National Library of Energy BETA

Sample records for dark energy task

  1. Report of the Dark Energy Task Force

    DOE R&D Accomplishments [OSTI]

    Albrecht, Andreas; Bernstein, Gary; Cahn, Robert; Freedman, Wendy L.; Hewitt, Jacqueline; Hu, Wayne; Huth, John; Kamionkowski, Marc; Kolb, Edward W.; Knox, Lloyd; Mather, John C.

    2006-01-01

    Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. The acceleration of the Universe is, along with dark matter, the observed phenomenon that most directly demonstrates that our theories of fundamental particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible.

  2. Searching for Dark Energy

    SciTech Connect (OSTI)

    Schlegel, David

    2015-05-06

    Berkeley Lab scientist David Schlegel discusses his research on mapping the universe and understanding dark energy.

  3. Jelly Bean Universe (Dark Matter / Dark Energy)

    ScienceCinema (OSTI)

    Kurt Riesselmann

    2010-01-08

    Fermilab's Kurt Riesselmann explains how to make a jelly bean universe to help explain the mysteries of dark matter and dark energy.

  4. Dark Energy, or Worse

    SciTech Connect (OSTI)

    Carroll, Sean

    2006-11-13

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  5. Dark Energy, or Worse

    ScienceCinema (OSTI)

    Professor Sean Carroll

    2010-01-08

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  6. Dark Energy Survey

    ScienceCinema (OSTI)

    Roodman, Aaron; Nord, Brian; Elliot, Ann

    2014-08-12

    Members of the Dark Energy Survey collaboration explain what they hope to learn by studying the southern sky with the world's most advanced digital camera, mounted on a telescope in Chile.

  7. Dark Energy Survey

    SciTech Connect (OSTI)

    Roodman, Aaron; Nord, Brian; Elliot, Ann

    2012-12-06

    Members of the Dark Energy Survey collaboration explain what they hope to learn by studying the southern sky with the world's most advanced digital camera, mounted on a telescope in Chile.

  8. Big Mysteries: Dark Energy

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-04-15

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  9. Big Mysteries: Dark Energy

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  10. The Dark Energy Camera

    SciTech Connect (OSTI)

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-?m thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15?m x 15?m pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  11. Optimizing New Dark Energy Experiments

    SciTech Connect (OSTI)

    Tyson, J. Anthony

    2013-08-26

    Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.

  12. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect (OSTI)

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  13. Unified dark energy-dark matter model with inverse quintessence

    SciTech Connect (OSTI)

    Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  14. Army Energy Initiatives Task Force

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Army Energy Initiatives Task Force.

  15. Sandia Energy - IEA PVPS Task 13 Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEA PVPS Task 13 Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis IEA PVPS Task 13 Activities IEA PVPS Task 13...

  16. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Saurabh W. Jha 79 ASTRONOMY AND ASTROPHYSICS dark energy; supernovae; cosmology dark...

  17. The Dark Energy Survey: More than dark energy - An overview

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae andmore » other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  18. Berkeley Algorithms Help Researchers Understand Dark Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Algorithms Help Researchers Understand Dark Energy Berkeley Algorithms Help Researchers Understand Dark Energy November 24, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Scientists believe that dark energy-the mysterious force that is accelerating cosmic expansion-makes up about 70 percent of the mass and energy of the universe. But because they don't know what it is, they cannot observe it directly. To unlock the mystery of dark energy and its influence on the universe,

  19. Dark matter and dark energy from quark bag model

    SciTech Connect (OSTI)

    Brilenkov, Maxim; Eingorn, Maxim; Jenkovszky, Laszlo; Zhuk, Alexander E-mail: maxim.eingorn@gmail.com E-mail: ai.zhuk2@gmail.com

    2013-08-01

    We calculate the present expansion of our Universe endowed with relict colored objects quarks and gluons that survived hadronization either as isolated islands of quark-gluon ''nuggets'' or spread uniformly in the Universe. In the first scenario, the QNs can play the role of dark matter. In the second scenario, we demonstrate that uniform colored objects can play the role of dark energy providing the late-time accelerating expansion of the Universe.

  20. New Camera Sheds Light on Dark Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Camera Sheds Light on Dark Energy New Camera Sheds Light on Dark Energy September 18, 2012 - 3:47pm Addthis Zoomed-in image from the Dark Energy Camera of the center of the globular star cluster 47 Tucanae, which lies about 17,000 light years from Earth. | Photo by Dark Energy Survey Collaboration. Zoomed-in image from the Dark Energy Camera of the center of the globular star cluster 47 Tucanae, which lies about 17,000 light years from Earth. | Photo by Dark Energy Survey Collaboration. Charles

  1. DOE Science Showcase - Dark Matter and Dark Energy | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy, Office of Scientific and Technical Information Dark Matter and Dark Energy The nature of dark energy or invisible energy is one of the universe's most compelling mysteries and its resolution is likely to completely change our understanding of matter, space, and time. For more information, see In the OSTI Collections: Dark Matter and Dark Energy, by Dr. William Watson, Physicist, OSTI staff. Gravitational lensing, or the warping of light around massive objects is one sign of dark

  2. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  3. #LabChat Recap: What is Dark Energy

    Broader source: Energy.gov [DOE]

    The Dark Energy #LabChat on Oct. 25 yielded a lively discussion with three physicists about inflation, super symmetry, black holes and, of course, dark energy.

  4. Cosmology constraints from shear peak statistics in Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    shear peak statistics in Dark Energy Survey Science Verification data Citation Details In-Document Search Title: Cosmology constraints from shear peak statistics in Dark Energy ...

  5. Evidence for Dark Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Has Evidence of Dark Energy Been Discovered? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Has Evidence of Dark Energy Been Discovered? 2012.10.10 Chief Scientist Jim Bray describes how evidence for dark energy predates theories on the subject. 0 Comments Comment Name Email Submit Comment You Might Also Like lightning

  6. Interagency Energy Management Task Force Members

    Broader source: Energy.gov [DOE]

    The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies.

  7. Dark matter and dark energy: The critical questions (Conference...

    Office of Scientific and Technical Information (OSTI)

    The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark ...

  8. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark ...

  9. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final Technical Report: Discovering the Nature of Dark ...

  10. NREL Job Task Analysis: Energy Auditor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1: Demonstrating Professional Energy Auditor Conduct Task 1: Establish client ... techniques * The program Skill in: * Communication * Listening * Presenting information * ...

  11. Sandia Energy - New Mexico Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force Home Infrastructure Security Renewable Energy Energy Partnership News News & Events Energy Storage Systems Energy Storage New Mexico Renewable...

  12. Interagency Energy Management Task Force Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Energy Management Task Force Members Interagency Energy Management Task Force Members The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies. Task Force Executive Director Dr. Timothy Unruh U.S. Department of Energy 202-586-5772 Task Force Members Organization Primary Contact Alternate Contact General Services Administration Mark Ewing Karren Curran National

  13. NREL Job Task Analysis: Energy Auditor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auditor NREL Job Task Analysis: Energy Auditor A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work. PDF icon NREL Job Task Analysis: Energy Auditor More Documents & Publications NREL Job Task Analysis: Quality Control Inspector Training Self-Assessment

  14. Dark Energy: A Crisis for Fundamental Physics

    ScienceCinema (OSTI)

    Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA

    2010-09-01

    Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.

  15. Interagency Energy Management Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Task Force Interagency Energy Management Task Force The Federal Interagency Energy Management Task Force was created by the Federal Energy Management Improvement Act of 1988 to coordinate federal government activities that encourage energy conservation and energy efficiency. Led by the Federal Energy Management Program director and composed of federal energy managers, this task force serves as a forum for: Sharing lessons learned across agencies Providing analysis on technical

  16. The Dark Energy Survey Data Management System

    SciTech Connect (OSTI)

    Mohr, Joseph J.; Barkhouse, Wayne; Beldica, Cristina; Bertin, Emmanuel; Dora Cai, Y.; Nicolaci da Costa, Luiz A.; Darnell, J.Anthony; Daues, Gregory E.; Jarvis, Michael; Gower, Michelle; Lin, Huan; /Fermilab /Rio de Janeiro Observ.

    2008-07-01

    The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  17. Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe March 12, 2012 - 12:06pm Addthis Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab Researchers at Fermi National Lab

  18. NREL Job Task Analysis: Energy Auditor

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2011-05-01

    A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

  19. Spectroscopic Needs for Imaging Dark Energy Experiments

    SciTech Connect (OSTI)

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cheu, Elliott; Cunha, Carlos E.; de la Macorra, Alex; DellAntonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean -Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Menard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Park, Changbom; Rhodes, Jason; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-zs): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-zs will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our training set of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (?/?? > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<~0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 3060% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <~0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ~100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary needs for spectroscopy training and calibration of photometric redshifts will require two separate solutions. For ongoing and future projects to reach their full potential, new spectroscopic samples of faint objects will be needed for training; those new samples may be suitable for calibration, but the latter possibility is uncertain. In contrast, wide-area samples of bright objects are poorly suited for training, but can provide high-precision calibrations via cross-correlation techniques. Additional training/calibration redshifts and/or host galaxy spectroscopy would enhance the use of supernovae and galaxy clusters for cosmology. We also summarize additional work on photometric redshift techniques that will be needed to prepare for data from ongoing and future dark energy experiments.

  20. Nonparametric reconstruction of the dark energy equation of state...

    Office of Scientific and Technical Information (OSTI)

    energy equation of state from diverse data sets Citation Details In-Document Search Title: Nonparametric reconstruction of the dark energy equation of state from diverse data ...

  1. DARK FLUID: A UNIFIED FRAMEWORK FOR MODIFIED NEWTONIAN DYNAMICS, DARK MATTER, AND DARK ENERGY

    SciTech Connect (OSTI)

    Zhao Hongsheng; Li Baojiu E-mail: b.li@damtp.cam.ac.u

    2010-03-20

    Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and nuLAMBDA theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.

  2. Interacting vacuum energy in the dark sector

    SciTech Connect (OSTI)

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  3. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect (OSTI)

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter ? of Ricci dark energy equals to 1/2. In the case where ? = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  4. Exploring parameter constraints on quintessential dark energy: The inverse power law model

    SciTech Connect (OSTI)

    Yashar, Mark; Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael

    2009-05-15

    We report on the results of a Markov chain Monte Carlo analysis of an inverse power law (IPL) quintessence model using the Dark Energy Task Force (DETF) simulated data sets as a representation of future dark energy experiments. We generate simulated data sets for a {lambda}CDM background cosmology as well as a case where the dark energy is provided by a specific IPL fiducial model, and present our results in the form of likelihood contours generated by these two background cosmologies. We find that the relative constraining power of the various DETF data sets on the IPL model parameters is broadly equivalent to the DETF results for the w{sub 0}-w{sub a} parametrization of dark energy. Finally, we gauge the power of DETF 'stage 4' data by demonstrating a specific IPL model which, if realized in the universe, would allow stage 4 data to exclude a cosmological constant at better than the 3{sigma} level.

  5. Aetherizing Lambda: Barotropic fluids as dark energy

    SciTech Connect (OSTI)

    Linder, Eric V.; Scherrer, Robert J.

    2009-07-15

    We examine the class of barotropic fluid models of dark energy, in which the pressure is an explicit function of the density, p=f({rho}). Through general physical considerations we constrain the asymptotic past and future behaviors and show that this class is equivalent to the sum of a cosmological constant and a decelerating perfect fluid, or 'aether', with w{sub AE}{>=}0. Barotropic models give substantially disjoint predictions from quintessence, except in the limit of {lambda}CDM. They are also interesting in that they simultaneously can ameliorate the coincidence problem and yet 'predict' a value of w{approx_equal}-1.

  6. The Dark Energy Survey CCD imager design

    SciTech Connect (OSTI)

    Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Guarino, V.; Kuk, K.; Kuhlmann, S.; Schultz, K.; Schmitt, R.L.; Stefanik, A.; /Fermilab /Ohio State U. /Argonne

    2008-06-01

    The Dark Energy Survey is planning to use a 3 sq. deg. camera that houses a {approx} 0.5m diameter focal plane of 62 2kx4k CCDs. The camera vessel including the optical window cell, focal plate, focal plate mounts, cooling system and thermal controls is described. As part of the development of the mechanical and cooling design, a full scale prototype camera vessel has been constructed and is now being used for multi-CCD readout tests. Results from this prototype camera are described.

