purports to make comprehensive predictions.

  4. Field Theory and Standard Model

    E-Print Network [OSTI]

    W. Buchmüller; C. Lüdeling

    2006-09-18T23:59:59.000Z

    This is a short introduction to the Standard Model and the underlying concepts of quantum field theory.

  5. MODEL CONSERVATION STANDARD INTRODUCTION

    E-Print Network [OSTI]

    programs, the standard for all new commercial buildings, the standard for utility commercial conservation RESIDENTIAL AND COMMERCIAL BUILDINGS The region should acquire all electric energy conservation measure savings from new residential and new commercial buildings that have a benefit-to-cost ratio greater than

  6. Lorentz conserving noncommutative standard model

    SciTech Connect (OSTI)

    Ettefaghi, M. M.; Haghighat, M. [Department of Physics, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2007-06-15T23:59:59.000Z

    We consider Lorentz-conserving noncommutative field theory to construct the Lorentz-conserving noncommutative standard model based on the gauge group SU(3)xSU(2)xU(1). We obtain the enveloping algebra-valued of Higgs field up to the second order of the noncommutativity parameter {theta}{sub {mu}}{sub {nu}}. We derive the action at the leading order and find new vertices which are absent in the ordinary standard model as well as the minimal noncommutative standard model. We briefly study the phenomenological aspects of the model.

  7. Interacting models of cooperative gene regulation Debopriya Das*, Nilanjana Banerjee*

    E-Print Network [OSTI]

    Interacting models of cooperative gene regulation Debopriya Das*, Nilanjana Banerjee* , and Michael, especially mammals, where cooperative control of gene regulation is absolutely essential. cooperativity control in gene regulation networks. It requires cooperative binding of multiple transcription factors

  8. Are Standard Solar Models Reliable?

    E-Print Network [OSTI]

    John N. Bahcall; M. H. Pinsonneault; Sarbani Basu; J. Christensen-Dalsgaard

    1996-12-20T23:59:59.000Z

    The sound speeds of solar models that include element diffusion agree with helioseismological measurements to a rms discrepancy of better than 0.2% throughout almost the entire sun. Models that do not include diffusion, or in which the interior of the sun is assumed to be significantly mixed, are effectively ruled out by helioseismology. Standard solar models predict the measured properties of the sun more accurately than is required for applications involving solar neutrinos.

  9. PD Dr. Martin Stetter, Siemens AG 1 Das lineare Modell

    E-Print Network [OSTI]

    Popeea, Corneliu - Chair for Foundations of Software Reliability and Theoretical Computer Science

    PD Dr. Martin Stetter, Siemens AG 1 Das lineare Modell · Ausgangspunkt: Lineares Perceptron vorgegeben, werden nicht gelernt #12;PD Dr. Martin Stetter, Siemens AG 2 · Geschrieben als Regressionsmodell Regression: Lineares Modell #12;PD Dr. Martin Stetter, Siemens AG 3 · ML-Parameterschätzung des linearen

  10. Beyond the Cosmological Standard Model

    E-Print Network [OSTI]

    Austin Joyce; Bhuvnesh Jain; Justin Khoury; Mark Trodden

    2014-12-15T23:59:59.000Z

    After a decade and a half of research motivated by the accelerating universe, theory and experiment have a reached a certain level of maturity. The development of theoretical models beyond \\Lambda, or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. We identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests. We begin by reviewing attempts to consistently modify Einstein gravity in the infrared, focusing on the notion that additional degrees of freedom introduced by the modification must screen themselves from local tests of gravity. We categorize screening mechanisms into three broad classes: mechanisms which become active in regions of high Newtonian potential, those in which first derivatives become important, and those for which second derivatives are important. Examples of the first class, such as f(R) gravity, employ the familiar chameleon or symmetron mechanisms, whereas examples of the last class are galileon and massive gravity theories, employing the Vainshtein mechanism. In each case, we describe the theories as effective theories. We describe experimental tests, summarizing laboratory and solar system tests and describing in some detail astrophysical and cosmological tests. We discuss future tests which will be sensitive to different signatures of new physics in the gravitational sector. Parts that are more relevant to theorists vs. observers/experimentalists are clearly indicated, in the hope that this will serve as a useful reference for both audiences, as well as helping those interested in bridging the gap between them.

  11. Dark world and the standard model

    E-Print Network [OSTI]

    Zhao, Gang

    2009-06-02T23:59:59.000Z

    by the latest of CMB (Cosmic Microwave Background). The reason for the accelerated universe is the existence of dark energy. In this dissertation, we discuss the relationship between dark matter, dark energy, reheating and the standard model, and we find...

  12. Threshold Effects Beyond the Standard Model

    E-Print Network [OSTI]

    Tomasz R. Taylor

    2006-12-12T23:59:59.000Z

    In this contribution to the Festschrift celebrating Gabriele Veneziano on his 65th birthday, I discuss the threshold effects of extra dimensions and their applications to physics beyond the standard model, focusing on superstring theory.

  13. Dark world and the standard model 

    E-Print Network [OSTI]

    Zhao, Gang

    2009-06-02T23:59:59.000Z

    by the latest of CMB (Cosmic Microwave Background). The reason for the accelerated universe is the existence of dark energy. In this dissertation, we discuss the relationship between dark matter, dark energy, reheating and the standard model, and we find...

  14. Beyond the Standard Model with Supersymmetry

    E-Print Network [OSTI]

    Sessolo, Enrico Maria

    2010-01-01T23:59:59.000Z

    We introduce recent research topics in beyond the Standard Model particle physics with Supersymmetry. In the first part we implement a new, extended approach to placing bounds on trilinear R-parity violating couplings. We ...

  15. A Modest Revision of the Standard Model

    E-Print Network [OSTI]

    G. J. Stephenson, Jr.; T. Goldman

    2015-03-13T23:59:59.000Z

    With a modest revision of the mass sector of the Standard Model, the systematics of the fermion masses and mixings can be fully described and interpreted as providing information on matrix elements of physics beyond the Standard Model. A by-product is a reduction of the largest Higgs Yukawa fine structure constant by an order of magnitude. The extension to leptons provides for insight on the difference between quark mixing and lepton mixing as evidenced in neutrino oscillations. The large difference between the scale for up-quark and down-quark masses is not addressed.

  16. A Modest Revision of the Standard Model

    E-Print Network [OSTI]

    Stephenson,, G J

    2015-01-01T23:59:59.000Z

    With a modest revision of the mass sector of the Standard Model, the systematics of the fermion masses and mixings can be fully described and interpreted as providing information on matrix elements of physics beyond the Standard Model. A by-product is a reduction of the largest Higgs Yukawa fine structure constant by an order of magnitude. The extension to leptons provides for insight on the difference between quark mixing and lepton mixing as evidenced in neutrino oscillations. The large difference between the scale for up-quark and down-quark masses is not addressed.

  17. Superconnections an Interpretation of the Standard Model

    E-Print Network [OSTI]

    Roepstorff, G

    1999-01-01T23:59:59.000Z

    The mathematical framework of superbundles suggests that one considers the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank 5 for the Standard Model.

  18. Superconnections: an Interpretation of the Standard Model

    E-Print Network [OSTI]

    G. Roepstorff

    1999-07-30T23:59:59.000Z

    The mathematical framework of superbundles suggests that one considers the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank 5 for the Standard Model.

  19. Future Colliders Beyond the Standard Model

    E-Print Network [OSTI]

    Murayama, Hitoshi

    . Of course, the lesson of high energy physics has been that higher energies have generally revealed new that the full exploration of the Standard Model was likely to require a very high energy hadron collider important, it is not possible to postpone indefinitely new physics associated with the Higgs boson. To see

  20. Quantum field theory and the Standard Model

    E-Print Network [OSTI]

    W. Hollik

    2010-12-17T23:59:59.000Z

    In this lecture we discuss the basic ingredients for gauge invariant quantum field theories. We give an introduction to the elements of quantum field theory, to the construction of the basic Lagrangian for a general gauge theory, and proceed with the formulation of QCD and the electroweak Standard Model with electroweak symmetry breaking via the Higgs mechanism. The phenomenology of W and Z bosons is discussed and implications for the Higgs boson are derived from comparison with experimental precision data.

  1. A precise definition of the Standard Model

    E-Print Network [OSTI]

    W-Y. Pauchy Hwang

    2014-09-22T23:59:59.000Z

    To write the $SU_c(3) \\times SU_L(2) \\times U(1) \\times SU_f(3)$ Standard Model in Minkowski space-time in a precise way, we assume that a special space-time such as the $SU_c(3) \\times SU_L(2) \\times U(1) \\times SU_f(3)$ Minkowski space-time exists to begin with. Thus, the scalar fields $\\Phi(1,2)$ (the Standard-Model Higgs), $\\Phi(3,1)$ (the purely family Higgs), and $\\Phi(3,2)$ (the mixed family Higgs), with the first family label and the second $SU_L(2)$ label, all pre-exist with all gauge bosons, each with well-defined group assignment and the "purpose" (of making a certain gauge boson massive). Moreover, this space-time turns out to support the lepton world, and it also supports the quark world. In this language, all the various gauge bosons are born with the special gauge-group Minkowski space-time. (Or, the Minkowski space-time is further characterized by the force fields, or the gauge group.) This may be the most efficient and clearest way to spell out the Standard Model.

  2. Beyond standard model calculations with Sherpa

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank

    2015-03-01T23:59:59.000Z

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  3. Beyond Standard Model calculations with Sherpa

    E-Print Network [OSTI]

    Stefan Höche; Silvan Kuttimalai; Steffen Schumann; Frank Siegert

    2014-12-19T23:59:59.000Z

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.

  4. The Standard Cosmological Model and CMB Anisotropies

    E-Print Network [OSTI]

    James G. Bartlett

    1999-03-17T23:59:59.000Z

    This is a course on cosmic microwave background (CMB) anisotropies in the standard cosmological model, designed for beginning graduate students and advanced undergraduates. ``Standard cosmological model'' in this context means a Universe dominated by some form of cold dark matter (CDM) with adiabatic perturbations generated at some initial epoch, e.g., Inflation, and left to evolve under gravity alone (which distinguishes it from defect models). The course is primarily theoretical and concerned with the physics of CMB anisotropies in this context and their relation to structure formation. Brief presentations of the uniform Big Bang model and of the observed large--scale structure of the Universe are given. The bulk of the course then focuses on the evolution of small perturbations to the uniform model and on the generation of temperature anisotropies in the CMB. The theoretical development is performed in the (pseudo--)Newtonian gauge because it aids intuitive understanding by providing a quick reference to classical (Newtonian) concepts. The fundamental goal of the course is not to arrive at a highly exact nor exhaustive calculation of the anisotropies, but rather to a good understanding of the basic physics that goes into such calculations.

  5. Searches for physics beyond the standard model

    SciTech Connect (OSTI)

    Julie Roche, Willem T H van Oers, Ross D Young

    2011-06-01T23:59:59.000Z

    Jefferson Lab has now demonstrated ablility to test the fundamental symmetries of nature, and thereby probe for new physics beyond the Standard Model. Here we review the tremendous advances in precision parity-violation measurements with CEBAF that enable searches for new physics. This has been demonstrated with a determination of the weak charge of the proton, which is found to be in agreement with the prediction of the standard electroweak theory, and at a precision that rules out relevant new physics to the TeV scale. We also review the planned future experiments which aim to further test the electroweak theory at Jefferson Lab, including a further improvement on the proton weak charge, an ultra-precise Møller measurement, and a probe of the axial quark charges in PVDIS.

  6. Applying Appearance Standards to Light Reflection Models Harold B. Westlund

    E-Print Network [OSTI]

    Meyer, Gary

    standards for gloss, haze, and goniochromatic color are applied to computer graphic reflection modelsApplying Appearance Standards to Light Reflection Models Harold B. Westlund Gary W. Meyer. Correspondences are derived between both the gloss and haze standards and the specular exponent of the Phong model

  7. Standard Model Fermions and N=8 supergravity

    E-Print Network [OSTI]

    Krzysztof A. Meissner; Hermann Nicolai

    2015-02-23T23:59:59.000Z

    In a scheme originally proposed by M. Gell-Mann, and subsequently shown to be realized at the SU(3)xU(1) stationary point of maximal gauged SO(8) supergravity by N. Warner and one of the present authors, the 48 spin 1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard Model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3)_c and a family symmetry SU(3)_f. However, there remained a systematic mismatch in the electric charges by a spurion charge of $\\pm$1/6. We here identify the `missing' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form.

  8. Does SUSY know about the Standard Model?

    E-Print Network [OSTI]

    J. A. Dixon

    2013-04-07T23:59:59.000Z

    The BRST cohomology of free chiral SUSY has a wealth of Extraordinary Invariants. When one adds a superpotential to the free theory, the extention of the Extraordinary Invariants leads to some constraints on that superpotential. A particularly simple solution of those constraints is based on a $3 \\times 3$ matrix of nine chiral superfields, and then the superpotential is simply the determinant of that matrix. It is remarkable that this same theory is also a plausible basic version of the SUSY Standard Model for one Lepton family, and then the nine superfields are seen to be a left (Weak) SU(2) Lepton Doublet, Two Higgs Doublets, a Right Electron Singlet, a Right Neutrino Singlet and a Higgs singlet. Moreover, the algebra is consistent with the notion that the other two observed Lepton families arise from the coupling of the Extraordinary Invariants.

  9. Modeling Gaps and Overlaps of Sustainability Standards

    E-Print Network [OSTI]

    D'Alessio, Anna E.; Witherell, Paul; Rachuri, Sudarsan

    2012-01-01T23:59:59.000Z

    in “Europe” must “comply” with “WEEE (Waste Electrical andof another. For example, “WEEE” (instance) “has_product_the instance of “Standard” (WEEE). In an ontology, “part_of”

  10. Standard imsets for undirected and chain graphical models

    E-Print Network [OSTI]

    Kashimura, Takuya

    2011-01-01T23:59:59.000Z

    We derive standard imsets for undirected graphical models and chain graphical models. Standard imsets for undirected graphical models are described in terms of minimal triangulations for maximal prime subgraphs of the undirected graphs. For describing standard imsets for chain graphical models, we first define a triangulation of a chain graph. We then use the triangulation to generalize our results for the undirected graphs to chain graphs.

  11. Neutrinos: in and out of the standard model

    SciTech Connect (OSTI)

    Parke, Stephen; /Fermilab

    2006-07-01T23:59:59.000Z

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  12. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Ob- ject-Oriented Modeling of Thermo-Fluid Systems, Modelicable and Compressible Thermo-Fluid Pipe Networks, ModelicaStandardization of Thermo-Fluid Modeling in Modelica.Fluid

  13. CDF Note 10796 Search for Standard Model Higgs Boson Production

    E-Print Network [OSTI]

    Fermilab

    CDF Note 10796 Search for Standard Model Higgs Boson Production in Association with a W± Boson present a search for the standard model Higgs boson produced in association with a W± boson. This search that at least one jet be identified to originate from a bottom quark. Discrimination between the Higgs boson

  14. Testing the noncommutative standard model at a future photon collider

    SciTech Connect (OSTI)

    Ohl, Thorsten [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany); Reuter, Juergen [Institut fuer Theoretische Teilchenphysik, Universitaet Karlsruhe, D-76128 Karlsruhe (Germany)

    2004-10-01T23:59:59.000Z

    Extensions of the Standard Model of elementary particle physics to noncommutative geometries have been proposed as a low-energy limit of string models. Independent of this motivation, one may consider such a model as an effective field theory with higher-dimensional operators containing an antisymmetric rank-two background field. We study the signals of such a Noncommutative Standard Model (NCSM) and analyze the discovery potential of a future photon collider, considering angular distributions in fermion pair production.

  15. Energy standards and model codes development, adoption, implementation, and enforcement

    SciTech Connect (OSTI)

    Conover, D.R.

    1994-08-01T23:59:59.000Z

    This report provides an overview of the energy standards and model codes process for the voluntary sector within the United States. The report was prepared by Pacific Northwest Laboratory (PNL) for the Building Energy Standards Program and is intended to be used as a primer or reference on this process. Building standards and model codes that address energy have been developed by organizations in the voluntary sector since the early 1970s. These standards and model codes provide minimum energy-efficient design and construction requirements for new buildings and, in some instances, existing buildings. The first step in the process is developing new or revising existing standards or codes. There are two overall differences between standards and codes. Energy standards are developed by a consensus process and are revised as needed. Model codes are revised on a regular annual cycle through a public hearing process. In addition to these overall differences, the specific steps in developing/revising energy standards differ from model codes. These energy standards or model codes are then available for adoption by states and local governments. Typically, energy standards are adopted by or adopted into model codes. Model codes are in turn adopted by states through either legislation or regulation. Enforcement is essential to the implementation of energy standards and model codes. Low-rise residential construction is generally evaluated for compliance at the local level, whereas state agencies tend to be more involved with other types of buildings. Low-rise residential buildings also may be more easily evaluated for compliance because the governing requirements tend to be less complex than for commercial buildings.

  16. Gold Standard Program Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEF JumpGloverville,GogebicGold Standard

  17. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect (OSTI)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16T23:59:59.000Z

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  18. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix J THE MODEL CONSERVATION STANDARDS

    E-Print Network [OSTI]

    buildings, the standard for utility residential conservation programs, the standard for all new commercial buildings, the standard for utility commercial conservation programs, the standard for conversions THE MODEL CONSERVATION STANDARDS FOR NEW ELECTRICALLY HEATED RESIDENTIALAND COMMERCIAL BUILDINGS The region

  19. Inflation scenario via the Standard Model Higgs boson and LHC

    E-Print Network [OSTI]

    A. O. Barvinsky; A. Yu. Kamenshchik; A. A. Starobinsky

    2008-09-11T23:59:59.000Z

    We consider a quantum corrected inflation scenario driven by a generic GUT or Standard Model type particle model whose scalar field playing the role of an inflaton has a strong non-minimal coupling to gravity. We show that currently widely accepted bounds on the Higgs mass falsify the suggestion of the paper arXiv:0710.3755 (where the role of radiative corrections was underestimated) that the Standard Model Higgs boson can serve as the inflaton. However, if the Higgs mass could be raised to $\\sim 230$ GeV, then the Standard Model could generate an inflationary scenario with the spectral index of the primordial perturbation spectrum $n_s\\simeq 0.935$ (barely matching present observational data) and the very low tensor-to-scalar perturbation ratio $r\\simeq 0.0006$.

  20. The Effective Standard Model after LHC Run I

    E-Print Network [OSTI]

    John Ellis; Veronica Sanz; Tevong You

    2014-10-28T23:59:59.000Z

    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard $S,T$ formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run~1. We illustrate the combined constraints with the example of the two-Higgs doublet model.

  1. Peer Review of NRC Standardized Plant Analysis Risk Models

    SciTech Connect (OSTI)

    Anthony Koonce; James Knudsen; Robert Buell

    2011-03-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) Standardized Plant Analysis Risk (SPAR) Models underwent a Peer Review using ASME PRA standard (Addendum C) as endorsed by NRC in Regulatory Guide (RG) 1.200. The review was performed by a mix of industry probabilistic risk analysis (PRA) experts and NRC PRA experts. Representative SPAR models, one PWR and one BWR, were reviewed against Capability Category I of the ASME PRA standard. Capability Category I was selected as the basis for review due to the specific uses/applications of the SPAR models. The BWR SPAR model was reviewed against 331 ASME PRA Standard Supporting Requirements; however, based on the Capability Category I level of review and the absence of internal flooding and containment performance (LERF) logic only 216 requirements were determined to be applicable. Based on the review, the BWR SPAR model met 139 of the 216 supporting requirements. The review also generated 200 findings or suggestions. Of these 200 findings and suggestions 142 were findings and 58 were suggestions. The PWR SPAR model was also evaluated against the same 331 ASME PRA Standard Supporting Requirements. Of these requirements only 215 were deemed appropriate for the review (for the same reason as noted for the BWR). The PWR review determined that 125 of the 215 supporting requirements met Capability Category I or greater. The review identified 101 findings or suggestions (76 findings and 25 suggestions). These findings or suggestions were developed to identify areas where SPAR models could be enhanced. A process to prioritize and incorporate the findings/suggestions supporting requirements into the SPAR models is being developed. The prioritization process focuses on those findings that will enhance the accuracy, completeness and usability of the SPAR models.

  2. Testing the Standard Model under the weight of heavy flavors

    E-Print Network [OSTI]

    C. M. Bouchard

    2015-01-13T23:59:59.000Z

    I review recently completed (since Lattice 2013) and ongoing lattice calculations in charm and bottom flavor physics. A comparison of the precision of lattice and experiment is made using both current experimental results and projected experimental precision in 2020. The combination of experiment and theory reveals several tensions between nature and the Standard Model. These tensions are reviewed in light of recent lattice results.

  3. Testing the Standard Model under the weight of heavy flavors

    E-Print Network [OSTI]

    Bouchard, C M

    2015-01-01T23:59:59.000Z

    I review recently completed (since Lattice 2013) and ongoing lattice calculations in charm and bottom flavor physics. A comparison of the precision of lattice and experiment is made using both current experimental results and projected experimental precision in 2020. The combination of experiment and theory reveals several tensions between nature and the Standard Model. These tensions are reviewed in light of recent lattice results.

  4. The ALEPH Search for the Standard Model Higgs Boson

    E-Print Network [OSTI]

    J. A. Kennedy

    2001-11-01T23:59:59.000Z

    A search has been performed for the Standard Model Higgs boson in the data collected with the ALEPH detector in 2000. An excess of 3 sigma above the background expectation is found. The observed excess is consistent with the production of the Higgs boson with a mass close to 114 GeV/c2.

  5. Search for the Standard Model Higgs boson at LEP

    E-Print Network [OSTI]

    Wilson, Graham Wallace; ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; The LEP Working Group for Higgs Boson Searches

    2003-07-17T23:59:59.000Z

    The four LEP Collaborations, ALEPH, DELPHI, L3 and OPAL, have collected a total of 2461 pb^(?1) of e^+e^? collision data at centre-of-mass energies between 189 and 209 GeV. The data are used to search for the Standard Model Higgs boson. The search...

  6. The Standard Model Higgs boson as the inflaton

    E-Print Network [OSTI]

    F. L. Bezrukov; M. E. Shaposhnikov

    2008-01-09T23:59:59.000Z

    We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle besides already present in the electroweak theory is required.

  7. Gravity Effects on Antimatter in the Standard-Model Extension

    E-Print Network [OSTI]

    Jay D. Tasson

    2015-01-30T23:59:59.000Z

    The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.

  8. Gravity Effects on Antimatter in the Standard-Model Extension

    E-Print Network [OSTI]

    Tasson, Jay D

    2015-01-01T23:59:59.000Z

    The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.

  9. Standard model high mass Higgs search at CDF

    SciTech Connect (OSTI)

    Lucchesi, Donatella; /INFN, Padua

    2010-01-01T23:59:59.000Z

    The CDF collaboration has analyzed almost 6 f b{sup -1} of data collected at the Tevatron Collider at {radical}{ovr s} = 1.96 TeV to search for Standard Model Higgs boson through the decay into W{sup +}W{sup -}*. Starting from events with two leptons, advanced analysis techniques are applied to better discriminate signal from background. The Higgs sensitivity is maximized combining together analysis that exploit different event topologies. No significant excess over the expected background is observed and data is used to set a limit in units of Standard Model expectations. The limit plays a fundamental role in the Higgs search excluding the existence of this particle with mass between 158 and 175 GeV/c{sup 2} when combined with D0, the other Tevatron experiment.

  10. Search for Beyond the Standard Model Physics at D0

    SciTech Connect (OSTI)

    Kraus, James

    2011-08-01T23:59:59.000Z

    The standard model (SM) of particle physics has been remarkably successful at predicting the outcomes of particle physics experiments, but there are reasons to expect new physics at the electroweak scale. Over the last several years, there have been a number of searches for beyond the standard model (BSM) physics at D0. Here, we limit our focus to three: searches for diphoton events with large missing transverse energy (E{sub T}), searches for leptonic jets and E{sub T}, and searches for single vector-like quarks. We have discussed three recent searches at D0. There are many more, including limits on heavy neutral gauge boson in the ee channel, a search for scalar top quarks, a search for quirks, and limits on a new resonance decaying to WW or WZ.

  11. Cosmology and the noncommutative approach to the standard model

    SciTech Connect (OSTI)

    Nelson, William; Sakellariadou, Mairi [Institute of Gravitation and the Cosmos, Pennsylvania State University, State College, University Park, Pennsylvania 16801 (United States); Department of Physics, King's College, University of London, Strand WC2R 2LS, London (United Kingdom)

    2010-04-15T23:59:59.000Z

    We study cosmological consequences of the noncommutative approach to the standard model of particle physics. Neglecting the nonminimal coupling of the Higgs field to the curvature, noncommutative corrections to Einstein's equations are present only for inhomogeneous and anisotropic space-times. Considering the nonminimal coupling however, corrections are obtained even for background cosmologies. Links with dilatonic gravity as well as chameleon cosmology are briefly discussed, and potential experimental consequences are mentioned.

  12. Searches for the Standard Model Higgs Boson at CMS

    E-Print Network [OSTI]

    Marco Pieri; for the CMS Collaboration

    2012-05-13T23:59:59.000Z

    We searched for the standard model Higgs boson in many different channels using approximately 5 fb-1 of 7 TeV pp collisions data collected with the CMS detector at LHC. Combining the results of the different searches we exclude at 95% confidence level a standard model Higgs boson with mass between 127.5 and 600 GeV. The expected 95% confidence level exclusion if the Higgs boson is not present is from 114.5 and 543 GeV. The observed exclusion is weaker than expected at low mass because of some excess that is observed below about 128 GeV. The most significant excess is found at 125 GeV with a local significance of 2.8 sigma. It has a global significance of 0.8 sigma when evaluated in the full search range and of 2.1 sigma when evaluated in the range 110-145 GeV. The excess is consistent both with background fluctuation and a standard model Higgs boson with mass of about 125 GeV, and more data are needed to investigate its origin.

  13. Neutrino minimal standard model predictions for neutrinoless double beta decay

    SciTech Connect (OSTI)

    Bezrukov, F. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation) and Institut de Theorie des Phenomenes Physiques, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2005-10-01T23:59:59.000Z

    Prediction of the effective Majorana mass for neutrinoless double {beta} decay in a simple extension of the standard model ({nu}MSM) is given. The model adds three right-handed neutrinos with masses smaller than the electroweak scale and explains dark matter of the Universe. This leads to constraints 1.3

  14. Standard Model Higgs Boson Combination at the Tevatron

    E-Print Network [OSTI]

    Wei-Ming Yao for the CDF; D0 Collaborations

    2012-01-24T23:59:59.000Z

    We present the recent results from combinations of searches for a standard model (SM) Higgs boson ($H$) by the CDF and D0 experiments at the Tevatron $p\\bar p$ collider at $\\sqrt{s}=1.96$ TeV. The data correspond to an integrated total luminosity of 8.2 (CDF) and 8.6 (D0) fb$^{-1}$. Compared to the previous Tevatron Higgs boson search combination more data have been added, additional channels have been added, and some previously used channels have been reanalyzed to gain sensitivity. No excess is observed above background expectation, and set 95% C.L. upper limits (median expected) on Higgs boson production at factors of 1.17 (1.16), 1.71 (1.16), and 0.48(0.57) times the SM predictions for Higgs bosons of mass $m_H$=115, 140, and 165 GeV/c$^2$, respectively. We exclude a standard-model Higgs boson in the mass range 156--177 GeV/c$^2$ at the 95% C.L, with an expected exclusion region 148--180 GeV/c$^2$. The absence of a Higgs boson signal also constrains some new physics such as $4^{th}$ generation models and other exotic models.

  15. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect (OSTI)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01T23:59:59.000Z

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  16. Standard Model-like D-brane models and gauge couplings

    E-Print Network [OSTI]

    Yuta Hamada; Tatsuo Kobayashi; Shohei Uemura

    2014-09-09T23:59:59.000Z

    We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study gauge coupling constants of these models. The tree level gauge coupling is a function of compactification moduli, string scale, string coupling and winding number of D-branes. By tuning them, we examine whether the models can explain the experimental values of gauge couplings. As a result, we find that the string scale should be greater than $10^{14-15}$GeV if the compactification scale and the string scale are the same order.

  17. Efficiency of appliance models on the market before and after DOE standards

    SciTech Connect (OSTI)

    Meyers, Stephen

    2004-06-15T23:59:59.000Z

    Energy efficiency standards for appliances mandate that appliance manufacturers not manufacture or import models that have a test energy efficiency below a specified level after the standard effective date. Thus, appliance standards set a floor for energy efficiency. But do they also induce more significant changes in the efficiencies that manufacturers offer after the standard becomes effective? To address this question, we undertook an examination of before-standard and after-standard efficiency of models on the market for three products: (1) Refrigerators (1990, 1993, and 2001 standards); (2) Room air conditioners (1990 and 2000 standards); and (3) Gas furnaces (1992 standard).

  18. Compact stars in the standard model - and beyond

    E-Print Network [OSTI]

    F. Sandin

    2004-10-18T23:59:59.000Z

    In the context of the standard model of particle physics, there is a definite upper limit to the density of stable compact stars. However, if there is a deeper layer of constituents, below that of quarks and leptons, stability may be re-established far beyond this limiting density and a new class of compact stars could exist. These objects would cause gravitational lensing of white dwarfs and gamma-ray bursts, which might be observable as a diffraction pattern in the spectrum. Such observations could provide means for obtaining new clues about the fundamental particles and the origin of cold dark matter.

  19. Searches for the standard model Higgs at the Tevatron

    SciTech Connect (OSTI)

    Kilminster, Ben; /Ohio State U.

    2007-05-01T23:59:59.000Z

    The CDF and D0 experiments at the Tevatron are currently the only capable of searching for the Standard Model Higgs boson. This article describes their most sensitive searches in the expected Higgs mass range, focusing on advanced methods used to extract the maximal sensitivity from the data. CDF presents newly updated results for H {yields} W{sup +}W{sup -} and Zh {yields} l{sup +}l{sup -}b{bar b}. D0 presents two new searches for WH {yields} lvb{bar b}. These new analyses use the same 1 fb{sup -1} dataset as previous searches, but with improved techniques resulting in markedly improved sensitivity.

  20. Neutrinoless Double Beta Decay and Physics Beyond the Standard Model

    E-Print Network [OSTI]

    Rabindra N. Mohapatra

    1995-07-05T23:59:59.000Z

    The various mechanisms for neutrinoless double beta decay in gauge theories are reviewed and the present experimental data is used to set limits on physics scenarios beyond the standard model. The positive indications for nonzero neutrino masses in various experiments such as those involving solar, atmospheric and accelerator neutrinos are discussed and it is pointed out how some neutrino mass textures consistent with all data can be tested by the ongoing double beta decay experiments. Finally, the outlook for observable neutrinoless double beta decay signal in grand unified theories is discussed.

  1. Searches for the standard model Higgs boson at the Tevatron

    SciTech Connect (OSTI)

    Dorigo, Tommaso; /Padua U.

    2005-05-01T23:59:59.000Z

    The CDF and D0 experiments at the Tevatron have searched for the Standard Model Higgs boson in data collected between 2001 and 2004. Upper limits have been placed on the production cross section times branching ratio to b{bar b} pairs or W{sup +}W{sup -} pairs as a function of the Higgs boson mass. projections indicate that the Tevatron experiments have a chance of discovering a M{sub H} = 115 GeV Higgs with the total dataset foreseen by 2009, or excluding it at 95% C.L. up to a mass of 135 GeV.

  2. An Effective Guide to Beyond the Standard Model Physics

    E-Print Network [OSTI]

    Eduard Masso

    2014-07-23T23:59:59.000Z

    Effective Lagrangians with dimension-six operators are widely used to analyse Higgs and other electroweak data. We show how to build a basis of operators such that each operator corresponds to a coupling which is well measured or will be in the future. We choose a set of couplings such that the correspondence is one-to-one. In our framework, some important features of the Lagrangian are transparent. For example, one can clearly see the presence or absence of correlations among measurable quantities. This may be a useful guide when searching for physics beyond the Standard Model.

  3. Model Standards of Conduct April 2006[1]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William Hirst Hirst Enterprises,MODEL STANDARDS OF

  4. Precision measurements of Standard Model parameters with the ATLAS detector

    E-Print Network [OSTI]

    Brandt, Gerhard; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, e.g. the weak-mixing angle and the complete set of coefficients that describe the angular distributions of Drell-Yan production. A measurement of the forward-backward asymmetry for the neutral current Drell Yan process is presented and the results are then used to extract a measurement of the effective weak mixing angle. This measurement shows significant sensitivity to the uncertainties of the parton density functions of the proton. The angular distributions of the Drell-Yan lepton pairs around the Z-boson mass peak probe the underlying QCD dynamic of the Z-boson production mechanisms. We present a measurement of the complete set of angular coefficients describing these distributions using 8 TeV centre-of-mass energy. The measurement is compared with the theoretical predictions and shows discrimination power between different approaches of the QCD modeling.

  5. Angular correlations in top quark decays in standard model extensions

    SciTech Connect (OSTI)

    Batebi, S. [Science and Research Branch, Islamic Azad University (IAU), Tehran (Iran, Islamic Republic of); Etesami, S. M. [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Physics Department, Isfahan University of Technology (IUT), P.O. Box 11365-9161, Isfahan (Iran, Islamic Republic of); Mohammadi-Najafabadi, M. [Physics Department, Isfahan University of Technology (IUT), P.O. Box 11365-9161, Isfahan (Iran, Islamic Republic of)

    2011-03-01T23:59:59.000Z

    The CMS Collaboration at the CERN LHC has searched for the t-channel single top quark production using the spin correlation of the t-channel. The signal extraction and cross section measurement rely on the angular distribution of the charged lepton in the top quark decays, the angle between the charged lepton momentum and top spin in the top rest frame. The behavior of the angular distribution is a distinct slope for the t-channel single top (signal) while it is flat for the backgrounds. In this Brief Report, we investigate the contributions which this spin correlation may receive from a two-Higgs doublet model, a top-color assisted technicolor (TC2) and the noncommutative extension of the standard model.

  6. Modeling the wet bulb globe temperature using standard meteorological measurements.

    SciTech Connect (OSTI)

    Liljegren, J. C.; Carhart, R. A.; Lawday, P.; Tschopp, S.; Sharp, R.; Decision and Information Sciences

    2008-10-01T23:59:59.000Z

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 C based on comparisons with wet bulb globe temperature measurements at all depots.