  7. The growth of structure in interacting dark energy models

    SciTech Connect (OSTI)

    Caldera-Cabral, Gabriela; Maartens, Roy; Schaefer, Bjoern Malte E-mail: roy.maartens@port.ac.uk

    2009-07-01

    If dark energy interacts with dark matter, there is a change in the background evolution of the universe, since the dark matter density no longer evolves as a{sup ?3}. In addition, the non-gravitational interaction affects the growth of structure. In principle, these changes allow us to detect and constrain an interaction in the dark sector. Here we investigate the growth factor and the weak lensing signal for a new class of interacting dark energy models. In these models, the interaction generalises the simple cases where one dark fluid decays into the other. In order to calculate the effect on structure formation, we perform a careful analysis of the perturbed interaction and its effect on peculiar velocities. Assuming a normalization to today's values of dark matter density and overdensity, the signal of the interaction is an enhancement (suppression) of both the growth factor and the lensing power, when the energy transfer in the background is from dark matter to dark energy (dark energy to dark matter)

  8. The Dark Energy Survey Camera (DECam)

    SciTech Connect (OSTI)

    Diehl, H.Thomas; /Fermilab

    2011-09-09

    The Dark Energy Survey (DES) is a next generation optical survey aimed at understanding the expansion rate of the Universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the survey, the DES Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera that will be mounted at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. CCD production has finished, yielding roughly twice the required 62 2k x 4k detectors. The construction of DECam is nearly finished. Integration and commissioning on a 'telescope simulator' of the major hardware and software components, except for the optics, recently concluded at Fermilab. Final assembly of the optical corrector has started at University College, London. Some components have already been received at CTIO. 'First-light' will be sometime in 2012. This oral presentation concentrates on the technical challenges involved in building DECam (and how we overcame them), and the present status of the instrument.

  9. The effective field theory of dark energy

    SciTech Connect (OSTI)

    Gubitosi, Giulia; Vernizzi, Filippo; Piazza, Federico E-mail: fpiazza@apc.univ-paris7.fr

    2013-02-01

    We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar can always be de-mixed from gravity at quadratic order in the perturbations, but not necessarily through a conformal rescaling of the metric. We show how to express covariant field-operators in our formalism and give several explicit examples of dark energy and modified gravity models in our language. Finally, we discuss the relation with the covariant EFT methods recently appeared in the literature.

  10. Stable gravastars of anisotropic dark energy

    SciTech Connect (OSTI)

    Chan, R.; Silva, M.F.A. da; Rocha, P.; Wang, Anzhong E-mail: mfasnic@gmail.com E-mail: anzhong_wang@baylor.edu

    2009-03-15

    Dynamical models of prototype gravastars made of anisotropic dark energy fluid are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1-{gamma}){sigma} divides the whole spacetime into two regions, the internal region is filled with an anisotropic dark energy fluid, and the external region is the Schwarzschild. It is found that in some cases the models represent the ''bounded excursion'' stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes or normal stars. In the phase space, the region for the ''bounded excursion'' gravastars is very small in comparison to that of black holes, but not empty, as found in our previous papers. Therefore, although the existence of gravastars can not be completely excluded from current analysis, the opposite is not possible either, that is, even if gravastars exist, they do not exclude the existence of black holes.

  11. In the OSTI Collections: Dark Matter and Dark Energy | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy, Office of Scientific and Technical Information Dark Matter and Dark Energy Recent observations of the universe, combined with Einstein's theory of general relativity, indicate that most of the universe consists of entities very different from the matter and energy long familiar to us. These previously unknown entities are beginning to be explored on several fronts, many through Department of Energy sponsorship. Albert Einstein's theory of relativity describes space and time as

  12. Optimizing New Dark Energy Experiments - Final Scientific Report

    SciTech Connect (OSTI)

    Jeffrey A. Newman

    2012-06-08

    This is the final scientific report for the University of Pittsburgh portion of the collaborative grant, 'Optimizing New Dark Energy Experiments'

  13. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature ...

  14. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Filippenko, Alexei Vladimir Univ. California, Berkeley 79...

  15. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final...

  16. Observational Constraints on the Nature of the Dark Energy: First...

    Office of Scientific and Technical Information (OSTI)

    Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey Citation Details In-Document Search Title: Observational...

  17. Chameleon dark energy models with characteristic signatures

    SciTech Connect (OSTI)

    Gannouji, Radouane; Moraes, Bruno; Polarski, David; Mota, David F.; Winther, Hans A.; Tsujikawa, Shinji

    2010-12-15

    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today {gamma}{sub 0} can have significant dispersion on scales relevant for large scale structures. The values of {gamma}{sub 0} can be even smaller than 0.2 with large variations of {gamma} on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the {Lambda}-cold-dark-matter ({Lambda}CDM) model in future high-precision observations.

  18. Calibration Monitor for Dark Energy Experiments

    SciTech Connect (OSTI)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  19. Federal Smart Grid Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Federal Smart Grid Task Force Task Force Background The Federal Smart Grid Task Force was established under Title XIII of the Energy Independence and Security Act of 2007 (EISA) and includes experts from eleven Federal agencies. The Department of Energy is represented by the Office of Electricity Delivery and Energy Reliability which is the Task Force lead, as well as the Office of Energy Efficiency and Renewable Energy and the National Energy Technology Laboratory.

  20. NASA and DOE Collaborate on Dark Energy Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "DOE and NASA have complementary on-going research into the nature of dark energy and ... of Science for High Energy Physics. In 2006, NASA and DOE jointly funded a National ...

  1. Cooling the dark energy camera instrument

    SciTech Connect (OSTI)

    Schmitt, R.L.; Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Kuhlmann, S.; Onal, Birce; Stefanik, A.; /Fermilab

    2008-06-01

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.

  2. Spectroscopic Needs for Imaging Dark Energy Experiments (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES DOE PAGES Search Results Accepted Manuscript: Spectroscopic Needs for Imaging Dark Energy Experiments « Prev Next » Title: Spectroscopic Needs for Imaging Dark Energy Experiments Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller

  3. #LabChat: What is Dark Energy? Oct 25 at 2pm ET | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What is Dark Energy? Oct 25 at 2pm ET #LabChat: What is Dark Energy? Oct 25 at 2pm ET October 23, 2012 - 3:03pm Q&A #LabChat Oct 25, 2 pm ET | These physicists are using advanced telescopes and cameras to look for proof of dark energy. Ask them your questions. Ask Us Addthis What is dark energy? Learn about the force we think accounts for three-quarters of the mass and energy in the known universe. What is dark energy? Learn about the force we think accounts for three-quarters of the mass

  4. Dark Energy: A Universe Out of Control Nicholas B. Suntzeff....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Energy: A Universe Out of Control Nicholas B. Suntzeff. Ph. D. MitchellHeepMunnerlyn Professor of Observational Astronomy Texas A&M University Nobel Prize in Physics 2011...

  5. Cosmological viability conditions for f(T) dark energy models

    SciTech Connect (OSTI)

    Setare, M.R.; Mohammadipour, N. E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  6. Cosmology constraints from shear peak statistics in Dark Energy Survey

    Office of Scientific and Technical Information (OSTI)

    Science Verification data (Journal Article) | SciTech Connect Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data Citation Details In-Document Search Title: Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics

  7. New Light on Dark Energy (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2011-06-08

    A panel of Lab scientists ? including Eric Linder, Shirly Ho, and Greg Aldering ? along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  8. Berkeley Algorithms Help Researchers Understand Dark Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and tracking these objects requires scientists to scrupulously monitor the night sky for slight changes, a task that would be extremely tedious and time-consuming for the...

  9. Task Force Approach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force Approach Task Force Approach Task Force Approach Results of the ARI Task Force: The purpose of the ARI Task Force is to 1) identify, prioritize, and resolve issues to enable sites and programs to implement revitalization efforts more effectively and 2) to facilitate programmatic incorporation of revitalization concepts into DOE's programmatic business environments. The Task Force must do this through coordinating and facilitating communication and connections, sharing lessons learned,

  10. Hydropower Vision Task Force Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Hydropower Vision Task Force Charter.pdf More Documents & Publications State Energy Advisory Board November 2011 Meeting Guide to Community Energy Strategic Planning State ...

  11. Bright Lights From Dark Places | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From Dark Places Bright Lights From Dark Places May 23, 2011 - 2:09pm Addthis Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What are the key facts? Scientists used the illumination of some 14,000 quasars -- powered by gigantic black holes at the heart of galaxies -- about 10 to 12 billion light years away to create the new map. Scientists at the Energy Department's national labs are using black holes to illuminate the distant parts of the universe in detail.

  12. Report of the Hubs+ Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hubs+ Task Force Report of the Hubs+ Task Force This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force to Support Evaluation of the new Funding Constructs for Energy Research and Development (R&D) in the Department of Energy. The Task Force was charged with assisting the DOE in evaluating the management and early progress of these new management and funding mechanisms in the Department. PDF icon SEAB Hubs+ Report PDF icon Hubs+

  13. Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet

    Energy Savers [EERE]

    [Final].docx | Department of Energy Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx PDF icon Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx More Documents & Publications Sonoma County Solar Implementation Plan Webinar: Residential Energy Code Compliance QER - Comment of IEEE

  14. Nonparametric reconstruction of the dark energy equation of state

    SciTech Connect (OSTI)

    Heitmann, Katrin; Holsclaw, Tracy; Alam, Ujjaini; Habib, Salman; Higdon, David; Sanso, Bruno; Lee, Herbie

    2009-01-01

    The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark energy. In the absence of a compelling theory to test, a natural approach is to first attempt to characterize the nature of dark energy in detail, the hope being that this will lead to clues about the underlying fundamental theory. A major target in this characterization is the determination of the dynamical properties of the dark energy equation of state w. The discovery of a time variation in w(z) could then lead to insights about the dynamical origin of dark energy. This approach requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new non parametric reconstruction method for the dark energy equation of state based on Gaussian Process models. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demollstrate the power of the method on different sets of simulated supernova data. The GP model approach is very easily extended to include diverse cosmological probes.

  15. Status of the Dark Energy Survey Camera (DECam) Project

    SciTech Connect (OSTI)

    Flaugher, Brenna L.; Abbott, Timothy M.C.; Angstadt, Robert; Annis, Jim; Antonik, Michelle, L.; Bailey, Jim; Ballester, Otger.; Bernstein, Joseph P.; Bernstein, Rebbeca; Bonati, Marco; Bremer, Gale; /Fermilab /Cerro-Tololo InterAmerican Obs. /ANL /Texas A-M /Michigan U. /Illinois U., Urbana /Ohio State U. /University Coll. London /LBNL /SLAC /IFAE

    2012-06-29

    The Dark Energy Survey Collaboration has completed construction of the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to perform the 5000 sq. deg. Dark Energy Survey with 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. All components of DECam have been shipped to Chile and post-shipping checkout finished in Jan. 2012. Installation is in progress. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  16. What We Know About Dark Energy From Supernovae

    ScienceCinema (OSTI)

    Filippenko, Alex [University of California, Berkeley, California, United States

    2010-01-08

    The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.

  17. Department of Energy Establishes Asset Revitalization Task Force |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Establishes Asset Revitalization Task Force Department of Energy Establishes Asset Revitalization Task Force February 17, 2011 - 12:00am Addthis Washington, D.C. - Secretary of Energy Steven Chu today announced the establishment of a Task Force on Asset Revitalization to facilitate a discussion among the Department of Energy, communities around DOE sites, nonprofits, tribal governments, the private sector and other stakeholders to identify reuse approaches as

  18. Dark energy properties from large future galaxy surveys

    SciTech Connect (OSTI)

    Basse, Tobias; Bjlde, Ole Eggers; Hannestad, Steen; Hamann, Jan; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: sth@phys.au.dk

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (?(w{sub p})?(w{sub a})){sup ?1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ?CDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup ?6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2? significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1? precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1? sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and finite temperature effects can be probed with 1? precision for the first time.

  19. Weardale Task Force | Open Energy Information

    Open Energy Info (EERE)

    that is developing a sustainable community in the East gate area which will be run on wind, solar, biomass, geothermal and hydro power. References: Weardale Task Force1...

  20. Energy Department Awards First Major Task Order Under Streamlined

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracting System | Department of Energy First Major Task Order Under Streamlined Contracting System Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up WASHINGTON, DC - The Department of Energy (DOE) has awarded a Task Order for an estimated $19.4 million to LATA-SHARP Remediation Services, LLC for the completion of clean-up activities at the Ashtabula Closure Project (ACP)

  1. Energy Department Awards First Major Task Order Under Streamlined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up ...

  2. NM Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  3. Task Order Awarded for Technical Support Services | Department of Energy

    Energy Savers [EERE]

    Task Order Awarded for Technical Support Services Task Order Awarded for Technical Support Services September 26, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a Task Order for Technical Services to Project Enhancement Corporation, of Germantown, MD, for technical support services at the Environmental Management 13 (EM-13) office in Washington DC. The task order was a competitive small

  4. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; et al

    2014-03-15

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less

  5. Improved Dark Energy Constraints From ~ 100 New CfA Supernova...

    Office of Scientific and Technical Information (OSTI)

    Improved Dark Energy Constraints From 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From 100 New CfA ...

  6. Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating

    Office of Scientific and Technical Information (OSTI)

    Expansion of the Universe Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information * Awards Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory 'Saul Perlmutter, an astrophysicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics "for the discovery of the

  7. DOE Awards Small Business Task Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order DOE Awards Small Business Task Order December 17, 2015 - 10:00am Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award of a Firm-Fixed Unit Rate Task Order to Sage Energy Trading of Jenks, OK. Sage Energy Trading is a Woman Owned Small Business. The Task Order will have a maximum value of $3.5 million over 2 years. Work performed under this Task Order will be performed at the Portsmouth Gaseous

  8. Report of the SEAB Hubs+ Task Force | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the new Funding Constructs for Energy Research and Development (R&D) in the Department of Energy. The Task Force was charged with assisting the DOE in evaluating the management and...

  9. Fine Structure of Dark Energy and New Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  10. Testing coupled dark energy with large scale structure observation

    SciTech Connect (OSTI)

    Yang, Weiqiang; Xu, Lixin, E-mail: d11102004@mail.dlut.edu.cn, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China)

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3H?{sub x}?-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and f?{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in ? regions: ?{sub x}=0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the ? region.

  11. On the internal consistency of holographic dark energy models

    SciTech Connect (OSTI)

    Horvat, R

    2008-10-15

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT.

  12. No-Go Theorem for k-Essence Dark Energy

    SciTech Connect (OSTI)

    Bonvin, Camille; Caprini, Chiara; Durrer, Ruth

    2006-08-25

    We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory.

  13. Constraining dark energy through the stability of cosmic structures

    SciTech Connect (OSTI)

    Pavlidou, V.; Tetradis, N.; Tomaras, T.N. E-mail: ntetrad@phys.uoa.gr

    2014-05-01

    For a general dark-energy equation of state, we estimate the maximum possible radius of massive structures that are not destabilized by the acceleration of the cosmological expansion. A comparison with known stable structures constrains the equation of state. The robustness of the constraint can be enhanced through the accumulation of additional astrophysical data and a better understanding of the dynamics of bound cosmic structures.

  14. The coincidence problem and interacting holographic dark energy

    SciTech Connect (OSTI)

    Karwan, Khamphee

    2008-05-15

    We study the dynamical behaviour of the interacting holographic dark energy model whose interaction term is Q = 3H({lambda}{sub d}{rho}{sub d}+{lambda}{sub c}{rho}{sub c}), where {rho}{sub d} and {rho}{sub c} are the energy densities of dark energy and cold dark matter respectively. To satisfy the observational constraints from type Ia supernovae, the cosmic microwave background shift parameter and baryon acoustic oscillation measurements, if {lambda}{sub c} = {lambda}{sub d} or {lambda}{sub d},{lambda}{sub c}>0, the cosmic evolution will only reach the attractor in the future and the ratio {rho}{sub c}/{rho}{sub d} cannot be slowly varying at present. Since the cosmic attractor can be reached in the future even when the present values of the cosmological parameters do not satisfy the observational constraints, the coincidence problem is not really alleviated in this case. However, if {lambda}{sub c}{ne}{lambda}{sub d} and they are allowed to be negative, the ratio {rho}{sub c}/{rho}{sub d} can be slowly varying at present and the cosmic attractor can be reached near the present epoch. Hence, the alleviation of the coincidence problem is attainable in this case. The alleviation of the coincidence problem in this case is still attainable when confronting this model with Sloan Digital Sky Survey data.

  15. The Secretary of Energy Advisory Board (SEAB) Task Force on Federal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management | Department of Energy Federal Energy Management The Secretary of Energy Advisory Board (SEAB) Task Force on Federal Energy Management The Secretary of Energy Advisory Board (SEAB) Task Force on Federal Energy Management is composed of SEAB members and independent experts charged with examining Federal energy management supported by DOE's Federal Energy Management Program (FEMP) and recommending a set of actions to advance it. The Task Force's work should be based on information

  16. DOE Awards Small Business Task Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order DOE Awards Small Business Task Order December 17, 2015 - 2:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award of a Time and Materials Task Order to Industrial Economics, Incorporated, located in Cambridge, MA. Industrial Economics, Incorporated is a Small Business. The Task Order will have a maximum value of $1.77 million over 3 years. Work performed under this Task Order will be

  17. Inflation and dark energy from the Brans-Dicke theory

    SciTech Connect (OSTI)

    Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek

    2015-06-17

    We consider the Brans-Dicke theory motivated by the f(R)=R+αR{sup n}−βR{sup 2−n} model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.

  18. A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry

    SciTech Connect (OSTI)

    Adler, Ronald J.; Muller, Holger; Perl, Martin L.; /KIPAC, Menlo Park /SLAC

    2012-06-11

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.

  19. Solar Energy Research and Education Foundation. Final reports by task

    SciTech Connect (OSTI)

    von Reis, K.; Waegel, A.S.; Totten, M.

    1997-12-10

    This document contains final reports for the following tasks: kiosk for the children`s museum renewable energy exhibit and display, internet promotional and educational material, Aurora renewable energy science and engineering, CD-ROM training materials, presentations and traveling display, radio show `Energy Matters`, and newspaper articles and weekly news column.

  20. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect (OSTI)

    Lima, J.A.S.; Graef, L.L.; Pavn, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the GibbonsHawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  1. THE DARK ENERGY SURVEY: PROSPECTS FOR RESOLVED STELLAR POPULATIONS

    SciTech Connect (OSTI)

    Rossetto, Bruno M.; Santiago, Baslio X.; Girardi, Lo; Camargo, Julio I. B.; Balbinot, Eduardo; da Costa, Luiz N.; Yanny, Brian; Maia, Marcio A. G.; Makler, Martin; Ogando, Ricardo L. C.; Pellegrini, Paulo S.; Ramos, Beatriz; de Simoni, Fernando; Armstrong, R.; Bertin, E.; Desai, S.; Kuropatkin, N.; Lin, H.; Mohr, J. J.; Tucker, D. L.

    2011-06-01

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  2. THE DARK ENERGY SURVEY: PROSPECTS FOR RESOLVED STELLAR POPULATIONS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rossetto, Bruno M.; Santiago, Baslio X.; Girardi, Lo; Camargo, Julio I. B.; Balbinot, Eduardo; da Costa, Luiz N.; Yanny, Brian; Maia, Marcio A. G.; Makler, Martin; Ogando, Ricardo L. C.; et al

    2011-06-01

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of themoreGalaxy.less

  3. The Next Dimension of Mapping the Universe: The Dark Energy Spectroscopic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instrument | Department of Energy Dimension of Mapping the Universe: The Dark Energy Spectroscopic Instrument The Next Dimension of Mapping the Universe: The Dark Energy Spectroscopic Instrument June 11, 2015 - 10:24am Addthis Zoomed-in image from the Dark Energy Camera of the barred spiral galaxy NGC 1365, in the Fornax cluster of galaxies, which lies about 60 million light years from Earth -- in other words, far, far away. | Photo courtesy of the Dark Energy Survey Collaboration. Zoomed-in

  4. CAN COUPLED DARK ENERGY SPEED UP THE BULLET CLUSTER?

    SciTech Connect (OSTI)

    Lee, Jounghun; Baldi, Marco E-mail: marco.baldi@universe-cluster.de

    2012-03-01

    It has been recently shown that the observed morphological properties of the Bullet Cluster can be accurately reproduced in hydrodynamical simulations only when the infall pairwise velocity V{sub c} of the system exceeds 3000 km s{sup -1} (or at least possibly 2500 km s{sup -1}) at the pair separation of 2R{sub vir}, where R{sub vir} is the virial radius of the main cluster, and that the probability of finding such a bullet-like system is extremely low in the standard {Lambda} cold dark matter ({Lambda}CDM) cosmology. We suggest here the fifth force mediated by coupled dark energy (cDE) as a possible velocity-enhancing mechanism and investigate its effect on the infall velocities of bullet-like systems from the Coupled Dark Energy Cosmological Simulations public database. Five different cDE models are considered: three with constant coupling and exponential potential, one with exponential coupling and exponential potential, and one with constant coupling and supergravity potential. For each model, after identifying the bullet-like systems, we determine the probability density distribution of their infall velocities at pair separations of (2-3)R{sub vir}. Approximating each probability density distribution as a Gaussian, we calculate the cumulative probability of finding a bullet-like system with V{sub c} {>=} 3000 km s{sup -1} or V{sub c} {>=} 2500 km s{sup -1}. Our results show that in all of the five cDE models the cumulative probabilities increase compared to the {Lambda}CDM case and that in the model with exponential coupling P(V{sub c} {>=} 2500 km s{sup -1}) exceeds 10{sup -4}. The physical interpretations and cosmological implications of our results are provided.

  5. Photometric Redshifts for the Dark Energy Survey and VISTA and Implications

    Office of Scientific and Technical Information (OSTI)

    for Large Scale Structure (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure Citation Details In-Document Search Title: Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure We conduct a detailed analysis of the photometric redshift requirements for the proposed Dark Energy Survey (DES) using two sets of mock

  6. Holographic dark energy with varying gravitational constant in Ho?ava-Lifshitz cosmology

    SciTech Connect (OSTI)

    Setare, M.R.; Jamil, Mubasher E-mail: mjamil@camp.nust.edu.pk

    2010-02-01

    We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Ho?ava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.

  7. Observational constraints on holographic dark energy with varying gravitational constant

    SciTech Connect (OSTI)

    Lu, Jianbo; Xu, Lixin; Saridakis, Emmanuel N.; Setare, M.R. E-mail: msaridak@phys.uoa.gr E-mail: lxxu@dlut.edu.cn

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1? we find ?{sub ?0} = 0.72{sup +0.03}{sub ?0.03}, ?{sub k0} = ?0.0013{sup +0.0130}{sub ?0.0040}, c = 0.80{sup +0.19}{sub ?0.14} and ?{sub G}?G'/G = ?0.0025{sup +0.0080}{sub ?0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = ?1.04{sup +0.15}{sub ?0.20}.

  8. Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology...

    Energy Savers [EERE]

    Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology Development Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology Development Presentation...

  9. The Secretary of Energy Advisory Board (SEAB) Task Force on DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories The...

  10. NEW LIMITS ON EARLY DARK ENERGY FROM THE SOUTH POLE TELESCOPE...

    Office of Scientific and Technical Information (OSTI)

    We present new limits on early dark energy (EDE) from the cosmic microwave background (CMB) using data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite on large ...

  11. Cosmic slowing down of acceleration for several dark energy parametrizations

    SciTech Connect (OSTI)

    Magaa, Juan; Crdenas, Vctor H.; Motta, Vernica, E-mail: juan.magana@uv.cl, E-mail: victor.cardenas@uv.cl, E-mail: veronica.motta@uv.cl [Instituto de Fsica y Astronoma, Facultad de Ciencias, Universidad de Valparaso, Avda. Gran Bretaa 1111, Valparaso (Chile)

    2014-10-01

    We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.

  12. Mega-masers, Dark Energy and the Hubble Constant

    SciTech Connect (OSTI)

    Lo, Fred K. Y.

    2007-10-15

    Powerful water maser emission (water mega-masers) can be found in accretion disks in the nuclei of some galaxies. Besides providing a measure of the mass at the nucleus, such mega-masers can be used to determine the distance to the host galaxy, based on a kinematic model. We will explain the importance of determining the Hubble Constant to high accuracy for constraining the equation of state of Dark Energy and describe the Mega-maser Cosmology Project that has the goal of determining the Hubble Constant to better than 3%. Time permitting, we will also present the scientific capabilities of the current and future NRAO facilities: ALMA, EVLA, VLBA and GBT, for addressing key astrophysical problems

  13. Urban Consortium Energy Task Force - Year 21 Final Report

    SciTech Connect (OSTI)

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  14. Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Linder, Eric

    2011-04-28

    The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.