  7. 10,000 Standard Solar Models: a Monte Carlo Simulation

    E-Print Network [OSTI]

    John N. Bahcall; Aldo M. Serenelli; Sarbani Basu

    2005-11-10T23:59:59.000Z

    We have evolved 10,000 solar models using 21 input parameters that are randomly drawn for each model from separate probability distributions for every parameter. We use the results of these models to determine the theoretical uncertainties in the predicted surface helium abundance, the profile of the sound speed versus radius, the profile of the density versus radius, the depth of the solar convective zone, the eight principal solar neutrino fluxes, and the fractions of nuclear reactions that occur in the CNO cycle or in the three branches of the p-p chains. We also determine the correlation coefficients of the neutrino fluxes for use in analysis of solar neutrino oscillations. Our calculations include the most accurate available input parameters, including radiative opacity, equation of state, and nuclear cross sections. We incorporate both the recently determined heavy element abundances recommended by Asplund, Grevesse & Sauval (2005) and the older (higher) heavy element abundances recommended by Grevesse & Sauval (1998). We present best-estimates of many characteristics of the standard solar model for both sets of recommended heavy element compositions.

  8. Sixth Northwest Conservation and Electric Power Plan Appendix F: Model Conservation Standards

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix F: Model Conservation Standards the model conservation standards should provide reliable savings to the power system. The Council also................................................ 8 Buildings Converting to Electric Space Conditioning or Water Heating Systems

  9. CDF Note 9674 Combined Upper Limit on Standard Model Higgs Boson Production for Winter 2009

    E-Print Network [OSTI]

    Fermilab

    CDF Note 9674 Combined Upper Limit on Standard Model Higgs Boson Production for Winter 2009 The CDF of searches for the Standard Model Higgs boson at CDF. The six major analyses combined are the WH bV/c2 in steps of 5 GeV/c2 , assuming Standard Model decay branching fractions of the Higgs boson

  10. Test of Physics beyond the Standard Model in Nuclei

    E-Print Network [OSTI]

    Amand Faessler; Fedor Simkovic

    1999-09-04T23:59:59.000Z

    The modern theories of Grand Unification (GUT) and supersymmetric (SUSY) extensions of standard model (SM) suppose that the conservation laws of the SM may be violated to some small degree. The nuclei are well-suited as a laboratory to test fundamental symmetries and fundamental interactions like lepton flavor (LF) and lepton number (LN) conservation. A prominent role between experiments looking for LF and total LN violation play yet not observed processes of neutrinoless double beta decay. The GUT's and SUSY models offer a variety of mechanisms which allow this process to occur. They are based on mixing of Majorana neutrinos and/or R-parity violation hypothesis. Although the neutrinoless double beta decay has not been seen it is possible to extract from the lower limits of the lifetime upper limits for the effective electron Majorana neutrino mass, effective right handed weak interaction parameters, the effective Majoron coupling constant, R-parity violating SUSY parameters etc. In this work the limits on the LN violating parameters extracted from current neutrinoless double beta decay experiments are listed. Studies in respect to future neutrinoless double beta decay experimental projects are also presented.

  11. Is the Standard Model saved asymptotically by conformal symmetry?

    E-Print Network [OSTI]

    Gorsky, A; Morozov, A; Tomaras, T N

    2014-01-01T23:59:59.000Z

    It is pointed out that the top-quark and Higgs masses and the Higgs VEV satisfy with great accuracy the relations 4m_H^2=2m_T^2=v^2, which are very special and reminiscent of analogous ones at Argyres - Douglas points with enhanced conformal symmetry. Furthermore, the RG evolution of the corresponding Higgs self-interaction and Yukawa couplings \\lambda(0)=1/8 and y(0)=1 leads to the free-field stable point \\lambda(M_Pl)= \\dot \\lambda(M_Pl)=0 in the pure scalar sector at the Planck scale, also suggesting enhanced conformal symmetry. Thus, it is conceivable that the Standard Model is the low-energy limit of a distinct special theory with (super?) conformal symmetry at the Planck scale. In the context of such a "scenario" one may further speculate that the Higgs particle is the Goldstone boson of (partly) spontaneously broken conformal symmetry. This would simultaneously resolve the hierarchy and Landau pole problems in the scalar sector and would provide a nearly flat potential with two almost degenerate minima...

  12. Effects of the Noncommutative Standard Model in WW Scattering

    SciTech Connect (OSTI)

    Conley, John A.; Hewett, JoAnne L.

    2008-12-02T23:59:59.000Z

    We examine W pair production in the Noncommutative Standard Model constructed with the Seiberg-Witten map. Consideration of partial wave unitarity in the reactions WW {yields} WW and e{sup +}e{sup -} {yields} WW shows that the latter process is more sensitive and that tree-level unitarity is violated when scattering energies are of order a TeV and the noncommutative scale is below about a TeV. We find that WW production at the LHC is not sensitive to scales above the unitarity bounds. WW production in e{sup +}e{sup -} annihilation, however, provides a good probe of such effects with noncommutative scales below 300-400 GeV being excluded at LEP-II, and the ILC being sensitive to scales up to 10-20 TeV. In addition, we find that the ability to measure the helicity states of the final state W bosons at the ILC provides a diagnostic tool to determine and disentangle the different possible noncommutative contributions.

  13. Gravitational wave background from Standard Model physics: Qualitative features

    E-Print Network [OSTI]

    Ghiglieri, J

    2015-01-01T23:59:59.000Z

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at T > 160 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future ge...

  14. Pseudo-Dirac neutrinos in the new standard model

    SciTech Connect (OSTI)

    Gouvea, Andre de; Huang, W.-C.; Jenkins, James [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States); Elementary Particles and Field Theory Group, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2009-10-01T23:59:59.000Z

    The addition of gauge-singlet fermions to the standard model Lagrangian renders the neutrinos massive and allows one to explain all that is experimentally known about neutrino masses and lepton mixing by varying the values of the Majorana mass parameters M for the gauge singlets and the neutrino Yukawa couplings {lambda}. Here we explore the region of parameter space where M values are much smaller than the neutrino Dirac masses {lambda}v. In this region, neutrinos are pseudo-Dirac fermions. We find that current solar data constrain M values to be less than at least 10{sup -9} eV, and discuss the sensitivity of future experiments to tiny gauge-singlet fermion masses. We also discuss a useful basis for analyzing pseudo-Dirac neutrino mixing effects. In particular, we identify a simple relationship between elements of M and the induced enlarged mixing matrix and new mass-squared differences. These allow one to directly relate bounds on the new mass-squared differences to bounds on the singlet fermion Majorana masses.

  15. Is the Standard Model saved asymptotically by conformal symmetry?

    E-Print Network [OSTI]

    A. Gorsky; A. Mironov; A. Morozov; T. N. Tomaras

    2014-10-02T23:59:59.000Z

    It is pointed out that the top-quark and Higgs masses and the Higgs VEV satisfy with great accuracy the relations 4m_H^2=2m_T^2=v^2, which are very special and reminiscent of analogous ones at Argyres - Douglas points with enhanced conformal symmetry. Furthermore, the RG evolution of the corresponding Higgs self-interaction and Yukawa couplings \\lambda(0)=1/8 and y(0)=1 leads to the free-field stable point \\lambda(M_Pl)= \\dot \\lambda(M_Pl)=0 in the pure scalar sector at the Planck scale, also suggesting enhanced conformal symmetry. Thus, it is conceivable that the Standard Model is the low-energy limit of a distinct special theory with (super?) conformal symmetry at the Planck scale. In the context of such a "scenario" one may further speculate that the Higgs particle is the Goldstone boson of (partly) spontaneously broken conformal symmetry. This would simultaneously resolve the hierarchy and Landau pole problems in the scalar sector and would provide a nearly flat potential with two almost degenerate minima at the electroweak and Planck scales.

  16. Fourth standard model family neutrino at future linear colliders

    SciTech Connect (OSTI)

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S. [Physics Department, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey); Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar, Ankara (Turkey)

    2005-09-01T23:59:59.000Z

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  17. CDF Note 9999 Combined Upper Limit on Standard Model Higgs Boson Production

    E-Print Network [OSTI]

    Fermilab

    CDF Note 9999 Combined Upper Limit on Standard Model Higgs Boson Production The CDF Collaboration for the Standard Model Higgs boson at CDF. The six major analyses combined are the WH b¯b channels, the WH + ZH E Model decay branching fractions of the Higgs boson and that the ratios of the rates for the WH, ZH, gg

  18. MODEL-DRIVEN ENGINEERING FOR IMPLEMENTING THE ISO 19100 SERIES OF INTERNATIONAL STANDARDS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODEL-DRIVEN ENGINEERING FOR IMPLEMENTING THE ISO 19100 SERIES OF INTERNATIONAL STANDARDS CYRIL of the ISO 19100 series of standards with use of Model-Driven Engineering (MDE) techniques. We expose how MDE to use ISO 19109, 19110 and 19117 models in order to generate a rich client application. Our work takes

  19. Topological invariants for Standard Model: from semi-metal to topological insulator

    E-Print Network [OSTI]

    G. E. Volovik

    2010-01-18T23:59:59.000Z

    We consider topological invariants describing semimetal (gapless) and insulating (gapped) states of the quantum vacuum of Standard Model and possible quantum phase transitions between these states.

  20. Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators

    E-Print Network [OSTI]

    Landon Lehman

    2014-12-26T23:59:59.000Z

    We present a complete list of the independent dimension-7 operators that are constructed using the Standard Model degrees of freedom and are invariant under the Standard Model gauge group. This list contains only 20 independent operators; far fewer than the 63 operators available at dimension 6. All of these dimension-7 operators contain fermions and violate lepton number, and 7 of the 20 violate baryon number as well. This result extends the Standard Model Effective Field Theory (SMEFT) and allows a more detailed exploration of the structure and properties of possible deformations from the Standard Model Lagrangian.

  1. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    a replaceable heat transfer model with the flag use_heat transfer. A concrete heat transfer model extending fromcycle. Also note that the heat transfer model of the tank is

  2. Phenomenology Of The Minimal Supersymmetric Standard Model Without R–Parity 

    E-Print Network [OSTI]

    O'Leary, Benjamin Hugh

    2007-01-01T23:59:59.000Z

    This thesis is an investigation into the current bounds on the trilinear R–parity–violating couplings in the Minimal Supersymmetric Standard Model without R–parity conservation. The model is described, and its implications ...

  3. CDF Note 10625 Search for the Standard Model Higgs boson in +

    E-Print Network [OSTI]

    Fermilab

    CDF Note 10625 Search for the Standard Model Higgs boson in + - + jets final state with 8.3fb-1 a search for the Standard Model Higgs boson in + - + jets final state, using CDF Run II data with an integrated luminosity of 8.3 fb-1 . The Signal considered in this search is four Higgs boson production

  4. New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity

    E-Print Network [OSTI]

    Cristiano Germani; Alex Kehagias

    2010-06-11T23:59:59.000Z

    In this letter we show that there is a unique non-minimal derivative coupling of the Standard Model Higgs boson to gravity such that: it propagates no more degrees of freedom than General Relativity sourced by a scalar field, reproduces a successful inflating background within the Standard Model Higgs parameters and, finally, does not suffer from dangerous quantum corrections.

  5. Symmetry Breaking, Unification, and Theories Beyond the Standard Model

    SciTech Connect (OSTI)

    Nomura, Yasunori

    2009-07-31T23:59:59.000Z

    A model was constructed in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. We have demonstrated that the model can avoid all the phenomenological constraints, while avoiding excessive fine-tuning. We have also studied implications of the model on dark matter physics and collider physics. I have proposed in an extremely simple construction for models of gauge mediation. We found that the {mu} problem can be simply and elegantly solved in a class of models where the Higgs fields couple directly to the supersymmetry breaking sector. We proposed a new way of addressing the flavor problem of supersymmetric theories. We have proposed a new framework of constructing theories of grand unification. We constructed a simple and elegant model of dark matter which explains excess flux of electrons/positrons. We constructed a model of dark energy in which evolving quintessence-type dark energy is naturally obtained. We studied if we can find evidence of the multiverse.

  6. Neutrinoless Double Beta Decay and Physics Beyond the Standard Model

    E-Print Network [OSTI]

    Frank F. Deppisch; Martin Hirsch; Heinrich Päs

    2012-08-03T23:59:59.000Z

    Neutrinoless double beta decay is the most powerful tool to probe not only for Majorana neutrino masses but for lepton number violating physics in general. We discuss relations between lepton number violation, double beta decay and neutrino mass, review a general Lorentz invariant parametrization of the double beta decay rate, highlight a number of different new physics models showing how different mechanisms can trigger double beta decay, and finally discuss possibilities to discriminate and test these models and mechanisms in complementary experiments.

  7. Upper bound on the cutoff in the Standard Model

    E-Print Network [OSTI]

    Veselov, A I

    2009-01-01T23:59:59.000Z

    The main objective of this presentation is to point out that the Upper bound on the cutoff in lattice Electroweak theory is still unknown. The consideration of the continuum theory is based on the perturbation expansion around trivial vacuum. The internal structure of the lattice Weinberg - Salam model may appear to be more complicated especially in the region of the phase diagram close to the phase transition between the physical Higgs phase and the unphysical symmetric phase of the lattice model, where the continuum physics is to be approached. We represent the results of our numerical investigation of the quenched model at infinite bare scalar self coupling $\\lambda$. These results demonstrate that at $\\lambda = \\infty$ the upper bound on the cutoff is around $\\frac{\\pi}{a} = 1.4$ Tev. The preliminary results for finite $\\lambda$ are also presented. Basing on these results we cannot yet make a definite conclusion on the maximal value of the cutoff admitted in the lattice model, although we have found that ...

  8. 3. Classical problems of the Standard Big Bang Model

    E-Print Network [OSTI]

    Aretxaga, Itziar

    and inflation stops. There are many variants of inflation. · Universe in the state of false vacuum · energy of Universe dominated by vacuum energy · Universe expands exponentially · In some models, when it transits to true vacuum matter/antimatter is created and inflation ends. #12;

  9. Standard model extensions for PV electron scattering, g-2, EDM: Overview

    E-Print Network [OSTI]

    Jens Erler

    2011-10-26T23:59:59.000Z

    I review how various extensions of the Standard Model, in particular supersymmetry and extra neutral gauge bosons, may affect low energy observables, including parity-violating electron scattering and related observables, as well as electric and magnetic dipole moments.

  10. Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions

    E-Print Network [OSTI]

    Keinan, Alon

    Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions Ran Canetti-up or public keys. Tel Aviv University, Email: Canetti@tau.ac.il Cornell University, E-Mail: huijia

  11. D Note 6229-CONF Combined Upper Limits on Standard Model Higgs Boson Production

    E-Print Network [OSTI]

    Quigg, Chris

    D� Note 6229-CONF Combined Upper Limits on Standard Model Higgs Boson Production from the D�) Searches for standard model Higgs boson production in p¯p collisions at s = 1.96 TeV are carried out for Higgs boson masses (mH) in the range 100 mH 200 GeV/c2 . The contributing production processes include

  12. Search for the Standard Model Higgs Boson at the LEP2 Collider near

    E-Print Network [OSTI]

    Boyer, Edmond

    Search for the Standard Model Higgs Boson at the LEP2 Collider near ps = 183 GeV The ALEPHV. These data are used to look for possible signals from the production of the Standard Model Higgs boson on the mass of the Higgs boson: mH > 87:9 GeV=c2 at 95% con#12;dence level. The ALEPH Collaboration wish

  13. Standard Model with the additional $Z_6$ symmetry on the lattice

    E-Print Network [OSTI]

    B. L. G. Bakker; A. I. Veselov; M. A. Zubkov

    2005-06-03T23:59:59.000Z

    An additional $Z_6$ symmetry hidden in the fermion and Higgs sectors of the Standard Model has been found recently\\cite{BVZ2003}. A lattice regularization of the Standard Model was constructed that possesses this symmetry. In \\cite{BVZ2004} we have reported our results on the numerical simulation of the Electroweak sector of the model. In this paper we report our results on the numerical simulation of the full ($SU(3)\\otimes SU(2) \\otimes U(1)$) model. The phase diagram of the model has been investigated using static quark and lepton potentials. Various types of monopoles have been constructed. Their densities appear to be sensitive to the phase transition lines. Differences between the realizations of the Standard Model which do or do not possess the mentioned $Z_6$ symmetry, are discussed.

  14. New perspectives in physics beyond the standard model

    SciTech Connect (OSTI)

    Weiner, Neal Jonathan

    2000-09-09T23:59:59.000Z

    In 1934 Fermi postulated a theory for weak interactions containing a dimensionful coupling with a size of roughly 250 GeV. Only now are we finally exploring this energy regime. What arises is an open question: supersymmetry and large extra dimensions are two possible scenarios. Meanwhile, other experiments will begin providing definitive information into the nature of neutrino masses and CP violation. In this paper, we explore features of possible theoretical scenarios, and study the phenomenological implications of various models addressing the open questions surrounding these issues.

  15. A Lattice Non-Perturbative Definition of an SO(10) Chiral Gauge Theory and Its Induced Standard Model

    E-Print Network [OSTI]

    Wen, Xiao-Gang

    The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except ...

  16. Search for the Standard Model Higgs Boson in the Lepton + Missing Transverse Energy + Jets Final State in ATLAS

    E-Print Network [OSTI]

    Mark S. Neubauer; for the ATLAS Collaboration

    2011-10-11T23:59:59.000Z

    A search for the Standard Model Higgs boson has been performed in the H \\rightarrow WW \\rightarrow l{\

  17. Parsimonious additive logistic models Logistic regression is a standard tool in statistics for binary classification. The logistic model

    E-Print Network [OSTI]

    Boyer, Edmond

    a linear regression model. A generalization is the additive logistic model, which replaces each linear term, removes irrelevant variables, and identifies non linear trends. The estimates are computed via the usualParsimonious additive logistic models Logistic regression is a standard tool in statistics

  18. EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy

    E-Print Network [OSTI]

    EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected of users. In a grid compute economy, computing resources are sold to users in a market where price

  19. Search for the neutral Higgs bosons of the Standard Model and the MSSM in e+

    E-Print Network [OSTI]

    Boyer, Edmond

    Search for the neutral Higgs bosons of the Standard Model and the MSSM in e+ e- collisions at s = 189 GeV The ALEPH Collaboration ) CERN-EP-2000-019 January 27, 2000 Abstract Neutral Higgs bosons Model Higgs boson. In the MSSM, for tan 0.7 and for benchmark parameter choices, lower limits of 82

  20. Effect of non-standard interaction for radiative neutrino mass model

    SciTech Connect (OSTI)

    Konishi, Y.; Sato, J.; Shimomura, T. [Department of Physics, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570 (Japan); Department of Physics, Niigata University, Niigata, 950-2181 (Japan)

    2012-07-27T23:59:59.000Z

    We examined effects of non-standard interactions (NSIs) in a radiative neutrino mass model. The radiative neutrino mass model suggested by Kraus Nasri and Trodden can explain not only neutrino flavor mixing and neutrino masses, but also dark matter relic abundance. Although the NSI effects of the model are too small to be detected by present neutrino oscillation experiments, we might observe the small effects in future experiments such as neutrino factory.

  1. Heavy Higgs signal-background interference in gg --> VV in the Standard Model plus real singlet

    E-Print Network [OSTI]

    Kauer, Nikolas

    2015-01-01T23:59:59.000Z

    For the Standard Model extended with a real scalar singlet field, the modification of the heavy Higgs signal due to interference with the continuum background and the off-shell light Higgs contribution is studied for gg --> ZZ, WW --> 4 lepton processes at the Large Hadron Collider. A public program that allows to simulate the full interference is presented.

  2. Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report

    E-Print Network [OSTI]

    J. Butterworth; G. Dissertori; S. Dittmaier; D. de Florian; N. Glover; K. Hamilton; J. Huston; M. Kado; A. Korytov; F. Krauss; G. Soyez; J. R. Andersen; S. Badger; L. Barzè; J. Bellm; F. U. Bernlochner; A. Buckley; J. Butterworth; N. Chanon; M. Chiesa; A. Cooper-Sarkar; L. Cieri; G. Cullen; H. van Deurzen; G. Dissertori; S. Dittmaier; D. de Florian; S. Forte; R. Frederix; B. Fuks; J. Gao; M. V. Garzelli; T. Gehrmann; E. Gerwick; S. Gieseke; D. Gillberg; E. W. N. Glover; N. Greiner; K. Hamilton; T. Hapola; H. B. Hartanto; G. Heinrich; A. Huss; J. Huston; B. Jäger; M. Kado; A. Kardos; U. Klein; F. Krauss; A. Kruse; L. Lönnblad; G. Luisoni; Daniel Maître; P. Mastrolia; O. Mattelaer; J. Mazzitelli; E. Mirabella; P. Monni; G. Montagna; M. Moretti; P. Nadolsky; P. Nason; O. Nicrosini; C. Oleari; G. Ossola; S. Padhi; T. Peraro; F. Piccinini; S. Plätzer; S. Prestel; J. Pumplin; K. Rabbertz; Voica Radescu; L. Reina; C. Reuschle; J. Rojo; M. Schönherr; J. M. Smillie; J. F. von Soden-Fraunhofen; G. Soyez; R. Thorne; F. Tramontano; Z. Trocsanyi; D. Wackeroth; J. Winter; C-P. Yuan; V. Yundin; K. Zapp

    2014-05-05T23:59:59.000Z

    This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.

  3. The $B-L$ Supersymmetric Standard Model with Inverse Seesaw at the Large Hadron Collider

    E-Print Network [OSTI]

    Khalil, S

    2015-01-01T23:59:59.000Z

    We review the TeV scale $B-L$ extension of the Minimal Supersymmetric Standard Model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the Large Hadron Collider (LHC).

  4. A problem of hypothetical emerging of matter objects on horizon in the standard model of universe

    E-Print Network [OSTI]

    V. Skalsky

    2000-09-25T23:59:59.000Z

    In the standard model of universe the increase in mass of our observed expansive Universe is explained by the assumption of emerging the matter objects on the horizon (of the most remote visibility). However, the physical analysis of the influence of this assumption on the velocity of matter objects shows unambiguously that this hypothetical assumption contradicts the theory of gravity.

  5. A wave equation including leptons and quarks for the standard model of quantum physics in

    E-Print Network [OSTI]

    Boyer, Edmond

    A wave equation including leptons and quarks for the standard model of quantum physics in Clifford-m@orange.fr August 27, 2014 Abstract A wave equation with mass term is studied for all particles and an- tiparticles of color and antiquarks u and d. This wave equation is form invariant under the Cl 3 group generalizing

  6. Search for Physics Beyond the Standard Model at BaBar and Belle

    E-Print Network [OSTI]

    G. Calderini

    2012-04-19T23:59:59.000Z

    Recent results on the search for new physics at BaBar and Belle B-factories are presented. The search for a light Higgs boson produced in the decay of different Y resonances is shown. In addition, recent measurements aimed to discover invisible final states produced by new physics mechanisms beyond the standard model are presented.

  7. CDF/PUB/EXOTIC/PUBLIC/10737 Search for a Standard Model Higgs Boson Decaying Into Photons

    E-Print Network [OSTI]

    Fermilab

    CDF/PUB/EXOTIC/PUBLIC/10737 Search for a Standard Model Higgs Boson Decaying Into Photons at CDF) A search for the SM Higgs boson in the diphoton decay channel is reported using data corre- sponding are set on the production cross section times the H branching fraction for hypothetical Higgs boson

  8. CDF note 9642 Search for the Standard Model Higgs boson in the ET plus jets sample

    E-Print Network [OSTI]

    Fermilab

    CDF note 9642 Search for the Standard Model Higgs boson in the ET plus jets sample The CDF Collaboration URL http://www-cdf.fnal.gov (Dated: August 17, 2009) We search for the Higgs boson produced; the Higgs boson decays into a bb pair. This analysis is an update of the previous one to 3.6 fb-1 of CDF

  9. W / Z + heavy flavor production and the standard model Higgs searches at the Tevatron

    SciTech Connect (OSTI)

    Choi, S.Y.; /UC, Riverside

    2004-08-01T23:59:59.000Z

    Searches for the Standard Model Higgs in WH and H {yields} WW channels by CDF and D0 collaborations are presented. The preliminary results are based on < 180 pb{sup -1} of data analyzed by each experiment. Important backgrounds to Higgs searches, such as heavy flavor production in association with massive vector bosons (W and Z) are studied in the process.

  10. Search for standard model Higgs boson production in association with a W boson at CDF

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present a search for the standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp? ?W[superscript ±]H???bb? ) at a center of mass energy of 1.96 TeV. The search employs ...

  11. Search for the Standard Model Higgs boson decaying to two W bosons at CMS

    E-Print Network [OSTI]

    Xie, Si, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    In this thesis, we search for the production of the Standard Model Higgs boson at the Large Hadron Collider, through its decay mode to two W bosons, which each in turn decay into a charged lepton and a neutrino. The Higgs ...

  12. Has a standard model solution to the solar neutrino problem been found?

    E-Print Network [OSTI]

    Bahcall, J N; Christensen-Dalsgaard, J; Clevelend, B T; Degl'Innocenti, S; Filippone, B W; Glasner, A; Kavanagh, R W; Koonin, S E; Lande, K; Kanganke, K; Parker, P D; Pinsonneault, M H; Proffitt, C R; Shoppa, T D; John N Bahcall et al

    1994-01-01T23:59:59.000Z

    The claim by Dar and Shaviv that they have found a standard model solution to the solar neutrino problem is based upon an incorrect assumption made in extrapolating nuclear cross sections and the selective use of a small fraction of the nuclear physics and of the neutrino data. In addition, five different solar model codes show that the rate obtained for the chlorine experiment using the Dar-Shaviv stated parameters differs by at least 14 .sigma. from the observed rate.

  13. Has a standard model solution to the solar neutrino problem been found?

    SciTech Connect (OSTI)

    Bahcall, J.N.; Barnes, C.A.; Christensen-Dalsgaard, J.; Cleveland, B.T.; Degl'Innocenti, S.; Filippone, B.W.; Glasner, A.; Kavanagh, R.W.; Koonin, S.E.; Lande, K.; Langanke, K.; Parker, P.D.; Pinsonneault, M.H.; Proffitt, C.R.; Shoppa, T.

    1994-08-01T23:59:59.000Z

    The claim by Dar and Shaviv that they have found a standard model solution to the solar neutrino problem is base upon an incorrect assumption made in extrapolating nuclear cross sections and the selective use of a small fraction of the nuclear physics and of the neutrino data. In addition, five different solar model codes show that the rate obtained for the chlorine experiment using the Dar- Shaviv stated parameters differs by a least 14{sigma} from the observed rate.

  14. Gluon Fusion Processes at One-loop within the Standard Model and Beyond

    E-Print Network [OSTI]

    Ambresh Shivaji

    2013-05-21T23:59:59.000Z

    In this thesis, we have studied certain gluon fusion processes which proceed via quark loop diagrams at the leading order. The fact that these gluon-gluon channel processes are independent processes, their contributions towards the total/differential hadronic cross sections can be calculated separately. We have considered the production of a pair of electroweak vector bosons in association with a jet via gluon fusion within the standard model. These processes were not accessible at earlier hadron colliders such as the Tevatron. Therefore, observation of these rare processes at the LHC will be a test of the standard model itself. Like the di-vector boson production via gluon fusion processes, these processes are also important backgrounds for many new physics signals, and the standard model Higgs boson signal at the LHC. These leading order gluon fusion processes contribute to the corresponding hadronic processes at the next-to-next-to-leading order in {\\alpha}_s. We have taken a model of extra-dimensions, the ADD (Arkani-Hamed, Dimopoulos and Dvali) model, as the possible candidate of new physics at the LHC. This model tries to solve the hierarchy problem of the standard model by proposing large extra space dimensions which may be accessible at TeV scale. We have considered the direct production of KK-gravitons (GKK) in association with an electroweak boson (H/{\\gamma}/Z) via gluon fusion. These processes contribute to the corresponding hadronic processes at the next-to-leading order in {\\alpha}_s. Many interesting issues related to the fermion loop amplitudes have also been discussed.

  15. Risk aggregation in Solvency II: How to converge the approaches of the internal models and those of the standard formula?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the standard formula? Laurent Devineau Université de Lyon, Université Lyon 1, Laboratoire de Science the Solvency II economic capital: the use of a standard formula or the use of an internal model (global demonstrate that the standard formula can be considered as a first order approximation of the result

  16. Non-Higgsable QCD and the Standard Model Spectrum in F-theory

    E-Print Network [OSTI]

    Antonella Grassi; James Halverson; Julius Shaneson; Washington Taylor

    2014-09-29T23:59:59.000Z

    Many four-dimensional supersymmetric compactifications of F-theory contain gauge groups that cannot be spontaneously broken through geometric deformations. These "non-Higgsable clusters" include realizations of $SU(3)$, $SU(2)$, and $SU(3) \\times SU(2)$, but no $SU(n)$ gauge groups or factors with $n> 3$. We study possible realizations of the standard model in F-theory that utilize non-Higgsable clusters containing $SU(3)$ factors and show that there are three distinct possibilities. In one, fields with the non-abelian gauge charges of the standard model matter fields are localized at a single locus where non-perturbative $SU(3)$ and $SU(2)$ seven-branes intersect; cancellation of gauge anomalies implies that the simplest four-dimensional chiral $SU(3)\\times SU(2)\\times U(1)$ model that may arise in this context exhibits standard model families. We identify specific geometries that realize non-Higgsable $SU(3)$ and $SU(3) \\times SU(2)$ sectors. This kind of scenario provides a natural mechanism that could explain the existence of an unbroken QCD sector, or more generally the appearance of light particles and symmetries at low energy scales.

  17. Search for the standard model Higgs boson in tau lepton pair final states

    E-Print Network [OSTI]

    D0 Collaboration

    2012-05-16T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb^{-1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.

  18. Expected Precision of Higgs Boson Partial Widths within the Standard Model

    E-Print Network [OSTI]

    G. Peter Lepage; Paul B. Mackenzie; Michael E. Peskin

    2015-04-22T23:59:59.000Z

    We discuss the sources of uncertainty in calculations of the partial widths of the Higgs boson within the Standard Model. The uncertainties come from two sources: the truncation of perturbation theory and the uncertainties in input parameters. We review the current status of perturbative calculations and note that these are already reaching the parts-per-mil level of accuracy for the major decay modes. The main sources of uncertainty will then come from the parametric dependences on alpha_s, m_b, and m_c. Knowledge of these parameters is systematically improvable through lattice gauge theory calculations. We estimate the precision that lattice QCD will achieve in the next decade and the corresponding precision of the Standard Model predictions for Higgs boson partial widths.

  19. Search for the standard model Higgs boson in tau lepton final states

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; et al.

    2012-08-01T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb{sup -1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.

  20. e{sup +}e{sup -{yields}{mu}+{mu}-} scattering in the noncommutative standard model

    SciTech Connect (OSTI)

    Prakash, Abhishodh; Mitra, Anupam; Das, Prasanta Kumar [Birla Institute of Technology and Science-Pilani, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726 (India)

    2010-09-01T23:59:59.000Z

    We study muon pair production e{sup +}e{sup -{yields}{mu}+{mu}-} in the noncommutative (NC) extension of the standard model using the Seiberg-Witten maps of this to the second order of the noncommutative parameter {Theta}{sub {mu}{nu}}. Using O({Theta}{sup 2}) Feynman rules, we find the O({Theta}{sup 4}) cross section (with all other lower order contributions simply cancelled) for the pair production. The momentum dependent O({Theta}{sup 2}) NC interaction significantly modifies the cross section and angular distributions which are different from the commuting standard model. We study the collider signatures of the space-time noncommutativity at the International Linear Collider (ILC) and find that the process e{sup +}e{sup -{yields}{mu}+{mu}-} can probe the NC scale {Lambda} in the range 0.8-1.0 TeV for typical ILC energy ranges.

  1. Neutral Higgs boson pair production at the linear collider in the noncommutative standard model

    SciTech Connect (OSTI)

    Das, Prasanta Kumar; Prakash, Abhishodh; Mitra, Anupam [Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa-403726 (India)

    2011-03-01T23:59:59.000Z

    We study the Higgs boson pair production at the linear collider in the noncommutative extension of the standard model using the Seiberg-Witten map of this to the first order of the noncommutative parameter {Theta}{sub {mu}{nu}}. Unlike the standard model (where the process is forbidden) here the Higgs boson pair directly interacts with the photon. We find that the pair production cross section can be quite significant for the noncommutative scale {Lambda} lying in the range 0.5 TeV to 1.0 TeV. Using the experimental (LEP 2, Tevatron, and global electroweak fit) bound on the Higgs mass, we obtain 626 GeV{<=}{Lambda}{<=}974 GeV.

  2. Expected Precision of Higgs Boson Partial Widths within the Standard Model

    E-Print Network [OSTI]

    G. Peter Lepage; Paul B. Mackenzie; Michael E. Peskin

    2014-04-01T23:59:59.000Z

    We discuss the sources of uncertainty in calculations of the partial widths of the Higgs boson within the Standard Model. The uncertainties come from two sources: the truncation of perturbation theory and the uncertainties in input parameters. We review the current status of perturbative calculations and note that these are already reaching the parts-per-mil level of accuracy for the major decay modes. The main sources of uncertainty will then come from the parametric dependences on alpha_s, m_b, and m_c. Knowledge of these parameters is systematically improvable through lattice gauge theory calculations. We estimate the precision that lattice QCD will achieve in the next decade and the corresponding precision of the Standard Model predictions for Higgs boson partial widths.

  3. Implications of a large B s ? ? + ? ? branching fraction for the minimal supersymmetric standard model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hooper, Dan; Kelso, Chris

    2012-05-01T23:59:59.000Z

    Recently, the CDF Collaboration reported the first nonzero measurement of the Bs????? branching fraction. The LHCb, CMS and ATLAS, collaborations have reported upper limits that are in tension with the CDF result. We consider the implications of these measurements for the specific case of the minimal supersymmetric standard model. We also discuss the implications of these measurements for neutralino dark matter and the supersymmetric contribution to the anomalous magnetic moment of the muon.

  4. An Explicit Embedding of Gravity and the Standard Model in E8

    E-Print Network [OSTI]

    Lisi, A Garrett

    2010-01-01T23:59:59.000Z

    The algebraic elements of gravitational and Standard Model gauge fields acting on a generation of fermions may be represented using real matrices. These elements match a subalgebra of spin(11,3) acting on a Majorana-Weyl spinor, consistent with GraviGUT unification. This entire structure embeds in the quaternionic real form of the largest exceptional Lie algebra, E8. These embeddings are presented explicitly and their implications discussed.

  5. An Explicit Embedding of Gravity and the Standard Model in E8

    E-Print Network [OSTI]

    A. Garrett Lisi

    2010-06-25T23:59:59.000Z

    The algebraic elements of gravitational and Standard Model gauge fields acting on a generation of fermions may be represented using real matrices. These elements match a subalgebra of spin(11,3) acting on a Majorana-Weyl spinor, consistent with GraviGUT unification. This entire structure embeds in the quaternionic real form of the largest exceptional Lie algebra, E8. These embeddings are presented explicitly and their implications discussed.

  6. Semi-leptonic Decay of Lambda-b in the Standard Model and with New Physics

    E-Print Network [OSTI]

    Wanwei Wu

    2015-05-13T23:59:59.000Z

    Heavy quark decays provide a very advantageous investigation to test the Standard Model (SM). Recently, promising experiments with \\textit{b} quark, as well as the analysis of the huge data sets produced at the B factories, have led to an increasing study and sensitive measurements of relative \\textit{b} quark decays. In this thesis, I calculate various observables in the semi-leptonic decay process $\\Lambda_{b}\\to \\Lambda_{c}\\tau\\bar{\

  7. Search for the Standard Model Higgs Boson in the $WH \\to \\ell \

    SciTech Connect (OSTI)

    Nagai, Yoshikazu; /Tsukuba U.

    2010-02-01T23:59:59.000Z

    We have searched for the Standard Model Higgs boson in the WH {yields} lvbb channel in 1.96 TeV pp collisions at CDF. This search is based on the data collected by March 2009, corresponding to an integrated luminosity of 4.3 fb-1. The W H channel is one of the most promising channels for the Higgs boson search at Tevatron in the low Higgs boson mass region.

  8. Testing the Standard Model by precision measurement of the weak charges of quarks

    SciTech Connect (OSTI)

    Ross Young; Roger Carlini; Anthony Thomas; Julie Roche

    2007-05-01T23:59:59.000Z

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.

  9. Seeking Texture Zeros in the Quark Mass Matrix Sector of the Standard Model

    E-Print Network [OSTI]

    Giraldo, Yithsbey

    2015-01-01T23:59:59.000Z

    Here we show that the Weak Basis Transformation is an appropriate mathematical tool that can be used to find texture zeros in the quark mass matrix sector of the Standard Model. So, starting with the most general quark mass matrices and taking physical data into consideration, is possible to obtain more than three texture zeros by any weak basis transformation. Where the most general quark mass matrices considered in the model, were obtained through a special weak basis wherein the mass matrix $M_u$~(or $M_d$) has been taken to be diagonal and only the matrix $M_d$~(or $M_u$) is considered to be most general.

  10. A Search for the Standard Model Higgs Boson Produced in Association with a $W$ Boson

    SciTech Connect (OSTI)

    Frank, Martin Johannes; /Baylor U.

    2011-05-01T23:59:59.000Z

    We present a search for a standard model Higgs boson produced in association with a W boson using data collected with the CDF II detector from p{bar p} collisions at {radical}s = 1.96 TeV. The search is performed in the WH {yields} {ell}{nu}b{bar b} channel. The two quarks usually fragment into two jets, but sometimes a third jet can be produced via gluon radiation, so we have increased the standard two-jet sample by including events that contain three jets. We reconstruct the Higgs boson using two or three jets depending on the kinematics of the event. We find an improvement in our search sensitivity using the larger sample together with this multijet reconstruction technique. Our data show no evidence of a Higgs boson, so we set 95% confidence level upper limits on the WH production rate. We set limits between 3.36 and 28.7 times the standard model prediction for Higgs boson masses ranging from 100 to 150 GeV/c{sup 2}.

  11. Search for the standard model Higgs boson produced in association with a standard W or a Z boson and decaying to bottom quarks

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.,

    2014-01-21T23:59:59.000Z

    A search for the standard model Higgs boson (H) decaying to b b-bar when produced in association with a weak vector boson (V) is reported for the following channels: W(mu nu)H, W(e nu)H, W(tau nu)H, Z(mu mu)H, Z(e e)H, and Z(nu nu)H. The search is performed in data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at sqrt(s) = 7 TeV and up to 18.9 inverse femtobarns at sqrt(s) = 8 TeV, recorded by the CMS experiment at the LHC. An excess of events is observed above the expected background with a local significance of 2.1 standard deviations for a Higgs boson mass of 125 GeV, consistent with the expectation from the production of the standard model Higgs boson. The signal strength corresponding to this excess, relative to that of the standard model Higgs boson, is 1.0 +/- 0.5.

  12. Search for the standard model and a fermiophobic Higgs boson in diphoton final states

    E-Print Network [OSTI]

    D0 Collaboration

    2011-07-22T23:59:59.000Z

    We present a search for the standard model Higgs boson and a fermiophobic Higgs boson in the diphoton final states based on 8.2 fb-1 of ppbar collisions collected with the D0 detector at the Fermilab Tevatron Collider. No excess of data above background predictions is observed and upper limits at the 95% C.L. on the cross section multiplied by the branching fraction are set which are the most restrictive to date. A fermiophobic Higgs boson with a mass below 112.9 GeV is excluded at the 95% C.L.

  13. Schrödinger-Pauli Equation for the Standard Model Extension CPT-Violating Dirac Equation

    E-Print Network [OSTI]

    Thomas D. Gutierrez

    2015-04-06T23:59:59.000Z

    It is instructive to investigate the non-relativistic limit of the simplest Standard Model Extension (SME) CPT-violating Dirac-like equation but with minimal coupling to the electromagnetic fields. In this limit, it becomes an intuitive Schr\\"odinger-Pauli-like equation. This is comparable to the free particle treatment as explored by Kostelecky and Lane, but this exercise only considers the $a$ and $b$ CPT-violating terms and $\\vec{p}/m$ terms to first order. Several toy systems are discussed.

  14. Schr\\"odinger-Pauli Equation for the Standard Model Extension CPT-Violating Dirac Equation

    E-Print Network [OSTI]

    Gutierrez, Thomas D

    2015-01-01T23:59:59.000Z

    It is instructive to investigate the non-relativistic limit of the simplest Standard Model Extension (SME) CPT-violating Dirac-like equation but with minimal coupling to the electromagnetic fields. In this limit, it becomes an intuitive Schr\\"odinger-Pauli-like equation. This is comparable to the free particle treatment as explored by Kostelecky and Lane, but this exercise only considers the $a$ and $b$ CPT-violating terms and $\\vec{p}/m$ terms to first order. Several toy systems are discussed.

  15. Results on the search for the standard model Higgs boson at CMS

    SciTech Connect (OSTI)

    Fabozzi, Francesco [INFN Sezione di Napoli, Complesso Univ. di Monte S. Angelo Via Cintia - 80126 Napoli (Italy) and Universita della Basilicata, Viale dell'Ateneo Lucano 10 - 85100 Potenza (Italy); Collaboration: CMS Collaboration

    2012-10-23T23:59:59.000Z

    A summary of the results from searches for the Standard Model Higgs Boson in the CMS experiment at LHC with data collected from proton-proton collisions at {radical}(s) = 7TeV is presented. The Higgs boson is searched in a multiplicity of decay channels using data samples corresponding to integrated luminosities in the range 4.6 - 4.8 fb{sup -1}. The investigated mass range is 110 - 600 GeV. Results are reported for each channel as well as for their combination.

  16. Estimating Loss-of-Coolant Accident Frequencies for the Standardized Plant Analysis Risk Models

    SciTech Connect (OSTI)

    S. A. Eide; D. M. Rasmuson; C. L. Atwood

    2008-09-01T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission maintains a set of risk models covering the U.S. commercial nuclear power plants. These standardized plant analysis risk (SPAR) models include several loss-of-coolant accident (LOCA) initiating events such as small (SLOCA), medium (MLOCA), and large (LLOCA). All of these events involve a loss of coolant inventory from the reactor coolant system. In order to maintain a level of consistency across these models, initiating event frequencies generally are based on plant-type average performance, where the plant types are boiling water reactors and pressurized water reactors. For certain risk analyses, these plant-type initiating event frequencies may be replaced by plant-specific estimates. Frequencies for SPAR LOCA initiating events previously were based on results presented in NUREG/CR-5750, but the newest models use results documented in NUREG/CR-6928. The estimates in NUREG/CR-6928 are based on historical data from the initiating events database for pressurized water reactor SLOCA or an interpretation of results presented in the draft version of NUREG-1829. The information in NUREG-1829 can be used several ways, resulting in different estimates for the various LOCA frequencies. Various ways NUREG-1829 information can be used to estimate LOCA frequencies were investigated and this paper presents two methods for the SPAR model standard inputs, which differ from the method used in NUREG/CR-6928. In addition, results obtained from NUREG-1829 are compared with actual operating experience as contained in the initiating events database.

  17. Cogeneration of Dark Matter and Baryons by Non-Standard-Model Sphalerons in Unified Models

    E-Print Network [OSTI]

    S. M. Barr; Heng-Yu Chen

    2013-09-17T23:59:59.000Z

    Sphalerons of a new gauge interaction can convert a primordial asymmetry in B or L into a dark matter asymmetry. From the equilibrium conditions for the sphalerons of both the electroweak and the new interactions, one can compute the ratios of B, L, and X, where X is the dark matter number, thus determining the mass of the dark matter particle fairly precisely. Such a scenario can arise naturally in the context of unification with larger groups. An illustrative model embeddable in $SU(6) \\times SU(2) \\subset E_6$ is described as well as an equally simple model based on SU(7).

  18. Efficiency of appliance models on the market before and after DOE standards

    E-Print Network [OSTI]

    Meyers, Stephen

    2004-01-01T23:59:59.000Z

    AHAM Directory Compared to DOE Standards June July 2002 2001Directory Compared to1990 DOE Standard March1991 Oct 1987Directory Compared to 2000 DOE Standard Sept 2001 March 1991

  19. Elliptical Solutions to the Standard Cosmology Model with Realistic Values of Matter Density

    E-Print Network [OSTI]

    Ahmet Mecit Oztas; Michael L. Smith

    2015-02-21T23:59:59.000Z

    We have examined a solution to the FRW model of the Einstein and de Sitter Universe, often termed the standard model of cosmology, using wide values for the normalized cosmological constant Omega_L and spacetime curvature Omega_k with proposed values of normalized matter density. These solutions were evaluated using a combination of the third type of elliptical equations and were found to display critical points for redshift z, between 1 and 3, when Omega_L is positive. These critical points occur at values for normalized cosmological constant higher than those currently thought important, though we find this solution interesting because the Omega_L term may increase in dominance as the Universe evolves bringing this discontinuity into importance. We also find positive Omega_L tends towards attractive at values of z which are commonly observed for distant galaxies.

  20. The Standard model as a low-energy effective theory: what is triggering the Higgs mechanism?

    E-Print Network [OSTI]

    Fred Jegerlehner

    2014-07-02T23:59:59.000Z

    The discovery of the Higgs by ATLAS and CMS at the LHC not only provided the last missing building block of the electroweak Standard Model, the mass of the Higgs has been found to have a very peculiar value about 126 GeV, which is such that vacuum stability is extending up to the Planck scale. This may have much deeper drawback than anticipated so far. The impact on the running of the SM gauge, Yukawa and Higgs couplings up to the Planck scale has been discussed in several articles recently. Here we consider the impact on the running masses and we discuss the role of quadratic divergences within the Standard Model. The change of sign of the coefficient of the quadratically divergent terms showing up at about mu_0 ~ 1.4 x 10^16 GeV may be understood as a first order phase transition restoring the symmetric phase, while its large negative values at lower scales triggers the Higgs mechanism, running parameters evolve in such a way that the symmetry is restored two orders of magnitude before the Planck scale. Thus, the electroweak phase transition takes place at the scale mu_0 and not at the electroweak scale v ~ 250 GeV. The SM Higgs system and its phase transition could play a key role for the inflation of the early universe. Also baryogenesis has to be reconsidered under the aspect that perturbative arguments surprisingly work up to the Planck scale.

  1. Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron

    SciTech Connect (OSTI)

    Chun, Xu; /Michigan U.

    2009-11-01T23:59:59.000Z

    A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb{sup -1}. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of {sigma} (p{bar p} {yields} WH) x Br (H {yields} b{bar b}) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.

  2. From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model

    E-Print Network [OSTI]

    Piotr ?enczykowski

    2015-05-11T23:59:59.000Z

    We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained phase-space-based description of elementary particles gives a subquark-less explanation of the celebrated Harari-Shupe rishon model. Finally, the concept of additivity is used to form novel suggestions as to how hadrons are constructed out of quarks and how macroscopically motivated invariances may be restored at the hadron level.

  3. Gauge Theory Model of the Neutrino and New Physics Beyond the Standard Model

    E-Print Network [OSTI]

    Yue-Liang Wu

    2012-03-05T23:59:59.000Z

    Majorana features of neutrinos and SO(3) gauge symmetry of three families enable us to construct a gauge model of neutrino for understanding naturally the observed smallness of neutrino masses and the nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The vacuum structure of SO(3) symmetry breaking is found to play an important role. The mixing angle $\\theta_{13}$ and CP-violating phases governed by the vacuum of spontaneous symmetry breaking are in general non-zero and testable experimentally at the allowed sensitivity. The model predicts the existence of vector-like SO(3) triplet charged leptons and vector-like SO(3) triplet Majorana neutrinos as well as SO(3) tri-triplet Higgs bosons, some of them can be light and explored at the colliders LHC and ILC.

  4. Search for the Standard Model Higgs Boson Produced in Association with Top Quarks Using the Full CDF Data Set

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    A search is presented for the standard model Higgs boson produced in association with top quarks using the full Run II proton-antiproton collision data set, corresponding to 9.45??fb[superscript -1], collected by the ...

  5. Combined results of searches for the standard model Higgs boson in pp collisions at ?s = 7 TeV

    E-Print Network [OSTI]

    Alver, B.

    Combined results are reported from searches for the standard model Higgs boson in proton–proton collisions at ?s = 7 TeV in five Higgs boson decay modes: ??, bb, ?? , WW, and ZZ. The explored Higgs boson mass range is ...

  6. Search for the Standard Model Higgs boson in the decay channel H?ZZ(*)?4? with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for the Standard Model Higgs boson in the decay channel H?ZZ(*)??[superscript +]?[superscript ?]??[superscript +]??[superscript ?], where ?=e,? is presented. Proton–proton collision data at ?s = 7 TeV recorded ...

  7. Combined Search for the Standard Model Higgs Boson Decaying to bb? Using the D0 Run II Data Set

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-09-01T23:59:59.000Z

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb? using the data sample collected with the D0 detector in pp? collisions at ?s=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV?MH?150 GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120 GeV?MH?145 GeV, the data exhibit an excessmore »above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson.« less

  8. Combined Search for the Standard Model Higgs Boson Decaying to bb? Using the D0 Run II Data Set

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.

    2012-09-01T23:59:59.000Z

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb? using the data sample collected with the D0 detector in pp? collisions at ?s=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV?MH?150 GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120 GeV?MH?145 GeV, the data exhibit an excess above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson.

  9. Search for Standard Model Higgs Boson in H to WW Channel at CDF

    E-Print Network [OSTI]

    J. Pursley; for the CDF Collaboration

    2009-10-08T23:59:59.000Z

    We present a search for standard model Higgs boson to WW(*) production in dilepton plus missing transverse energy final states in data collected by the CDF II detector corresponding to 4.8/fb of integrated luminosity. To maximize sensitivity, the multivariate discriminants used to separate signal from background in the opposite-sign dilepton event sample are independently optimized for final states with zero, one, or two or more identified jets. All significant Higgs boson production modes (gluon fusion, associated production with either a W or Z boson, and vector boson fusion) are considered in determining potential signal contributions. We also incorporate a separate analysis of the same-sign dilepton event sample which potentially contains additional signal events originating from associated Higgs boson production mechanisms. Cross section limits relative to the combined SM predictions are presented for a range of Higgs boson mass hypotheses between 110 and 200 GeV/c^2.

  10. D-Dbar Mixing in the Standard Model and Beyond from Nf=2 Twisted Mass QCD

    E-Print Network [OSTI]

    N. Carrasco; M. Ciuchini; P. Dimopoulos; R. Frezzotti; V. Gimenez; V. Lubicz; G. C. Rossi; F. Sanfilippo; L. Silvestrini; S. Simula; C. Tarantino

    2014-06-13T23:59:59.000Z

    We present the first unquenched lattice QCD results for the bag parameters controlling the short distance contribution to D meson oscillations in the Standard Model and beyond. We have used the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 dynamical quarks, at four lattice spacings and light meson masses in the range 280-500 MeV. Renormalization is carried out non-perturbatively with the RI-MOM method. The bag-parameter results have been used to constrain New Physics effects in D-Dbar mixing, to put a lower bound to the generic New Physics scale and to constrain off-diagonal squark mass terms for TeV-scale Supersymmetry.

  11. Tritium beta decay, neutrino mass matrices, and interactions beyond the standard model

    SciTech Connect (OSTI)

    Stephenson, G. J.; Goldman, T.; McKellar, B. H. J.

    2000-11-01T23:59:59.000Z

    The interference of charge changing interactions, weaker than the V-A standard model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for ''sterile'' neutrinos are noted.

  12. Survey of vector-like fermion extensions of the Standard Model and their phenomenological implications

    E-Print Network [OSTI]

    Ellis, Sebastian A R; Gopalakrishna, Shrihari; Wells, James D

    2014-01-01T23:59:59.000Z

    With the renewed interest in vector-like fermion extensions of the Standard Model, we present here a study of multiple vector-like theories and their phenomenological implications. Our focus is mostly on minimal flavor conserving theories that couple the vector-like fermions to the SM gauge fields and mix only weakly with SM fermions so as to avoid flavor problems. We present calculations for precision electroweak and vector-like state decays, which are needed to investigate compatibility with currently known data. We investigate the impact of vector-like fermions on Higgs boson production and decay, including loop contributions, in a wide variety of vector-like extensions and their parameter spaces.

  13. Searches for a high mass Standard Model Higgs boson at the Tevatron

    E-Print Network [OSTI]

    S. Pagan Griso

    2009-05-13T23:59:59.000Z

    Higgs boson searches are commonly considered one of the main objectives of particle physics nowadays. The latest results obtained by the CDF and D0 collaborations are presented here when searching for Higgs boson decaying into a W-boson pair, currently the most sensitive channel for masses greater than 130 GeV. The presented results are based on an integrated luminosity that ranges from 3.0 to 4.2 fb^-1. No significant excess over expected background is observed and the 95% CL limits are set for a Standard Model (SM) Higgs boson for different mass hypotheses ranging from 100 GeV to 200 GeV. The combination of CDF and D0 results is also presented, which exclude for the first time a SM Higgs boson in the 160 < mH < 170 GeV mass range.

  14. Theoretical Standard Model Rates of Proton to Neutron Conversions Near Metallic Hydride Surfaces

    E-Print Network [OSTI]

    Widom, A

    2006-01-01T23:59:59.000Z

    The process of radiation induced electron capture by protons or deuterons producing new ultra low momentum neutrons and neutrinos may be theoretically described within the standard field theoretical model of electroweak interactions. For protons or deuterons in the neighborhoods of surfaces of condensed matter metallic hydride cathodes, such conversions are determined in part by the collective plasma modes of the participating charged particles, e.g. electrons and protons. The radiation energy required for such low energy nuclear reactions may be supplied by the applied voltage required to push a strong charged current across a metallic hydride surface employed as a cathode within a chemical cell. The electroweak rates of the resulting ultra low momentum neutron production are computed from these considerations.

  15. Light supersymmetric axion in an anomalous Abelian extension of the standard model

    SciTech Connect (OSTI)

    Coriano, Claudio; Guzzi, Marco; Mariano, Antonio; Morelli, Simone [Dipartimento di Fisica, Universita del Salento Via Arnesano 73100 Lecce (Italy) and INFN Sezione di Lecce, Via Arnesano 73100 Lecce (Italy)

    2009-08-01T23:59:59.000Z

    We present a supersymmetric extension of the standard model (USSM-A) with an anomalous U(1) and Stueckelberg axions for anomaly cancellation, generalizing similar nonsupersymmetric constructions. The model, built by a bottom-up approach, is expected to capture the low-energy supersymmetric description of axionic symmetries in theories with gauged anomalous Abelian interactions, previously explored in the nonsupersymmetric case for scenarios with intersecting branes. The choice of a USSM-like superpotential, with one extra singlet superfield and an extra Abelian symmetry, allows a physical axionlike particle in the spectrum. We describe some general features of this construction and, in particular, the modification of the dark-matter sector which involves both the axion and several neutralinos with an axino component. The axion is expected to be very light in the absence of phases in the superpotential but could acquire a mass which can also be in the few GeV range or larger. In particular, the gauging of the anomalous symmetry allows independent mass/coupling interaction to the gauge fields of this particle, a feature which is absent in traditional (invisible) axion models. We comment on the general implications of our study for the signature of moduli from string theory due to the presence of these anomalous symmetries.

  16. Optimizing Higher-Order Lagrangian Perturbation Theory for Standard CDM and BSI models

    E-Print Network [OSTI]

    Arno G. Weiss; Stefan Gottloeber; Thomas Buchert

    1995-05-24T23:59:59.000Z

    We investigate the performance of Lagrangian perturbation theory up to the second order for two scenarios of cosmological large-scale structure formation, SCDM (standard cold dark matter) and BSI (broken scale invariance). The latter model we study as a representative of COBE-normalized CDM models which fit the small-scale power of galaxy surveys. In this context we optimize the performance of the Lagrangian perturbation schemes by smoothing the small-scale fluctuations in the initial data. The results of the so obtained Lagrangian mappings are computed for a set of COBE-normalized SCDM and BSI initial data of different sizes and at different times. We compare these results against those obtained with a numerical PM-code. We find an excellent performance of the optimized Lagrangian schemes down to scales close to the correlation length. This is explained by the counterintuitive fact that nonlinearities in the model can produce more small-scale power, if initially such power is removed. The optimization scheme can be expressed in a way which is independent of the type of fluctuation spectrum and of the size of the simulations.

  17. Classically conformal U(1)$^\\prime$ extended Standard Model and Higgs vacuum stability

    E-Print Network [OSTI]

    Oda, Satsuki; Takahashi, Dai-suke

    2015-01-01T23:59:59.000Z

    We consider the minimal U(1)$^\\prime$ extension of the Standard Model (SM) with conformal invariance at the classical level, where in addition to the SM particle contents, three generations of right-handed neutrinos and a U(1)$^\\prime$ Higgs field are introduced. In the presence of the three right-handed neutrinos, which are responsible for the seesaw mechanism, this model is free from all the gauge and gravitational anomalies. The U(1)$^\\prime$ gauge symmetry is radiatively broken via the Coleman-Weinberg mechanism, by which the U(1)$^\\prime$ gauge boson ($Z^\\prime$ boson) mass as well as the Majorana mass for the right-handed neutrinos are generated. The radiative U(1)$^\\prime$ symmetry breaking also induces a negative mass squared for the SM Higgs doublet to trigger the electroweak symmetry breaking. In this context, we investigate a possibility to solve the SM Higgs vacuum instability problem. The model includes only three free parameters (U(1)$^\\prime$ charge of the SM Higgs doublet, U(1)$^\\prime$ gauge ...

  18. Higgs Mass and Gravity Waves in Standard Model False Vacuum Inflation

    E-Print Network [OSTI]

    Alessio Notari

    2014-05-27T23:59:59.000Z

    In previous publications we have proposed that Inflation can be realized in a second minimum of the Standard Model Higgs potential at energy scales of about $10^{16}$ GeV, if the minimum is not too deep and if a mechanism which allows a transition to the radiation dominated era can be found. This is provided, {\\it e.g.}, by scalar-tensor gravity models or hybrid models. Using such ideas we had predicted the Higgs boson mass to be of about $126\\pm 3$ GeV, which has been confirmed by the LHC, and that a possibly measurable amount of gravity waves should be produced. Using more refined recent theoretical calculations of the RGE we show that such scenario has the right scale of Inflation only for small Higgs mass, lower than about 124 GeV, otherwise gravity waves are overproduced. The precise value is subject to some theoretical error and to experimental errors on the determination of the strong coupling constant. Such an upper bound corresponds also to the recent claimed measurement by BICEP2 of the scale of inflation through primordial tensor modes. Finally we show that introducing a moderately large non-minimal coupling for the Higgs field the bound can shift to larger values and be reconciled with the LHC measurements of the Higgs mass.

  19. Canonical Gauge Coupling Unification in the Standard Model with High-Scale Supersymmetry Breaking

    E-Print Network [OSTI]

    Yun-Jie Huo; Tianjun Li; Dimitri V. Nanopoulos

    2011-08-24T23:59:59.000Z

    Inspired by the string landscape and the unified gauge coupling relation in the F-theory Grand Unified Theories (GUTs) and GUTs with suitable high-dimensional operators, we study the canonical gauge coupling unification and Higgs boson mass in the Standard Model (SM) with high-scale supersymmetry breaking. In the SM with GUT-scale supersymmetry breaking, we achieve the gauge coupling unification at about 5.3 x 10^{13} GeV, and the Higgs boson mass is predicted to range from 130 GeV to 147 GeV. In the SM with supersymmetry breaking scale from 10^4 GeV to 5.3 x 10^{13} GeV, gauge coupling unification can always be realized and the corresponding GUT scale M_U is from 10^{16} GeV to 5.3 x 10^{13} GeV, respectively. Also, we obtain the Higgs boson mass from 114.4 GeV to 147 GeV. Moreover, the discrepancies among the SM gauge couplings at the GUT scale are less than about 4-6%. Furthermore, we present the SU(5) and SO(10) models from the F-theory model building and orbifold constructions, and show that we do not have the dimension-five and dimension-six proton decay problems even if M_U \\le 5 x 10^{15} GeV.

  20. Combined upper limit on Standard Model Higgs boson production at CDF

    E-Print Network [OSTI]

    Buzatu Adrian

    2012-02-09T23:59:59.000Z

    The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has neither been confirmed nor refuted. The CDF collaboration has performed SM Higgs searches in many channels using $p\\pbar$ collisions at a centre-of-mass energy $\\sqrt{s}=1.96\\tev$. We present the latest combined Higgs boson search at CDF. Since the previous year's combination, the sensitivity is increased through the addition of new channels, the improvement of existing channels and the addition of new data samples. We also use the latest parton distribution functions and $gg \\rightarrow H$ theoretical cross sections when modelling the signal event yields. Using integrated luminosities of up to 8.2 $\\invfb$, we observe a good agreement between data and the background prediction. Since we do not see a Higgs boson excess, we set 95% CL upper limits on the Higgs boson cross section in the range between 100 and 200 $\\gevcc$, with 5 $\\gevcc$ increments. The observed (expected) limits for a 115 and a 165 $\\gevcc$ Higgs boson are 1.55 (1.49) and 0.75 (0.79) $\\times$ SM, respectively. Since last year, the Higgs boson excluded range by CDF is extended to 156.5 - 173.7 and 100 - 104.5 $\\gevcc$.

  1. Softened Gravity and the Extension of the Standard Model up to Infinite Energy

    E-Print Network [OSTI]

    Gian F. Giudice; Gino Isidori; Alberto Salvio; Alessandro Strumia

    2015-03-25T23:59:59.000Z

    Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than $10^{11}$ GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfil these properties, we classify 4-dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions $g_1 = 0$, $M_t = 186$ GeV, $M_\\tau = 0$, $M_h = 163$ GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.

  2. Combined upper limit on Standard Model Higgs boson production at CDF

    SciTech Connect (OSTI)

    Adrian, Buzatu; /McGill U.

    2012-02-01T23:59:59.000Z

    The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has neither been confirmed nor refuted. The CDF collaboration has performed SM Higgs searches in many channels using p{bar p} collisions at a centre-of-mass energy {radical}s = 1.96 TeV. We present the latest combined Higgs boson search at CDF. Since the previous year's combination, the sensitivity is increased through the addition of new channels, the improvement of existing channels and the addition of new data samples. We also use the latest parton distribution functions and gg {yields} H theoretical cross sections when modelling the signal event yields. Using integrated luminosities of up to 8.2 fb{sup -1}, we observe a good agreement between data and the background prediction. Since we do not see a Higgs boson excess, we set 95% CL upper limits on the Higgs boson cross section in the range between 100 and 200 GeV/c{sup 2}, with 5 GeV/c{sup 2} increments. The observed (expected) limits for a 115 and a 165 GeV/c{sup 2} Higgs boson are 1.55 (1.49) and 0.75 (0.79) x SM, respectively. Since last year, the Higgs boson excluded range by CDF is extended to 156.5 - 173.7 and 100 - 104.5 GeV/c{sup 2}.

  3. Softened Gravity and the Extension of the Standard Model up to Infinite Energy

    E-Print Network [OSTI]

    Gian F. Giudice; Gino Isidori; Alberto Salvio; Alessandro Strumia

    2015-02-06T23:59:59.000Z

    Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than $10^{11}$ GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfil these properties, we classify 4-dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions $g_1 = 0$, $M_t = 186$ GeV, $M_\\tau = 0$, $M_h = 163$ GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.

  4. Using the Standard Solar Model to Constrain Composition and S-Factors

    E-Print Network [OSTI]

    Aldo Serenelli; Carlos Pena-Garay; W. C. Haxton

    2012-11-28T23:59:59.000Z

    While standard solar model (SSM) predictions depend on approximately 20 input parameters, SSM neutrino flux predictions are strongly correlated with a single model output parameter, the core temperature $T_c$. Consequently, one can extract physics from solar neutrino flux measurements while minimizing the consequences of SSM uncertainties, by studying flux ratios with appropriate power-law weightings tuned to cancel this $T_c$ dependence. We re-examine an idea for constraining the primordial C+N content of the solar core from a ratio of CN-cycle $^{15}$O to pp-chain $^8$B neutrino fluxes, showing that nonnuclear SSM uncertainties in the ratio are small and effectively governed by a single parameter, the diffusion coefficient. We point out that measurements of both CN-I cycle neutrino branches -- $^{15}$O and $^{13}$N $\\beta$-decay -- could in principle lead to separate determinations of the core C and N abundances, due to out-of-equilibrium CN-cycle burning in the cooler outer layers of the solar core. Finally, we show that the strategy of constructing "minimum uncertainty" neutrino flux ratios can also test other properties of the SSM. In particular, we demonstrate that a weighted ratio of $^7$Be and $^8$B fluxes constrains a product of S-factors to the same precision currently possible with laboratory data.

  5. Search for the Standard Model Higgs boson in the decay channel H->ZZ(*)->4l with the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2011-12-13T23:59:59.000Z

    A search for the Standard Model Higgs boson in the decay channel H->ZZ(*)->l+l-l+l-, where l=e,mu, is presented. Proton-proton collision data at sqrt(s)=7 TeV recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1 fb-1 are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600 GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, is 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191-197, 199-200 and 214-224 GeV.

  6. Search for the standard model Higgs boson produced in association with top quarks using the full CDF data set

    SciTech Connect (OSTI)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-08-01T23:59:59.000Z

    A search is presented for the standard model Higgs boson produced in association with top quarks using the full Run II proton-antiproton collision data set, corresponding to 9.45 fb{sup -1}, collected by the Collider Detector at Fermilab. No significant excess over the expected background is observed, and 95% credibility-level upper bounds are placed on the cross section {sigma}(t{bar t}H {yields} lepton + missing transverse energy + jets). For a Higgs boson mass of 125 GeV/c{sup 2}, we expect to set a limit of 12.6, and observe a limit of 20.5 times the standard model rate. This represents the most sensitive search for a standard model Higgs boson in this channel to date.

  7. Combined search for the standard model Higgs boson decaying to b bbar using the D0 Run II data set

    E-Print Network [OSTI]

    D0 Collaboration

    2012-09-25T23:59:59.000Z

    We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into b bbar using the data sample collected with the D0 detector in p pbar collisions at sqrt{s}=1.96 TeV at the Fermilab Tevatron Collider. We derive 95% CL upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100 GeV Higgs boson.

  8. Unlocking the Standard Model. IV. N=1 AND 2 generations of quarks : spectrum and mixing

    E-Print Network [OSTI]

    Bruno Machet

    2013-09-30T23:59:59.000Z

    Using a one-to-one correspondence between its complex Higgs doublet and very specific quadruplets of bilinear quark operators, the Glashow-Salam-Weinberg model for 2 generations is extended, without adding any extra fermion, to 8 composite Higgs multiplets. 8 is the minimal number required to suitably account, simultaneously, for the pseudoscalar mesons that can be built with 4 quarks and for the mass of the W gauge bosons. Their masses being used as input, together with elementary low energy considerations for the pions, we calculate all other parameters, masses and couplings. We focus in this work on the spectrum of the 8 Higgs bosons, and on the two u-c and d-s mixing angles, showing that this is very fine-tuned physics. We show in particular that the u-c mixing angle cannot be safely tuned to 0. Symmetries are investigated in detail. We leave the study of couplings and of their content of non-standard physics to a forthcoming work.

  9. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    SciTech Connect (OSTI)

    Martins, R. A. [Centro de Analise Matematica, Geometria e Sistemas Dinamicos, Departamento de Matematica, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal)

    2007-08-15T23:59:59.000Z

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string, through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.

  10. Search for the Standard Model Higgs boson in final states with $b$ quarks at the Tevatron

    SciTech Connect (OSTI)

    Potamianos, Karolos

    2011-11-01T23:59:59.000Z

    We present the result of searches for a low mass Standard Model Higgs boson produced in association with a W or a Z boson at a center-of-mass energy of {radical}s = 1.96 TeV with the CDF and D0 detectors at the Fermilab Tevatron collider. The search is performed in events containing one or two b tagged jets in association with either two leptons, or one lepton and an imbalance in transverse energy, or simply a large imbalance in transverse energy. Datasets corresponding to up to 8.5 fb{sup -1} of integrated luminosity are considered in the analyses. These are the most powerful channels in the search for a low mass Higgs boson at the Tevatron. Recent sensitivity improvements are discussed. For a Higgs mass of 115 GeV/c{sup 2}, the expected sensitivity for the most sensitive individual analyses reaches 2.3 times the SM prediction at 95% confidence level (C.L.), with all limits below 5 times the SM. Additionally, a WZ/ZZ cross-section measurement is performed to validate the analysis techniques deployed for searching for the Higgs.

  11. The Higgs mass range from Standard Model false vacuum Inflation in scalar-tensor gravity

    E-Print Network [OSTI]

    Isabella Masina; Alessio Notari

    2012-03-05T23:59:59.000Z

    If the Standard Model is valid up to very high energies it is known that the Higgs potential can develop a local minimum at field values around $10^{15}-10^{17}$ GeV, for a narrow band of values of the top quark and Higgs masses. We show that in a scalar-tensor theory of gravity such Higgs false vacuum can give rise to viable inflation if the potential barrier is very shallow, allowing for tunneling and relaxation into the electroweak scale true vacuum. The amplitude of cosmological density perturbations from inflation is directly linked to the value of the Higgs potential at the false minimum. Requiring the top quark mass, the amplitude and spectral index of density perturbations to be compatible with observations, selects a narrow range of values for the Higgs mass, $m_H=126.0\\pm 3.5$ GeV, where the error is mostly due to the theoretical uncertainty of the 2-loop RGE. This prediction could be soon tested at the Large Hadron Collider. Our inflationary scenario could also be further checked by better constraining the spectral index and the tensor-to-scalar ratio.