  15. FAQS Job Task Analyses Form | Department of Energy

    Energy Savers [EERE]

    Form FAQS Job Task Analyses Form Step 1, Identify and evaluate tasks; Step 2, Identify and evaluate competencies; and Step 3, Evaluate linkage between tasks and competencies. File FAQS Job Task Analyses Form More Documents & Publications FAQS Job Task Analyses - Emergency Management FAQS Job Task Analyses - Environmental Compliance FAQS Job Task Analyses - Chemical Processing

  16. CCS Task Force - Executive Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CCS Task Force - Executive Summary CCS Task Force - Executive Summary PDF icon CCS Task Force - Executive Summary More Documents & Publications CCSTF - Final Report Before the ...

  17. Automated transient identification in the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Nichol, R. C.; Nungent, P.; Papadopoulos, A.; et al

    2015-09-01

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less

  18. Modeling the transfer function for the Dark Energy Survey

    SciTech Connect (OSTI)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; Peiris, H.; Abbott, T.; Abdalla, F. B.; Balbinot, E.; Banerji, M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carnero, A.; Desai, S.; da Costa, L. N.; Cunha, C. E.; Eifler, T.; Evrard, A. E.; Fausti Neto, A.; Gerdes, D.; Gruen, D.; James, D.; Kuehn, K.; Maia, M. A. G.; Makler, M.; Ogando, R.; Plazas, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Zuntz, J.

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.

  19. Automated transient identification in the Dark Energy Survey

    SciTech Connect (OSTI)

    Goldstein, D. A.

    2015-08-20

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.

  20. Automated transient identification in the Dark Energy Survey

    SciTech Connect (OSTI)

    Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Nichol, R. C.; Nungent, P.; Papadopoulos, A.; Sako, M.; Smith, M.; Sullivan, M.; Thomas, R. C.; Wester, W.; Wolf, R. C.; Abdalla, F. B.; Banjeri, M.; Benoit-Levy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Castander, F. J.; da Costa, L. N.; Covarrubias, R.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; March, M.; Marshall, J. L.; Martini, P.; Merritt, K. W.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.

    2015-09-01

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.

  1. Modeling the Transfer Function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with themore » corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  2. Modeling the transfer function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; et al

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulationmoreoutput is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.less

  3. Photometric Redshifts for the Dark Energy Survey and VISTA and Implications

    Office of Scientific and Technical Information (OSTI)

    for Large Scale Structure (Journal Article) | SciTech Connect Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure Citation Details In-Document Search Title: Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is

  4. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia

    Office of Scientific and Technical Information (OSTI)

    LIGHT CURVES (Journal Article) | SciTech Connect IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES Citation Details In-Document Search Title: IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski

  5. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light

    Office of Scientific and Technical Information (OSTI)

    Curves (Journal Article) | SciTech Connect Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the

  6. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light

    Office of Scientific and Technical Information (OSTI)

    Curves (Journal Article) | SciTech Connect Journal Article: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski

  7. Seeking Answers in the Darkness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seeking Answers in the Darkness Seeking Answers in the Darkness November 19, 2010 - 12:56pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What are the key facts? Fermilab is leading construction of a 570-megapixel camera, which attached to the Bianco 4-meter telescope, will survey the deepest reaches of the universe to answer questions on the behavior of gravity. In 1998, two teams of astronomers studying distant supernovae made the remarkable

  8. Task Order Price Evaluation Worksheet for ESPCs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Order Price Evaluation Worksheet for ESPCs Task Order Price Evaluation Worksheet for ESPCs Document lists a series of site-specific proposal data questions to answer for a task order. Microsoft Office document icon Download the Task Order Price Evaluation Worksheet. More Documents & Publications Task Order Price Evaluation Worksheet for SUPER ESPC Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5) ESPC Task Order Financial Schedules

  9. Observation of two new L4 Neptune Trojans in the Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8 and 19.4...

  10. Annealing a Follow-up Program: Improvement of the Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Galaxy Cluster Surveys Citation Details In-Document Search Title: Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys ...

  11. Annealing a Follow-up Program: Improvement of the Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Considering clusters selected from optical imaging in the Dark Energy Survey, we find that approximately 200 low-redshift X-ray clusters or massive Sunyaev-Zel'dovich clusters can ...

  12. Missing energy signatures of dark matter at the LHC (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Missing energy signatures of dark matter at the LHC Citation Details In-Document Search Title: Missing energy signatures of dark matter at the LHC Authors: Fox, Patrick J. ; Harnik, Roni ; Kopp, Joachim ; Tsai, Yuhsin Publication Date: 2012-03-30 OSTI Identifier: 1098622 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 85; Journal Issue: 5; Journal ID: ISSN 1550-7998 Publisher: American Physical Society

  13. Annealing a Follow-up Program: Improvement of the Dark Energy Figure of

    Office of Scientific and Technical Information (OSTI)

    Merit for Optical Galaxy Cluster Surveys (Journal Article) | SciTech Connect Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys Citation Details In-Document Search Title: Annealing a Follow-up Program: Improvement of the Dark Energy Figure of Merit for Optical Galaxy Cluster Surveys The precision of cosmological parameters derived from galaxy cluster surveys is limited by uncertainty in relating observable signals to cluster mass.

  14. Discovering the Nature of Dark Energy: Towards Better Distances from Type

    Office of Scientific and Technical Information (OSTI)

    Ia Supernovae -- Final Technical Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998

  15. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K.; Yamaguchi, N.D.; Keeville, H.

    1993-12-01

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  16. Climate Change Task Force Webinar Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience. ... Task Force on Climate Preparedness and Resilience, established by an Executive Order in ...

  17. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect (OSTI)

    Yamaguchi, N.D.; Breazeale, K.

    1993-12-01

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  18. NREL Job Task Analysis: Crew Leader | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crew Leader NREL Job Task Analysis: Crew Leader A summary of job task analyses for the position of crew leader when conducting weatherization work on a residence. PDF icon NREL Job Task Analysis: Crew Leader More Documents & Publications Training Self-Assessment NREL Job Task Analysis: Quality Control Inspector

  19. FAQS Job Task Analyses - Construction Management | Department of Energy

    Energy Savers [EERE]

    Construction Management FAQS Job Task Analyses - Construction Management FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA -

  20. FAQS Job Task Analyses - Environmental Restoration | Department of Energy

    Energy Savers [EERE]

    Restoration FAQS Job Task Analyses - Environmental Restoration FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA - Environmental

  1. FAQS Job Task Analyses - Instrument and Controls | Department of Energy

    Energy Savers [EERE]

    Instrument and Controls FAQS Job Task Analyses - Instrument and Controls FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA -

  2. FAQS Job Task Analyses - Occupational Safety | Department of Energy

    Energy Savers [EERE]

    Occupational Safety FAQS Job Task Analyses - Occupational Safety FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA - Occupational

  3. FAQS Job Task Analyses - Safeguards and Security | Department of Energy

    Energy Savers [EERE]

    Security FAQS Job Task Analyses - Safeguards and Security FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA - Safeguards and

  4. The Secretary of Energy Advisory Board (SEAB) Task Force on Methane

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrates | Department of Energy Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates is composed of SEAB members and independent experts charged with recommending a framework for DOE methane hydrate research programs. Purpose of the Task Force: The purpose of this task force is to provide a framework for DOE's pre-commercial methane hydrate research effort, in particular, the

  5. The Secretary of Energy Advisory Board (SEAB) Task Force to Support the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Energy Review Process | Department of Energy to Support the Quadrennial Energy Review Process The Secretary of Energy Advisory Board (SEAB) Task Force to Support the Quadrennial Energy Review Process The Secretary of Energy Advisory Board (SEAB) Task Force to support the Quadrennial Energy Review Process is composed of SEAB members and independent experts, with experience in energy policy and planning, charged with serving as a resource for the Department in the crucial formative

  6. NASA and DOE Collaborate on Dark Energy Research | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) 8 » NASA and DOE Collaborate on Dark Energy Research News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.19.08 NASA and DOE Collaborate on Dark Energy Research Print Text Size: A A A Subscribe

  7. The Secretary of Energy Advisory Board Task Force to Support Evaluation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the New Funding Constructs for Energy Research and Development (R&D) in the Department of Energy | Department of Energy Task Force to Support Evaluation of the New Funding Constructs for Energy Research and Development (R&D) in the Department of Energy The Secretary of Energy Advisory Board Task Force to Support Evaluation of the New Funding Constructs for Energy Research and Development (R&D) in the Department of Energy The Secretary of Energy Advisory Board Task Force to

  8. High-energy neutrino signals from the Sun in dark matter scenarios with internal bremsstrahlung

    SciTech Connect (OSTI)

    Ibarra, Alejandro; Totzauer, Maximilian; Wild, Sebastian E-mail: maximilian.totzauer@mytum.de

    2013-12-01

    We investigate the prospects to observe a high energy neutrino signal from dark matter annihilations in the Sun in scenarios where the dark matter is a Majorana fermion that couples to a quark and a colored scalar via a Yukawa coupling. In this minimal scenario, the dark matter capture and annihilation in the Sun can be studied in a single framework. We find that, for small and moderate mass splitting between the dark matter and the colored scalar, the two-to-three annihilation q q-bar g plays a central role in the calculation of the number of captured dark matter particles. On the other hand, the two-to-three annihilation into q q-bar Z gives, despite its small branching fraction, the largest contribution to the neutrino flux at the Earth at the highest energies. We calculate the limits on the model parameters using IceCube observations of the Sun and we discuss their interplay with the requirement of equilibrium of captures and annihilations in the Sun and with the requirement of thermal dark matter production. We also compare the limits from IceCube to the limits from direct detection, antiproton measurements and collider searches.

  9. High Energy Electron Signals from Dark Matter Annihilation in the Sun

    SciTech Connect (OSTI)

    Schuster, Philip; Toro, Natalia; Weiner, Neal; Yavin, Itay; /New York U., CCPP

    2012-04-09

    In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.

  10. Quantifying the impact of future Sandage-Loeb test data on dark energy constraints

    SciTech Connect (OSTI)

    Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn

    2014-07-01

    The Sandage-Loeb (SL) test is a unique method to probe dark energy in the ''redshift desert'' of 2∼dark energy probes. Therefore, it is of great importance to quantify how the future SL test data impact on the dark energy constraints. To avoid the potential inconsistency in data, we use the best-fitting model based on the other geometric measurements as the fiducial model to produce 30 mock SL test data. The 10-yr, 20-yr, and 30-yr observations of SL test are analyzed and compared in detail. We show that compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraint on Ω{sub m} by about 80% and the constraint on w by about 25%. Furthermore, the SL test can also improve the measurement of the possible direct interaction between dark energy and dark matter. We show that the SL test 30-yr data could improve the constraint on γ by about 30% and 10% for the Q = γHρ{sub c} and Q = γHρ{sub de} models, respectively.

  11. Discovery of Dark Energy Ushered in a New Era in Computational Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of Dark Energy Ushered in a New Era in Computational Cosmology Discovery of Dark Energy Ushered in a New Era in Computational Cosmology October 4, 2011 John Hules, JAHules@lbl.gov, +1 510 486 6008 "If NERSC does not enable a major scientific discovery every few years, then we're not doing our job." That was the challenge issued by Bill McCurdy, then Lawrence Berkeley National Laboratory's Associate Laboratory Director for Computing Sciences, at the first all-hands meeting for

  12. Clean Air Task Force CATF | Open Energy Information

    Open Energy Info (EERE)

    Force (CATF) Place: Boston, Massachusetts Zip: 2108 Product: Massachusetts-based scientific research and legal advocacy center. References: Clean Air Task Force (CATF)1 This...

  13. The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Computing | Department of Energy Next Generation High Performance Computing The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing is composed of SEAB members and independent experts charged with reviewing the mission and national capabilities related to next generation high performance computing. The Task Force will examine

  14. Multifamily Energy Auditor Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Energy Auditor JTA identifies and catalogs all of the tasks performed by multifamily energy auditors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  15. Observational constraints on dark energy with a fast varying equation of state

    SciTech Connect (OSTI)

    Felice, Antonio De; Nesseris, Savvas

    2012-05-01

    We place observational constraints on models with the late-time cosmic acceleration based on a number of parametrizations allowing fast transitions for the equation of state of dark energy. In addition to the model of Linder and Huterer where the dark energy equation of state w monotonically grows or decreases in time, we propose two new parametrizations in which w has an extremum. We carry out the likelihood analysis with the three parametrizations by using the observational data of supernovae type Ia, cosmic microwave background, and baryon acoustic oscillations. Although the transient cosmic acceleration models with fast transitions can give rise to the total chi square smaller than that in the ?-Cold-Dark-Matter (?CDM) model, these models are not favored over ?CDM when one uses the Akaike information criterion which penalizes the extra degrees of freedom present in the parametrizations.

  16. The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation comprises SEAB members and individuals with expertise and experience in the technologies, institutions, and...

  17. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; et al

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  18. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect (OSTI)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  19. Joint Outreach Task Group Video Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video Series Joint Outreach Task Group Video Series The purpose of this video series is to provide an overview of the roles and responsibilities of the federal government offices ...

  20. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

  1. Neutrino mass, dark energy, and the linear growth factor (Journal...

    Office of Scientific and Technical Information (OSTI)

    10.1103PhysRevD.77.063005; (c) 2008 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA) Country of Publication: United States Language: ...

  2. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEA Wind Task 26 WP2 The Past and Future Cost of Wind Energy Leading Authors Eric Lantz: National Renewable Energy Laboratory Ryan Wiser: Lawrence Berkeley National Laboratory Maureen Hand: National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 *

  3. SECRETARY OF ENERGY ADVISORY BOARD (SEAB) TASK FORCE ON THE FUTURE OF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR POWER | Department of Energy SECRETARY OF ENERGY ADVISORY BOARD (SEAB) TASK FORCE ON THE FUTURE OF NUCLEAR POWER SECRETARY OF ENERGY ADVISORY BOARD (SEAB) TASK FORCE ON THE FUTURE OF NUCLEAR POWER The Secretary of Energy Advisory Board (SEAB) Task Force on the Future of Nuclear Power is composed of SEAB members and independent experts. Nuclear power is an important carbon free power source for the U.S. and the world. Beginning around 2030, a significant number of operating U.S.

  4. The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories | Department of Energy DOE National Laboratories The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories (Labs) was created to provide advice, guidance, and recommendations on important issues related to improving the health and management of the labs. One of the Secretary's priorities is to strengthen the relationship between the Department and the National labs

  5. Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields

    SciTech Connect (OSTI)

    Gerdes, D. W.

    2015-07-18

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8 and 19.4 respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-term dynamical stability and physical properties.

  6. Observation of two new L4 Neptune Trojans in the Dark Energy Survey supernova fields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gerdes, D. W.

    2016-01-28

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-termmore » dynamical stability and physical properties.« less

  7. Energy from the Center of the Milky Way May Be the Remnant of Dark Matter |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Energy from the Center of the Milky Way May Be the Remnant of Dark Matter News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.17.10 Energy from the Center of the Milky Way May

  8. Exact solutions in a scalar-tensor model of dark energy

    SciTech Connect (OSTI)

    Granda, L.N.; Loaiza, E. E-mail: edwin.loaiza@correounivalle.edu.co

    2012-09-01

    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.

  9. Dark Fiber Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe March 12, 2012 - 12:06pm Addthis Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab Researchers at Fermi National Lab

  10. Department of Energy Establishes Asset Revitalization Task Force |

    Energy Savers [EERE]

    Business Week | Department of Energy Department of Energy Contractor Diana Lewis Heading to National Small Business Week Department of Energy Contractor Diana Lewis Heading to National Small Business Week June 10, 2013 - 8:50am Addthis Department of Energy Contractor Diana Lewis Heading to National Small Business Week John H. Hale III John H. Hale III Director, Office of Small and Disadvantaged Business Utilization National Small Business Week is around the corner, kicking off on June 17

  11. Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    SciTech Connect (OSTI)

    Karwan, Khamphee

    2011-02-01

    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum.

  12. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; Jeltema, Tesla; Miller, Christopher J.; Rykoff, Eli; Song, Jeeseon

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less

  13. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    SciTech Connect (OSTI)

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; Jeltema, Tesla; Miller, Christopher J.; Rykoff, Eli; Song, Jeeseon

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores in Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.

  14. Category:Articles with outstanding TODO tasks | Open Energy Informatio...

    Open Energy Info (EERE)

    D Data Center Equipment Daylighting Dehumidifiers Dishwasher DOE Doors DuctAir sealing E Efficiency Electric Power Board of Chattanooga Electric vehicles Emerging Energy...

  15. Microsoft Word - Energy Code Enforcement Funding Task Force ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Webinar: Residential Energy Code Compliance National Electric Transmission Congestion Study - Draft for Public Comment August 2014 QER - Comment of IEEE

  16. Department of Energy Establishes Asset Revitalization Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reutilize DOE site assets for beneficial purposes, which may include clean energy development, environmental sustainability projects, open space or other uses....

  17. The Secretary of Energy Advisory Board Task Force to Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Are there gaps in the DOE approach to energy, science, technology innovation, and impact on industry development and deployment? Is the DOE effectively drawing on the resources of ...

  18. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect (OSTI)

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Ane E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant DESI and other experiments can measure the sum of neutrino masses to ? 0.02 eV or better, while the minimum possible sum is ? 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  19. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    SciTech Connect (OSTI)

    Keresztes, Zoltn; Gergely, Lszl . E-mail: gergely@physx.u-szeged.hu

    2014-11-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (?{sub b}h{sup 2}=0.022161, where the Hubble constant is fixed as h=0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1? confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for ?{sub CDM}=0.22. The fit is as good as for the ?CDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.

  20. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    SciTech Connect (OSTI)

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Departments Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics for the discovery of the accelerating expansion of the Universe through observations of distant supernovae. DOEs Office of Science has supported Dr. Perlmutters research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  1. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    ScienceCinema (OSTI)

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department?s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics ?for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.? DOE?s Office of Science has supported Dr. Perlmutter?s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  2. No Small Task: How Small Businesses are Critical to our Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy No Small Task: How Small Businesses are Critical to our Energy Future No Small Task: How Small Businesses are Critical to our Energy Future July 3, 2012 - 1:25pm Addthis Shelton Clark, President of Eberline Services, receives the Small Business of the Year award from Dot Harris, Director of the Office of Economic Impact and Diversity. Eberline Services, a New Mexico-based small business, gets 90% of their business from the Energy Department. They specialize in

  3. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.

    2015-07-29

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We also find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. Thesemore » measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. Finally, we summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.« less

  4. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data

    SciTech Connect (OSTI)

    Chang, C.

    2015-07-29

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We also find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8? level with 20 arc min smoothing. These measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. Finally, we summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.

  5. The Secretary of Energy Advisory Board (SEAB) Task Force on FracFocus 2.0 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy on FracFocus 2.0 The Secretary of Energy Advisory Board (SEAB) Task Force on FracFocus 2.0 The Secretary of Energy Advisory Board (SEAB) Task Force on FracFocus 2.0 is composed of individuals with expertise and experience charged with reviewing how FracFocus 2.0 houses the information Federal and State regulatory agencies require as part of their regulatory functions with regard to disclosure of the composition and quantities of fracturing fluids injected into

  6. Constraints on a f(R) gravity dark energy model with early scaling evolution

    SciTech Connect (OSTI)

    Park, Chan-Gyung; Hwang, Jai-chan; Noh, Hyerim E-mail: jchan@knu.ac.kr

    2011-09-01

    The modified gravity with f(R) = R{sup 1+?} (? > 0) allows a scaling solution where the energy density of gravity sector follows the energy density of the dominant fluid. We present initial conditions of background and perturbation variables during the scaling evolution regime in the modified gravity. As a possible dark energy model we consider a gravity with a form f(R) = R{sup 1+?}+qR{sup ?n} (?1 < n ? 0) where the second term drives the late-time acceleration. We show that our f(R) gravity parameters are very sensitive to the baryon perturbation growth and baryon density power spectrum, and present observational constraints on the model parameters. We consider full perturbations of f(R) gravity. Our analysis suggests that only the parameter space extremely close to the ?CDM model is allowed with ??<5 10{sup ?6} and n?>?10{sup ?4}.

  7. Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

    SciTech Connect (OSTI)

    Carbone, Carmelita; Baldi, Marco; Baccigalupi, Carlo E-mail: marco.baldi5@unibo.it E-mail: bacci@sissa.it

    2013-09-01

    We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to a counter-intuitive effect, making the power of the lensing signal in this model lower by 10% than in the ΛCDM scenario. Moreover, we compare the behaviour of CDM and baryons in CoDECS separately, in order to isolate effects coming from the coupling with the DE component. We find that, in the bouncing scenario, baryons show an opposite trend with respect to CDM, due to the coupling of the latter with the DE component. These results confirm the relevance of CMB lensing as a probe for DE at the early stages of cosmic acceleration, and demonstrate the reliability of N-body based large scale CMB lensing simulations in the context of DE studies.

  8. Detecting features in the dark energy equation of state: a wavelet approach

    SciTech Connect (OSTI)

    Hojjati, Alireza; Pogosian, Levon; Zhao, Gong-Bo E-mail: levon@sfu.ca

    2010-04-01

    We study the utility of wavelets for detecting the redshift evolution of the dark energy equation of state w(z) from the combination of supernovae (SNe), CMB and BAO data. We show that local features in w, such as bumps, can be detected efficiently using wavelets. To demonstrate, we first generate a mock supernovae data sample for a SNAP-like survey with a bump feature in w(z) hidden in, then successfully discover it by performing a blind wavelet analysis. We also apply our method to analyze the recently released ''Constitution'' SNe data, combined with WMAP and BAO from SDSS, and find weak hints of dark energy dynamics. Namely, we find that models with w(z) < −1 for 0.2 < z < 0.5, and w(z) > −1 for 0.5 < z < 1, are mildly favored at 95% confidence level. This is in good agreement with several recent studies using other methods, such as redshift binning with principal component analysis (PCA) (e.g. Zhao and Zhang, arXiv: 0908.1568)

  9. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuan, Fang

    2015-07-29

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxiesmore » and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. In conclusion, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.« less

  10. DESAlert: Enabling real-time transient follow-up with Dark Energy Survey data

    SciTech Connect (OSTI)

    Poci, A.

    2015-04-12

    The Dark Energy Survey (DES) is currently undertaking an observational program imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the DES will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts (GRBs) over five years. Once GRBs are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of GRB activity, collates useful information from archival DES data, and promulgates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that DES data provide for relative photometry of GRBs or their afterglows, as well as for identifying key characteristics (e.g., photometric redshifts) of potential GRB host galaxies. We provide the functional details of the DESAlert software as it presently operates, as well as the data products that it produces, and we show sample results from the application of DESAlert to several previously-detected GRBs.

  11. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results

    SciTech Connect (OSTI)

    Yuan, Fang

    2015-07-29

    The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. In conclusion, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.

  12. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  13. The Secretary of Energy Advisory Board (SEAB) Task Force on Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development for Environmental Management | Department of Energy on Technology Development for Environmental Management The Secretary of Energy Advisory Board (SEAB) Task Force on Technology Development for Environmental Management While the Department's Office of Environmental Management (EM) has made significant progress in closing a number of projects, many of the most challenging projects remain and will for decades to come. Technology development for environmental management holds

  14. Phantom of the Hartle–Hawking instanton: Connecting inflation with dark energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Pisin; Qiu, Taotao; Yeom, Dong -han

    2016-02-20

    If the Hartle–Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity.more » This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Lastly, our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.« less

  15. Constraints on dark energy from new observations including Pan-STARRS

    SciTech Connect (OSTI)

    Zheng, Wei [Department of Physics, Nanjing University, Nanjing, 210093 China (China); Li, Si-Yu [Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing, 100049 (China); Li, Hong; Xia, Jun-Qing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-3, Beijing, 100049 (China); Li, Mingzhe [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui, 230026 China (China); Lu, Tan, E-mail: physicsweiwei@gmail.com, E-mail: lisy@ihep.ac.cn, E-mail: hongli@ihep.ac.cn, E-mail: xiajq@ihep.ac.cn, E-mail: limz@ustc.edu.cn, E-mail: t.lu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 China (China)

    2014-08-01

    In this paper, we set the new limits on the equation of state parameter (EoS) of dark energy with the observations of cosmic microwave background radiation (CMB) from Planck satellite, the type Ia supernovae from Pan-STARRS and the baryon acoustic oscillation (BAO). We consider two parametrization forms of EoS: a constant w and time evolving w(a)=w{sub 0}+w{sub a}(1-a). The results show that with a constant EoS, w=-1.1410.075 68% C.L.), which is consistent with ?CDM at about 2? confidence level. For a time evolving w(a) model, we get w{sub 0}=-1.09{sup +0.16}{sub -0.18} 1? C.L.), w{sub a}=-0.34{sup +0.87}{sub -0.51} 1? C.L.), and in this case ?CDM can be comparable with our observational data at 1? confidence level. In order to do the parametrization independent analysis, additionally we adopt the so called principal component analysis (PCA) method, in which we divide redshift range into several bins and assume w as a constant in each redshift bin (bin-w). In such bin-w scenario, we find that for most of the bins cosmological constant can be comparable with the data, however, there exists few bins which give w deviating from ?CDM at more than 2? confidence level, which shows a weak hint for the time evolving behavior of dark energy. To further confirm this hint, we need more data with higher precision.