  12. Electroweak stars: how nature may capitalize on the standard model's ultimate fuel

    E-Print Network [OSTI]

    De-Chang Dai; Arthur Lue; Glenn Starkman; Dejan Stojkovic

    2011-01-19T23:59:59.000Z

    We study the possible existence of an electroweak star - a compact stellar-mass object whose central core temperature is higher than the electroweak symmetry restoration temperature. We found a solution to the Tolman-Oppenheimer-Volkoff equations describing such an object. The parameters of such a star are not substantially different from a neutron star - its mass is around 1.3 Solar masses while its radius is around 8 km. What is different is the existence of a small electroweak core. The source of energy in the core that can at least temporarily balance gravity are standard-model non-perturbative baryon number (B) and lepton number (L) violating processes that allow the chemical potential of $B+L$ to relax to zero. The energy released at the core is enormous, but gravitational redshift and the enhanced neutrino interaction cross section at these energies make the energy release rate moderate at the surface of the star. The lifetime of this new quasi-equilibrium can be more than ten million years. This is long enough to represent a new stage in the evolution of a star if stellar evolution can take it there.

  13. Search for the Standard Model Higgs boson in the missing energy topology with D0

    SciTech Connect (OSTI)

    Christoudias, Theodoros; /Imperial Coll., London

    2009-06-01T23:59:59.000Z

    A search for the Standard Model Higgs boson in the missing energy and acoplanar b-jet topology is reported, using an integrated luminosity of 0.93 fb{sup -1} recorded by the D0 detector at the Fermilab Tevatron p{bar p} Collider. The analysis includes signal contributions from p{bar p} {yields} ZH {yields} {nu}{bar {nu}}b{bar b}, as well as from WH production in which the charged lepton from the W boson decay is undetected. Neural networks are used to separate signal from background. In the absence of a signal, limits are set on {sigma}(p{bar p} {yields} VH) x B(H {yields} b{bar b}) at the 95% C.L. of 2.6-2.3 pb, for Higgs boson masses in the range 105-135 GeV, where V = W, Z. The corresponding expected limits range from 2.8 to 2.0 pb. Potential improvements to the analysis with an extended dataset totalling 4 fb{sup -1} are also discussed. Essential maintenance related to the increased luminosity and RunIIb upgrade was carried out on the impact parameter (IP) based b-tagging trigger tool and the effect of the changes on the b-tagger's performance was investigated.

  14. Search for a heavy Standard Model Higgs boson in the channel H->ZZ->llqq using the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS Collaboration

    2011-11-30T23:59:59.000Z

    A search for a heavy Standard Model Higgs boson decaying via H->ZZ->llqq, where l=e,mu, is presented. The search is performed using a data set of pp collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 1.04 fb^-1 collected in 2011 by the ATLAS detector at the CERN LHC collider. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section (relative to that expected from the Standard Model) of a Higgs boson with a mass in the range between 200 and 600 GeV are derived. Within this mass range, there is at present insufficient sensitivity to exclude a Standard Model Higgs boson. For a Higgs boson with a mass of 360 GeV, where the sensitivity is maximal, the observed and expected cross section upper limits are factors of 1.7 and 2.7, respectively, larger than the Standard Model prediction.

  15. Search for standard model Higgs boson production in association with a W boson using a neural network discriminant at CDF

    E-Print Network [OSTI]

    Xie, Si

    We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp??W[superscript ±]H???bb?) at a center of mass energy of 1.96 TeV. The search employs data ...

  16. Searches for Physics Beyond the Standard Model and Triggering on Proton-Proton Collisions at 14 TEV LHC

    SciTech Connect (OSTI)

    Wittich, Peter

    2011-10-14T23:59:59.000Z

    This document describes the work achieved under the OJI award received May 2008 by Peter Wittich as Principal Investigator. The proposal covers experimental particle physics project searching for physics beyond the standard model at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research.

  17. First Search for the Standard Model Higgs Boson Using the Semileptonic Decay Channel: H --> WW --> mu bar nu jj

    SciTech Connect (OSTI)

    Zelitch, Shannon Maura; /Virginia U.

    2010-09-01T23:59:59.000Z

    This dissertation presents the first search for the standard model Higgs boson (H) in decay topologies containing a muon, an imbalance in transverse momentum (E{sub T}) and jets, using p{bar p} collisions at {radical}s = 1.96 TeV with an integrated luminosity of 4.3 fb{sup -1} recorded with the D0 detector at the Fermilab Tevatron Collider. This analysis is sensitive primary to contributions from Higgs bosons produced through gluon fusion, with subsequent decay H {yields} WW {yields} {mu}{nu}jj where W represents a real or virtual W boson. In the absence of signal, limits are set at 95% confidence on the production and decay of the standard model Higgs boson for M{sub H} in the range of 115-200 GeV. For M{sub H} = 165 GeV, the observed and expected limits are factors of 11.2 larger than the standard model value. Combining this channel with e{nu}jj final states and including earlier data to increase the integrated luminosity to 5.4 fb{sup -1} produces observed(expected) limits of 5.5(3.8) times the standard model value.

  18. Search for the Standard Model Higgs boson in the two photon decay channel with the ATLAS detector at the LHC

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for the Standard Model Higgs boson in the two photon decay channel is reported, using 1.08 fb?11.08 fb[superscript ?1] of proton–proton collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS ...

  19. Commissioning of CMS and early standard model measurements with jets, missing transverse energy and photons at the LHC

    E-Print Network [OSTI]

    T. Christiansen

    2008-05-13T23:59:59.000Z

    We report on the status and history of the CMS commissioning, together with selected results from cosmic-ray muon data. The second part focuses on strategies for optimizing the reconstruction of jets, missing transverse energy and photons for early standard model measurements at ATLAS and CMS with the first collision data from the Large Hadron Collider at CERN.

  20. Search for a Standard Model Higgs Boson in the H?ZZ??+?-??? Decay Channel with the ATLAS Detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for a heavy standard model Higgs boson decaying via H?ZZ??+?-??? , where ?=e, ?, is presented. It is based on proton-proton collision data at ?s=7??TeV, collected by the ATLAS experiment at the LHC in the first ...

  1. Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at ?s = 7 TeV

    E-Print Network [OSTI]

    Alver, B.

    A search for the standard model Higgs boson (H) decaying to b[bar over b] when produced in association with weak vector bosons (V) is reported for the following modes: W(??)H, W(e?)H, Z(??)H, Z(ee)H and Z(??)H. The search ...

  2. Combined Search for the Standard Model Higgs Boson Decaying to a bb? Pair Using the Full CDF Data Set

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We combine the results of searches for the standard model (SM) Higgs boson based on the full CDF Run II data set obtained from ?s=1.96??TeV pp? collisions at the Fermilab Tevatron corresponding to an integrated luminosity ...

  3. Search for the Associated Production of the Standard-Model Higgs Boson in the All-Hadronic Channel

    E-Print Network [OSTI]

    Makhoul, K.

    We report on a search for the standard-model Higgs boson in pp? collisions at ?s=1.96??TeV using an integrated luminosity of 2.0??fb[superscript -1]. We look for production of the Higgs boson decaying to a pair of bottom ...

  4. Inclusive Search for Standard Model Higgs Boson Production in the WW Decay Channel Using the CDF II Detector

    E-Print Network [OSTI]

    Xie, Si

    We present a search for standard model (SM) Higgs boson production using pp? collision data at ?s=1.96??TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4.8??fb[superscript -1]. We ...

  5. Les Houches Physics at TeV Colliders 2005 Beyond the Standard Model Working Group: Summary Report

    SciTech Connect (OSTI)

    Allanach, B.C.; /Cambridge U., DAMTP; Grojean, C.; /Saclay, SPhT /CERN; Skands, P.; /Fermilab; Accomando, E.; Azuelos, G.; Baer, H.; Balazs, C.; Belanger, G.; Benakli, K.; Boudjema, F.; Brelier, B.; Bunichev, V.; Cacciapaglia, G.; Carena, M.; Choudhury, D.; Delsart, P.-A.; De Sanctis, U.; Desch, K.; Dobrescu, B.A.; Dudko, L.; El Kacimi, M.; /Saclay,

    2006-03-17T23:59:59.000Z

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology.

  6. From Standard Model of particle physics to room-temperature superconductivity

    E-Print Network [OSTI]

    G. E. Volovik

    2015-04-23T23:59:59.000Z

    Topological media are gapped or gapless fermionic systems, whose properties are protected by topology, and thus are robust to deformations of parameters of the system and generic. We discuss the class of gapless topological media, which contains the quantum vacuum of Standard Model in its symmetric phase, and condensed matter systems with zeroes in the energy spectrum, which form Fermi surfaces, Weyl and Dirac points, Dirac lines, Khodel-Shaginyan flat bands, etc. Some zeroes are topologically protected, being characterized by topological invariants, expressed in terms of Green's function. For stability of the others the ${\\bf p}$-space topology must be accompanied by symmetry. Vacua with Weyl points serve as a source of effective relativistic quantum fields emerging at low energy: chiral fermions, effective gauge fields and tetrad gravity emerge together in the vicinity of a Weyl point. The accompanying effects, such as chiral anomaly, electroweak baryo-production and chiral vortical effect, are expressed via the symmetry protected ${\\bf p}$-space invariants. The gapless topological media exhibit the bulk-surface and bulk-vortex correspondence: which in particular may lead to the flat band on the surface of the system or in the core of topological defects. The materials with flat band in bulk, on the surface or within the dislocations have singular density of states, which crucially influences the critical temperature of the superconducting transition in such media. While in all the known superconductors the transition temperature is exponentially suppressed as a function of the pairing interaction, in the flat band the transition temperature is proportional to the pairing interaction, and can be essentially higher. The ${\\bf p}$-space topology may give us the general recipe for search or artificial fabrication of the room-temperature superconductors.

  7. Neutrino masses and mixings in a Minimal S3-invariant Extension of the Standard Model

    SciTech Connect (OSTI)

    Felix, O.; Mondragon, A.; Mondragon, M.; Peinado, E. [Departamento de Fisica Teorica, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 Mexico D.F. (Mexico)

    2007-06-19T23:59:59.000Z

    The mass matrices of the charged leptons and neutrinos, that had been derived in the framework of a Minimal S3-invariant Extension of the Standard Model, are here reparametrized in terms of their eigenvalues. The neutrino mixing matrix, VPMNS, is then computed and exact, explicit analytical expressions for the neutrino mixing angles as functions of the masses of the neutrinos and charged leptons are obtained. The reactor, {theta}13, and the atmosferic, {theta}23, mixing angles are found to be functions only of the masses of the charged leptons. The numerical values of {theta}{sub 13}{sup th} and {theta}{sub 23}{sup th} computed from our theoretical expressions are found to be in excellent agreement with the latest experimental determinations. The solar mixing angle, {theta}{sub 12}{sup th}, is found to be a function of both, the charged lepton and neutrino masses, as well as of a Majorana phase {phi}{nu}. A comparison of our theoretical expression for the solar angle {theta}{sub 12}{sup th} with the latest experimental value {theta}{sub 13}{sup exp} {approx_equal} 34 deg. allowed us to fix the scale and origin of the neutrino mass spectrum and obtain the mass values |m{nu}2| = 0.0507eV, |m{nu}1| = 0.0499eV and |m{nu}3| = 0.0193eV, in very good agreement with the observations of neutrino oscillations, the bounds extracted from neutrinoless double beta decay and the precision cosmological measurements of the CMB.

  8. An Instability of the Standard Model Creates the Anomalous Acceleration Without Dark Energy

    E-Print Network [OSTI]

    Joel Smoller; Blake Temple; Zeke Vogler

    2014-12-11T23:59:59.000Z

    We introduce a new asymptotic ansatz for spherical perturbations of the Standard Model of Cosmology (SM) which applies during the $p=0$ epoch, and prove that these perturbations trigger instabilities in the SM on the scale of the supernova data. These instabilities create a large, central region of uniform under-density which expands faster than the SM, and this central region of accelerated uniform expansion introduces into the SM {\\it precisely} the same range of corrections to redshift vs luminosity as are produced by the cosmological constant in the theory of Dark Energy. A universal behavior is exhibited because all sufficiently small perturbations evolve to a single stable rest point. Moreover, we prove that these perturbations are consistent with, and the instability is triggered by, the one parameter family of self-similar waves which the authors previously proposed as possible time-asymptotic wave patterns for perturbations of the SM at the end of the radiation epoch. Using numerical simulations, we calculate the unique wave in the family that accounts for the same values of the Hubble constant and quadratic correction to redshift vs luminosity as in a universe with seventy percent Dark Energy, $\\Omega_{\\Lambda}\\approx.7$. A numerical simulation of the third order correction associated with that unique wave establishes a testable prediction that distinguishes this theory from the theory of Dark Energy. This explanation for the anomalous acceleration, based on instabilities in the SM together with simple wave perturbations from the radiation epoch that trigger them, provides perhaps the simplest mathematical explanation for the anomalous acceleration of the galaxies that does not invoke Dark Energy.

  9. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    energy efficiency business model on utility earnings EES w/energy efficiency business model on utility ROE EES w/RPCSticks: A Comprehensive Business Model for the Successful

  10. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    a comprehensive energy efficiency business model on utilitya comprehensive energy efficiency business model on utilityframework of the energy efficiency business model. The

  11. The RICORDO approach to semantic interoperability for biomedical data and models: strategy, standards and solutions.

    E-Print Network [OSTI]

    de Bono, Bernard; Hoehndorf, Robert; Wimalaratne, Sarala; Gkoutos, George; Grenon, Pierre

    2011-08-30T23:59:59.000Z

    different words: for example the labels “Blood Flow to the Lungs” and “Pulmonary Cardiac Output” have very similar meaning but their textual representation is very divergent. B. Controlled vocabularies provide a standard set of Uniform Resource Identifiers...

  12. Got Standards? "Got Standards?"

    E-Print Network [OSTI]

    Vardeman, Stephen B.

    certifications available. Some of these certifications include ISO 9002 1994, ISO 9003 1994 and ISO 9001 in order to bring harmony to global standards for international trade. Enter ISO 9000. The Basics In order to fully understand the concept of ISO 9000, it is very important to have a good idea of what a standard is

  13. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    SciTech Connect (OSTI)

    Bazjanac, Vladimir

    2007-08-01T23:59:59.000Z

    The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

  14. INTRODUCTION Das AIP betreibt Grundlagen-

    E-Print Network [OSTI]

    polarimetrischen Verzögerers von PEPSI für das LBT sowie für Kalibrationstests für das neue Sonnenteleskop GREGOR is still used for tests of the polarimetric retarders for PEPSI for the LBT, for calibration tests

  15. Background and Derivation of ANS-5.4 Standard Fission Product Release Model

    SciTech Connect (OSTI)

    Beyer, Carl E.; Turnbull, Andrew J.

    2010-01-29T23:59:59.000Z

    This background report describes the technical basis for the newly proposed American Nuclear Society (ANS) 5.4 standard, Methods for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuels. The proposed ANS 5.4 standard provides a methodology for determining the radioactive fission product releases from the fuel for use in assessing radiological consequences of postulated accidents that do not involve abrupt power transients. When coupled with isotopic yields, this method establishes the 'gap activity,' which is the inventory of volatile fission products that are released from the fuel rod if the cladding are breached.

  16. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  17. A wave equation including leptons and quarks for the standard model of quantum physics in Clifford Algebra

    E-Print Network [OSTI]

    Claude Daviau; Jacques Bertrand

    2014-08-27T23:59:59.000Z

    A wave equation with mass term is studied for all particles and antiparticles of the first generation: electron and its neutrino, positron and antineutrino, quarks $u$ and $d$ with three states of color and antiquarks $\\overline{u}$ and $\\overline{d}$. This wave equation is form invariant under the $Cl_3^*$ group generalizing the relativistic invariance. It is gauge invariant under the $U(1)\\times SU(2) \\times SU(3)$ group of the standard model of quantum physics. The wave is a function of space and time with value in the Clifford algebra $Cl_{1,5}$. All features of the standard model, charge conjugation, color, left waves, Lagrangian formalism, are linked to the geometry of this extended space-time.

  18. Discovery Potential of the Standard Model Higgs Boson Through H -> WW Decay Mode with the ATLAS Detector at LHC

    E-Print Network [OSTI]

    Hai-Jun Yang; for the ATLAS Collaboration

    2009-10-01T23:59:59.000Z

    We report results of a study of the Standard Model Higgs boson discovery potential through the W-pair leptonic decay modes with the ATLAS detector at LHC at 14 TeV center-of-mass energy. We used MC samples with full detector simulation and reconstruction of the ATLAS experiment to estimate the ATLAS detection sensitivity for the reaction of pp -> H -> WW -> e\

  19. A problem of hypothetical emerging of cosmic background radiation photons on horizon in the standard model of universe

    E-Print Network [OSTI]

    V. Skalsky

    2000-09-25T23:59:59.000Z

    The present temperature of cosmic background radiation and the present number density of photons of cosmic background radiation in the observed expansive and isotropic relativistic Universe is in the standard model of universe explained by the assumption of emergence of the photons of cosmic background radiation on the horizon (of the most remote visibility). However, the physical analysis shows unambiguously that this assumption contradicts the special theory of relativity and the quantum mechanics.

  20. Sterile neutrino dark matter in B-L extension of the standard model and galactic 511 keV line

    SciTech Connect (OSTI)

    Khalil, Shaaban [Centre for Theoretical Physics, The British University in Egypt, El Sherouk City, Postal No. 11837, PO Box 43 (Egypt)] [Centre for Theoretical Physics, The British University in Egypt, El Sherouk City, Postal No. 11837, PO Box 43 (Egypt); Seto, Osamu, E-mail: skhalil@bue.edu.eg, E-mail: seto@physics.umn.edu [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, Madrid 28049 (Spain)] [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, Madrid 28049 (Spain)

    2008-10-15T23:59:59.000Z

    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1){sub B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino is an interesting dark matter candidate. We emphasize that if the neutrino mass is of the order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.

  1. Does $K_L-K_S$ mass difference constraints or \\\\ claims new physics beyond the Standard Model?

    E-Print Network [OSTI]

    F. Pisano; V. Pleitez

    1993-08-16T23:59:59.000Z

    The ratio $\\Delta m_K/m_K$ within the standard model with 3 generations is calculated as a function of the CP nonconserving phase $\\delta_{13}$ and the quark masses $m_c,m_t$ assuming the current values of the Cabibbo-Kobayashi-Maskawa mixing angles. We have found that varying $\\delta_{13}$ and $m_c$ within the allowed range, not all the values for the top quark mass fit the experimental value for that ratio.

  2. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards

    E-Print Network [OSTI]

    Satchwell, Andrew

    2013-01-01T23:59:59.000Z

    business model for energy efficiency Historically, utilities in Arizona have been allowed to recover prudently incurred EE program costs;costs. We presented a comprehensive business model to achieve aggressive energyCosts Net Benefits Figure 1 Flowchart for analyzing impacts of portfolio of energy efficiency programs on stakeholders Model Inputs Business-

  3. Search for the standard model Higgs boson produced through vector boson fusion and decaying to $\\mathrm{ b \\bar{b} }$

    E-Print Network [OSTI]

    Khachatryan, Vardan; CMS Collaboration; Tumasyan, Armen; Adam, Wolfgang; A??lar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dobur, Didar; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Aly, Reham; Aly, Shereen

    2015-01-01T23:59:59.000Z

    A first search is reported for a standard model Higgs boson (H) that is produced through vector boson fusion and decays to a bottom-quark pair. Two data samples, corresponding to integrated luminosities of 19.8 fb$^{-1}$ and 18.3 fb$^{-1}$ of proton-proton collisions at $\\sqrt{s} =$ 8 TeV were selected for this channel at the CERN LHC. The observed significance in these data samples for a $ \\mathrm{ H \\to b\\bar{b} }$ signal at a mass of 125 GeV is 2.2 standard deviations, whilst the expected significance is 0.8 standard deviations. The fitted signal strength $\\mu=\\sigma/\\sigma_\\mathrm{SM}= 2.8 ^{+1.6}_{-1.4}$. The combination of this result with other CMS searches for the Higgs boson decaying to a b-quark pair, yields a signal strength of 1.0 $\\pm$ 0.4, corresponding to a signal significance of 2.6 standard deviations for a Higgs boson mass of 125 GeV.

  4. A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution

    E-Print Network [OSTI]

    Farzan, Yasaman

    2015-01-01T23:59:59.000Z

    It is well-known that in addition to the standard LMA solution to solar anomaly, there is another solution called LMA-Dark which requires Non-Standard Interactions (NSI) with effective couplings as large as the Fermi coupling. Although this solution satisfies all the bounds from various neutrino oscillation observations and even provides a better fit to low energy solar neutrino spectrum, it is not as popular as the LMA solution mainly because no model compatible with the existing bounds has been so far constructed to give rise to this solution. We introduce a model that provides a foundation for such large NSI with strength and flavor structure required for the LMA-Dark solution. This model is based on a new $U(1)^\\prime$ gauge interaction with a gauge boson of mass $\\sim 10$ MeV under which quarks as well as the second and third generations of leptons are charged. We show that observable effects can appear in the spectrum of supernova and high energy cosmic neutrinos. Our model predicts a new contribution t...

  5. Predicting the Frequency of Water Quality Standard Violations Using Bayesian Calibration of Eutrophication Models

    E-Print Network [OSTI]

    Arhonditsis, George B.

    of Eutrophication Models Weitao Zhang1 and George B. Arhonditsis1, 2,* 1Department of Geography University using three synthetic datasets that represent oligo-, meso- and eutrophic lake conditions. Scientific in the Laurentian Great Lakes region. INDEX WORDS: Environmental management, process-based models, eutrophication

  6. Communication Centric Modelling of System on Chip Devices Targeting Multi-Standard Telecommunication Applications

    E-Print Network [OSTI]

    Arslan, Tughrul

    part of tool is system modelling, which is used for quick simulation and system verification. In orderCommunication Centric Modelling of System on Chip Devices Targeting Multi characteristics e.g. throughput, power consumption of a reconfigurable WiMAX compliant system on chip. The four

  7. Why does the Standard GARCH(1,1) model work well?

    E-Print Network [OSTI]

    G. R. Jafari; A. Bahraminasab; P. Norouzzadeh

    2007-02-08T23:59:59.000Z

    The AutoRegressive Conditional Heteroskedasticity (ARCH) and its generalized version (GARCH) family of models have grown to encompass a wide range of specifications, each of them is designed to enhance the ability of the model to capture the characteristics of stochastic data, such as financial time series. The existing literature provides little guidance on how to select optimal parameters, which are critical in efficiency of the model, among the infinite range of available parameters. We introduce a new criterion to find suitable parameters in GARCH models by using Markov length, which is the minimum time interval over which the data can be considered as constituting a Markov process. This criterion is applied to various time series and results support the known idea that GARCH(1,1) model works well.

  8. Standard Model False Vacuum Inflation: Correlating the Tensor-to-Scalar Ratio to the Top Quark and Higgs Boson masses

    E-Print Network [OSTI]

    Isabella Masina; Alessio Notari

    2012-05-03T23:59:59.000Z

    For a narrow band of values of the top quark and Higgs boson masses, the Standard Model Higgs potential develops a false minimum at energies of about $10^{16}$ GeV, where primordial Inflation could have started in a cold metastable state. A graceful exit to a radiation-dominated era is provided, e.g., by scalar-tensor gravity models. We pointed out that if Inflation happened in this false minimum, the Higgs boson mass has to be in the range $126.0 \\pm 3.5$ GeV, where ATLAS and CMS subsequently reported excesses of events. Here we show that for these values of the Higgs boson mass, the inflationary gravitational wave background has be discovered with a tensor-to-scalar ratio at hand of future experiments. We suggest that combining cosmological observations with measurements of the top quark and Higgs boson masses represents a further test of the hypothesis that the Standard Model false minimum was the source of Inflation in the Universe.

  9. HEATMAP©CHP - The International Standard for Modeling Combined Heat and Power Systems

    E-Print Network [OSTI]

    Bloomquist, R. G.; O'Brien, R. G.

    , regional, or national planners in defining all aspects of developing, evaluating, and justifying a new CHP project or upgrading an existing thermal system for CHP. Program output may be used to evaluate existing system performance or model the effects...

  10. Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode

    SciTech Connect (OSTI)

    Aaltonen, T.; Abazov, V.M.; Gregores, E.M.; Mercadante, P.G.; /ABC Federal U.; Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.; /Aachen, Tech. Hochsch.; Avila, C.; Gomez, B.; Mendoza, L.; /Andes U., Bogota /Argonne /Arizona U. /Athens U. /Barcelona, IFAE /Baylor U. /Bonn U. /Boston U. /Brandeis U.

    2010-01-01T23:59:59.000Z

    We combine searches by the CDF and D0 collaborations for a Higgs boson decaying to W{sup +}W{sup -}. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard-model Higgs boson in the mass range 162-166 GeV at the 95% C.L.

  11. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  12. The Utility of Naturalness, and how its Application to Quantum Electrodynamics envisages the Standard Model and Higgs Boson

    E-Print Network [OSTI]

    Wells, James D

    2015-01-01T23:59:59.000Z

    With the Higgs boson discovery and no new physics found at the LHC, confidence in Naturalness as a guiding principle for particle physics is under increased pressure. We wait to see if it proves its mettle in the LHC upgrades ahead, and beyond. In the meantime, in a series of "realistic intellectual leaps" I present a justification {\\it a posteriori} of the Naturalness criterion by suggesting that uncompromising application of the principle to quantum electrodynamics leads toward the Standard Model and Higgs boson without additional experimental input. Potential lessons for today and future theory building are commented upon.

  13. The Utility of Naturalness, and how its Application to Quantum Electrodynamics envisages the Standard Model and Higgs Boson

    E-Print Network [OSTI]

    James D. Wells

    2013-05-15T23:59:59.000Z

    With the Higgs boson discovery and no new physics found at the LHC, confidence in Naturalness as a guiding principle for particle physics is under increased pressure. We wait to see if it proves its mettle in the LHC upgrades ahead, and beyond. In the meantime, in a series of "realistic intellectual leaps" I present a justification {\\it a posteriori} of the Naturalness criterion by suggesting that uncompromising application of the principle to quantum electrodynamics leads toward the Standard Model and Higgs boson without additional experimental input. Potential lessons for today and future theory building are commented upon.

  14. The gauge factor increase and the hypothetical emerging of the matter objects on the horizon in the standard model of universe

    E-Print Network [OSTI]

    V. Skalsky

    2000-09-25T23:59:59.000Z

    In the standard model of universe the increase in mass of our observed expansive and isotropic relativistic Universe is explained by the hypothetical assumption of matter objects emerging on the horizon (of the most remote visibility). However, the mathematical-physical analysis of the increase of Universe gauge factor shows that this hypothetical assumption is non-compatible with the variants of the standard model of universe by which - according to the standard model of universe - can be described the expansive evolution of the Universe.

  15. Development of DOE-2 Based Simulation Models for the Code-Compliant Commercial Construction Based on the ASHRAE Standard 90.1

    E-Print Network [OSTI]

    Kim, S.; Haberl, J.; Liu, Z.

    Conservation Code. Since most of the commercial portion of the 2000/2001 International Energy Conservation Code refers to ASHRAE Standard 90.1-1999 as the current code requirement for commercial construction, the simulation models based on the ASHRAE Standard...

  16. The Model 5000-16C 1000 WATT FEL Lamp Standard pro-vides absolute calibration of spectral irradiance from 250 nm to

    E-Print Network [OSTI]

    The Model 5000-16C 1000 WATT FEL Lamp Standard pro- vides absolute calibration of spectral irradiance from 250 nm to 2.5 microns.This Tungsten-Halogen Lamp Standard bears the ANSI designation of FEL might be discernible at the crossover point of the two referenced NIST Scales. 5000 FEL 1000Watt Lamp

  17. Modelling Geospatial Application Databases using UML-based Repositories Aligned with International Standards in Geomatics

    E-Print Network [OSTI]

    Modelling Geospatial Application Databases using UML-based Repositories Aligned with International Abstract: This paper presents the result of recent work on the use of geospatial repositories to store and database concepts, a geospatial repository can be defined as a collection of (meta) data structured

  18. 2Documenting Social Simulation Models: 3The ODD Protocol as a Standard

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    articles. Popular among ecologists, 10it is also increasingly used in the social simulation community. Here individual- and agent-based simulation models 26 (ABMs), especially for journal articles, conference papers, and other academic 27 literature. It consists of seven elements which can be grouped into three blocks: 28

  19. Neutrino mass and oscillation as probes of physics beyond the Standard Model

    E-Print Network [OSTI]

    Khalil, S

    2000-01-01T23:59:59.000Z

    We present a review of the present status of the problem of neutrino masses and mixing including a survey of theoretical motivations and models, experimental searches and implications of recently appeared solar and atmospheric neutrino data, which strongly indicate nonzero neutrino masses and mixing angles.

  20. Least-Order Torsion-Gravity for Fermion Fields, and the Non-Linear Potentials in the Standard Models

    E-Print Network [OSTI]

    Luca Fabbri

    2014-12-15T23:59:59.000Z

    We will consider the least-order torsional completion of gravity for a spacetime filled with fermionic Dirac matter fields, and we study the effects of the background-induced non-linear potentials for the matter field themselves in view of their effects for both standard models of physics: from the one of cosmology to that of particles, we will discuss the mechanisms of generation of the cosmological constant and particle masses as well as the phenomenology of leptonic weak-like forces and neutrino oscillations, the problem of zero-point energy, how there can be neutral massive fields as candidates for dark matter, and avoidance of gravitational singularity formation; we will show the way in which all these different effects can nevertheless be altogether described in terms of just a single model, which will be thoroughly discussed in the end.

  1. Phenomenology of the minimal B-L extension of the standard model: Z{sup '} and neutrinos

    SciTech Connect (OSTI)

    Basso, Lorenzo; Belyaev, Alexander; Moretti, Stefano [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton Didcot, Oxon OX11 0QX (United Kingdom); Shepherd-Themistocleous, Claire H. [Particle Physics Department, Rutherford Appleton Laboratory, Chilton Didcot, Oxon OX11 0QX (United Kingdom)

    2009-09-01T23:59:59.000Z

    We present the Large Hadron Collider (LHC) discovery potential in the Z{sup '} and heavy neutrino sectors of a U(1){sub B-L} enlarged standard model also encompassing 3 heavy Majorana neutrinos. This model exhibits novel signatures at the LHC, the most interesting arising from a Z{sup '} decay chain involving heavy neutrinos, eventually decaying into leptons and jets. In particular, this signature allows one to measure the Z{sup '} and heavy neutrino masses involved. In addition, over a large region of the parameter space, the heavy neutrinos are rather long-lived particles producing distinctive displaced vertices that can be seen in the detectors. Lastly, the simultaneous measurement of both the heavy neutrino mass and decay length enables an estimate of the absolute mass of the parent light neutrino.

  2. Search for the Standard Model Higgs Boson Decaying to a bb? Pair in Events with Two Oppositely Charged Leptons Using the Full CDF Data Set

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We present a search for the standard model Higgs boson produced in association with a Z boson in data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45??fb[superscript ...

  3. An ultra-compact virtual source FET model for deeply-scaled devices: Parameter extraction and validation for standard cell libraries and digital circuits

    E-Print Network [OSTI]

    Mysore, Omar

    In this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, ...

  4. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for the Standard Model Higgs boson in proton–proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb[superscript ?1] ...

  5. Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5

    E-Print Network [OSTI]

    Allanach, B. C.; Bednyakov, A.; Ruiz de Austri, R.

    2014-12-18T23:59:59.000Z

    -familymixing) in the limit of real parameters and some leading two-loop threshold corrections are incorporated to the third family Yukawa couplings and the strong gauge coupling. 2 2. Introduction The recent discovery of the Higgs boson [2, 3... conversely, to see if there is statistically significant evidence for a signal). The accurate measurement of a Higgs boson now has become an important constraint upon any supersymmetric model. In order for this constraint to be as useful and as accurate...

  6. Interconnection Standards

    Broader source: Energy.gov [DOE]

    New York first adopted uniform interconnection standards in 1999 (see history below). The Standard Interconnection Requirements (SIR) have subsequently been amended several times since, most...

  7. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The North Carolina Utilities Commission (NCUC) adopted comprehensive interconnection standards for distributed generation in June 2008. The NCUC standards, which are similar to the Federal Energy...

  8. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The Michigan Public Service Commission (PSC) first adopted interconnection standards for distributed generation (DG) in September 2003. The original standards provided for 5 levels of...

  9. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The Pennsylvania Public Utilities Commission was required to adopt interconnection standards and net-metering rules by the Alternative Energy Portfolio Standards Act of 2004.The PUC subsequently...

  10. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01T23:59:59.000Z

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  11. Combined upper limit on standard model higgs boson production at D0 in $p \\bar{p}$ collisions at $\\sqrt{s} = 1.96-TeV

    SciTech Connect (OSTI)

    Bernhard, Ralf; /Freiburg U.

    2010-12-01T23:59:59.000Z

    The latest searches for the Standard Model Higgs boson at a centre-of-mass energy of {radical}s = 1.96 TeV with the D0 and the CDF detectors at the Fermilab Tevatron collider are presented. For the first time since the LEP experiments the sensitivity for a Standard Model Higgs boson has been reached at a Higgs boson mass of 170 GeV/c{sup 2}.

  12. GUT and standard-like models in intersecting D-brane worlds 

    E-Print Network [OSTI]

    Chen, Ching-Ming

    2006-10-30T23:59:59.000Z

    on Type IIA T6 orientifold. The complete gauge symmetry is U(5) ?U(1)4 ?USp(12) ?USp(8) ?USp(4). . . . . . . . . . . . . 81 XXVII The particle spectrum in the observable and Higgs sectors with the four global U(1)s from the Green-Schwarz mechanism.... The starprimed representations indicate vector-like matter. . . . . . . . . . . . . 83 XXVIII The SM fermions and Higgs fields in the U(4)C ?U(2)L ?U(1)prime ? U(1)primeprime ?U(1)e?U(1)f ?USp(4)2 model, with anomaly free U(1)I3R and U(1)X gauge symmetries...

  13. Cogeneration of Dark Matter and Baryons by Non-Standard-Model Sphalerons

    E-Print Network [OSTI]

    Barr, S M

    2013-01-01T23:59:59.000Z

    Sphalerons of a new gauge interaction can convert a primordial asymmetry in B or L into a dark matter asymmetry. From the equilibrium conditions for the sphalerons of both the electroweak and the new interactions, one can compute the ratios of B, L, and X, where X is the dark matter number, thus determining the mass of the dark matter particle fairly precisely. Such a scenario can arise naturally in the context of unification with larger groups. An illustrative model embeddable in $SU(6) \\times SU(2) \\subset E_6$ is described.

  14. GUT and standard-like models in intersecting D-brane worlds

    E-Print Network [OSTI]

    Chen, Ching-Ming

    2006-10-30T23:59:59.000Z

    on Type IIA T6 orientifold. The complete gauge symmetry is U(5) ?U(1)4 ?USp(12) ?USp(8) ?USp(4). . . . . . . . . . . . . 81 XXVII The particle spectrum in the observable and Higgs sectors with the four global U(1)s from the Green-Schwarz mechanism.... The starprimed representations indicate vector-like matter. . . . . . . . . . . . . 83 XXVIII The SM fermions and Higgs fields in the U(4)C ?U(2)L ?U(1)prime ? U(1)primeprime ?U(1)e?U(1)f ?USp(4)2 model, with anomaly free U(1)I3R and U(1)X gauge symmetries...