  16. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  17. Fermilab | Science | Particle Physics | Dark matter and dark...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey thumb The Dark Energy Survey uses a camera mounted on the Blanco telescope in Chile to survey the southern sky to investigate the effects of dark energy. CDMS thumb The...

  18. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  19. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect (OSTI)

    Janet.twomey@wichita.edu

    2010-04-30

    EXECUTIVE SUMARRY This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  20. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  1. LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-01-17

    Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it is recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.

  2. The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kessler, R.

    2015-09-09

    We describe the operation and performance of the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from 2013 August through 2014 February. DES-SN is a search for transients in which ten 3 deg2 fields are repeatedly observed in the g, r, i, zpassbands with a cadence of about 1 week. Our observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernovae (SNe Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions aremore » to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are ~130 detections per deg2 per observation in each band, of which only ~25% are artifacts. Of the ~7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least two separate nights, Monte Carlo (MC) simulations predict that 27% are expected to be SNe Ia or core-collapse SNe. Another ~30% of the transients are artifacts in which a small number of observations satisfy the selection criteria for a single-epoch detection. Spectroscopic analysis shows that most of the remaining transients are AGNs and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies and to understand the DiffImg performance. Furthermore, the DiffImg efficiency measured with fake SNe agrees well with expectations from a MC simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 "shallow" fields with single-epoch 50% completeness depth ~23.5, the SN Ia efficiency falls to 1/2 at redshift z ≈ 0.7; in our 2 "deep" fields with mag-depth ~24.5, the efficiency falls to 1/2 at z ≈ 1.1. A remaining performance issue is that the measured fluxes have additional scatter (beyond Poisson fluctuations) that increases with the host galaxy surface brightness at the transient location. This bright-galaxy issue has minimal impact on the SNe Ia program, but it may lower the efficiency for finding fainter transients on bright galaxies.« less

  3. The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey

    SciTech Connect (OSTI)

    Kessler, R.

    2015-09-09

    We describe the operation and performance of the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from 2013 August through 2014 February. DES-SN is a search for transients in which ten 3 deg2 fields are repeatedly observed in the g, r, i, zpassbands with a cadence of about 1 week. Our observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernovae (SNe Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are ~130 detections per deg2 per observation in each band, of which only ~25% are artifacts. Of the ~7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least two separate nights, Monte Carlo (MC) simulations predict that 27% are expected to be SNe Ia or core-collapse SNe. Another ~30% of the transients are artifacts in which a small number of observations satisfy the selection criteria for a single-epoch detection. Spectroscopic analysis shows that most of the remaining transients are AGNs and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies and to understand the DiffImg performance. Furthermore, the DiffImg efficiency measured with fake SNe agrees well with expectations from a MC simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 "shallow" fields with single-epoch 50% completeness depth ~23.5, the SN Ia efficiency falls to 1/2 at redshift z ≈ 0.7; in our 2 "deep" fields with mag-depth ~24.5, the efficiency falls to 1/2 at z ≈ 1.1. A remaining performance issue is that the measured fluxes have additional scatter (beyond Poisson fluctuations) that increases with the host galaxy surface brightness at the transient location. This bright-galaxy issue has minimal impact on the SNe Ia program, but it may lower the efficiency for finding fainter transients on bright galaxies.

  4. Constraining dark energy models using the lookback time to galaxy clusters and the age of the universe

    SciTech Connect (OSTI)

    Capozziello, S.; Cardone, V.F.; Funaro, M.; Andreon, S.

    2004-12-15

    An impressive amount of different astrophysical data converges towards the picture of a spatially flat Universe undergoing today a phase of accelerated expansion. The nature of the dark energy dominating the energy content of the Universe is still unknown, and a lot of different scenarios are viable candidates to explain cosmic acceleration. Most of the methods employed to test these cosmological models are essentially based on distance measurements to a particular class of objects. A different method, based on the lookback time to galaxy clusters and the age of the Universe, is used here. In particular, we constrain the characterizing parameters of three classes of dark energy cosmological models to see whether they are in agreement with this kind of data, based on time measurements rather than distance observations.

  5. New Constraints on Dark Energy from Chandra X-rayObservations of the Largest Relaxed Galaxy Clusters

    SciTech Connect (OSTI)

    Allen, S.W.; Rapetti, D.A.; /KIPAC, Menlo Park; Schmidt, R.W.; /Heidelberg, Astron. Rechen Inst.; Ebeling, H.; /Inst. Astron., Honolulu; Morris, G.; /KIPAC, Menlo Park; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2007-06-06

    We present constraints on the mean matter density, {Omega}{sub m}, dark energy density, {Omega}{sub DE}, and the dark energy equation of state parameter, w, using Chandra measurements of the X-ray gas mass fraction (fgas) in 42 hot (kT > 5keV), X-ray luminous, dynamically relaxed galaxy clusters spanning the redshift range 0.05 < z < 1.1. Using only the fgas data for the 6 lowest redshift clusters at z < 0.15, for which dark energy has a negligible effect on the measurements, we measure {Omega}{sub m}=0.28{+-}0.06 (68% confidence, using standard priors on the Hubble Constant, H{sub 0}, and mean baryon density, {Omega}{sub b}h{sup 2}). Analyzing the data for all 42 clusters, employing only weak priors on H{sub 0} and {Omega}{sub b}h{sup 2}, we obtain a similar result on {Omega}{sub m} and detect the effects of dark energy on the distances to the clusters at {approx}99.99% confidence, with {Omega}{sub DE}=0.86{+-}0.21 for a non-flat LCDM model. The detection of dark energy is comparable in significance to recent SNIa studies and represents strong, independent evidence for cosmic acceleration. Systematic scatter remains undetected in the f{sub gas} data, despite a weighted mean statistical scatter in the distance measurements of only {approx}5%. For a flat cosmology with constant w, we measure {Omega}{sub m}=0.28{+-}0.06 and w=-1.14{+-}0.31. Combining the fgas data with independent constraints from CMB and SNIa studies removes the need for priors on {Omega}{sub b}h{sup 2} and H{sub 0} and leads to tighter constraints: {Omega}{sub m}=0.253{+-}0.021 and w=-0.98{+-}0.07 for the same constant-w model. More general analyses in which we relax the assumption of flatness and/or allow evolution in w remain consistent with the cosmological constant paradigm. Our analysis includes conservative allowances for systematic uncertainties. The small systematic scatter and tight constraints bode well for future dark energy studies using the f{sub gas} method.

  6. Eight new Milky Way companions discovered in first-year Dark Energy Survey data

    SciTech Connect (OSTI)

    Bechtol, K.; et al.

    2015-06-30

    We report the discovery of eight new Milky Way companions in $\\sim 1800\\;{\\mathrm{deg}}^{2}$ of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (MV from $-2.2$ to $-7.4\\;\\mathrm{mag}$), physical sizes ($10-170\\;\\mathrm{pc}$), and heliocentric distances ($30-330\\;\\mathrm{kpc}$). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. As a result, we also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.

  7. Eight new Milky Way companions discovered in first-year Dark Energy Survey data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bechtol, K.

    2015-06-30

    We report the discovery of eight new Milky Way companions inmore » $$\\sim 1800\\;{\\mathrm{deg}}^{2}$$ of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (MV from $-2.2$ to $$-7.4\\;\\mathrm{mag}$$), physical sizes ($$10-170\\;\\mathrm{pc}$$), and heliocentric distances ($$30-330\\;\\mathrm{kpc}$$). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. As a result, we also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.« less

  8. Discovery of a stellar overdensity in Eridanus-Phoenix in the dark energy survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, T. S.; Balbinot, E.; Mondrik, N.; Marshall, J. L.; Yanny, B.; Bechtol, K.; Drlica-Wagner, A.; Oscar, D.; Santiago, B.; Simon, J. D.; et al

    2016-01-27

    We report the discovery of an excess of main sequence turn-off stars in the direction of the constellations of Eridanus and Phoenix from the first year data of the Dark Energy Survey (DES). The Eridanus-Phoenix (EriPhe) overdensity is centered around l~285 deg and b~-60 deg and spans at least 30 deg in longitude and 10 deg in latitude. The Poisson significance of the detection is at least 9 sigma. The stellar population in the overdense region is similar in brightness and color to that of the nearby globular cluster NGC 1261, indicating that the heliocentric distance of EriPhe is aboutmore » d~16 kpc. The extent of EriPhe in projection is therefore at least ~4 kpc by ~3 kpc. On the sky, this overdensity is located between NGC 1261 and a new stellar stream discovered by DES at a similar heliocentric distance, the so-called Phoenix Stream. Given their similar distance and proximity to each other, it is possible that these three structures may be kinematically associated. Alternatively, the EriPhe overdensity is morphologically similar to the Virgo overdensity and the Hercules-Aquila cloud, which also lie at a similar Galactocentric distance. These three overdensities lie along a polar plane separated by ~120 deg and may share a common origin. Spectroscopic follow-up observations of the stars in EriPhe are required to fully understand the nature of this overdensity.« less

  9. Discovery of a Stellar Overdensity in Eridanus-Phoenix in the Dark Energy Survey

    SciTech Connect (OSTI)

    Li, T.S.; et al.

    2015-09-14

    We report the discovery of an excess of main sequence turn-off stars in the direction of the constellations of Eridanus and Phoenix from the first year data of the Dark Energy Survey (DES). The Eridanus-Phoenix (EriPhe) overdensity is centered around l~285 deg and b~-60 deg and spans at least 30 deg in longitude and 10 deg in latitude. The Poisson significance of the detection is at least 9 sigma. The stellar population in the overdense region is similar in brightness and color to that of the nearby globular cluster NGC 1261, indicating that the heliocentric distance of EriPhe is about d~16 kpc. The extent of EriPhe in projection is therefore at least ~4 kpc by ~3 kpc. On the sky, this overdensity is located between NGC 1261 and a new stellar stream discovered by DES at a similar heliocentric distance, the so-called Phoenix Stream. Given their similar distance and proximity to each other, it is possible that these three structures may be kinematically associated. Alternatively, the EriPhe overdensity is morphologically similar to the Virgo overdensity and the Hercules-Aquila cloud, which also lie at a similar Galactocentric distance. These three overdensities lie along a polar plane separated by ~120 deg and may share a common origin. Spectroscopic follow-up observations of the stars in EriPhe are required to fully understand the nature of this overdensity.

  10. UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS

    SciTech Connect (OSTI)

    Serjeant, S.

    2014-09-20

    The Euclid space telescope will observe ?10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the H? luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ?1% of the total haul of Euclid lenses, this sample has ?100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.

  11. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    SciTech Connect (OSTI)

    Maeda, Hideki; Harada, Tomohiro; Carr, B. J.

    2008-01-15

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.

  12. Star/galaxy separation at faint magnitudes: Application to a simulated Dark Energy Survey

    SciTech Connect (OSTI)

    Soumagnac, M.T.; et al.

    2013-06-21

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the Gravitational Weak Lensing and Large Scale Structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by Point Spread Function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use Principal Component Analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multi-parameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12% for galaxies, at i-magnitude fainter than 23.

  13. Dark Matter and a Definite Non-Definite | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Illustrations below by Greg Stewart, SLAC. Three Ways to Bust Ghostly Dark Matter Not only are we made of fundamental particles, we also produce them ...

  14. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey

    SciTech Connect (OSTI)

    Drlica-Wagner, A.

    2015-11-04

    We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (MV > -4.7 ) and span a range of physical sizes (17 pc < r1/2 < 181pc) and heliocentric distances (25 kpc < D? < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (? 27.5 mag arcsec -2). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10-3) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Furthermore, our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%30% of these would be spatially associated with the Magellanic Clouds.

  15. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Drlica-Wagner, A.

    2015-11-04

    We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (MV > -4.7 ) and span a range of physical sizes (17 pc < r1/2more » < 181pc) and heliocentric distances (25 kpc < D⊙ < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (μ 27.5 mag arcsec -2). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10-3) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Furthermore, our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%–30% of these would be spatially associated with the Magellanic Clouds.« less

  16. Discovery of two gravitationally lensed quasars in the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agnello, A.

    2015-10-01

    In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at zs = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES andmore » the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at zs = 2.38 and absorption compatible with Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 × 1011 M⊙. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.« less

  17. Discovery of two gravitationally lensed quasars in the Dark Energy Survey

    SciTech Connect (OSTI)

    Agnello, A.

    2015-10-01

    In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at zs = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at zs = 2.38 and absorption compatible with Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 1011 M?. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.

  18. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    SciTech Connect (OSTI)

    Suchyta, E.

    2015-07-29

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004 < ? < 0.2 , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.

  19. Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030

    SciTech Connect (OSTI)

    Nakicenovic, Nebojsa; Kammen, Daniel; Jewell, Jessica

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

  20. Discovery of Dark Energy Ushered in a New Era in Computational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    already using supercomputers for such daunting tasks as solving Einstein's equations for General Relativity. But Perlmutter's group is believed to have been the first to use...

  1. Dark Matter Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Dark Matter Theory The existence of dark matter can be traced back to the pioneering discoveries of Fritz Zwicky and Jan Oort that the motion of galaxies in the Coma cluster, and of nearby stars in our own Galaxy, do not follow the expected motion based on Newton's law of gravity and the observed visible

  2. DES13S2cmm: The first superluminous supernova from the dark energy survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Papadopoulos, A.; D'Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; Fischer, J. A.; et al

    2015-03-23

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find MUpeak = -21.05????-0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low metallicity (sub-solar), low stellar-massmorehost galaxy (log(M/M_sun) = 9.3 0.3); consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2-0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for 'standardising' such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I - the radioactive decay of ??Ni, and a magnetar - and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.less

  3. DES13S2cmm: The first superluminous supernova from the Dark Energy Survey

    SciTech Connect (OSTI)

    Papadopoulos, A.; Plazas, A. A.; D"Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; Fischer, J. A.; Foley, R. J.; Goldstein, D.; Gupta, R. R.; Kessler, R.; Kovacs, E.; Kuhlmann, S. E.; Lidman, C.; March, M.; Nugent, P. E.; Sako, M.; Smith, R. C.; Spinka, H.; Wester, W.; Abbott, T. M. C.; Abdalla, F.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Carnero, A.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T.; Evrard, A. E.; Flaugher, B.; Frieman, J. A.; Gerdes, D.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Ogando, R.; Roe, N. A.; Romer, A. K.; Rykoff, E.; Sanchez, E.; Santiago, B. X.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M.; Tarle, G.; Thaler, J.; Tucker, L. D.; Wechsler, R. H.; Zuntz, J.

    2015-03-23

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find MpeakU = 21.05+0.100.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (sub-solar), low stellar-mass host galaxy (log(M/M?) = 9.3 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.20.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for standardising such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I the radioactive decay of ??Ni, and a magnetar and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.

  4. DES13S2cmm: The first superluminous supernova from the Dark Energy Survey

    SciTech Connect (OSTI)

    Papadopoulos, A.; Plazas, A. A.; D"Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; Fischer, J. A.; Foley, R. J.; Goldstein, D.; Gupta, R. R.; Kessler, R.; Kovacs, E.; Kuhlmann, S. E.; Lidman, C.; March, M.; Nugent, P. E.; Sako, M.; Smith, R. C.; Spinka, H.; Wester, W.; Abbott, T. M. C.; Abdalla, F.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Carnero, A.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T.; Evrard, A. E.; Flaugher, B.; Frieman, J. A.; Gerdes, D.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Ogando, R.; Roe, N. A.; Romer, A. K.; Rykoff, E.; Sanchez, E.; Santiago, B. X.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M.; Tarle, G.; Thaler, J.; Tucker, L. D.; Wechsler, R. H.; Zuntz, J.

    2015-03-23

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 ± 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find MpeakU = –21.05+0.10–0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (sub-solar), low stellar-mass host galaxy (log(M/M⊙) = 9.3 ± 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2–0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for ‘standardising’ such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I – the radioactive decay of ⁵⁶Ni, and a magnetar – and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.

  5. DES13S2cmm: The first superluminous supernova from the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Papadopoulos, A.; Plazas, A. A.; D"Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; et al

    2015-03-23

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 ± 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find MpeakU = –21.05+0.10–0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (sub-solar), low stellar-mass hostmore » galaxy (log(M/M⊙) = 9.3 ± 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2–0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for ‘standardising’ such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I – the radioactive decay of ⁵⁶Ni, and a magnetar – and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.« less

  6. On dark degeneracy and interacting models

    SciTech Connect (OSTI)

    Carneiro, S.; Borges, H.A. E-mail: humberto@ufba.br

    2014-06-01

    Cosmological background observations cannot fix the dark energy equation of state, which is related to a degeneracy in the definition of the dark sector components. Here we show that this degeneracy can be broken at perturbation level by imposing two observational properties on dark matter. First, dark matter is defined as the clustering component we observe in large scale structures. This definition is meaningful only if dark energy is unperturbed, which is achieved if we additionally assume, as a second condition, that dark matter is cold, i.e. non-relativistic. As a consequence, dark energy models with equation-of-state parameter ?1 ? ? < 0 are reduced to two observationally distinguishable classes with ? = ?1, equally competitive when tested against observations. The first comprises the ?CDM model with constant dark energy density. The second consists of interacting models with an energy flux from dark energy to dark matter.

  7. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    SciTech Connect (OSTI)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  8. Sustainable energy for all. Technical report of task force 1 in support of the objective to achieve universal access to modern energy services by 2030

    SciTech Connect (OSTI)

    Birol, Fatih

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force One which is dedicated to the objective of achieving universal access to modern energy services by 2030. The report shows that universal energy access can be realized by 2030 with strong, focused actions set within a coordinated framework.

  9. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  10. TASK 2.5.4 DEVELOPMENT OF AN ENERGY SAVINGS CALCULATOR

    SciTech Connect (OSTI)

    Miller, William A; New, Joshua Ryan; Desjarlais, Andre Omer; Huang, Joe; Erdem, Ender; Ronnen, Levinson

    2010-03-01

    California s major energy utilities and the California Energy Commission (CEC) are seeking to allocate capital that yields the greatest return on investment for energy infrastructure that meets any part of the need for reliable supplies of energy. The utilities are keenly interested in knowing the amount of electrical energy savings that would occur if cool roof color materials are adopted in the building market. To meet this need the Oak Ridge National Laboratory and the Lawrence Berkeley National Laboratory (LBNL) have been collaborating on a Public Interest Energy Research (PIER) project to develop an industry-consensus energy-savings calculator. The task was coordinated with an ongoing effort supported by the DOE to develop one calculator to achieve both the DOE and the EPA objectives for deployment of cool roof products. Recent emphasis on domestic building energy use has made the work a top priority by the Department of Energy s (DOE) Building Technologies Program. The Roof Savings Calculator (RSC) tool is designed to help building owners, manufacturers, distributors, contractors and practitioners easily run complex simulations. The latest web technologies and usability design were employed to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on the best available statistical evidence and can provide energy and cost savings after the user selects nothing more than the building location. A key goal for the tool is to promote the energy benefits of cool color tile, metal and asphalt shingle roof products and other energy saving systems. The RSC tool focuses on applications for the roof and attic; however, the code conducts a whole building simulation that puts the energy and heat flows of the roof and attic into the perspective of the whole house. An annual simulation runs in about 30 sec. In addition to cool reflective roofs, the RSC tool will simulate high- medium- and low-slope roofs, and has a custom selection for the user whose house has a unique inclination. There is an option for above sheathing ventilation, which is prevalent in tile and stone-coated metal roof assemblies. The tool also accommodates the effects of radiant barriers and low-emittance surfaces in the inclined air space above the sheathing. The practitioner can select to have air-conditioning ducts either in the conditioned space or in the attic. If in the attic, the user can select one of three air leakage options. Option 1 is an inspected duct having 4% leakage and code level of duct insulation; option 2 is a poorly insulated duct having 14% air leakage; and option 3 is a custom leakage rate specified by the user. The practitioner can setup multiple layers of ceiling insulation. AtticSim is benchmarked against the field data acquired for Ft. Irwin located near Barstow, CA, first as a standalone simulation program and then again integrated within the DOE-2.1E program. The standalone benchmark was very useful to determining how well AtticSim replicates the building physics of an attic. The coupled benchmark was useful to verify that the DOE-2.1E/AtticSim code is modeling correctly the dynamic relationship between the attic and the occupied space below, as well as the interactions between the attic and the HVAC system, in particular when the ducts are located in the attic.

  11. Dark Matters

    ScienceCinema (OSTI)

    Joseph Silk

    2010-01-08

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  12. Search for Dark Matter in Events with One Jet and Missing Transverse Energy in pp? Collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; lvarez Gonzlez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Bai, Y.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; dAscenzo, N.; Datta, M.; de Barbaro, P.; DellOrso, M.; Demortier, L.; Deninno, M.; Devoto, F.; dErrico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; DOnofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Fox, P. J.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzlez, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harnik, R.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martnez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.

    2012-05-01

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp? collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb? recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c, and on spin-dependent interactions up to masses of 200 GeV/c.

  13. Search for Dark Matter in Events with One Jet and Missing Transverse Energy in pp̄ Collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2012-05-23

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction belowmore » a dark matter candidate mass of 5 GeV/c², and on spin-dependent interactions up to masses of 200 GeV/c².« less

  14. THE SECRETARY OF ENERGY ADVISORY BOARD (SEAB) TASK FORCE ON BIOMEDICAL SCIENCES

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force on Biomedical Sciences is comprised of SEAB members and experts from, for example, universities, the NIH intramural program, DOE National Laboratories, and various components of industry, and charged with identifying new areas for research by DOE investigators that could, over time, significantly advance the pace of progress in biomedical sciences, and new mechanisms for conducting research in coordination with scientists from government laboratories (both DOE and the National Institutes of Health [NIH]), universities, academic medical centers, and industry. The Task Force is not expected to address possible DOE and NIH funding arrangements to support this initiative. PURPOSE OF THE TASK FORCE: For more than 60 years, the DOE and its predecessor agencies have used their potent and unique scientific capabilities to advance several facets of the biomedical sciences. These include, most notably, radiochemistry and nuclear medicine; instrumentation for diagnostic and therapeutic radiology; structural biology; and recently, genomics, as highlighted by the human genome project. Advances in science and technology -- particularly genomics, mass spectroscopy, informatics, and various forms of imaging -- have led to widespread recognition today that biomedical sciences are poised to seize new opportunities that could vastly improve the health of Americans and other peoples of the world while significantly lowering risks and costs over time, maintaining U.S. leadership in the life sciences, and providing new knowledge for applications in the commercial sector. Areas particularly ripe for the application of new technologies include: Precision medicine, in which diagnosis, prevention, and therapy are based on a description of disease at the molecular level; Brain science that promises to advance understanding of normal circuitry and its aberrations in neurological and psychiatric diseases; Bioinformatics for storage, retrieval, and analysis of enormous sets of molecular and structural data; Near real time imaging, fusion, and processing of molecules, cells, and tissues; New forms of therapy involving delivery and modification of genes and their functions; and Reengineering of biological systems for better understanding of cells and organisms and for more effective analysis and control of many diseases. DOE has core competencies that could greatly accelerate progress in these areas, including: Sensors and high speed data acquisition from many sensors Imaging devices operating at a wide range of scales Instruments and methods for observing and measuring the functions and dynamics of large biomolecules, including multi-molecular complexes Material sciences and nanotechnology Multi-scale modeling and simulation Exascale computing The NIH has a long history of using a variety of mechanisms to promote biomedically relevant work at DOE laboratories, taking advantage of DOE's unique capabilities in many fields of science, including several of those mentioned above. Presently, the NIH sponsors or helps to support over 150 projects in DOE laboratories at an annual cost of over $250 million. These activities result from direct collaborations between NIH­-supported scientists and scientists at DOE laboratories, not from a top-down driven directive to cooperate. Leaders at NIH and DOE have long recognized and publicly acknowledged the importance of such cooperation, and current leaders of both agencies want it to continue to prosper. Indeed, in October a joint DOE-NIH workshop was held to discuss the President's BRAIN initiative -- a research effort into new ways to treat, prevent, and cure brain disorders -- and seek ways in which the agencies might work together to achieve its goals. SCHEDULE: By September 2016, the Task Force should produce a report to identify new research areas for DOE in the area of biomedical sciences and proposals for DOE initiatives that would advance the Nation's progress in the health-related sciences. This report would be available to the public, Congress, and the current and next Administrations. DESIGNATED FEDERAL OFFICER: Matthew Schaub, Deputy Director, Office of Secretarial Boards and Councils.