  15. On beyond the standard model for high explosives: challenges & obstacles to surmount

    SciTech Connect (OSTI)

    Menikoff, Ralph Ds [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spot generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.

  16. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Tier 1 systems must include an inverter certified to meet the Underwriters Laboratories (UL) 1741 standard

  17. Updated Combination of Searches for the Standard Model Higgs Boson at the D0 Experiment in 9.7 fb-1 of Data

    E-Print Network [OSTI]

    D0 Collaboration

    2012-07-02T23:59:59.000Z

    Searches for standard model Higgs boson production at the D0 experiment in ppbar collisions at sqrt(s)=1.96 TeV are carried out for Higgs boson masses (m_H) in the range 100Higgs boson. In absence of a significant excess above the background expectation, 95% confidence level upper limits are set on the production cross section for a standard model Higgs boson. The upper limits are found to be a factor of 2.11 (0.73) times the predicted standard model cross section for m_H=115 (165) GeV. Under the background-only hypothesis, the corresponding expected limit is 1.46 (0.72) times the standard model prediction. At the same confidence level, these analyses exclude a standard model Higgs boson with a mass in the range 159standard deviations.

  18. Unlocking the Standard Model. IV. N=2 generations of quarks : spectrum and mixing

    E-Print Network [OSTI]

    Machet, Bruno

    2013-01-01T23:59:59.000Z

    The Glashow-Salam-Weinberg model for 2 generations of quarks is extended to 8 composite Higgs multiplets, with no adjunction of extra fermions. It is the minimal number of Higgs doublets required to suitably account, simultaneously, for the spectrum of pseudoscalar mesons that can be built with 4 quarks and for the mass of the W gauge bosons. These masses being used as input, together with elementary low energy considerations for the pions, we calculate all other parameters, masses and couplings. We focus in this work on the spectrum of the 8 Higgs bosons (which all potentially contribute to the W and quark masses), and on the mixing (Cabibbo) angle, leaving the study of couplings to a subsequent work. The Higgs bosons fall into one triplet, two doublets and one singlet. In the triplet stand three states with masses \\sqrt{2} x that of heaviest pseudoscalar meson D_s, which, for 2 generations, pushes them up to 2.80 GeV. The 2 components of the first doublet have masses close to 1.25 GeV. The singlet has a mas...

  19. A combined search for the standard model Higgs boson at sqrt(s) = 1.96 TeV

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Hensel, Carsten; Moulik, Tania; Wilson, Graham Wallace; DØ Collaboration; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.

    2008-05-15T23:59:59.000Z

    .L. (expected) upper limits on ?(pp¯ ? WH) × B(H ? b ¯b) ranging from 1.6 (2.2) pb to 1.9 (3.3) pb for Higgs boson masses between 5 and 145 GeV, to be compared to the theoretical prediction of 0.13 pb for a Standard Model (SM) Higgs boson with mass mH = 115 Ge...V. fter combination with the other D0 Higgs boson searches, we obtain for mH = 115 GeV an observed (expected) limit 8.5 (12.1) times higher an the SM predicted Higgs boson production cross section. For mH = 160 GeV, the corresponding observed (expected...

  20. Inclusive Search for Standard Model Higgs Boson Production in the WW Decay Channel using the CDF II Detector

    E-Print Network [OSTI]

    The CDF Collaboration; T. Aaltonen

    2010-02-17T23:59:59.000Z

    We present a search for standard model (SM) Higgs boson production using ppbar collision data at sqrt(s) = 1.96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4.8 fb-1. We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (m_H) in the range from 110 to 200 GeV. These limits are the most stringent for m_H > 130 GeV and are 1.29 above the predicted value of sigma(H) for mH = 165 GeV.

  1. Top quark spin correlations and polarization at the LHC: standard model predictions and effects of anomalous top chromo moments

    E-Print Network [OSTI]

    Werner Bernreuther; Zong-Guo Si

    2015-03-16T23:59:59.000Z

    A number of top-spin observables are computed within the Standard Model (SM), at next-to-leading order in the strong and weak gauge couplings for hadronic top-quark anti-quark (ttbar) production and decay at the LHC for center-of-mass energies 7 and 8 TeV. For dileptonic final states we consider the azimuthal angle correlation, the helicity correlation, and the opening angle distribution; for lepton plus jets final states we determine distributions and asymmetries that trace a longitudinal and transverse polarization, respectively, of the t and t-bar samples. In addition, we investigate the effects of a non-zero chromo-magnetic and chromo-electric dipole moment of the top quark on these and other top-spin observables and associated asymmetries. These observables allow to disentangle the contributions from the real and imaginary parts of these moments.

  2. GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond

    E-Print Network [OSTI]

    G. Cullen; H. van Deurzen; N. Greiner; G. Heinrich; G. Luisoni; P. Mastrolia; E. Mirabella; G. Ossola; T. Peraro; J. Schlenk; J. F. von Soden-Fraunhofen; F. Tramontano

    2014-04-28T23:59:59.000Z

    We present the version 2.0 of the program package GoSam for the automated calculation of one-loop amplitudes. GoSam is devised to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. The new code contains improvements in the generation and in the reduction of the amplitudes, performs better in computing time and numerical accuracy, and has an extended range of applicability. The extended version of the "Binoth-Les-Houches-Accord" interface to Monte Carlo programs is also implemented. We give a detailed description of installation and usage of the code, and illustrate the new features in dedicated examples.

  3. The Neutrinoless Double Beta Decay, Physics beyond the Standard Model and the Neutrino Mass

    E-Print Network [OSTI]

    Amand Faessler

    2012-03-16T23:59:59.000Z

    The Neutrinoless double beta Decay allows to determine the effectice Majorana electron neutrino mass. For this the following conditions have to be satisfied: (i) The neutrino must be a Majorana particle, i. e. identical to the antiparticle. (ii) The half life has to be measured. (iii)The transition matrix element must be reliably calculated. (iv) The leading mechanism must be the light Majorana neutrino exchange. The present contribution studies the accuracy with which one can calculate by different methods: (1) Quasi-Particle Random Phase Approach (QRPA), (2) the Shell Model (SM), (3) the (before the variation) angular momentum projected Hartree-Fock-Bogoliubov method (PHFB)and the (4) Interacting Boson Approach (IBA). In the second part we investigate how to determine experimentally the leading mechanism for the Neutrinoless Double Beta Decay. Is it (a) the light Majorana neutrino exchange as one assumes to determine the effective Majorana neutrino mass, ist it the heavy left (b) or right handed (c) Majorana neutrino exchange allowed by left-right symmetric Grand Unified Theories (GUT's). Is it a mechanism due to Supersymmetry e.g. with gluino exchange and R-parity and lepton number violating terms. At the end we assume, that Klapdor et al. have indeed measured the Neutrinoless Double Beta Decay(, although contested,)and that the light Majorana neutrino exchange is the leading mechanism. With our matrix elements we obtain then an effective Majorana neutrino mass of: = 0.24 [eV], exp (pm) 0.02; theor. (pm) 0.01 [eV

  4. Modeling of capillary pressure behavior using standard open hole wireline log data: Demonstrated on carbonates from the Middle East

    SciTech Connect (OSTI)

    Ross, C.M. [Rice Univ., Houston, TX (United States); Callender, C.A.; Turbeville, J.B. [and others

    1995-12-31T23:59:59.000Z

    A new technique was developed to model capillary pressure behavior from wireline log data and applied to carbonate reservoir rock from a Saudi Aramco field. The method utilizes image analysis of petrographic thin sections, capillary pressure measurements, and neural network analysis of standard open hole wireline log data. Twenty capillary pressure curves and their associated pore type proportions (identified in thin section) are the basis for the capillary pressure predictive model for the reservoir interval under study. Neural network analysis of the wireline log data was used to continuously predict pore type proportions downhole. The neural network-derived pore proportions were than applied in constructing wireline log-based capillary pressure curves using the capillary pressure predictive model. This method provides an accurate means of determining capillary pressure behavior from wireline log data and extends the applicability of the limited number of available capillary pressure curves. Once trained, the neural network may be applied to other wells in the field as long as the training set (both rock samples and wireline log types) is representative within the study area. The capillary pressure curves predicted from wireline log data can be used for the same purposes as capillary pressure curves measured on core samples, such as determining water saturation in intervals above and within the transition zone.

  5. Interconnection Standards

    Broader source: Energy.gov [DOE]

    West Virginia's interconnection standards include two levels of review. The qualifications and application fees for each level are as follows:...

  6. Search for the Standard Model Higgs boson in the decay channel H to ZZ(()asterisk()) to 4l with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B; Abdallah, J; Abdelalim, AA; Abdesselam, A; Abdinov, O; Abi, B; Abolin, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, BS; Adams, DL; Addy, TN; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, JA; A

    2011-11-24T23:59:59.000Z

    A search for the Standard Model Higgs boson in the decay channel H {yields} ZZ{sup (*)} {yields} {ell}{sup +}{ell}{sup -}{ell}'{sup +}{ell}'{sup -}, where {ell} = e,{mu}, is presented. Proton-proton collision data at {radical}s = 7 TeV recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1 fb{sup -1} are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600 GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, is 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191-197, 199-200 and 214-224 GeV.

  7. STANDARD MODEL (>150K )

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRADA: AGMT-XXXX Public Law 99-502, the Federal Technology Transfer Act of 1986, as amended. COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (hereinafter "CRADA") No. AGMT-XXXX...

  8. Search for the Standard Model Higgs Boson in Associated WH Production in 9.7 fb?¹ of pp? Collisions with the D0 Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.

    2012-09-01T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a b-quark jet. The search is primarily sensitive to WH?l?bb¯ production and uses data corresponding to 9.7 fb?¹ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp¯ Collider at ?s=1.96 TeV. We observe agreement between the data and the expected background. For a Higgs boson mass of 125 GeV, we set a 95% C.L. upper limit on the production of a standard model Higgs boson of 5.2×?SM, where ?SM is the standard model Higgs boson production cross section, while the expected limit is 4.7×?SM.

  9. Search for the Standard Model Higgs Boson in Associated WH Production in 9.7 fb?¹ of pp? Collisions with the D0 Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-09-01T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a b-quark jet. The search is primarily sensitive to WH?l?bb¯ production and uses data corresponding to 9.7 fb?¹ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp¯ Collider at ?s=1.96 TeV. We observe agreement between the data and the expected background. For a Higgs boson mass of 125 GeV, we set a 95% C.L. upper limit on the production ofmore »a standard model Higgs boson of 5.2×?SM, where ?SM is the standard model Higgs boson production cross section, while the expected limit is 4.7×?SM.« less

  10. Search for a Standard Model Higgs Boson in the H to ZZ to l(+)l(-)v(v)over-bar Decay Channel with the ATLAS Detector

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B; Abdallah, J; Abdelalim, AA; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, BS; Adams, DL; Addy, N; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, JA; A

    2011-11-22T23:59:59.000Z

    A search for a heavy standard model Higgs boson decaying via H {yields} ZZ {yields} {ell}{sup +}{ell}{sup -} {nu}{bar {nu}}, where {ell} = e, {mu}, is presented. It is based on proton-proton collision data at {radical}s = 7 TeV, collected by the ATLAS experiment at the LHC in the first half of 2011 and corresponding to an integrated luminosity of 1.04 fb{sup -1}. The data are compared to the expected standard model backgrounds. The data and the background expectations are found to be in agreement and upper limits are placed on the Higgs boson production cross section over the entire mass window considered; in particular, the production of a standard model Higgs boson is excluded in the region 340 < m{sub H} < 450 GeV at the 95% confidence level.

  11. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer

    SciTech Connect (OSTI)

    Donovan, E. M.; James, H.; Bonora, M.; Yarnold, J. R.; Evans, P. M. [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT (United Kingdom); Physics Department, Ipswich Hospital NHS Foundation Trust, Ipswich IP4 5PD (United Kingdom); Department of Academic Radiotherapy, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom and School of Radiotherapy, University of Milan, Milan 20122 (Italy); Department of Academic Radiotherapy, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton SM2 5PT (United Kingdom); Centre for Vision Speech and Signal Processing, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-10-15T23:59:59.000Z

    Purpose: To compare organ specific cancer incidence risks for standard and complex external beam radiotherapy (including cone beam CT verification) following breast conservation surgery for early breast cancer.Method: Doses from breast radiotherapy and kilovoltage cone beam CT (CBCT) exposures were obtained from thermoluminescent dosimeter measurements in an anthropomorphic phantom in which the positions of radiosensitive organs were delineated. Five treatment deliveries were investigated: (i) conventional tangential field whole breast radiotherapy (WBRT), (ii) noncoplanar conformal delivery applicable to accelerated partial beast irradiation (APBI), (iii) two-volume simultaneous integrated boost (SIB) treatment, (iv) forward planned three-volume SIB, and (v) inverse-planned three volume SIB. Conformal and intensity modulated radiotherapy methods were used to plan the complex treatments. Techniques spanned the range from simple methods appropriate for patient cohorts with a low cancer recurrence risk to complex plans relevant to cohorts with high recurrence risk. Delineated organs at risk included brain, salivary glands, thyroid, contralateral breast, left and right lung, esophagus, stomach, liver, colon, and bladder. Biological Effects of Ionizing Radiation (BEIR) VII cancer incidence models were applied to the measured mean organ doses to determine lifetime attributable risk (LAR) for ages at exposure from 35 to 80 yr according to radiotherapy techniques, and included dose from the CBCT imaging. Results: All LAR decreased with age at exposure and were lowest for brain, thyroid, liver, and bladder (<0.1%). There was little dependence of LAR on radiotherapy technique for these organs and for colon and stomach. LAR values for the lungs for the three SIB techniques were two to three times those from WBRT and APBI. Uncertainties in the LAR models outweigh any differences in lung LAR between the SIB methods. Constraints in the planning of the SIB methods ensured that contralateral breast doses and LAR were comparable to WBRT, despite their added complexity. The smaller irradiated volume of the ABPI plan contributed to a halving of LAR for contralateral breast compared with the other plan types. Daily image guided radiotherapy (IGRT) for a left breast protocol using kilovoltage CBCT contributed <10% to LAR for the majority of organs, and did not exceed 22% of total organ dose. Conclusions: Phantom measurements and calculations of LAR from the BEIR VII models predict that complex breast radiotherapy techniques do not increase the theoretical risk of second cancer incidence for organs distant from the treated breast, or the contralateral breast where appropriate plan constraints are applied. Complex SIB treatments are predicted to increase the risk of second cancer incidence in the lungs compared to standard whole breast radiotherapy; this is outweighed by the threefold reduction in 5 yr local recurrence risk for patients of high risk of recurrence, and young age, from the use of radiotherapy. APBI may have a favorable impact on risk of second cancer in the contralateral breast and lung for older patients at low risk of recurrence. Intensive use of IGRTincreased the estimated values of LAR but these are dominated by the effect of the dose from the radiotherapy, and any increase in LAR from IGRT is much lower than the models' uncertainties.

  12. A combined search for the standard model Higgs boson at sqrt{s}=1.96 TeV

    E-Print Network [OSTI]

    D0 Collaboration; V. M. Abazov

    2007-12-04T23:59:59.000Z

    We present new results of the search for WH to lepton neutrino b b production in ppbar collisions at a center of mass energy of sqrt{s}=1.96 TeV, based on a dataset with integrated luminosity of 0.44 fb-1. We combine these new results with previously published searches by the D0 collaboration, for WH and ZH production analyzed in the MET b b final state, for ZH (to l+l- b b) production, for WH (to WWW) production, and for H (to WW) direct production. No signal-like excess is observed either in the WH analysis or in the combination of all D0 Higgs boson analyses. We set 95% C.L. (expected) upper limits on to 1.9 (3.3) pb for Higgs boson masses between 105 and 145 GeV, to be compared to the theoretical prediction of 0.13 pb for a standard model (SM) Higgs boson with mass m_H=115 GeV. After combination with the other D0 Higgs boson searches, we obtain for m_H=115 GeV an observed (expected) limit 8.5 (12.1) times higher than the SM predicted Higgs boson production cross section. For m_H=160 GeV, the corresponding observed (expected) ratio is 10.2 (9.0).

  13. The Analytical One-Loop Contributions to Higgs Boson Mass in the Supersymmetric Standard Model with Vector-like Particles

    E-Print Network [OSTI]

    Li, Tianjun; Wang, Xiao-Chuan; Xiong, Zhao-Hua

    2015-01-01T23:59:59.000Z

    In the Minimal Supersymmetric Standard Model (MSSM) with additional vector-like particles (VLPs), we for the first time derive the particle mass spectra and the Feynman rules, as well as analytically calculate the one-loop contributions to the Higgs boson mass from the fermions and sfermions. After discussing and numerically analysing a cases without bilinear terms and a case with a (partial) decoupling limit, we find: (i) The corrections depend on the mass splittings between quarks and squarks and between vector-like fermions and their sfermions; (ii) There exists the (partial) decoupling limit, where the VLPs decouple from the electrwoeak (EW) energy scale, even when one of the VLPs is light around the EW scale. The reason is that the contributions to Higgs mass can be suppressed by the (or partial) decoupling effects, which can make the EW phenomenology very different from the MSSM; (iii) The SM-like Higgs boson with mass around 125 GeV gives strong constraints on the VLPs if the top squarks are around 1~T...

  14. Implications of Direct Dark Matter Constraints for Minimal Supersymmetric Standard Model Higgs Boson Searches at the Tevatron

    E-Print Network [OSTI]

    Marcela Carena; Dan Hooper; Peter Skands

    2006-08-22T23:59:59.000Z

    Searches for the Minimal Supersymmetric Standard Model (MSSM) Higgs bosons are among the most promising channels for exploring new physics at the Tevatron. In particular, interesting regions of large $\\tan \\beta$ and small $m_A$ are probed by searches for heavy neutral Higgs bosons, A and H, when they decay to $\\tau^+ \\tau^-$ and $b\\bar{b}$. At the same time, direct searches for dark matter, such as CDMS, attempt to observe neutralino dark matter particles scattering elastically off nuclei. This can occur through t-channel Higgs exchange, which has a large cross section in the case of large $\\tan \\beta$ and small $m_A$. As a result, there is a natural interplay between the heavy, neutral Higgs searches at the Tevatron and the region of parameter space explored by CDMS. We show that if the lightest neutralino makes up the dark matter of our universe, current limits from CDMS strongly constrain the prospects of heavy, neutral MSSM Higgs discovery at the Tevatron (at 3 sigma with 4 fb^-1 per experiment) unless $|\\mu| \\gsim$ 400 GeV. The limits of CDMS projected for 2007 will increase this constraint to $|\\mu| \\gsim$ 800 GeV. On the other hand, if CDMS does observe neutralino dark matter in the near future, it will make the discovery of heavy, neutral MSSM Higgs bosons far more likely at the Tevatron.

  15. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The interconnection standards approved by the PUC also updated Nevada's net-metering policy, originally enacted in 1997. Previously, Nevada Revised Statute 704.774 addressed basic interconnection...

  16. Interconnection Standards

    Broader source: Energy.gov [DOE]

    New Jersey's interconnection standards apply statewide to all electric distribution utilities, but not to the small number of municipal utilities and electric cooperatives in the state. The rules,...

  17. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Virginia has two interconnection standards: one for net-metered systems and one for systems that are not net-metered.

  18. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In December 2005, the Colorado Public Utilities Commission (PUC) adopted standards for net metering and interconnection, as required by Amendment 37, a renewable-energy ballot initiative approved...

  19. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In September 2007, the Washington Utilities and Transportation Commission (UTC) adopted interconnection standards for distributed generation (DG) systems up to 20 megawatts (MW) in capacity. The...

  20. Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter presents the results of a direct search with the ATLAS detector at the LHC for a Standard Model Higgs boson of mass 110?m[subscript H]?130 GeV produced in association with a W or Z boson and decaying to b[bar ...

  1. Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s) = 7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2012-02-07T23:59:59.000Z

    Combined results are reported from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 TeV in five Higgs boson decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair. The explored Higgs boson mass range is 110-600 GeV. The analysed data correspond to an integrated luminosity of 4.6-4.8 inverse femtobarns. The expected excluded mass range in the absence of the standard model Higgs boson is 118-543 GeV at 95% CL. The observed results exclude the standard model Higgs boson in the mass range 127-600 GeV at 95% CL, and in the mass range 129-525 GeV at 99% CL. An excess of events above the expected standard model background is observed at the low end of the explored mass range making the observed limits weaker than expected in the absence of a signal. The largest excess, with a local significance of 3.1 sigma, is observed for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-600 (110-145) GeV is estimated to be 1.5 sigma (2.1 sigma). More data are required to ascertain the origin of this excess.

  2. Search for the standard model Higgs boson in associated $WH$ production in 9.7 fb$^{-1}$ of $p\\bar{p}$ collisions with the D0 detector

    E-Print Network [OSTI]

    The D0 Collaboration

    2012-09-21T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a $b$-quark jet. The search is primarily sensitive to $WH\\to\\ell\

  3. Search for Neutral Minimal Supersymmetric Standard Model Higgs Bosons Decaying to Tau Pairs in pp Collisions at [sqrt]s=7??TeV

    E-Print Network [OSTI]

    Alver, Burak Han

    A search for neutral minimal supersymmetric standard model (MSSM) Higgs bosons in pp collisions at the LHC at a center-of-mass energy of 7 TeV is presented. The results are based on a data sample corresponding to an ...

  4. Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physical Institute (Armenia); et al.,

    2012-04-01T23:59:59.000Z

    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.

  5. Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2012-03-01T23:59:59.000Z

    Combined results are reported from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 TeV in five Higgs boson decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair. The explored Higgs boson mass range is 110-600 GeV. The analysed data correspond to an integrated luminosity of 4.6-4.8 inverse femtobarns. The expected excluded mass range in the absence of the standard model Higgs boson is 118-543 GeV at 95% CL. The observed results exclude the standard model Higgs boson in the mass range 127-600 GeV at 95% CL, and in the mass range 129-525 GeV at 99% CL. An excess of events above the expected standard model background is observed at the low end of the explored mass range making the observed limits weaker than expected in the absence of a signal. The largest excess, with a local significance of 3.1 sigma, is observed for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-600 (110-145) GeV is estimated to be 1.5 sigma (2.1 sigma). More data are required to ascertain the origin of this excess.

  6. Search for the b b ¯ decay of the Standard Model Higgs boson in associated ([W over Z])H production with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for the bb¯ decay of the Standard Model Higgs boson is performed with the ATLAS experiment using the full dataset recorded at the LHC in Run 1. The integrated luminosities used are 4.7 and 20.3 fb[superscript ?1] ...

  7. Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks

    E-Print Network [OSTI]

    Apyan, Aram

    A search for the standard model Higgs boson (H) decaying to b[¯ over b] when produced in association with a weak vector boson (V) is reported for the following channels: W(??)H, W(e?)H, W(??)H, Z(??)H, Z(ee)H, and Z(??)H. ...

  8. Search for a Standard Model Higgs Boson in WH-->lvbb-bar in pp-bar Collisions at sqrt[s]=1.96 TeV

    E-Print Network [OSTI]

    Xie, Si

    We present a search for a standard model Higgs boson produced in association with a W boson using 2.7??fb[superscript -1] of integrated luminosity of pp? collision data taken at ?s=1.96??TeV. Limits on the Higgs boson ...

  9. Search for a heavy Standard Model Higgs boson in the channel H?ZZ??[superscript +]?[superscript ?]q[bar over q] using the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for a heavy Standard Model Higgs boson decaying via View the H?ZZ??[superscript +]?[superscript ?]q[bar over q], where ?=e,? is presented. The search is performed using a data set of pp collisions at ?s = 7 TeV, ...

  10. Search for a Low-Mass Standard Model Higgs Boson in the ?? Decay Channel in pp? Collisions at ?s=1.96??TeV

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We report on a search for the standard model Higgs boson decaying into pairs of ? leptons in pp? collisions produced by the Tevatron at ?s=1.96??TeV. The analyzed data sample was recorded by the CDFII detector and corresponds ...

  11. Combined search for the Standard Model Higgs boson in pp collisions at ?s=7??TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC is presented. The data sets used correspond to integrated luminosities from 4.6??fb[superscript -1] to 4.9??fb[superscript -1] of ...

  12. Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2013-11-01T23:59:59.000Z

    Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the ?+?? final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb?1 of proton–proton collisions at View the MathML source, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. The results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25–3.55 GeV/c2

  13. A Model for Analyzing Components of Uncertainty Encountered in {sup 3}H-Standard Efficiency Tracing in 4{pi}{beta} Liquid Scintillation Counting

    SciTech Connect (OSTI)

    Brian E. Zimmerman; R. Colle

    2000-11-12T23:59:59.000Z

    Over the past decade, uniform conventions for assessing and reporting measurement uncertainties have been adopted by nearly every international metrological organization, as well as by many scientific and engineering associations and principal laboratories. This uncertainty approach is available as guidelines published by the International Organization for Standardization (ISO) and is used by the National Institute of Standards and Technology (NIST) for the dissemination of all of its standards, calibrations, and measurement results. One of the most widely used techniques for the radioactivity standardizations at NIST is liquid scintillation (LS) spectrometry, mainly through the use of a {sup 3}H-standard efficiency tracing technique that has come to be known as the CIEMAT/NIST method. Although the method is relatively simple in concept and implementation, correct analysis of the uncertainties involved in applying the method using ISO guidelines is not. An initial requirement for a proper uncertainty analysis is the development of a model that explicitly specifies the relationship between the different input and output variables involved in the measurement that lead to an uncertainty in the final certified activity. The approach taken in this analysis is based on the fact that use of black-box computer codes as an integral part of the calculation of a final value makes a formal mathematical expression of the measurement model difficult, if not impossible. Therefore, many of the uncertainty components were estimated by propagating the uncertainty from each of the respective components through the data reduction equations using a spreadsheet.

  14. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The PUC standards generally apply to investor-owned utilities (IOUs) with 40,000 or more customers and all electric cooperatives. Municipal utilities with 5,000 customers or more are required to ...

  15. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Utah’s interconnection rules are based on the Federal Energy Regulatory Commission’s (FERC) interconnection standards for small generators, adopted in May 2005 by FERC Order 2006. Utah's rules for...

  16. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Oregon has three separate interconnection standards: one for net-metered systems, one for small generator facilities (non-net metered systems) and one for large generator facilities (non-net...

  17. Interconnection Standards

    Broader source: Energy.gov [DOE]

    NOTE: In Feb 2014, the PUC proposed changes to the State’s Alternative Energy Portfolio Standard, Interconnection, and Net-metering rules. The documents associated with the case can be accessed at...

  18. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Vermont has adopted separate interconnection standards for net-metered energy systems that are 150 kW or less, and for all other distributed-generation (DG) systems.

  19. Comparative Study of summer, Winter and Quinox Sky Type of India Using Daylight Coefficient Method and Cie Standard General Sky Model

    E-Print Network [OSTI]

    Sutapa Mukherjee M. Tech

    Abstract:- Energy efficiency provided by daylight requires an accurate estimation of the amount of daylight entering a building. The actual daylight illuminance of a room is mainly influenced by the luminance levels and patterns of the sky in the direction of view of the window at that time. The daylight coefficient concept, which considers the changes in the luminance of the sky elements, offers a more effective way of computing indoor daylight illuminances. Recently, Kittler et al. have proposed a new range of 15 standard sky luminance distributions including the CIE (International Commission onIllumination) standard clear sky. Lately, these 15 sky luminance models have been adopted as the CIE Standard General Skies.This paper aims to find out representative CIE (International Commission on Illumination) Standard Clear Sky model(s) for three different seasons-winter solstice, equinox, and summer solstice applicable for prevailing clear sky climatic conditions in India [Roorkee]. Indian measured sky luminance distribution database is available only for Roorkee[29 0 51 ' N; 77 0 53 ' E]. To find out the best match between Indian measured sky luminance distribution and each of five CIE Standard Clear sky models, only sky component of spatial illuminance distribution over the working plane of a room was simulated by MATLABfor three different seasons. Daylight Coefficient method has been applied for the simulation using Indian sky luminance database.The simulation has been done for the room with eight different window orientations ranging from 0 0 to 315 0 with an interval of 45 0 to generate data for the entire sky vault. To find out the

  20. Search for Physics Beyond the Standard Model in Opposite-Sign Dilepton Events at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute (Armenia); et al.,

    2011-06-01T23:59:59.000Z

    A search is presented for physics beyond the standard model (SM) in final states with opposite-sign isolated lepton pairs accompanied by hadronic jets and missing transverse energy. The search is performed using LHC data recorded with the CMS detector, corresponding to an integrated luminosity of 34 inverse picobarns. No evidence for an event yield beyond SM expectations is found. An upper limit on the non-SM contribution to the signal region is deduced from the results. This limit is interpreted in the context of the constrained minimal supersymmetric model. Additional information is provided to allow testing the exclusion of specific models of physics beyond the SM.

  1. Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at ? = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-04-01T23:59:59.000Z

    Dimuon and dielectron mass spectra, obtained from data resulting from proton-proton collisions at 8 TeV and recorded by the CMS experiment, are used to search for both narrow resonances and broad deviations from standard model predictions. The data correspond to an integrated luminosity of 20.6 (19.7) fb?¹ for the dimuon (dielectron) channel. No evidence for non-standard-model physics is observed and 95% confidence level limits are set on parameters from a number of new physics models. The narrow resonance analyses exclude a Sequential Standard Model Z'SSM resonance lighter than 2.90 TeV, a superstring-inspired Z'? lighter than 2.57 TeV and Randall-Sundrummore »Kaluza-Klein gravitons with masses below 2.73, 2.35, and 1.27 TeV for couplings of 0.10, 0.05, and 0.01, respectively. A notable feature is that the limits have been calculated in a model-independent way to enable straightforward reinterpretation in any model predicting a resonance structure. The observed events are also interpreted within the framework of two non-resonant analyses: one based on a large extra dimensions model and one based on a quark and lepton compositeness model with a left-left isoscalar contact interaction. Lower limits are established on MS, the scale characterizing the onset of quantum gravity, which range from 4.9 to 3.3 TeV, where the number of additional spatial dimensions varies from 3 to 7. Similarly, lower limits on ?, the energy scale parameter for the contact interaction, are found to be 12.0 (15.2) TeV for destructive (constructive) interference in the dimuon channel and 13.5 (18.3) TeV in the dielectron channel.« less

  2. The Kepco Models BOP 36-12ML and BOP 36-12DL have been modified from standard Kepco Models BOP 36-12M and BOP 36-12D, respectively, to be stable handling inductive loads up

    E-Print Network [OSTI]

    Haller, Gary L.

    . All other specifications are identical to the standard BOP. (2) 10%-90%, short-circuit. (3) Short-circuit to operate in a stable manner in Current or Current Limit Mode for loads up to 1 Henry. They are also stable the standard model. Spec- ifications listed in Table 1 are for BOP 36-12ML and BOP 36-12DL in Current Mode. All

  3. The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron

    SciTech Connect (OSTI)

    Huske, Nils Kristian; /Paris U., VI-VII

    2010-09-01T23:59:59.000Z

    We have presented results in two different yet strongly linked aspects of Higgs boson physics. We have learned about the importance of the Higgs boson for the fate of the Standard Model, being either only a theory limited to explaining phenomena at the electroweak scale or, if the Higgs boson lies within a mass range of 130 < m{sub H} < 160 GeV the SM would remain a self consistent theory up to highest energy scales O(m{sub Pl}). This could have direct implications on theories of cosmological inflation using the Higgs boson as the particle giving rise to inflation in the very early Universe, if it couples non-minimally to gravity, an effect that would only become significant at very high energies. After understanding the immense meaning of proving whether the Higgs boson exists and if so, at which mass, we have presented a direct search for a Higgs boson in associated production with a W boson in a mass range 100 < m{sub H} < 150 GeV. A light Higgs boson is favored regarding constraints from electroweak precision measurements. As a single analysis is not yet sensitive for an observation of the Higgs boson using 5.3 fb{sup -1} of Tevatron data, we set limits on the production cross section times branching ratio. At the Tevatron, however, we are able to combine the sensitivity of our analyses not only across channels or analyses at a single experiment but also across both experiments, namely CDF and D0. This yields to the so-called Tevatron Higgs combination which, in total, combines 129 analyses from both experiments with luminosities of up to 6.7 fb{sup -1}. The results of a previous Tevatron combination led to the first exclusion of possible Higgs boson masses since the LEP exclusion in 2001. The latest Tevatron combination from July 2010 can be seen in Fig. 111 and limits compared to the Standard Model expectation are listed in Table 23. It excludes a SM Higgs boson in the regions of 100 < m{sub H} < 109 GeV as well as 158 < m{sub H} < 175 GeV based on the observed final limits at 95% C.L. In the most interesting low mass region between 115 and 135 GeV, even the full Tevatron combination is not yet sensitive enough to exclude a Higgs boson, or to even prove its existence with a meaningful significance. Fig. 112 shows a projection plot for sensitivity to the SM Higgs boson at the Tevatron as a measure of increasing luminosity. The 10 fb{sup -1} projection is a rather conservative outlook for the coming year of data taking as the Tevatron runs smoothly and the run till the end of 2011 is assured. By now, already 9 fb{sup -1} have been recorded by the two experiments. As the extrapolation plot shows, this amount of luminosity will allow to exclude the Higgs boson over a wide mass range at a 95% C.L. With the LHC at CERN now running and successfully collecting first data, it is worth looking at projections of Higgs boson sensitivity at the current center of mass energy of 7 TeV of the LHC accelerator. Fig. 113 shows a projection of a possible SM Higgs boson exclusion using 1 fb{sup -1} of LHC data collected by the ATLAS experiment. An exclusion is expected between 135 and 188 GeV at 95% C.L., combining the three decay channels H {yields} WW, H {yields} ZZ and H {yields} {gamma}{gamma}. A combination between LHC experiments would possibly yield an even broader range of excluded Higgs boson mass points. Therefore, whether at the Tevatron or the LHC, exciting times in the exclusion or possible discovery of the SM Higgs boson lie ahead.

  4. Search for the standard model Higgs boson decaying to a bb pair in events with two oppositely-charged leptons using the full CDF data set

    E-Print Network [OSTI]

    CDF Collaboration

    2012-07-27T23:59:59.000Z

    We present a search for the standard model Higgs boson produced in association with a Z boson in data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45/fb. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electron or muon pairs, we set 95% credibility level upper limits on the ZH production cross section times the H -> bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125 GeV/c^2 we observe (expect) a limit of 7.1 (3.9) times the standard model value.

  5. The holographic mapping of the Standard Model onto the black hole horizon, Part I: Abelian vector field, scalar field and BEH Mechanism

    E-Print Network [OSTI]

    G. 't Hooft

    2005-04-25T23:59:59.000Z

    Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon's dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.

  6. Search for a standard model-like Higgs boson in the $\\mu^+\\mu^-$ and $\\mathrm{e^+e^-}$ decay channels at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan [Yervan Physics Institute (Armenia); et al.,

    2015-05-01T23:59:59.000Z

    A search is presented for a standard model-like Higgs boson decaying to the $\\mu^+\\mu^-$ or $\\mathrm{e^+e^-}$ final states based on proton-proton collisions recorded by the CMS experiment at the CERN LHC. The data correspond to integrated luminosities of 5.0$~\\mathrm{fb}^{-1}$ at a centre-of-mass energy of $7~\\mathrm{TeV}$ and $19.7~\\mathrm{fb}^{-1}$ at $8~\\mathrm{TeV}$ for the $\\mu^+\\mu^-$ search, and of $19.7~\\mathrm{fb}^{-1}$ at a centre-of-mass energy of $8~\\mathrm{TeV}$ for the $\\mathrm{e^+e^-}$ search. To enhance the sensitivity of the search, events are categorized by topologies according to production process and dilepton invariant mass resolution. Upper limits on the production cross section times branching fraction at the 95% confidence level are reported for Higgs boson masses in the range from 120 to 150$~\\mathrm{GeV}$. For a Higgs boson with a mass of 125$~\\mathrm{GeV}$ decaying to $\\mu^+\\mu^-$, the observed (expected) upper limit on the production rate is found to be 7.4 ($6.5^{+2.8}_{-1.9}$) times the standard model value. This corresponds to an upper limit on the branching fraction of 0.0016. Similarly, for $\\mathrm{e^+e^-}$, an upper limit of 0.0019 is placed on the branching fraction, which is ${\\approx}3.7\\times10^5$ times the standard model value. These results, together with recent evidence of the 125$~\\mathrm{GeV}$ boson coupling to $\\tau$-leptons with a larger branching fraction consistent with the standard model, show for the first time that the leptonic couplings of the new boson are not flavour-universal.

  7. Search for a standard model-like Higgs boson in the $\\mu^+\\mu^-$ and $\\mathrm{e^+e^-}$ decay channels at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan; et al.,

    2015-05-01T23:59:59.000Z

    A search is presented for a standard model-like Higgs boson decaying to the $\\mu^+\\mu^-$ or $\\mathrm{e^+e^-}$ final states based on proton-proton collisions recorded by the CMS experiment at the CERN LHC. The data correspond to integrated luminosities of 5.0$~\\mathrm{fb}^{-1}$ at a centre-of-mass energy of $7~\\mathrm{TeV}$ and $19.7~\\mathrm{fb}^{-1}$ at $8~\\mathrm{TeV}$ for the $\\mu^+\\mu^-$ search, and of $19.7~\\mathrm{fb}^{-1}$ at a centre-of-mass energy of $8~\\mathrm{TeV}$ for the $\\mathrm{e^+e^-}$ search. To enhance the sensitivity of the search, events are categorized by topologies according to production process and dilepton invariant mass resolution. Upper limits on the production cross section times branching fraction at the 95%more »confidence level are reported for Higgs boson masses in the range from 120 to 150$~\\mathrm{GeV}$. For a Higgs boson with a mass of 125$~\\mathrm{GeV}$ decaying to $\\mu^+\\mu^-$, the observed (expected) upper limit on the production rate is found to be 7.4 ($6.5^{+2.8}_{-1.9}$) times the standard model value. This corresponds to an upper limit on the branching fraction of 0.0016. Similarly, for $\\mathrm{e^+e^-}$, an upper limit of 0.0019 is placed on the branching fraction, which is ${\\approx}3.7\\times10^5$ times the standard model value. These results, together with recent evidence of the 125$~\\mathrm{GeV}$ boson coupling to $\\tau$-leptons with a larger branching fraction consistent with the standard model, show for the first time that the leptonic couplings of the new boson are not flavour-universal.« less

  8. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings under Uncertainty with an Integrated Assessment Model: Technical Background Data

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2014-12-06T23:59:59.000Z

    This report presents data and assumptions employed in an application of PNNL’s Global Change Assessment Model with a newly-developed Monte Carlo analysis capability. The model is used to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The report provides a summary of how residential and commercial buildings are modeled, together with assumptions made for the distributions of state–level population, Gross Domestic Product (GDP) per worker, efficiency and cost of residential and commercial energy equipment by end use, and efficiency and cost of residential and commercial building shells. The cost and performance of equipment and of building shells are reported separately for current building and equipment efficiency standards and for more aggressive standards. The report also details assumptions concerning future improvements brought about by projected trends in technology.

  9. 1michigan state university brand STandardS BRAND STANDARDS

    E-Print Network [OSTI]

    1michigan state university brand STandardS BRAND STANDARDS VERSION 4, APRIL 30, 2012 #12;2michigan state university brand STandardS TABLE OF CONTENTS 3 brand baSicS 5 The Michigan STaTe UniverSiTy brandUrTher gUidance #12;3michigan state university brand STandardS 1. BrANd BASICS 1a whaT iS a brand? We build

  10. APPLIANCE STANDARDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^APPLIANCE STANDARDS How they

  11. Search for the standard model Higgs boson produced in association with a W± boson with 7.5 fb?¹ integrated luminosity at CDF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-08-01T23:59:59.000Z

    We present a search for the standard model Higgs boson produced in association with a W± boson. This search uses data corresponding to an integrated luminosity of 7.5 fb?¹ collected by the CDF detector at the Tevatron. We select WH?l?bb¯ candidate events with two jets, large missing transverse energy, and exactly one charged lepton. We further require that at least one jet be identified to originate from a bottom quark. Discrimination between the signal and the large background is achieved through the use of a Bayesian artificial neural network. The number of tagged events and their distributions are consistent withmore »the standard model expectations. We observe no evidence for a Higgs boson signal and set 95% C.L. upper limits on the WH production cross section times the branching ratio to decay to bb¯ pairs, ?(pp¯?W±H)×B(H?bb¯), relative to the rate predicted by the standard model. For the Higgs boson mass range of 100 to 150 GeV/c² we set observed (expected) upper limits from 1.34 (1.83) to 38.8 (23.4). For 115 GeV/c² the upper limit is 3.64 (2.78). The combination of the present search with an independent analysis that selects events with three jets yields more stringent limits ranging from 1.12 (1.79) to 34.4 (21.6) in the same mass range. For 115 and 125 GeV/c² the upper limits are 2.65 (2.60) and 4.36 (3.69), respectively.« less

  12. Search for the standard model Higgs boson produced in association with a W± boson with 7.5 fb?¹ integrated luminosity at CDF

    SciTech Connect (OSTI)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-08-01T23:59:59.000Z

    We present a search for the standard model Higgs boson produced in association with a W± boson. This search uses data corresponding to an integrated luminosity of 7.5 fb?¹ collected by the CDF detector at the Tevatron. We select WH?l?bb¯ candidate events with two jets, large missing transverse energy, and exactly one charged lepton. We further require that at least one jet be identified to originate from a bottom quark. Discrimination between the signal and the large background is achieved through the use of a Bayesian artificial neural network. The number of tagged events and their distributions are consistent with the standard model expectations. We observe no evidence for a Higgs boson signal and set 95% C.L. upper limits on the WH production cross section times the branching ratio to decay to bb¯ pairs, ?(pp¯?W±H)×B(H?bb¯), relative to the rate predicted by the standard model. For the Higgs boson mass range of 100 to 150 GeV/c² we set observed (expected) upper limits from 1.34 (1.83) to 38.8 (23.4). For 115 GeV/c² the upper limit is 3.64 (2.78). The combination of the present search with an independent analysis that selects events with three jets yields more stringent limits ranging from 1.12 (1.79) to 34.4 (21.6) in the same mass range. For 115 and 125 GeV/c² the upper limits are 2.65 (2.60) and 4.36 (3.69), respectively.

  13. Search for the standard model Higgs boson produced in association with a W± boson with 7.5 fb?¹ integrated luminosity at CDF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2012-08-01T23:59:59.000Z

    We present a search for the standard model Higgs boson produced in association with a W± boson. This search uses data corresponding to an integrated luminosity of 7.5 fb?¹ collected by the CDF detector at the Tevatron. We select WH?l?bb¯ candidate events with two jets, large missing transverse energy, and exactly one charged lepton. We further require that at least one jet be identified to originate from a bottom quark. Discrimination between the signal and the large background is achieved through the use of a Bayesian artificial neural network. The number of tagged events and their distributions are consistent with the standard model expectations. We observe no evidence for a Higgs boson signal and set 95% C.L. upper limits on the WH production cross section times the branching ratio to decay to bb¯ pairs, ?(pp¯?W±H)×B(H?bb¯), relative to the rate predicted by the standard model. For the Higgs boson mass range of 100 to 150 GeV/c² we set observed (expected) upper limits from 1.34 (1.83) to 38.8 (23.4). For 115 GeV/c² the upper limit is 3.64 (2.78). The combination of the present search with an independent analysis that selects events with three jets yields more stringent limits ranging from 1.12 (1.79) to 34.4 (21.6) in the same mass range. For 115 and 125 GeV/c² the upper limits are 2.65 (2.60) and 4.36 (3.69), respectively.

  14. Copyright 2000 by the Genetics Society of America A Genome-Wide Departure From the Standard Neutral Model

    E-Print Network [OSTI]

    Andolfatto, Peter

    expectation for a panmictic population at equilibrium in natural populations of both species. The distribution an equilibrium island model does not seem to account for the data, more complicated forms of population structure can also result from demographic departures fromper generation, and the rate of mutation per base pair

  15. Confining quark-model suggestion against D{sub s}*(2317) and D{sub s}*(2460) as chiral partners of standard D{sub s}

    SciTech Connect (OSTI)

    Bicudo, P. [Dep. Fisica and CFTP, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2006-08-01T23:59:59.000Z

    This paper presents the first study of mesons with a quark and an antiquark with different and finite masses in a simple confining and chiral invariant quark-antiquark interaction, leading to spontaneous chiral symmetry breaking and to constituent quarks. In the false chiral invariant vacuum, the chiral partners are degenerate, and tachyons occur in the light-light spectrum. In the true vacuum, most of the standard nonrelativistic quark-model spectra should be recovered except for the pion and other particular constraints. The calibration problem of chiral quark models is also addressed here. The detailed inspection of the different contributions to the D and D{sub s} masses suggests that the challenging recently observed D{sub s}*(2317) and D{sub s}*(2460) mesons might not fit as global chirally rotated quark-antiquark D{sub s} mesons.

  16. UNIVERSITY STANDARDS AND REGULATIONS

    E-Print Network [OSTI]

    Royer, Dana

    2014­2015 UNIVERSITY STANDARDS AND REGULATIONS #12;Wesleyan University does not discriminate STANDARDS OF CONDUCT

  17. UNIVERSITY STANDARDS AND REGULATIONS

    E-Print Network [OSTI]

    Royer, Dana

    2013­2014 UNIVERSITY STANDARDS AND REGULATIONS #12;Wesleyan University does not discriminate STANDARDS OF CONDUCT

  18. Combined CDF and D0 Searches for the Standard Model Higgs Boson Decaying to Two Photons with up to 8.2 fb^-1

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    We combine results from CDF and D0's direct searches for the standard model (SM) Higgs boson (H) produced in p{bar p} collisions at the Fermilab Tevatron at {radical}s = 1.96 TeV, focusing on the decay H {yields} {gamma}{gamma}. We compute upper limits on the Higgs boson production cross section times the decay branching fraction in the range 100 < m{sub H} < 150 GeV/c{sup 2}, and we interpret the results in the context of the standard model. We use the MSTW08 parton distribution functions and the latest theoretical cross section predictions when testing for the presence of a SM Higgs boson. With datasets corresponding to 7.0 fb{sup -1} (CDF) and 8.2 fb{sup -1} (D0), the 95% C.L. upper limits on Higgs boson production is a factor of 10.5 times the SM cross section for a Higgs boson mass of 115 GeV/c{sup 2}.

  19. Search for a standard model Higgs boson in the H?ZZ??[superscript +]?[subscript ?]?[bar over ?] decay channel using 4.7 fb[superscript -1] of ?s = 7 TeV data with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for a Standard Model Higgs boson decaying via H?ZZ??[superscript +]?[superscript ?]?[bar over ?], where ? represents electrons or muons, is presented. It is based on proton–proton collision data at ?s = 7 TeV, ...

  20. Search for the Standard Model Higgs boson in the decay channel H?ZZ(*)?4? with 4.8 fb[superscript -1] of pp collision data at ?s = 7 TeV with ATLAS

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter presents a search for the Standard Model Higgs boson in the decay channel H?ZZ(*)??[superscript +]?[superscript ?]??[superscript +]??[superscript ?], where ?,?? = e or ?, using proton–proton collisions at ?s = ...

  1. Search for standard model Higgs boson production in association with a W boson using a matrix element technique at CDF in pp? collisions at ?s=1.96??TeV

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    This paper presents a search for standard model Higgs boson production in association with a W boson using events recorded by the CDF experiment in a data set corresponding to an integrated luminosity of 5.6??fb[superscript ...

  2. Fishing for new physics with massive neutral dibosons: measurements of ZZ production cross section and the search for invisible Higgs boson decays beyond the Standard Model with the CMS detector at the LHC

    E-Print Network [OSTI]

    Chasco, Matthew Ervin

    The Standard Model of particle physics is a theory describing the fundamental interactions and properties of subatomic particles. A key feature is its ability to explain particle mass through the Higgs mechanism, and a by-product of this mechanism is the Higgs boson. The discovery of the Higgs boson, in 2012 at CERN, completed the Standard Model particle zoo, but observed phenomena, like dark matter, remain unexplained. The analyses presented explore proton-proton collison events resulting in a Z boson plus missing transverse energy (MET). The motivation for this is to investigate two processes: Standard Model (SM) ZZ production, and beyond Standard Model (BSM) ZH production, in particular the ZZ ? ?+????¯ and ZH ? ?+?? + Hinv channels. The place-holder Hinv is for all Higgs boson decay modes resulting in undetected “invisible” particles, which may branch to new physics, like dark matter particles. The data used are from Run 1 (2011–2012) of CMS, where proton-proton collisions at 7 Te...

  3. Search for the standard model Higgs boson decaying to a $W$ pair in the fully leptonic final state in $pp$ collisions at $\\sqrt{s}=7$ TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-03-01T23:59:59.000Z

    A search for the standard model Higgs boson decaying to W+W- in pp collisions at sqrt(s) = 7 TeV is reported. The data are collected at the LHC with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. The W+W- candidates are selected in events with two charged leptons and large missing transverse energy. No significant excess of events above the standard model background expectations is observed, and upper limits on the Higgs boson production relative to the standard model Higgs expectation are derived. The standard model Higgs boson is excluded in the mass range 129-270 GeV at 95% confidence level.

  4. Search for physics beyond the standard model in events with a Z boson, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute (Armenia); et al.,

    2012-09-01T23:59:59.000Z

    A search is presented for physics beyond the standard model (BSM) in events with a Z boson, jets, and missing transverse energy (MET). This signature is motivated by BSM physics scenarios, including supersymmetry. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.98 inverse femtobarns. The contributions from the dominant standard model backgrounds are estimated from data using two complementary strategies, the jet-Z balance technique and a method based on modeling MET with data control samples. In the absence of evidence for BSM physics, we set limits on the non-standard-model contributions to event yields in the signal regions and interpret the results in the context of simplified model spectra. Additional information is provided to facilitate tests of other BSM physics models.

  5. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    SciTech Connect (OSTI)

    Greg Weirs; Hyung Lee

    2011-09-01T23:59:59.000Z

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

  6. December 2006 Standards Forum and Standards Actions

    Energy Savers [EERE]

    -9 Cancellations in Progress - 0 Inside This Issue Visit the Technical Standards Program Web Site at http:tis.eh.doe.govtechstds December 2006 The Standards Forum and Standards...

  7. Top-down and bottom-up excursions beyond the Standard Model: The example of left-right symmetries in supersymmetry

    E-Print Network [OSTI]

    Adam Alloul

    2014-04-17T23:59:59.000Z

    In this Ph.D thesis three main projects are presented. In the first one the phenomenology associated with the neutralinos and charginos sector of the left-right symmetric supersymmetric model is explored. After a detailed motivation of the study and construction of such models, it is shown that these models can be easily discovered in multi-leptonic final states as they lead to signatures very different from those induced by the Standard Model or its supersymmetric version. In the second project, we concentrate on the phenomenology associated with doubly-charged particles. Starting from the hypothesis that such a particle is discovered at the LHC, we build several effective field theories depending on both the representation under SU(2)_L to which they belong the particle and their spin and perform a Monte Carlo analysis highlighting some key observables that would help to determine their quantum numbers. Another part of my thesis, complementary to the phenomenology work, has consisted in developping computer programs that might be helpful for phenomenological studies. Working in the framework of the Mathematica package FeynRules, I took part in the development of a routine able to extract automatically the analytical expressions of the renormalization group equations at the two-loop level for any renormalizable supersymmetric model. I have also been involved in the development of another module of FeynRules able to extract automatically the analytical expressions for the mass matrices associated to any model implemented in FeynRules and to export these equations in the form of a C++ source code able to diagonalize the matrices and store the mixing matrices as well as the spectrum in an SLHA-compliant file.

  8. Combined search for the Standard Model Higgs boson in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2012-07-13T23:59:59.000Z

    A combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities from 4.6 fb^-1 to 4.9 fb^-1 of proton-proton collisions collected at sqrt(s) = 7 TeV in 2011. The Higgs boson mass ranges of 111.4 GeV to 116.6 GeV, 119.4 GeV to 122.1 GeV, and 129.2 GeV to 541 GeV are excluded at the 95% confidence level, while the range 120 GeV to 560 GeV is expected to be excluded in the absence of a signal. An excess of events is observed at Higgs boson mass hypotheses around 126 GeV with a local significance of 2.9 standard deviations (sigma). The global probability for the background to produce an excess at least as significant anywhere in the entire explored Higgs boson mass range of 110-600 GeV is estimated to be ~15%, corresponding to a significance of approximately one sigma.

  9. Das Potsdamer Universittsmagazin Sommer an der Uni

    E-Print Network [OSTI]

    Baer, Christian

    Das Potsdamer Universitätsmagazin 3/2014 Sommer an der Uni: Leere Hörsäle? Volle Terminkalender-Gärtner 14 Kopfkino und Fantasiereisen 15 Sommer, Sonne ... Sport

  10. Search for standard model production of four top quarks in the lepton + jets channel in pp collisions at ? = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan [Yerevan Physics Inst. (YerPhI) (Armenia)

    2014-11-01T23:59:59.000Z

    A search is presented for standard model (SM) production of four top quarks (t?tt?t) in pp collisions in the lepton + jets channel. The data correspond to an integrated luminosity of 19.6?¹ recorded at a centre-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. The expected cross section for SM (t?tt?t) production is ?SM(t?tt?t). A combination of kinematic reconstruction and multivariate techniques is used to distinguish between the small signal and large background. The data are consistent with expectations of the SM, and an upper limit of 32 fb is set at a 95% confidence level on the cross section for producing four top quarks in the SM, where a limit of 32 ± 17 fb is expected.

  11. Search for the Standard Model Higgs Boson in the p anti-p ---> ZH ---> nu anti-nu b anti-b channel

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de

    2006-07-01T23:59:59.000Z

    We report a search for the standard model (SM) Higgs boson based on data collected by the D0 experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 260 pb{sup -1}. We study events with missing transverse energy and two acoplanar b-jets, which provide sensitivity to the ZH production cross section in the {nu}{bar {nu}}B{bar b} channel and to WH production, when the lepton from the W {yields} {ell}{nu} decay is undetected. The data are consistent with the SM background expectation, and we set 95% C.L. upper limits on {sigma}(p{bar p} {yields} ZN/WH) x B(H {yields} b{bar b}) from 3.4/8.3 to 2.5/6.3 pb, for Higgs masses between 105 and 135 GeV.

  12. Search for standard model production of four top quarks in the lepton + jets channel in pp collisions at ? = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2014-11-01T23:59:59.000Z

    A search is presented for standard model (SM) production of four top quarks (t?tt?t) in pp collisions in the lepton + jets channel. The data correspond to an integrated luminosity of 19.6?¹ recorded at a centre-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. The expected cross section for SM (t?tt?t) production is ?SM(t?tt?t). A combination of kinematic reconstruction and multivariate techniques is used to distinguish between the small signal and large background. The data are consistent with expectations of the SM, and an upper limit of 32 fb is set at a 95% confidence levelmore »on the cross section for producing four top quarks in the SM, where a limit of 32 ± 17 fb is expected.« less

  13. Search for a Standard Model Higgs Boson in CMS via Vector Boson Fusion in the H->WW->l?l?Channel

    E-Print Network [OSTI]

    E. Yazgan; J. Damgov; N. Akchurin; V. Genchev; D. Green; S. Kunori; M. Schmitt; W. Wu; M. T. Zeyrek

    2007-06-13T23:59:59.000Z

    We present the potential for discovering the Standard Model Higgs boson produced by the vector-boson fusion mechanism. We considered the decay of Higgs bosons into the W+W- final state, with both W-bosons subsequently decaying leptonically. The main background is ttbar with one or more jets produced. This study is based on a full simulation of the CMS detector, and up-to-date reconstruction codes. The result is that a signal of 5 sigma significance can be obtained with an integrated luminosity of 12-72 1/fb for Higgs boson masses between 130-200 GeV. In addition, the major background can be measured directly to 7% from the data with an integrated luminosity of 30 1/fb. In this study, we also suggested a method to obtain information in Higgs mass using the transverse mass distributions.

  14. Search for a Low-Mass Standard Model Higgs Boson in the ?? Decay Channel in pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; et al

    2012-05-01T23:59:59.000Z

    We report on a search for the standard model Higgs boson decaying into pairs of ? leptons in pp? collisions produced by the Tevatron at ?s=1.96 TeV. The analyzed data sample was recorded by the CDFII detector and corresponds to an integrated luminosity of 6.0 fb?¹. The search is performed in the final state with one ? decaying leptonically and the second one identified through its semihadronic decay. Since no significant excess is observed, a 95% credibility level upper limit on the production cross section times branching ratio to the ?? final state is set for hypothetical Higgs boson massesmore »between 100 and 150 GeV/c². For a Higgs boson of 120 GeV/c² the observed (expected) limit is 14.6 (15.3) the predicted value.« less

  15. Combined CDF and D0 Searches for the Standard Model Higgs Boson Decaying to Two Photons with up to 8.2 fb^-1

    E-Print Network [OSTI]

    The CDF Collaboration; the D0 Collaboration; the Tevatron New Physics; Higgs Working Group

    2011-07-25T23:59:59.000Z

    We combine results from CDF and D0's direct searches for the standard model (SM) Higgs boson (H) produced in ppbar collisions at the Fermilab Tevatron at sqrt{s}=1.96 TeV, focusing on the decay H\\rightarrow\\gamma\\gamma. We compute upper limits on the Higgs boson production cross section times the decay branching fraction in the range 100Higgs boson. With datasets corresponding to 7.0 fb-1 (CDF) and 8.2 fb-1 (D0), the 95% C.L. upper limits on Higgs boson production is a factor of 10.5 times the SM cross section for a Higgs boson mass of 115 GeV/c^2.

  16. Search for a Low-Mass Standard Model Higgs Boson in the ?? Decay Channel in pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; Dell’Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Makhoul, K.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.

    2012-05-01T23:59:59.000Z

    We report on a search for the standard model Higgs boson decaying into pairs of ? leptons in pp? collisions produced by the Tevatron at ?s=1.96 TeV. The analyzed data sample was recorded by the CDFII detector and corresponds to an integrated luminosity of 6.0 fb?¹. The search is performed in the final state with one ? decaying leptonically and the second one identified through its semihadronic decay. Since no significant excess is observed, a 95% credibility level upper limit on the production cross section times branching ratio to the ?? final state is set for hypothetical Higgs boson masses between 100 and 150 GeV/c². For a Higgs boson of 120 GeV/c² the observed (expected) limit is 14.6 (15.3) the predicted value.

  17. Search for standard model production of four top quarks in the lepton + jets channel in pp collisions at ? = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan [Yerevan Physics Inst. (YerPhI) (Armenia)

    2014-11-01T23:59:59.000Z

    A search is presented for standard model (SM) production of four top quarks (t?tt?t) in pp collisions in the lepton + jets channel. The data correspond to an integrated luminosity of 19.6?¹ recorded at a centre-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. The expected cross section for SM (t?tt?t) production is ?SM(t?tt?t). A combination of kinematic reconstruction and multivariate techniques is used to distinguish between the small signal and large background. The data are consistent with expectations of the SM, and an upper limit of 32 fb is set at a 95% confidence level on the cross section for producing four top quarks in the SM, where a limit of 32 ± 17 fb is expected.

  18. auf das verhalten: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ist, gibt es ber den Einfluss von Effizienz-Technologien auf das Verhalten (more) Weber, Katharina 2011-01-01 2 Einfluss verschiedener Beschftigungsobjekte auf das...

  19. How can the Standard model Higgs and also the extensions of the Higgs to Yukawa's scalars be interpreted in the spin-charge-family theory and to what predictions about the Higgs does this theory lead?

    E-Print Network [OSTI]

    Norma Susana Mankoc Borstnik

    2013-07-09T23:59:59.000Z

    This contribution is to show how does the spin-charge-family theory interpret the assumptions of the standard model, and those extensions of this model, which are trying to see the Yukawa couplings as scalar fields with the family (flavour) charges in the fundamental representations of the group. The purpose of these contribution is i.) to try to understand why the standard model works so well, although its assumptions look quite artificial, and ii.) how do predictions of the spin-charge-family theory about the measurements of the scalar fields differ from predictions of the {\\em standard model}, which has only one scalar field - the Higgs - and also from its more or less direct extensions with Yukawas as the scalar dynamical fields with the family charge in the fundamental or anti-fundamental representation of group.

  20. Analysis of well test data---Application of probabilistic models to infer hydraulic properties of fractures. [Contains list of standardized terminology or nomenclatue used in statistical models

    SciTech Connect (OSTI)

    Osnes, J.D. (RE/SPEC, Inc., Rapid City, SD (United States)); Winberg, A.; Andersson, J.E.; Larsson, N.A. (Sveriges Geologiska AB, Goeteborg (Sweden))

    1991-09-27T23:59:59.000Z

    Statistical and probabilistic methods for estimating the probability that a fracture is nonconductive (or equivalently, the conductive-fracture frequency) and the distribution of the transmissivities of conductive fractures from transmissivity measurements made in single-hole injection (well) tests were developed. These methods were applied to a database consisting of over 1,000 measurements made in nearly 25 km of borehole at five sites in Sweden. The depths of the measurements ranged from near the surface to over 600-m deep, and packer spacings of 20- and 25-m were used. A probabilistic model that describes the distribution of a series of transmissivity measurements was derived. When the parameters of this model were estimated using maximum likelihood estimators, the resulting estimated distributions generally fit the cumulative histograms of the transmissivity measurements very well. Further, estimates of the mean transmissivity of conductive fractures based on the maximum likelihood estimates of the model's parameters were reasonable, both in magnitude and in trend, with respect to depth. The estimates of the conductive fracture probability were generated in the range of 0.5--5.0 percent, with the higher values at shallow depths and with increasingly smaller values as depth increased. An estimation procedure based on the probabilistic model and the maximum likelihood estimators of its parameters was recommended. Some guidelines regarding the design of injection test programs were drawn from the recommended estimation procedure and the parameter estimates based on the Swedish data. 24 refs., 12 figs., 14 tabs.

  1. Spontaneously broken Standard Model (SM) symmetries and the Goldstone theorem protect the Higgs mass and ensure that it has no Higgs Fine Tuning Problem (HFTP)

    E-Print Network [OSTI]

    Bryan W. Lynn

    2012-08-08T23:59:59.000Z

    B.W.Lee/K.Symanzik proved that Ward-Takahashi identities and tadpole renormalization force all ultra-violet quadratic divergences (UV-QD) to be absorbed into the physical renormalized pseudo-scalar pion mass in O(4)LSM (linear sigma models) across the Higgs-VEV vs. Pion-Mass-Squared half-plane. We show that all UV-QD vanish identically in the "Goldstone mode" Zero-Pion-Mass spontaneous symmetry breaking (SSB) limit. The Higgs mass is protected to all loop-orders and Goldstone-mode O(4)LSM has no Higgs fine-tuning problem (HFTP). We insist that self-consistent renormalization of the Standard Model (SM) requires that the scalar-sector UV-QD-corrected effective Lagrangians of the SM and Goldstone-mode O(4)LSM are smoothly identical in the zero-gauge-coupling limit. Lee/Symanzik's two conditions must be imposed on the SM: the Higgs cannot simply disappear into the vacuum; SM Nambu-Goldstone boson (NGB) masses (i.e. the pre-Higgs-mechanism longitudinal Wand Z masses) must vanish identically. At 1-loop, the Higgs-VEV is neither UV-QD divergent nor fine-tuned. Loop-induced-artefact NGB masses absorb all SM UV-QD, which vanish identically in the Zero-NGB-Mass limit, i.e. the SSB SM. Simply another (un-familiar) consequence of the Goldstone theorem, no fine-tuning is necessary for a weak-scale Higgs mass. Our SM results can (almost certainly) be extended to include all-orders perturbative electro-weak and QCD loops. SM symmetries (as realized by SSB and the Goldstone theorem) are sufficient to protect the Higgs mass, and ensure that the SM does not suffer a HFTP. It is un-necessary to impose any new Beyond the Standard-Model (BSM) symmetries. Mistaken belief in a 1-loop SM HFTP has historically driven an expectation that new BSM physics must appear < 14 TeV. But our results re-open the possibility that LHC discovery potential might be confined to SM physics.

  2. Beyond the Standard Model Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the W and Z electroweak gauge bosons, the top quark, and the recently discovered Higgs boson. The LHC experiment also has a dedicated effort to search for evidence of new laws...

  3. Journeys Beyond the Standard Model

    E-Print Network [OSTI]

    Elor, Gilly

    2013-01-01T23:59:59.000Z

    A. D. Linde. Fate of the false vacuum at finite temperature:R. Coleman. The Fate of the False Vacuum. 2. First QuantumS. Coleman. Fate of the false vacuum: Semiclassical theory.

  4. Physics Beyond the Standard Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our science answersPhysics

  5. Beyond the Standard Model Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrenceDepartment of EnergyBeyond

  6. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    SciTech Connect (OSTI)

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22T23:59:59.000Z

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

  7. Search for a Standard Model Higgs boson in the H -> ZZ -> llnunu decay channel using 4.7 fb-1 of sqrt(s) = 7 TeV data with the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2012-05-30T23:59:59.000Z

    A search for a heavy Standard Model Higgs boson decaying via H -> ZZ -> llnunu, where l represents electrons or muons, is presented. It is based on proton-proton collision data at sqrt(s) = 7 TeV, collected by the ATLAS experiment at the LHC during 2011 and corresponding to an integrated luminosity of 4.7 fb^-1. The data agree with the expected Standard Model backgrounds. Upper limits on the Higgs boson production cross section are derived for Higgs boson masses between 200 GeV and 600 GeV and the production of a Standard Model Higgs boson with a mass in the range 319 - 558 GeV is excluded at the 95% confidence level.

  8. Search for the Standard Model Higgs Boson associated with a W Boson using Matrix Element Technique in the CDF detector at the Tevatron

    SciTech Connect (OSTI)

    Alvarez Gonzalez, Barbara; /Oviedo U.

    2010-05-01T23:59:59.000Z

    In this thesis a direct search for the Standard Model Higgs boson production in association with a W boson at the CDF detector in the Tevatron is presented. This search contributes predominantly in the region of low mass Higgs region, when the mass of Higgs boson is less than about 135 GeV. The search is performed in a final state where the Higgs boson decays into two b quarks, and the W boson decays leptonically, to a charged lepton (it can be an electron or a muon) and a neutrino. This work is organized as follows. Chapter 2 gives an overview of the Standard Model theory of particle physics and presents the SM Higgs boson search results at LEP, and the Tevatron colliders, as well as the prospects for the SM Higgs boson searches at the LHC. The dataset used in this analysis corresponds to 4.8 fb{sup -1} of integrated luminosity of p{bar p} collisions at a center of mass energy of 1.96 TeV. That is the luminosity acquired between the beginning of the CDF Run II experiment, February 2002, and May 2009. The relevant aspects, for this analysis, of the Tevatron accelerator and the CDF detector are shown in Chapter 3. In Chapter 4 the particles and observables that make up the WH final state, electrons, muons, E{sub T}, and jets are presented. The CDF standard b-tagging algorithms to identify b jets, and the neural network flavor separator to distinguish them from other flavor jets are also described in Chapter 4. The main background contributions are those coming from heavy flavor production processes, such as those coming from Wbb, Wcc or Wc and tt. The signal and background signatures are discussed in Chapter 5 together with the Monte CArlo generators that have been used to simulate almost all the events used in this thesis. WH candidate events have a high-p{sub T} lepton (electron or muon), high missing transverse energy, and two or more than two jets in the final state. Chapter 6 describes the event selection applied in this analysis and the method used to estimate the background contribution. The Matrix Element method, that was successfully used in the single t0p discovery analysis and many other analyses within the CDF collaboration, is the multivariate technique used in this thesis to discriminate signal from background events. With this technique is possible to calculate a probability for an event to be classified as signal or background. These probabilities are then combined into a discriminant function called the Event Probability Discriminant, EPD, which increases the sensitivity of the WH process. This method is described in detail in Chapter 7. As no evidence for the signal has been found, the results obtained with this work are presented in Chapter 8 in terms of exclusion regions as a function of the mass of the Higgs boso, taking into account the full systematics. The conclusions of this work to obtain the PhD are presnted in Chapter 9.

  9. Lepton masses, mixings, and flavor-changing neutral currents in a minimal S{sub 3}-invariant extension of the standard model

    SciTech Connect (OSTI)

    Mondragon, A.; Mondragon, M.; Peinado, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 Mexico D.F. (Mexico)

    2007-10-01T23:59:59.000Z

    The mass matrices of the charged leptons and neutrinos, previously derived in a minimal S{sub 3}-invariant extension of the standard model, were reparametrized in terms of their eigenvalues. We obtained explicit, analytical expressions for all entries in the neutrino mixing matrix, V{sub PMNS}, the neutrino mixing angles, and the Majorana phases as functions of the masses of charged leptons and neutrinos in excellent agreement with the latest experimental values. The resulting V{sub PMNS} matrix is very close to the tribimaximal form of the neutrino mixing matrix. We also derived explicit, analytical expressions for the matrices of the Yukawa couplings and computed the branching ratios of some selected flavor-changing neutral current processes as functions of the masses of the charged leptons and the neutral Higgs bosons. We find that the S{sub 3}xZ{sub 2} flavor symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector well below the present experimental upper bounds by many orders of magnitude.

  10. Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.2 fb-1 of Data

    E-Print Network [OSTI]

    The CDF; D0 Collaborations; the TEVNPHWG Working Group

    2011-08-16T23:59:59.000Z

    We combine results from CDF and D0's direct searches for the standard model (SM) Higgs boson (H) produced in p-pbar collisions at the Fermilab Tevatron at sqrt(s)=1.96 TeV. The results presented here include those channels which are most sensitive to Higgs bosons with mass between 130 and 200 GeV/c^2, namely searches targeted at Higgs boson decays to W+W-, although acceptance for decays into tau+tau- and gamma gamma is included. Compared to the previous Tevatron Higgs search combination, more data have been added and the analyses have been improved to gain sensitivity. We use the MSTW08 parton distribution functions and the latest gg to H theoretical cross section predictions when testing for the presence of a SM Higgs boson. With up to 7.1 fb-1 of data analyzed at CDF, and up to 8.2 fb-1 at D0, the 95% C.L. upper limits on Higgs boson production is a factor of 0.54 times the SM cross section for a Higgs boson mass of 165 GeV/c^2. We exclude at the 95% C.L. the region 158

  11. Search for the Standard Model Higgs Boson at D$\\O$ in the Final State with Two $\\tau$'s and Two Jets

    SciTech Connect (OSTI)

    Tschann-Grimm, Kathryn; /SUNY, Stony Brook

    2011-08-01T23:59:59.000Z

    The Standard Model (SM) is a very successful description of particle physics, and its predictions have stood up to a multitude of precision experimental tests. But one of the central elements of the SM, the Higgs mechanism, has yet to be verified. The Higgs mechanism (and the associated Higgs Boson) generates electroweak symmetry breaking and consequently allows for W and Z bosons and fermions to be massive. This thesis presents a search for the SM Higgs boson at the D0 experiment using the Tevatron particle accelerator at Fermilab in the final state {tau}{tau} + jet jet with 4.3 fb{sup -1} of data. This final state is sensitive to the Higgs production mechanisms gluon-gluon fusion and vector-boson fusion, and to the Higgs produced in association with a W or Z, for Higgs masses from 100 to 200 GeV. We see no evidence for the Higgs boson, but by itself our search does not rule out the SM Higgs. When this analysis is combined with other searches at the Tevatron the Higgs can be ruled out at a 95% confidence level for the mass range from 156 to 177 GeV.

  12. Search for the standard model Higgs boson produced in association with W and Z bosons in pp collisions at sqrt(s) = 7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2013-01-29T23:59:59.000Z

    A search for the Higgs boson produced in association with a W or Z boson in proton-proton collisions at a center-of-mass energy of 7 TeV is performed with the CMS detector at the LHC using the full 2011 data sample, from an integrated luminosity of 5 inverse femtobarns. Higgs boson decay modes to tau tau and WW are explored by selecting events with three or four leptons in the final state. No excess above background expectations is observed, resulting in exclusion limits on the product of Higgs associated production cross section and decay branching fraction for Higgs boson masses between 110 and 200 GeV in these channels. Combining these results with other CMS associated production searches using the same dataset in the H to gamma gamma and H to b b-bar decay modes, the cross section for associated Higgs boson production 3.3 times the standard model expectation or larger is ruled out at the 95% confidence level for a Higgs boson mass of 125 GeV.

  13. Communication Standards and Recommendations

    E-Print Network [OSTI]

    Communication Standards and Recommendations Introduction & Purpose 3 Standards & Recommendations Communication 4 Training 10 Evaluation 11 PMO Workgroup Participation 12 Staffing 12 Communications-related Tracking Grantee Portal Standards and Recommendations 13

  14. August 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    August 2007 1.5 DOE Technical Standards Published No entries were received in August 2007 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  15. July 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    in June 2007 1.5 DOE Technical Standards Published No entries were received in June 2007 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  16. October 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Project No. SAFT-0109 Continued on next page Standards Actions Page 2 October 2006 2.0 NON-GOVERNMENT STANDARDS ACTIONS 2.1 American National Standards Institute American...

  17. July 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    were received in June 2006. Continued on next page Standards Actions Page 2 July 2005 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  18. The Search for VH $\\bf\\to$ VWW Standard Model \\\\ Higgs Production in the Trilepton Signature\\\\ with $\\bf5.9\\fb$ of Data from $\\bf\\ppbar$ Collisions \\\\ at $\\bf\\sqrt{s}=1.96$ GeV

    SciTech Connect (OSTI)

    Nett, Jason Michael; /Wisconsin U., Madison

    2010-06-01T23:59:59.000Z

    We present here the search for Standard Model VH {yields} VWW {yields} lll + E{sub T} (missing energy due to neutrinos) production, where V is a W or Z weak vector boson, which uses up to 5.9 fb{sup -1} of integrated luminosity. This analysis has recently added to the CDF high-mass Higgs group three new signal topologies characterized by a tri-lepton signature, which are chosen to isolate the VH {yields} VWW associated production signals in the three-lepton signature. As such, we define three new regions for a WH analysis, a ZH 1-jet analysis, and a ZH {ge} 2-jet analysis with which we expect to contribute an additional {approx} 5.8% (for m{sub H} = 165 GeV) acceptance to the current H {yields} WW dilepton analysis. The ZH trilepton regions are defined by events passing a Z-boson selection: events having at least one lepton pairing (among three possible pairings) with opposite sign, same flavor, and a dilepton invariant mass within [76.0, 106.0] GeV - a {+-} 15 GeV window around the Z-boson mass. The WH trilepton region is then defined as the set of trilepton events that are complement to those chosen by the Z-boson selection. These three new event topologies make a substantial contribution to the H {yields} WW group result. As a measure of the sensitivity of this search, we compute the median expected limit on the at 95% confidence level ('C.L.') on the production cross section (effectively the rate of production) for a Standard Model Higgs boson and report the result as a ratio to the theoretical production cross section. An observed limit ratio of one or less at a given mass would rule out the production of a Standard Model Higgs boson at that mass with 95% confidence. At m{sub H} = 165 GeV, the WH analysis expected limits reach 7.2 times the standard model cross section; the ZH 1-jet analysis is set at 29 times the expected standard model cross section; the ZH {ge} 2-jet analysis is set at 9.9 times the expected standard model cross section; and the combined trilepton analysis is set at 4.9 times the expected standard model cross section. We announce that the combination of this trilepton VH {yields} VWW Higgs boson search and the previous CDF dilepton H {yields} WW search achieves an expected median limit of 1.00 at 165 GeV/c{sup 2}. The expected median limit of 1.00 indicates we anticipate a 50% probability of ruling out the existence of a Standard Model Higgs boson with a mass of 165 GeV/c{sup 2}. This is the first time a single hadron collider experiment has achieved sensitivity to the production of a Standard Model Higgs boson. We do not see evidence for a significant signal of Higgs bosons in the data and place observed limits on the production of a Standard Model Higgs boson of 165 GeV/c{sup 2} at 1.08 times Standard Model production cross section.

  19. Energy Efficiency Product Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  20. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In 2007, Minnesota legislation modified the state's existing non-mandated renewable energy objective, creating a mandatory renewable portfolio standard (RPS) called the Renewable Energy Standard ...

  1. November 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  2. October 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  3. May 2008 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  4. May 2006 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society...

  5. February 2001 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Technical Standards Program Document Status Visit the Technical Standards Program Web Site: http:tis.eh.doe.govtechstds Activity Summary In Conversion - 4 In Preparation...

  6. Search for the Standard Model Higgs Boson Decaying to a bb? Pair in Events with No Charged Leptons and Large Missing Transverse Energy using the Full CDF Data Set

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We report on a search for the standard model Higgs boson produced in association with a vector boson in the full data set of proton-antiproton collisions at ?s=1.96??TeV recorded by the CDF II detector at the Tevatron, ...

  7. Search for the Standard Model Higgs Boson Decaying to W[superscript +]W[superscript -] in the Fully Leptonic Final State in pp Collisions at ?s = 7 TeV

    E-Print Network [OSTI]

    Alver, B.

    A search for the standard model Higgs boson decaying to W[superscript +]W[superscript ?] in pp collisions at ?s = 7 TeV is reported. The data are collected at the LHC with the CMS detector, and correspond to an integrated ...

  8. Search for a Standard Model Higgs boson in the mass range 200-600 GeV in the H?ZZ??[superscript +]?[superscript ?]q[bar over q] decay channel with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A search for a heavy Standard Model Higgs boson decaying via H?ZZ??[superscript +]?[superscript ?]q[bar over q], where ?=e or ?, is presented. The search uses a data set of pp collisions at ?s = 7 TeV, corresponding to an ...

  9. Search for a Standard Model-like Higgs boson decaying into WW to l nu qqbar in exclusive jet bins in pp collisions at sqrt s = 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01T23:59:59.000Z

    A search for a Standard Model Higgs boson decaying into the WW final state is performed with an integrated luminosity of up to 19.3~${\\rm fb}^{-1}$ of pp collisions at $\\sqrt{s}$~=~8~TeV in the high mass region $600 < m_{\\rm H} < 1000$~GeV.

  10. An Inclusive Search for the Higgs Boson in the Four Lepton Final State The Higgs boson is the last undiscovered particle of the Standard Model of Particle Physics (SM).

    E-Print Network [OSTI]

    Fermilab

    An Inclusive Search for the Higgs Boson in the Four Lepton Final State The Higgs boson is the last undiscovered particle of the Standard Model of Particle Physics (SM). A search for SM Higgs boson decays transverse energy. Our search is optimized for Higgs boson decays to Z-boson pairs but is sensitive, due

  11. Combined CDF and Dzero Upper Limits on Standard Model Higgs Boson Production at High Mass (155-200 GeV/c2) with 3 fb-1 of data

    E-Print Network [OSTI]

    Tevatron New Phenomena; Higgs working group; CDF Collaboration; D0 Collaboration

    2008-08-05T23:59:59.000Z

    We combine results from CDF and DO searches for a standard model Higgs boson in ppbar collisions at the Fermilab Tevatron, at sqrt{s}=1.96 TeV. With 3.0 fb-1 of data analyzed at CDF, and at DO, the 95% C.L. upper limits on Higgs boson production are a factor of 1.2, 1.0 and 1.3 higher than the SM cross section for a Higgs boson mass of m_{H}=$165, 170 and 175 GeV, respectively. We exclude at 95% C.L. a standard model Higgs boson of m_H=170 GeV. Based on simulation, the ratios of the corresponding median expected upper limit to the Standard Model cross section are 1.2, 1.4 and 1.7. Compared to the previous Higgs Tevatron combination, more data and refined analysis techniques have been used. These results extend significantly the individual limits of each experiment and provide new knowledge on the mass of the standard model Higgs boson beyond the LEP direct searches.

  12. Combined search for the Standard Model Higgs boson using up to 4.9 fb[superscript ?1] of pp collision data at ?s = 7 TeV with the ATLAS detector at the LHC

    E-Print Network [OSTI]

    Taylor, Frank E.

    A combined search for the Standard Model Higgs boson with the ATLAS experiment at the LHC using datasets corresponding to integrated luminosities from 1.04 fb[superscript ?1] to 4.9 fb[superscript ?1] of pp collisions ...

  13. Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.6 fb-1 of Data

    E-Print Network [OSTI]

    The CDF; D0 Collaborations; the Tevatron New Phenomena; Higgs Working Group

    2011-09-20T23:59:59.000Z

    We combine results from CDF and D0 on direct searches for the standard model (SM) Higgs boson (H) in ppbar collisions at the Fermilab Tevatron at sqrt{s}=1.96 TeV. Compared to the previous Tevatron Higgs boson search combination more data have been added, additional channels have been incorporated, and some previously used channels have been reanalyzed to gain sensitivity. We use the MSTW08 parton distribution functions and the latest theoretical cross sections when comparing our limits to the SM predictions. With up to 8.2 fb-1 of data analyzed at CDF and up to 8.6 fb-1 at D0, the 95% C.L. our upper limits on Higgs boson production are factors of 1.17, 1.71, and 0.48 times the values of the SM cross section for Higgs bosons of mass m_H=115 GeV/c^2, 140 GeV/c^2, and 165 GeV/c^2, respectively. The corresponding median upper limits expected in the absence of Higgs boson production are 1.16, 1.16, and 0.57. There is a small (approx. 1 sigma) excess of data events with respect to the background estimation in searches for the Higgs boson in the mass range 125

  14. Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.6 fb-1 of Data

    SciTech Connect (OSTI)

    CDF, The; Collaborations, D0; Phenomena, the Tevatron New; Group, Higgs Working

    2011-07-01T23:59:59.000Z

    We combine results from CDF and D0 on direct searches for the standard model (SM) Higgs boson (H) in p{bar p} collisions at the Fermilab Tevatron at {radical}s = 1.96 TeV. Compared to the previous Tevatron Higgs boson search combination more data have been added, additional channels have been incorporated, and some previously used channels have been reanalyzed to gain sensitivity. We use the MSTW08 parton distribution functions and the latest theoretical cross sections when comparing our limits to the SM predictions. With up to 8.2 fb{sup -1} of data analyzed at CDF and up to 8.6 fb{sup -1} at D0, the 95% C.L. our upper limits on Higgs boson production are factors of 1.17, 1.71, and 0.48 times the values of the SM cross section for Higgs bosons of mass m{sub H} = 115 GeV/c{sup 2}, 140 GeV/c{sup 2}, and 165 GeV/c{sup 2}, respectively. The corresponding median upper limits expected in the absence of Higgs boson production are 1.16, 1.16, and 0.57. There is a small ({approx} 1{sigma}) excess of data events with respect to the background estimation in searches for the Higgs boson in the mass range 125 < m{sub H} < 155 GeV/c{sup 2}. We exclude, at the 95% C.L., a new and larger region at high mass between 156 < m{sub H} < 177 GeV/c{sup 2}, with an expected exclusion region of 148 < m{sub H} < 180 GeV/c{sup 2}.

  15. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23T23:59:59.000Z

    The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

  16. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-19T23:59:59.000Z

    The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

  17. Standard 90, the planning

    SciTech Connect (OSTI)

    Not Available

    1985-10-01T23:59:59.000Z

    In order to understand the current proposed ANS/ASHRAE/IES Standard 90.1 Energy Efficient Design of New Non-Residential Buildings and New High-Rise, Residential Buildings, this article offers background on the initial Standard, the organization of the Standard committee, and the objectives established for the proposed Standard 90.1.

  18. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2011-01-01T23:59:59.000Z

    framework of the energy efficiency business model in furthera comprehensive energy efficiency business model on utilitya comprehensive energy efficiency business model on utility

  19. Technical Standards,DOE Standards and Corresponding Directives...

    Broader source: Energy.gov (indexed) [DOE]

    February 2, 2002 DOE Standards and Corresponding Directives Crosswalk DOE Standards and Corresponding Directives Crosswalk table Technical Standards,DOE Standards and Corresponding...

  20. Search for the Standard Model Higgs boson in the decay channel H -> ZZ((*)) -> 4l with 4.8 fb(-1) of pp collision data at root s=7 TeV with ATLAS

    SciTech Connect (OSTI)

    Aad G.; Abbott B.; Abdallah J.; Khalek S. Abdel; Abdelalim A. A.; Abdesselam A.; Abdinov O.; Abi B.; Abolins M.; AbouZeid U. S.; Abramowicz H.; Abreu H.; Acerbi E.; Acharya B. S.; Adamczyk L.; Adams D. L.; Addy T. N.; Adelman J.; et al.

    2012-04-12T23:59:59.000Z

    This Letter presents a search for the Standard Model Higgs boson in the decay channel H {yields} ZZ{sup (*)} {yields} {ell}{sup +}{ell}{sup -}{ell}{prime}{sup +}{ell}{prime}{sup -}, where {ell}, {ell}{prime} = e or {mu}, using proton-proton collisions at {radical}s = 7 TeV recorded with the ATLAS detector and corresponding to an integrated luminosity of 4.8 fb{sup -1}. The four-lepton invariant mass distribution is compared with Standard Model background expectations to derive upper limits on the cross section of a Standard Model Higgs boson with a mass between 110 GeV and 600 GeV. The mass ranges 134-156 GeV, 182-233 GeV, 256-265 GeV and 268-415 GeV are excluded at the 95% confidence level. The largest upward deviations from the background-only hypothesis are observed for Higgs boson masses of 125 GeV, 244 GeV and 500 GeV with local significances of 2.1, 2.2 and 2.1 standard deviations, respectively. Once the look-elsewhere effect is considered, none of these excesses are significant.

  1. Nr. 282 / 2010 // 1. Oktober 2010 Das Energieproblem lsen

    E-Print Network [OSTI]

    Ullmann, G. Matthias

    betriebenen Verbrennungsmotor. Siemens sieht das E-Auto als Bestandteil eines völlig neuartigen Konzepts

  2. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Energy Savers [EERE]

    4: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 Fact 624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 The final...

  3. National Agenda for Hydrogen Codes and Standards

    SciTech Connect (OSTI)

    Blake, C.

    2010-05-01T23:59:59.000Z

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  4. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2011-01-01T23:59:59.000Z

    Business Model for the Successful Achievement of Energy Efficiency ResourceBusiness Model for the Successful Achievement of Energy Efficiency Resourcebusiness model on utility ROE 13   Table 1. Lifetime savings, resource costs and benefits of alternative energy efficiency

  5. Search for the Standard Model Higgs Boson in the Missing Transverse Energy and b-jet signature in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV

    SciTech Connect (OSTI)

    Apresyan, Artur; /Purdue U.

    2009-05-01T23:59:59.000Z

    We report on the results of a search for the standard model Higgs boson produced in association with a W or Z boson in p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb{sup -1}. We consider events having no identified charged leptons, a large imbalance in transverse momentum, and two or three jets where at least one jet contains a secondary vertex consistent with the decay of a b hadron. The main backgrounds are modeled with innovative techniques using data. The sensitivity of the search is optimized using multivariate discriminant techniques. We find good agreement between data and the standard model predictions. We place 95% confidence level upper limits on production cross section times branching ratio for several Higgs boson masses ranging from 110 GeV=c{sup 2} to 150 GeV=c{sup 2}. For a mass of 115 GeV=c{sup 2} the observed (expected) limit is 6.9 (5.6) times the standard model prediction.

  6. April 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    and Injury Surveillance Program Guidelines, 03222007; DOE-STD-1190-2007, OCSH-0005 2.0 Non-Government Standards Actions 2.1 American National Standards Institute (ANSI)...

  7. Puerto Rico- Interconnection Standards

    Broader source: Energy.gov [DOE]

    In 2007, the Autoridad de Energía Electrica de Puerto Rico (PREPA*) adopted interconnection standards based on the standard contained in the federal Energy Policy Act of 2005. PREPA promulgated...

  8. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2011-01-01T23:59:59.000Z

    and energy costs. Model Inputs Utility Characterization Business-energy efficiency business model on utility ROE 13   Table 1. Lifetime savings, resource costs

  9. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies Division March 2011

    E-Print Network [OSTI]

    Satchwell, Andrew

    2011-01-01T23:59:59.000Z

    of the energy efficiency business model in further detail.7   4.3 Business Modelenergy efficiency business model on utility earnings .

  10. Meeting Residential Ventilation Standards

    E-Print Network [OSTI]

    ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning EngineersLBNL 4591E Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide

  11. DFT --Das Future Tool ``Das Future Tool'' was the title of the group T-shirt1 that we

    E-Print Network [OSTI]

    Ziegler, Tom

    TRIBUTE DFT -- Das Future Tool ``Das Future Tool'' was the title of the group T-shirt1 that we had article ``Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics and considered it just another semi-empirical method.2 Tom, however, realized that DFT was ``Das Future Tool

  12. Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set

    E-Print Network [OSTI]

    The CDF Collaboration

    2012-08-09T23:59:59.000Z

    We present a search for the standard model Higgs boson produced in association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data collected with the CDF II detector at the Tevatron corresponding to an integrated luminosity of 9.45 fb-1. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a neutrino, we set 95% credibility level upper limits on the WH production cross section times the H->bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times the standard model value.

  13. Search for the Standard Model Higgs Boson Produced in Association with a $Z$ Boson in $p\\bar{p}$ Collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-03-01T23:59:59.000Z

    We present a search for the standard model Higgs boson produced in association with a Z boson, using up to 7.9 fb{sup -1} of integrated luminosity from p{bar p} collisions collected with the CDF II detector. We utilize several novel techniques, including multivariate lepton selection, multivariate trigger parametrization, and a multi-stage signal discriminant consisting of specialized functions trained to distinguish individual backgrounds. By increasing acceptance and enhancing signal discrimination, these techniques have significantly improved the sensitivity of the analysis above what was expected from a larger dataset alone. We observe no significant evidence for a signal, and we set limits on the ZH production cross section. For a Higgs boson with mass 115 GeV/c{sup 2}, we expect (observe) a limit of 3.9 (4.8) times the standard model predicted value, at the 95% credibility level.

  14. Search for standard model Higgs bosons decaying to w-boson pairs in proton-anti-proton collisions at s**(1/2) = 1.96 TeV

    SciTech Connect (OSTI)

    Hidas, Dean Andrew; /Duke U.

    2008-12-01T23:59:59.000Z

    This thesis describes a search for standard model Higgs bosons decaying to W boson pairs in proton-anti-proton collisions at a center of mass energy of 1.96 TeV using the CDF II detector. The decay to W bosons is dominant for Higgs masses greater than about 135 GeV. The final state examined consists of two leptons and missing transverse energy from the leptonic decay of one or more W bosons. The signal production mechanisms included are gluon fusion, associated production with a W or Z boson, and vector boson fusion. Matrix element calculations and artificial neural networks are used to discriminate signal from background for Higgs masses in the range 110 {le} M{sub H} {le} 200 GeV. No significant excess of events is observed at any of the Higgs masses investigated. Upper limits on the standard model Higgs cross section are set at 95% confidence for each Higgs mass investigated, the most stringent limit being 1.63 times the predicted standard model cross section for a Higgs mass of 160 GeV.

  15. Search for standard model Higgs boson production in association with a W boson using a matrix element technique at CDF in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-04-01T23:59:59.000Z

    This paper presents a search for standard model Higgs boson production in association with a W boson using events recorded by the CDF experiment in a data set corresponding to an integrated luminosity of 5.6 fb?¹. The search is performed using a matrix element technique in which the signal and background hypotheses are used to create a powerful discriminator. The discriminant output distributions for signal and background are fit to the observed events using a binned likelihood approach to search for the Higgs boson signal. We find no evidence for a Higgs boson, and 95% confidence level (C.L.) upper limitsmore »are set on ?(pp??WH)×B(H?bb¯). The observed limits range from 3.5 to 37.6 relative to the standard model expectation for Higgs boson masses between mH=100 GeV/c² and mH=150 GeV/c². The 95% C.L. expected limit is estimated from the median of an ensemble of simulated experiments and varies between 2.9 and 32.7 relative to the production rate predicted by the standard model over the Higgs boson mass range studied.« less

  16. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-01T23:59:59.000Z

    Properties of the Higgs boson with mass near 125 GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include ??, ZZ, WW, ??, bb, and ?? pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 fb?¹ at 7 TeV and up to 19.7 fb?¹ at 8 TeV. From the high-resolution ?? and ZZ channels, the mass of the Higgs boson is determined to be 125.02\\,+0.26-0.27(stat)+0.14-0.15(syst) GeV. For this mass value, the event yields obtainedmore »in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 ± 0.09 (stat), +0.08 -0.07 (theo) ± 0.07 (syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.« less

  17. Search for standard model Higgs boson production in association with a W boson using a matrix element technique at CDF in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.

    2012-04-01T23:59:59.000Z

    This paper presents a search for standard model Higgs boson production in association with a W boson using events recorded by the CDF experiment in a data set corresponding to an integrated luminosity of 5.6 fb?¹. The search is performed using a matrix element technique in which the signal and background hypotheses are used to create a powerful discriminator. The discriminant output distributions for signal and background are fit to the observed events using a binned likelihood approach to search for the Higgs boson signal. We find no evidence for a Higgs boson, and 95% confidence level (C.L.) upper limits are set on ?(pp??WH)×B(H?bb¯). The observed limits range from 3.5 to 37.6 relative to the standard model expectation for Higgs boson masses between mH=100 GeV/c² and mH=150 GeV/c². The 95% C.L. expected limit is estimated from the median of an ensemble of simulated experiments and varies between 2.9 and 32.7 relative to the production rate predicted by the standard model over the Higgs boson mass range studied.

  18. Search for Standard Model Higgs Boson Production in Association with a $W$ Boson Using a Matrix Element Technique at CDF in $p\\bar{p}$ Collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

    2011-12-01T23:59:59.000Z

    This paper presents a search for standard model Higgs boson production in association with a W boson using events recorded by the CDF experiment in a dataset corresponding to an integrated luminosity of 5.6 fb{sup -1}. The search is performed using a matrix element technique in which the signal and background hypotheses are used to create a powerful discriminator. The discriminant output distributions for signal and background are fit to the observed events using a binned likelihood approach to search for the Higgs boson signal. We find no evidence for a Higgs boson, and 95% confidence level (C.L.) upper limits are set on {sigma}(p{bar p} {yields} WH) x {Beta}(H {yields} b{bar b}). The observed limits range from 3.5 to 37.6 relative to the standard model expectation for Higgs boson masses between m{sub H} = 100 GeV/c{sup 2} and m{sub H} = 150 GeV/c{sup 2}. The 95% C.L. expected limit is estimated from the median of an ensemble of simulated experiments and varies between 2.9 and 32.7 relative to the production rate predicted by the standard model over the Higgs boson mass range studied.

  19. Appliance Efficiency Standards and Price Discrimination

    SciTech Connect (OSTI)

    Spurlock, Cecily Anna

    2013-05-08T23:59:59.000Z

    I explore the effects of two simultaneous changes in minimum energy efficiency and ENERGY STAR standards for clothes washers. Adapting the Mussa and Rosen (1978) and Ronnen (1991) second-degree price discrimination model, I demonstrate that clothes washer prices and menus adjusted to the new standards in patterns consistent with a market in which firms had been price discriminating. In particular, I show evidence of discontinuous price drops at the time the standards were imposed, driven largely by mid-low efficiency segments of the market. The price discrimination model predicts this result. On the other hand, in a perfectly competition market, prices should increase for these market segments. Additionally, new models proliferated in the highest efficiency market segment following the standard changes. Finally, I show that firms appeared to use different adaptation strategies at the two instances of the standards changing.

  20. CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance on the conversion of DOE Technical Standards to Voluntary Consensus Standards (VCSs), also referred to as non-Government standards

  1. Distributed Generation Standard Contracts

    Broader source: Energy.gov [DOE]

    '''''Note: The second enrollment period for standard contracts in 2013 closed June 28. The third is scheduled to begin in September.'''''

  2. ORISE: Standards development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of industry standards that provide guidance and support to decontamination and decommissioning projects across the United States. Because of our extensive experience...

  3. Particulate Matter Standards (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency sets the standards for particulate emissions from a variety of sources, including facilities that generate power. ...

  4. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Rhode Island's Renewable Energy Standard (RES), established in June 2004, requires the state's retail electricity providers -- including non-regulated power producers and distribution companies --...

  5. Energy Conservation Standards Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress August 2014 United States Department of Energy Washington, DC 20585 Energy Conservation Standards Activities Report to Congress | Page i Message from the...

  6. Standard Subject Classification System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1979-08-14T23:59:59.000Z

    The order establishes the DOE Standard Subject Classification System for classifying documents and records by subject, including correspondence, directives, and forms.Cancels DOE O 0000.1.

  7. Groundwater Quality Standards (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain groundwater quality standards and classifications, regulations for point sources, and provisions for remedial action.

  8. February 2008 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection...

  9. November 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection...

  10. National Certification Standard

    Broader source: Energy.gov (indexed) [DOE]

    Certification Standard for the Geothermal Heat Pump Industry Principal Investigator John Kelly Geothermal Heat Pump Consortium GSHP Demonstration Projects May 18, 2010 This...

  11. Columbia- Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In November 2004, voters in Columbia, Missouri approved a proposal to adopt a local renewables portfolio standard (RPS).* The initiative requires the city's municipal utility, Columbia Water and...

  12. Standards Actions, October 2000

    Broader source: Energy.gov (indexed) [DOE]

    61326-1-am2-2000, Electrical equipment for measure- ment, control and laboratory use - EMC requirements - Part 1: General requirements. American National Standards Projects...

  13. A search for the Standard Model Higgs boson in the process $ZH \\rightarrow \\ell^{+} \\ell^{-} b \\bar{b}$ in $4.1\\unit{fb^{-1}}$ OF CDF~II DATA}

    SciTech Connect (OSTI)

    Shalhout, Shalhout Zaki; /Wayne State U.

    2010-05-01T23:59:59.000Z

    The standard model of particle physics provides a detailed description of a universe in which all matter is composed of a small number of fundamental particles, which interact through the exchange of force - carrying gauge bosons (the photon, W{sup {+-}}, Z and gluons). The organization of the matter and energy in this universe is determined by the effects of three forces; the strong, weak, and electromagnetic. The weak and electromagnetic forces are the low energy manifestations of a single electro-weak force, while the strong force binds quarks into protons and neutrons. The standard model does not include gravity, as the effect of this force on fundamental particles is negligible. Four decades of experimental tests, spanning energies from a few electron-volts (eV) up to nearly two TeV, confirm that the universe described by the standard model is a reasonable approximation of our world. For example, experiments have confirmed the existence of the top quark, the W{sup {+-}} and the Z bosons, as predicted by the standard model. The latest experimental averages for the masses of the top quark, W{sup {+-}} and Z are respectively 173.1 {+-} 0.6(stat.) {+-} 1.1(syst.), 80.399 {+-} 0.023 and 91.1876 {+-} 0.0021 GeV/c{sup 2}. The SM is a gauge field theory of zero mass particles. However, the SM is able to accommodate particles with non-zero mass through the introduction of a theoretical Higgs field which permeates all of space. Fermions gain mass through interactions with this field, while the longitudinal components of the massive W{sup {+-}} and Z are the physical manifestations of the field itself. Introduction of the Higgs field, directly leads to the predicted existence of an additional particle, the Higgs boson. The Higgs boson is the only particle of the standard model that has not been observed, and is the only unconfirmed prediction of the theory. The standard model describes the properties of the Higgs boson in terms of its mass, which is a free parameter in the theory. Experimental evidence suggests that the Higgs mass has a value between 114.4 and 186 GeV/c{sup 2}. Particles with a mass in this range can be produced in collisions of less massive particles accelerated to near the speed of light. Currently, one of only a few machines capable of achieving collision energies large enough to potentially produce a standard model Higgs boson is the Tevatron proton-antiproton collider located at Fermi National Accelerator Laboratory in Batavia, Illinois. This dissertation describes the effort to observe the standard model Higgs in Tevatron collisions recorded by the Collider Detector at Fermilab (CDF) II experiment in the ZH {yields} {ell}{sup +}{ell}{sup -}b{bar b} production and decay channel. In this process, the Higgs is produced along with a Z boson which decays to a pair of electrons or muons (Z {yields} {ell}{sup +}{ell}{sup -}), while the Higgs decays to a bottom anti-bottom quark pair (H {yields} b{bar b}). A brief overview of the standard model and Higgs theory is presented in Chapter 2. Chapter 3 explores previous searches for the standard model Higgs at the Tevatron and elsewhere. The search presented in this dissertation expands upon the techniques and methods developed in previous searches. The fourth chapter contains a description of the Tevatron collider and the CDF II detector. The scope of the discussion in Chapter 4 is limited to the experimental components relevant to the current ZH {yields} {ell}{sup +}{ell}{sup -}b{bar b} search. Chapter 5 presents the details of object reconstruction; the methods used to convert detector signals into potential electrons, muons or quarks. Chapter six describes the data sample studied for the presence of a ZH {yields} {ell}{sup +}{ell}{sup -}b{bar b} signal and details the techniques used to model the data. The model accounts for both signal and non-signal processes (backgrounds) which are expected to contribute to the observed event sample. Chapters 7 and 8 summarize the event selection applied to isolate ZH {yields} {ell}{sup +}{ell}{sup -}b{bar b} candidate events

  14. Open Standards for Sensor Information Processing

    SciTech Connect (OSTI)

    Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

    2009-07-01T23:59:59.000Z

    This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

  15. ECONOMIA CONSTITUCIONAL: EFEITOS DAS VARIÁVEIS CONSTITUCIONAIS SOBRE O CRESCIMENTO ECONÔMICO

    E-Print Network [OSTI]

    Neto, Giácomo Balbinotto; Trindade, Manoel Gustavo Neubarth

    2008-01-01T23:59:59.000Z

    ECONOMIA CONSTITUCIONAL: EFEITOS DAS VARIÁVEISdo Departamento de Economia da Universidade Federal do Riouma nação. Assim, se uma economia não cresce ou se encontra

  16. area determinacao das: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    President Strategie und Technologie der Siemens AG (Foto), in seinem betriebenen Verbrennungsmotor. Siemens sieht das E-Auto als Bestandteil eines vllig neuartigen Konzepts...

  17. abschlussbericht fr das: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aushang Mndliche Prfungen 01.04.-08.05.2014 gem? Mitteilungspost Hoffmann, Rolf 8 Symposium: Dual Career Couples frdern -eine Herausforderung fr das Materials...

  18. arbeitsbuch fr das: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aushang Mndliche Prfungen 01.04.-08.05.2014 gem? Mitteilungspost Hoffmann, Rolf 8 Symposium: Dual Career Couples frdern -eine Herausforderung fr das Materials...

  19. apresentando amarelecimento das: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internet durch das EU-Telekompaket, einem Bndel von 5 EG-Richtlinien, deren Ziel die Reform der europische Telekommunikationsrahmengesetzgebung ist. (more) Buchegger, Clemens...

  20. agudo das enxaquecas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internet durch das EU-Telekompaket, einem Bndel von 5 EG-Richtlinien, deren Ziel die Reform der europische Telekommunikationsrahmengesetzgebung ist. (more) Buchegger, Clemens...

  1. atenuacao das palpebras: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internet durch das EU-Telekompaket, einem Bndel von 5 EG-Richtlinien, deren Ziel die Reform der europische Telekommunikationsrahmengesetzgebung ist. (more) Buchegger, Clemens...

  2. DOE Coordination Meeting CODES & STANDARDS

    E-Print Network [OSTI]

    of the International Standards Organization's standards for hydrogen refueling and storage, by 2006; · Complete. Provide technical resources to harmonize the development of international standards among IEC, ISO negotiations with critical Standard Development Organizations and develop draft generic licensing agreement

  3. Superallowed 0(+)-> 0(+) nuclear beta decays: A critical survey with tests of the conserved vector current hypothesis and the standard model 

    E-Print Network [OSTI]

    Hardy, John C.; Towner, IS.

    2005-01-01T23:59:59.000Z

    cases have been added: 22Mg, 34Ar, and 74Rb, with f t value standard deviations ranging from from 0.24 to 0.40%. In the near future these uncertainties will undoubtedly be reduced and an additional eight cases could well be added to the list. Though...(p) 5316.8 ? 1.5 [Ma94] 5317.63 ? 0.36 [Bl04b] 5317.58 ? 0.35 1.0 ME(d) 873.31 ? 0.94 [Bo64] 875.5 ? 2.2 [Ho64] 876.5 ? 2.8 [Pr67] 877.2 ? 3.0 [Se73] 873.96 ? 0.61 [Ro75] 874.02 ? 0.48 1.0 QEC (gs) 4438 ? 9 [Fr63] 4443.54 ? 0.60 1.0 Ex (d0+) 1041.55 ? 0...

  4. High precision branching ratio measurement for the superallowed beta decay of Rb-74: A prerequisite for exacting tests of the standard model

    E-Print Network [OSTI]

    Piechaczek, A.; Zganjar, EF; Ball, GC; Bricault, P.; D'Auria, JM; Hardy, John C.; Hodgson, DF; Iacob, V.; Klages, P.; Kulp, WD; Leslie, JR; Lipoglavsek, M.; Macdonald, JA; Mak, HB; Moltz, D. M.; Savard, G.; von Schwarzenberg, J.; Svensson, CE; Towner, IS; Wood, JL.

    2003-01-01T23:59:59.000Z

    Nonanalog Fermi and Gamow-Teller branches in the superallowed beta decay of Rb-74 have been investigated using gamma-ray and conversion-electron spectroscopy. Nine observed transitions, in conjunction with a recent shell model calculation, determine...

  5. High precision branching ratio measurement for the superallowed beta decay of Rb-74: A prerequisite for exacting tests of the standard model 

    E-Print Network [OSTI]

    Piechaczek, A.; Zganjar, EF; Ball, GC; Bricault, P.; D'Auria, JM; Hardy, John C.; Hodgson, DF; Iacob, V.; Klages, P.; Kulp, WD; Leslie, JR; Lipoglavsek, M.; Macdonald, JA; Mak, HB; Moltz, D. M.; Savard, G.; von Schwarzenberg, J.; Svensson, CE; Towner, IS; Wood, JL.

    2003-01-01T23:59:59.000Z

    Nonanalog Fermi and Gamow-Teller branches in the superallowed beta decay of Rb-74 have been investigated using gamma-ray and conversion-electron spectroscopy. Nine observed transitions, in conjunction with a recent shell model calculation, determine...

  6. DOE technical standards list. Department of Energy standards index

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listing of current DOE technical standards, non-Government standards that have been adopted by DOE, other Government documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  7. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  8. 2014-09-18 Issuance: Energy Conservation Standard for Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding energy conservation standards for alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, Refrigeration, and Water Heating Equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  9. Search for the Standard Model Higgs Boson in p anti-p Interactions with the Decay Mode H --> W+W- --> mu+nu mu-anti-nu at the D0 Experiment

    SciTech Connect (OSTI)

    Johnston, Dale Morgan; /Nebraska U.

    2010-04-01T23:59:59.000Z

    A search for the standard model Higgs boson in p{bar p} collisions resulting in two muons and large missing transverse energy is presented. The analysis uses 4.2 fb{sup -1} of integrated luminosity at a center-of-mass energy of {radical}s = 1.96 TeV collected between April 2002 and December 2008 with the D0 detector at the Fermilab Tevatron collider. No significant excess above the background estimation is observed and limits are derived on Higgs boson production.

  10. DOE technical standards list: Department of Energy standards index

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  11. LEVANTAMENTO DOSLEVANTAMENTO DOS PROBLEMAS AMBIENTAIS DASPROBLEMAS AMBIENTAIS DAS

    E-Print Network [OSTI]

    imagens de satéliteInterpretação visual de imagens de satélite #12;Analise nas imagens sobre nascente, foz,Analise nas imagens sobre nascente, foz, Lago, onde o rio passa, vegetaçãoLago, onde o rio passa, vegetaçãoCirculamos parte do lago identificando os estudos das imagensestudos das imagens #12

  12. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.secstate.wa.gov/elections/initiatives/text/I937.pdf Initiative 937] in 2006, Washington became the second state after Colorado to pass a renewable energy standard by...

  13. Roundness calibration standard

    DOE Patents [OSTI]

    Burrus, Brice M. (6620 Wachese La., Knoxville, TN 37912)

    1984-01-01T23:59:59.000Z

    A roundness calibration standard is provided with a first arc constituting the major portion of a circle and a second arc lying between the remainder of the circle and the chord extending between the ends of said first arc.

  14. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2008, New Mexico enacted H.B. 305, the Efficient Use of Energy Act, which created an Energy Efficiency Resource Standard (EERS) for New Mexico’s electric utilities, and a requirement that all ...

  15. Standards Actions, July 2001

    Broader source: Energy.gov (indexed) [DOE]

    - Standard method for testing the long-term alpha irradiation stability of so- lidified high-level radioactive waste forms - Septem- ber 8, 2001. * ISODIS 14830-1, Condition...

  16. August 2001 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    - May 10, 2001. ANSIASTM D6239-01, Test Method for Uranium in Drinking Water by High-Resolution Alpha-Liquid- Scintillation Spectrometry (new standard) - May 22, 2001....

  17. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  18. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23T23:59:59.000Z

    The order establishes the DOE Technical Standards Program. Cancels DOE O 252.1 and DOE G 252.1-1. Admin Chg 1, dated 3-12-13 cancels DOE O 252.1A.

  19. Drinking Water Standards

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2006-04-26T23:59:59.000Z

    This publication explains the federal safety standards for drinking water provided by public water supply systems. It discusses the legal requirements for public water supplies, the maximum level allowed for contaminants in the water...

  20. Standards Actions, May 2001

    Broader source: Energy.gov (indexed) [DOE]

    Standards are proposed for reaffirmation: * DOE-HDBK-1081-94, Primer on Spontaneous Heating and Pyrophoricity, Decem- ber 1994. * DOE-STD-1027-92, including Change Notice 1,...

  1. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia Council enacted a renewable portfolio standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by...

  2. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect (OSTI)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13T23:59:59.000Z

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  3. February 2002 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    Protection of Electronic Com- puterData Processing Equipment (revision of ANSINFPA 75-1999) - February 26, 2002. NFPA 80, Standard for Fire Doors and Fire Windows (revision of...

  4. Standardization of Firearms

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-02T23:59:59.000Z

    Establishes Department of Energy (DOE) requirements for the standardization of firearms and limitations of firearms inventories maintained in support of safeguards and security activities. Does not cancel other directives.

  5. Reliability Standards Owner

    Broader source: Energy.gov [DOE]

    This position is located in the Internal Operations and Asset Management group of Planning and Asset Management (TP). A successful candidate in this position will serve as the Reliability Standards...

  6. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  7. Energy Efficiency Standard

    Broader source: Energy.gov [DOE]

    In 2008, Iowa enacted S.B. 2386, which requires the Iowa Utilities Board (IUB) to create energy savings standards (electricity and natural gas) for all rate-regulated utilities. The IUB ordered...

  8. EPCglobal : a universal standard

    E-Print Network [OSTI]

    Aguirre, Juan Ignacio

    2007-01-01T23:59:59.000Z

    This thesis evaluates the likelihood of EPCglobal becoming the universal RFID standard by presenting a framework of ten factors used to analyze and determine if EPCglobal is moving in the right direction. The ten factors ...

  9. Standards Actions, April 2000

    Broader source: Energy.gov (indexed) [DOE]

    Technical Standard on this matter no longer exists. Occupational Safety and Health Handbook, Project Number HFAC-0011; Terry Krietz, EH-51; 301-903-6456, Fax 301-903-2239,...

  10. SAE Standards Support

    SciTech Connect (OSTI)

    Gowri, Krishnan

    2012-11-01T23:59:59.000Z

    This report summarizes PNNL activities in FY 2012 in support of the following two vehicle communication standards activities: • Technical support to SAE, ANSI and NIST technical working groups. PNNL actively contributed to the use case development, harmonization, and evaluation of the SAE standards activities for vehicle to grid communication • Tested and validated a set of potential technologies for meeting SAE communication requirements and provided recommendations for technology choices.

  11. Surface Water Quality Standards

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    recreational uses. ?The Commission will seek substantial additional public comment on any proposed changes to the standards before adopting them into the state admin- istrative code,? Davenport said. ?Because of the com- plexity and regulatory importance... Conservation Board?s state watershed coordinator, said the standards for contact recreation, with only a few exceptions, are uniformly applied regardless of water body type or the actual level of recreation use. ?Because a minimum of 10 water samples over a...

  12. Search for the Standard Model Higgs boson produced in association with top quarks and decaying into $b\\bar{b}$ in pp collisions at $\\sqrt{s}$ = 8 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Aad, Georges; ATLAS Collaboration; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; ?lvarez Piqueras, Damián; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet

    2015-01-01T23:59:59.000Z

    A search for the Standard Model Higgs boson produced in association with a pair of top quarks, $t\\bar{t}H$, is presented. The analysis uses 20.3 fb$^{-1}$ of pp collision data at $\\sqrt{s}$ = 8 TeV, collected with the ATLAS detector at the Large Hadron Collider during 2012. The search is designed for the H to $b\\bar{b}$ decay mode and uses events containing one or two electrons or muons. In order to improve the sensitivity of the search, events are categorised according to their jet and b-tagged jet multiplicities. A neural network is used to discriminate between signal and background events, the latter being dominated by $t\\bar{t}$+jets production. In the single-lepton channel, variables calculated using a matrix element method are included as inputs to the neural network to improve discrimination of the irreducible $t\\bar{t}$+$b\\bar{b}$ background. No significant excess of events above the background expectation is found and an observed (expected) limit of 3.4 (2.2) times the Standard Model cross sectio...

  13. Search for the Standard Model Higgs Boson in Missing Transverse Energy and $b$-quark Final States Using Proton-Antiproton Collisions at 1.96 TeV

    SciTech Connect (OSTI)

    Dorland, Tyler M.; /Washington U., Seattle

    2011-03-01T23:59:59.000Z

    A search for the standard model Higgs boson is performed in 6.4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the D0 detector during Run II of the Fermilab Tevatron. The final state considered is a pair of jets originating from b quarks and missing transverse energy, as expected from p{bar p} {yields} ZH {yields} {nu}{bar {nu}}b{bar b} production. The search is also sensitive to the WH {yields} {ell}{nu}b{bar b} channel, where the charged lepton is not identified. Boosted decision trees are used to discriminate signal from background. Good agreement is observed between data and expected backgrounds, and a limit is set at 95% C.L. on the section multiplied by branching fraction of (p{bar p} {yields} (Z/W)H) x (H {yields} b{bar b}). For a Higgs boson mass of 115 GeV, the observed limit is a factor of 3.5 larger than the value expected from the standard model.

  14. Search for the standard model Higgs boson in the decay channel $H$ to $Z Z$ to 4 leptons in $pp$ collisions at $\\sqrt{s}=7$ TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-03-01T23:59:59.000Z

    A search for a Higgs boson in the four-lepton decay channel H to ZZ, with each Z boson decaying to an electron or muon pair, is reported. The search covers Higgs boson mass hypotheses in the range 110 < mH < 600 GeV. The analysis uses data corresponding to an integrated luminosity of 4.7 inverse femtobarns recorded by the CMS detector in pp collisions at sqrt(s) = 7 TeV from the LHC. Seventy-two events are observed with four-lepton invariant mass m[4 leptons] > 100 GeV (with thirteen below 160 GeV), while 67.1 +/- 6.0 (9.5 +/-1.3) events are expected from background. The four-lepton mass distribution is consistent with the expectation of standard model background production of ZZ pairs. Upper limits at 95% confidence level exclude the standard model Higgs boson in the ranges 134-158 GeV, 180-305 GeV, and 340 -465 GeV. Small excesses of events are observed around masses of 119, 126, and 320 GeV, making the observed limits weaker than expected in the absence of a signal.

  15. Seminar on Software Engineering Software Standards

    E-Print Network [OSTI]

    Feitelson, Dror

    is that there are so many of them" #12;Types of Standards Coding standards APIs and protocols Process standards Quality standards #12;Types of Standards Coding standards APIs and protocols Process standards Quality standards of Standards Coding standards APIs and protocols Process standards Quality standards STL and Java libraries

  16. Technical Standards, Style Guide- August 1, 2000

    Broader source: Energy.gov [DOE]

    Style Guide for the Preparation of DOE Technical Standards (Standards, Handbooks, and Technical Standards Lists)

  17. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19T23:59:59.000Z

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (‘stochastic’) model with the weather forecast model (‘deterministic’) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  18. Tracking Grantee Portal Standards and Recommendations Standards and Recommendations Table

    E-Print Network [OSTI]

    Tracking Grantee Portal Standards and Recommendations April 2009 Standards and Recommendations Table Tracking Network Standards Provide both public and secure grantee portals. Provide a link on a grantee's portal. Organize contents of pages to facilitate the identification of detailed information

  19. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02T23:59:59.000Z

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  20. Department of Energy Standards Index

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This TSL, intended for use in selecting and using DOE technical standards and other Government and non-Government standards, provides listing of current and inactive DOE technical standards, non-Government standards adopted by DOE, other Government documents in which DOE has a recorded interest, and cancelled DOE technical standards.

  1. DOE technical standards list: Department of Energy standards index

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This technical standards list (TSL) was prepared for use by personnel involved in the selection and use of US DOE technical standards and other government and non-government standards. This TSL provides listings of current DOE technical standards, non-government standards that have been adopted by DOE, other government documents in which DOE has a recorded interest, and cancelled DOE technical standards. Standards are indexed by type in the appendices to this document. Definitions of and general guidance for the use of standards are also provided.

  2. Incorporating Experience Curves in Appliance Standards Analysis

    SciTech Connect (OSTI)

    Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery; Kantner, Colleen; Lekov, Alex; Meyers, Stephen; Rosenquist, Gregory; Buskirk, Robert Van; Yang, Hung-Chia; Desroches, Louis-Benoit

    2011-10-31T23:59:59.000Z

    The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners, clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.

  3. Effect of noise on the standard mapping

    SciTech Connect (OSTI)

    Karney, C.F.F.; Rechester, A.B.; White, R.B.

    1981-03-01T23:59:59.000Z

    The effect of a small amount of noise on the standard mapping is considered. Whenever the standard mapping possesses accelerator models (where the action increases approximately linearly with time), the diffusion coefficient contains a term proportional to the reciprocal of the variance of the noise term. At large values of the stochasticity parameter, the accelerator modes exhibit a universal behavior. As a result the dependence of the diffusion coefficient on stochasticity parameter also shows some universal behavior.

  4. Maintaining Standards: Differences between the Standard Deviation and Standard Error, and

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Maintaining Standards: Differences between the Standard Deviation and Standard Error, and When to Use Each David L Streiner, PhD1 Many people confuse the standard deviation (SD) and the standard error of the mean (SE) and are unsure which, if either, to use in presenting data in graphical or tabular form

  5. Standard Nine: Financial Resources

    E-Print Network [OSTI]

    Snider, Barry B.

    105 Standard Nine: Financial Resources Overview The 1996 NEASC team report was critical of Brandeis's financial management, and focused on the need to increase financial resources, improve faculty and staff displays the University resource profile for FY1995 compared to the FY2005 profile. During this decade

  6. Derived Concentration Technical Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-05T23:59:59.000Z

    This standard supports the implementation of Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. It also establishes the numerical values of DCSs in a manner reflecting the current state of knowledge and practice in radiation protection

  7. FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES

    E-Print Network [OSTI]

    Laughlin, Robert B.

    to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

  8. Wie beantrage ich das Zertifikat ,,Quality System Manager Junior"

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Wie beantrage ich das Zertifikat ,,Quality System Manager Junior" und was kostet es Jochem DGQ Quality System Manager - Junior - Die Zusatzqualifikation für Studierende der Technischen Universität Berlin #12;Was ist der Quality Systems Manager - Junior -? Die Bedeutung des Qualitätsmanagements

  9. Bituminous pavement recycling Aravind K. and Animesh Das

    E-Print Network [OSTI]

    Das, Animesh

    Bituminous pavement recycling Aravind K. and Animesh Das Department of Civil Engineering IIT Kanpur Introduction The bituminous pavement rehabilitation alternatives are mainly overlaying, recycling and reconstruction. In the recycling process the material from deteriorated pavement, known as reclaimed asphalt

  10. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  11. Energy Efficiency Standards for Appliances

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  12. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  13. Active Technical Standards Managers List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONEFAXEMAIL NAME DOE FACILITYADDRESS LOC CODE AU-30 Jeff D. Feit DOE Technical Standards Program, Manager U.S. Department of Energy...

  14. Water Quality Standards Implementation (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Department of Environmental Quality regulates Oklahoma's Water Quality Standards. The law states the requirements and standards for point source discharges. It also establishes...

  15. Combined search for the Standard Model Higgs boson using up to 4.9 fb(-1) of pp collision data at root s=7 TeV with the ATLAS detector at the LHC

    SciTech Connect (OSTI)

    Aad G.; Abbott, B; Abdallah, J; Khalek, SA; Abdelalim, AA; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; AbouZeid, OS; Abramowicz, H; Abreu, H; Acerbia, E; Acharya, BS; Adamczyk, L; Adams, DL; Addy, TN; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Ad

    2012-03-29T23:59:59.000Z

    A combined search for the Standard Model Higgs boson with the ATLAS experiment at the LHC using datasets corresponding to integrated luminosities from 1.04 fb{sup -1} to 4.9 fb{sup -1} of pp collisions collected at {radical}s = 7 TeV is presented. The Higgs boson mass ranges 112.9-115.5 GeV, 131-238 GeV and 251-466 GeV are excluded at the 95% confidence level (CL), while the range 124-519 GeV is expected to be excluded in the absence of a signal. An excess of events is observed around m{sub H} {approx} 126 GeV with a local significance of 3.5 standard deviations ({sigma}). The local significances of H {yields} {gamma}{gamma}, H {yields} ZZ{sup (*)} {yields} {ell}{sup +}{ell}{sup -}{ell}{prime}{sup +}{ell}{prime}{sup -} and H {yields} WW{sup (*)} {yields} {ell}{sup +}{nu}{ell}{prime}{sup -}{bar {nu}}, the three most sensitive channels in this mass range, are 2.8{sigma}, 2.1{sigma} and 1.4{sigma}, respectively. The global probability for the background to produce such a fluctuation anywhere in the explored Higgs boson mass range 110-600 GeV is estimated to be {approx}1.4% or, equivalently, 2.2{sigma}.

  16. UCIT Data Network Standards Campus Wireless Network Standard

    E-Print Network [OSTI]

    Habib, Ayman

    UCIT Data Network Standards Campus Wireless Network Standard Classification IT Infrastructure Table.1. Standardization of the U of C's 802.11 wireless networks and frequency bands is required to insure availability of the wireless network to the campus community. Standards of use will improve the wireless service and help

  17. Search for the Standard Model Higgs Boson in ZH?l?l?bb? Production with the D0 Detector in 9.7 fb?¹ of pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.

    2012-09-01T23:59:59.000Z

    We present a search for the standard model (SM) Higgs boson produced in association with a Z boson in 9.7 fb?¹ of pp? collisions collected with the D0 detector at the Fermilab Tevatron Collider at ?s=1.96 TeV. Selected events contain one reconstructed Z?e?e? or Z????? candidate and at least two jets, including at least one jet identified as likely to contain a b quark. To validate the search procedure, we also measure the cross section for ZZ production in the same final state. It is found to be consistent with its SM prediction. We set upper limits on the ZH production cross section times branching ratio for H?bb? at the 95% C.L. for Higgs boson masses 90?MH?150 GeV. The observed (expected) limit for MH=125 GeV is 7.1 (5.1) times the SM cross section.

  18. Search for the Standard Model Higgs Boson in ZH?l?l?bb? Production with the D0 Detector in 9.7 fb?¹ of pp? Collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-09-01T23:59:59.000Z

    We present a search for the standard model (SM) Higgs boson produced in association with a Z boson in 9.7 fb?¹ of pp? collisions collected with the D0 detector at the Fermilab Tevatron Collider at ?s=1.96 TeV. Selected events contain one reconstructed Z?e?e? or Z????? candidate and at least two jets, including at least one jet identified as likely to contain a b quark. To validate the search procedure, we also measure the cross section for ZZ production in the same final state. It is found to be consistent with its SM prediction. We set upper limits on the ZHmore »production cross section times branching ratio for H?bb? at the 95% C.L. for Higgs boson masses 90?MH?150 GeV. The observed (expected) limit for MH=125 GeV is 7.1 (5.1) times the SM cross section.« less

  19. Search for a low mass Standard Model Higgs boson in the $\\tau-\\tau$ decay channel in $p\\bar{p}$ collisions at $\\sqrt{s}$ = 1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2012-01-01T23:59:59.000Z

    We report on a search for the standard model Higgs boson decaying into pairs of {tau} leptons in p{bar p} collisions produced by the Tevatron at {radical}s = 1.96 TeV. The analyzed data sample was recorded by the CDFII detector and corresponds to an integrated luminosity of 6.0 fb{sup -1}. The search is performed in the final state with one {tau} decaying leptonically and the second one identified through its semi-hadronic decay. Since no significant excess is observed, a 95% credibility level upper limit on the production cross section times branching ratio to the {tau}{tau} final state is set for hypothetical Higgs boson masses between 100 and 150 GeV/c{sup 2}. For a Higgs boson of 120 GeV/c{sup 2} the observed (expected) limit is 14.6 (15.3) the predicted value.

  20. Standardized radiological dose evaluations

    SciTech Connect (OSTI)

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01T23:59:59.000Z

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  1. Standard costs for labor

    E-Print Network [OSTI]

    Khan, Mohammed Nurul Absar

    1960-01-01T23:59:59.000Z

    STANDARD COSTS FOR LABOR A Thesis By MD. NURUL ABSAR KHAN Submitted to the Graduate School of the Agricultural and Mechanical College of Texms in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION... January 1960 Ma/or Sub)acts Accounting STANOAHD COSTS FOR LABOR ND, NURUL ABSAR KHAN Approved as t style and content bys Chairman of Committee Head of Hepartment January 1960 The author acknowledges his indebtedness to Mr. T. M. Leland, Mr. T. D...

  2. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. (Cincinnati Univ., OH (United States))

    1992-10-01T23:59:59.000Z

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  3. TOWARDS INTERNATIONAL STANDARDS FOR LANGUAGE

    E-Print Network [OSTI]

    Boyer, Edmond

    ) developed by the International Standards Organization TC32 SC4, which is to serve as a basis for harmonizingChapter # TOWARDS INTERNATIONAL STANDARDS FOR LANGUAGE RESOURCES Nancy Ide and Laurent Romary-284" #12;2 Chapter # Language Engineering Standards (EAGLES) and the International Standard for Language

  4. Standards | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring Solar Installations inforStandards

  5. Mechanical Systems Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122Technologies61-2008 June 2008 DOE STANDARD

  6. Sandia National Laboratories: Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to identify hazards, understand risk drivers, and develop strategies to reduce risk in hydrogen infrastructure. The models, data, methods, and tools developed by Sandia...

  7. Tevatron Measurements on Standard Model Higgs

    E-Print Network [OSTI]

    Federico Sforza; on behalf of the CDF; D0 Collaborations

    2014-07-01T23:59:59.000Z

    We present the study of the SM Higgs properties obtained from the combined analysis of the up-to 10 fb$^{-1}$ dataset collected by the CDF and D0 experiments during the $p\\bar{p}$ collision at $\\sqrt{s}=1.96$~TeV of Tevatron Run II. The observed local significance for the SM Higgs boson signal is of 3.0$\\sigma$ at $m_H=125$ GeV/c$^2$. After a brief review of analysis channels contributing the most, where the Higgs boson decays to a pair of $W$ bosons or to a pair of $b$-quarks jets, the signal production cross section and its couplings to fermions and vector bosons are analyzed. Other presented results are the recent study of the spin and parity of the SM Higgs performed by the D0 collaboration, leading to 3$\\sigma$ level expected exclusion of the JP$=0^{-}$ and JP$=2^{+}$ hypothesis, and the investigation of exotics final states with invisible decay products of the Higgs, excluded by the CDF collaboration for masses below 120 GeV.

  8. Standard-E hydrogen monitoring system field acceptance testprocedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-02-01T23:59:59.000Z

    The purpose of this document is to demonstrate that the Standard-E Hydrogen Monitoring Systems (SHMS-E) installed on the Waste Tank Farms in the Hanford 200 Areas are constructed as intended by the design.

  9. PLASMAQUEST STANDARD OPERATING PROCEDURE CORAL Name: Plasmaquest

    E-Print Network [OSTI]

    Reif, Rafael

    PLASMAQUEST STANDARD OPERATING PROCEDURE CORAL Name: Plasmaquest Model Number: 145 Location: TRL. PROCEDURE: Check reservations in CORAL to insure that you reserved the correct machine in the correct, if this is the case. `Engage' the machine in CORAL for the equipment that you are about to use; use this command

  10. RVS Bielefeld White Paper 1 Standards for Standards

    E-Print Network [OSTI]

    Ladkin, Peter B.

    in their work and business. Comment on Principle 1: Currently, IEC 61508 in its IEC version is prohibitively of the European and ISO/IEC standards are covered by this; however, if one wants the English originals, this does and includes all IEC standards. However, a certain amount of time and effort is required to use a standard

  11. Entwicklung eines Netzleitsystems fr das MICRO GRID eines industriellen Produktionsstandortes mit einem hohen Anteil

    E-Print Network [OSTI]

    Paderborn, Universität

    an das lokale MICRO GRID angeschlossenen elektrischen Energiespeicher und eine ,,POWER TO GAS" -Anlage

  12. Foto:TUM/Heddergott Ist es Ihnen auch so ergangen wie mir? Das Diplomzeugnis

    E-Print Network [OSTI]

    Heiz, Ulrich

    wieder einführten. So begannen wir, das TUM-Alumninetzwerk aufzubauen. Über FKG ,CJTG MCO CPMKGTGPF GKP

  13. Understanding Building Energy Codes and Standards

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2003-03-01T23:59:59.000Z

    Energy codes and standards play a vital role by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. The Difference Between Energy Codes, Energy Standards and the Model Energy Code Energy codes--specify how buildings must be constructed or perform, and are written in mandatory, enforceable language. States or local governments adopt and enforce energy codes for their jurisdictions. Energy standards--describe how buildings should be constructed to save energy cost-effectively. They are published by national organizations such as the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). They are not mandatory, but serve as national recommendations, with some variation for regional climate. States and local governments frequently use energy standards as the technical basis for developing their energy codes. Some energy standards are written in mandatory, enforceable language, making it easy for jurisdictions to incorporate the provisions of the energy standards directly into their laws or regulations.

  14. Microfabricated ion frequency standard

    SciTech Connect (OSTI)

    Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

    2010-12-28T23:59:59.000Z

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  15. Non standard neutrino interactions

    E-Print Network [OSTI]

    Miranda, O G

    2015-01-01T23:59:59.000Z

    Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino parameters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.

  16. Environmental Public Health Performance Standards

    E-Print Network [OSTI]

    Environmental Public Health Performance Standards Environmental Health Program Self Agency: Total Environmental Health Program Budget: #12;Environmental Public Health Performance Standards (v. 2.0); Environmental Health Program Assessment Instrument, 1/7/2010 Page 2 Proportion

  17. Energy Standards for State Buildings

    Broader source: Energy.gov [DOE]

    The State is still required by statute to adopt planning and construction standards for state buildings that conserve energy and optimize the energy performance of new buildings. The standards mu...

  18. TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes how topical committees are organized and recognized under the Technical Standards Program. 

  19. The Question The Standard Construction

    E-Print Network [OSTI]

    Raghavan, Dilip

    The Question The Standard Construction The ZFC construction Bibliography Solution to a Problem Construction The ZFC construction Bibliography Outline 1 The Question 2 The Standard Construction 3 The ZFC construction Dilip Raghavan Solution to a Problem of Van Douwen #12;The Question The Standard Construction

  20. 2008 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards and consultants. Valerie Hall, Deputy Director of the Energy Efficiency and Renewable Division provided policy

  1. Environmental Public Health Performance Standards

    E-Print Network [OSTI]

    Environmental Public Health Performance Standards (Version 2.0) Updated May 2014 National Center for Environmental Health Division of Emergency and Environmental Health Services #12;#12;Environmental Public Health Performance Standards (Version 2.0) Updated May 2014 #12;Environmental Public Health Performance Standards

  2. Automated saturated standard cell intercomparison

    SciTech Connect (OSTI)

    Bell, B.E.; Deitesfeld, C.A. (ed.) ed.

    1987-10-05T23:59:59.000Z

    A cost effective, highly efficient, and automatic method of intercomparing standard cells has been sought after and implemented, utilizing computer control and a commercially available scanner. This system reduces intercomparison time from 4 hours to 30 minutes using the standard National Bureau of Standard (NBS) 4 x 4 design. 7 figs., 1 tab.

  3. Energy Codes and Standards: Facilities

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01T23:59:59.000Z

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  4. TOWARDS INTERNATIONAL STANDARDS FOR LANGUAGE

    E-Print Network [OSTI]

    Ide, Nancy

    ) developed by the International Standards Organization TC32 SC4, which is to serve as a basis for harmonizing. It is in this context that a committee of the International Standards Organization (ISO), TC 37/SC 4Chapter # TOWARDS INTERNATIONAL STANDARDS FOR LANGUAGE RESOURCES Nancy Ide and Laurent Romary

  5. Standards and Codes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Staffing Model StaffingStandards Development andStandards

  6. Recordar Edgar Cardoso, engenheiro das pontes exposio Centenrio de

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Recordar Edgar Cardoso, engenheiro das pontes exposição Centenário de Edgar Cardoso é motivo para homenagem, depois de amanhã, na Ordem dos Engenheiros, em Lisboa "Edgar Cardoso -Ingenium Criati- vo" é anos do nascimento de Edgar Cardoso. Por muitos considerado um gé- nio da Engenharia, nasceu no Por

  7. Ratchet for energy transport between identical reservoirs Souvik Das,1,

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Ratchet for energy transport between identical reservoirs Souvik Das,1, * Onuttom Narayan,2 of the many realizations of this concept of a ``Brownian ratchet'' and their relevance to the working of motor,3 . Implementations of the ratchet idea generally involve randomly forced particles in periodic, non

  8. Standard electroweak interactions and Higgs bosons

    SciTech Connect (OSTI)

    Cox, B.; Gilman, F.J.

    1984-09-01T23:59:59.000Z

    In the standard model, only one basic component remains to be found: the Higgs boson. The specifics of Higgs boson production and detection, with decay to t anti t and a particular t quark mass range in mind, have not been examined in detail. As such, the working group on Standard Electroweak Interactions and Higgs Bosons at this meeting decided to concentrate on Higgs boson production and detection at SSC energies in the particular case where the Higgs mass is in the range so as to make t anti t quark-antiquark pairs the dominant decay mode. The study of this case, that of the so-called intermediate mass Higgs, had already been launched in the Berkeley PSSC Workshop on Electroweak Symmetry Breaking, and was continued and extended here. The problems of t quark jet identification and detection efficiency and the manner of rejection of background (especially from b quark jets) with realistic detectors then occupied much of the attention of the group. The subject of making precise measurements of parameters in the standard model at SSC energies is briefly examined. Then we delve into the Higgs sector, with an introduction to the neutral Higgs of the standard model together with its production cross-sections in various processes and the corresponding potential backgrounds. A similar, though briefer, discussion for a charged Higgs boson (outside the Standard Model) follows. The heart of the work on identifying and reconstructing the t and then the Higgs boson in the face of backgrounds is discussed. The problems with semileptonic decays, low energy jet fragments, mass resolution, and b-t discrimination all come to the fore. We have tried to make a serious step here towards a realistic assessment of the problems entailed in pulling a signal out of the background, including a rough simulation of calorimeter-detector properties. 25 references.

  9. ARM Standards Policy Committee Report

    SciTech Connect (OSTI)

    Cialella, A; Jensen, M; Koontz, A; McFarlane, S; McCoy, R; Monroe, J; Palanisamy, G; Perez, R; Sivaraman, C

    2012-09-19T23:59:59.000Z

    Data and metadata standards promote the consistent recording of information and are necessary to ensure the stability and high quality of Atmospheric Radiation Measurement (ARM) Climate Research Facility data products for scientific users. Standards also enable automated routines to be developed to examine data, which leads to more efficient operations and assessment of data quality. Although ARM Infrastructure agrees on the utility of data and metadata standards, there is significant confusion over the existing standards and the process for allowing the release of new data products with exceptions to the standards. The ARM Standards Policy Committee was initiated in March 2012 to develop a set of policies and best practices for ARM data and metadata standards.

  10. Standards Panel: 1. Stephen Diamond, General Manager, Industry Standards Office and Global Standards Officer, EMC

    E-Print Network [OSTI]

    Standards Officer, EMC Corporation, Office of the CTO Steve Diamond has 30 years of management, marketing was President of the IEEE Computer Society. Steve is General Manager of the Industry Standards Office at EMC Corporation, and Global Standards Officer in the Office of the CTO. Before EMC, he was responsible for cloud

  11. USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS...

    Energy Savers [EERE]

    DEVELOPMENT ORGANIZATIONS Purpose This procedure identifies the process by which DOE adopts Voluntary Consensus Standards (VCSs) and provides guidance for the interaction...

  12. Search for the standard model Higgs boson produced in association with a Z boson in 7.9 fb[superscript ?1] of p[bar-over p] collisions at ?s = 1.96 TeV using the CDF II detector

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We present a search for the standard model Higgs boson produced in association with a Z boson, using up to 7.9 fb[superscript ?1] of integrated luminosity from p[bar-over p] collisions collected with the CDF II detector. ...

  13. web identity standards introduction .............................................................................................................87

    E-Print Network [OSTI]

    Mullins, Dyche

    web identity standards sectionten 86 contents introduction............................................................................................................... 89-90 tagline and the web .................................................................................................91 tagline and the web: improper use

  14. Emission Standards for Contaminants (Iowa)

    Broader source: Energy.gov [DOE]

    These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

  15. Surface Water Quality Standards (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain surface water quality standards, stream classifications, discussion of lakes and impounded basins, and water...

  16. The Standards Forum, June 2001

    Broader source: Energy.gov (indexed) [DOE]

    technical standards then be- ing developed and used by DOE often lacked a consis- tent, high quality technical and administrative basis and were often marginally needed. Initiation...

  17. Effluent and Pretreatment Standards (Iowa)

    Broader source: Energy.gov [DOE]

    These regulations describe prohibited discharges into surface water and groundwater systems and set effluent standards for secondary treatment facilities. Effluent limitations and pretreatment...

  18. Interconnection Standards for Small Generators

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) adopted "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in May 2005.* The FERC's...

  19. The Standards Forum, December 1999

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Specifying and Selecting Power, Control and Special Purpose Cable for Petroleum and Chemical Plants (new standard) - October 26, 1999. ANSINFPA 11A-1998,...

  20. Ambient Air Quality Standards (Iowa)

    Broader source: Energy.gov [DOE]

    These regulations set statewide ambient air quality standards for various contaminants. The state code follows the regulations set forth in the National Primary and Secondary Ambient Air Quality...