  15. The Secretary of Energy Advisory Board (SEAB) Task Force to Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... SEAB QER Task Force Members: SEAB Members: Paul Joskow (TF Chair), Alfred P. Sloan Foundation and MIT, Emeritus* Frances Beinecke, Natural Resources Defense Council* Dr. Coleman ...

  16. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  17. Compilation of reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This report contains reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management, from experts in the United States. The contents of the report focus mainly on public opinion, and government policies as perceived by the public.

  18. Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis

    SciTech Connect (OSTI)

    Vikram, V.; Sheldon, E.; Chang, C.; Jain, B.; Bacon, D.; Amara, A.; Becker, M. R.; Bernstein, G.; Bonnett, C.; Bridle, S.; Brout, D.; Busha, M.; Frieman, J.; Gaztanaga, E.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Kovacs, A.; Lahav, O.; Leistedt, B.; Lin, H.; Melchior, P.; Peiris, H.; Rozo, E.; Rykoff, E.; Sanchez, C.; Sheldon, E.; Troxel, M. A.; Wechsler, R.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Levy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Kind, M. Carrasco; Castander, F. J.; Crocce, M.; Cunha, C. E.

    2015-07-29

    Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These mass maps provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg2 area from the Dark Energy Survey science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8? level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. We analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.

  19. Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vikram, V.

    2015-07-29

    Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These “mass maps” provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg2 area from the Dark Energy Survey (DES) science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclustersmore » and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8σ level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. In this study, we analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.« less

  20. Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vikram, V.; Sheldon, E.; Chang, C.; Jain, B.; Bacon, D.; Amara, A.; Becker, M. R.; Bernstein, G.; Bonnett, C.; Bridle, S.; et al

    2015-07-29

    Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These mass maps provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg2 area from the Dark Energy Survey science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters andmorevoids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8? level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. We analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.less

  1. Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis

    SciTech Connect (OSTI)

    Vikram, V.

    2015-07-29

    Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These mass maps provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg2 area from the Dark Energy Survey (DES) science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8? level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. In this study, we analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.

  2. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation – Economic and energy assessment

    SciTech Connect (OSTI)

    Bonk, Fabian Bastidas-Oyanedel, Juan-Rodrigo Schmidt, Jens Ejbye

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • The cost and energy demand for dark fermentation using OFMSW were established. • Dark fermentation using OFMSW can produce a carbon source for bioprocesses of about 330 USD/t{sub COD}. • A maximum purification cost of VFAs from dark fermentation using OFMSW was established to 15 USD/m{sup 3}. • Replacing fossil fuel based products by dark fermentation will probably lead to net energy savings. - Abstract: Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H{sub 2}. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15 USD/m{sup 3}{sub effluent}. With a VFA minimum selling price of 330 USD/t{sub COD}, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H{sub 2}. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform.

  3. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    SciTech Connect (OSTI)

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic Φ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelastic scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 – 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.

  4. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic Φ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelasticmore » scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1 – 2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.« less

  5. The direct detection of boosted dark matter at high energies and PeV events at IceCube

    SciTech Connect (OSTI)

    Bhattacharya, A.; Gandhi, R.; Gupta, A.

    2015-03-13

    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ, created via the decay of a significantly more massive and long-lived non-thermal relic ϕ, which forms the bulk of DM. If χ interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelastic scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 1−2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.

  6. Secrets of the Dark Universe: Simulating the Sky on the Blue Gene/Q, The Outer Rim Simulation

    SciTech Connect (OSTI)

    Hal finkel; Kalyan Kumaran; Adrian Pope; David Daniel; Zarija Lukic

    2013-04-24

    An astonishing 99.6% of our Universe is dark. Observations indicate that the Universe consists of 70% of a mysterious dark energy and 25% of a yet-unidentified dark matter component, and only 0.4% of the remaining ordinary matter is visible. Understanding the physics of this dark sector is the foremost challenge in cosmology today. Sophisticated simulations of the evolution of the Universe play a crucial task in this endeavor. This movie shows an intermediate stage in a large simulation of the distribution of matter in the Universe, the so-called cosmic web, accounting for the influence of dark energy. The simulation is evolving 1.1 trillion particles. The movie shows a snapshot of the Universe when it was 1.6 billion years old.

  7. Sustainable Energy Solutions Task 5.1: Expand the Number of Faculty Working in Wind Energy: Wind Energy Storage

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Energy storage to reduce peak-load demands on utilities is emerging as an important way to address the intermittency of renewable energy resources. Wind energy produced in the middle of the night may be wasted unless it can be stored, and conversely, solar energy production could be used after the sun goes down if we had an efficient way to store it. It is uses an electrochemical process to convert hydrogen gas into electricity. The role of fuel cells in energy storage is a very important criteria and it is compared with regular batteries for the advantages of fuel cells over the latter. For this reason fuel cells can be employed. PEM fuel cells can be effectively used for this reason. But the performance and durability of PEM fuel cells are significantly affected by the various components used in a PEM cell. Several parameters affect the performance and durability of fuel cells. They are water management, degradation of components, cell contamination, reactant starvation and thermal management. Water management is the parameter which plays a major role in the performance of a fuel cell. Based on the reviews, improvement of condensation on the cathode side of a fuel cell is expected to improve the performance of the fuel cell by reducing cathode flooding. Microchannels and minichannels can enhance condensation on the cathode side of a fuel cell. Computational fluid dynamics (CFD) analysis was performed to evaluate and compare the condensation of steam in mini and microchannels with hydraulic diameter of 2mm, 2.66mm, 200µm and 266µm respectively. The simulation was run at various mass flux values ranging from 0.5 kg/m2s and 4 kg/m2s. The length of the mini and microchannels were in the range of 20 mm to 100 mm. CFD software’s GAMBIT and FLUENT were used for simulating the condensation process through the mini and microchannels. Steam flowed through the channels, whose walls were cooled by natural convection of air at room temperature. The outlet temperature of the condensate was in the range of 25oC to 90oC. The condensation process in minichannels was observed to be different from that in microchannels. It was found that the outlet temperature of the condensate decreased as the diameter of the channel decreased. It was also evident that the increase in length of the channel further decreased the outlet temperature of the condensate and subsequently the condensation heat flux. The investigation also showed that the pressure drop along the channel length increased with decreasing hydraulic diameter and length of the mini and micro channel. Conversely, the pressure drop along the channel increased with increasing inlet velocity of the stream. It was then suggested to use microchannels on the cathode section of a fuel cell for improved condensation.

  8. The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies

    SciTech Connect (OSTI)

    Oguri, Masamune; et al.

    2012-05-01

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to \\Omega_\\Lambda=0.79^{+0.06}_{-0.07}(stat.)^{+0.06}_{-0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w=-1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z<1 in any combinations of constraints. For instance, number density evolution quantified as \

  9. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luque, E.

    2016-02-09

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  10. DOE Announces Webinars on Building Energy Optimization Tool Training, Placing Utility Energy Service Contract Task Orders, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. View this week's webinars.

  11. Galaxies in x-ray selected clusters and groups in Dark Energy Survey data. I. Stellar mass growth of bright central galaxies since z ~ 1.2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Miller, C.; McKay, T.; Rooney, P.; Evrard, A. E.; Romer, A. K.; R. Perfecto; Song, J.; Desai, S.; Mohr, J.; et al

    2016-01-14

    Here, using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift.

  12. Task Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLICITATION NO. DE-SOL-0003641 Exhibit G The following item(s) are contained in this file: ITEM NAME NO. OF PAGES(S) Sample Task Order 1 Site Support Services 14 Sample Task Order 2 Health Program Services 16 Sample Task Order 3 Janitorial Services (including Child 30 Care Center Cleaning Standards) Task Order Transition 4 DE-SOL-0003641 Sample Task Order 1 (including Exhibit I) SAMPLE TASK ORDER 1 SITE OPERATIONS SUPPORT TASK ORDER REQUEST INFORMATION: a) Task Order Period of Performance -

  13. DoE Early Career Research Program: Final Report: Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics

    SciTech Connect (OSTI)

    Farbin, Amir

    2015-07-15

    This is the final report of for DoE Early Career Research Program Grant Titled "Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics".

  14. DES J0454–4448: Discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    SciTech Connect (OSTI)

    Reed, S. L.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = –26.5) quasar DES J0454–4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H i near zone size of 4.1+1.1–1.2 proper Mpc. The quasar was selected as an i-band drop out with i–z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i–z and z–Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.

  15. DES J0454–4448: Discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reed, S. L.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = –26.5) quasar DES J0454–4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H i near zone size of 4.1+1.1–1.2 proper Mpc. The quasar was selected as an i-band drop out with i–z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightestmore » of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i–z and z–Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.« less

  16. Secretary of Energy Advisory Board to Discuss Hubs+ and FracFocus Task Force Final Reports

    Broader source: Energy.gov [DOE]

    Washington, D.C. – On Friday, March 28, 2014, the Secretary of Energy Advisory Board (SEAB), which provides advice and recommendations on the Department’s activities, will meet to discuss and take...

  17. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    SciTech Connect (OSTI)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  18. Indiana University High Energy Physics, Task A. Technical progress report, 1992--1993

    SciTech Connect (OSTI)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-10-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN.

  19. Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology

    Office of Environmental Management (EM)

    Site | Department of Energy Site: Plutonium Preparation Project (PuPP) at Savannah River Site Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River Site Full Document and Summary Versions are available for download PDF icon Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River Site PDF icon Summary - Plutonium Preparation Project at the Savannah River Site More Documents & Publications EIS-0283-S2: Interim Action Determination EIS-0283-S2:

  20. Report of the Infrastructure Task Force of the Nuclear Energy Research

    Office of Environmental Management (EM)

    Research Foundation | Department of Energy Blue Ribbon Panel on the Review of the Radiation Effects Research Foundation Report of the Blue Ribbon Panel on the Review of the Radiation Effects Research Foundation October 11, 1995 This report summarizes the findings of the Blue Ribbon Panel's review of the RERF scientific projects and future research plans The report recommended that the core studies be continued for the next 20 years. PDF icon Report of the Blue Ribbon Panel on the Review of

  1. Dark D-brane cosmology

    SciTech Connect (OSTI)

    Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne E-mail: d.e.wills@durham.ac.uk

    2014-06-01

    Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.

  2. Fermilab | Newsroom | Press Releases | August 17, 2015: Dark...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 FOR IMMEDIATE RELEASE Dark Energy Survey finds more celestial neighbors New dwarf galaxy candidates could mean our sky is more crowded than we thought photo The Dark Energy...

  3. Fermilab | Newsroom | Press Releases | August 18, 2014: Dark...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive to see what the Dark Energy Camera sees. thumb This image of the NGC 1398 galaxy was taken with the Dark Energy Camera. This galaxy lives in the Fornax cluster,...

  4. Dark Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Matter Scientists are using the underground of the Waste Isolation Pilot Plant to try to solve the universe's major missing mass problem. He is enjoying his search They are searching for the presence of particles that may have mass but hardly interact with other matter. Based on observations of the relationships between mass and gravity and the speed of the stars and other cosmological systems, scientists believe that more than 90 percent of the universe's mass is "missing." A

  5. Sustainable Energy Solutions Task 4.2: UV Degradation Prevention on Fiber-Reinforced Composite Blades

    SciTech Connect (OSTI)

    Janet M. Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Use of wind energy has expanded very quickly because of the energy prices, environmental concerns and improved efficiency of wind generators. Rather than using metal and alloy based wind turbine blades, larger size fiber (glass and carbon) reinforced composite blades have been recently utilized to increase the efficiency of the wind energy in both high and low wind potential areas. In the current composite manufacturing, pre-preg and vacuum-assisted/heat sensitive resin transfer molding and resin infusion methods are employed. However, these lighter, stiffer and stronger composite blades experience ultraviolet (UV) light degradation where polymers (epoxies and hardeners) used for the blades manufacturing absorb solar UV lights, and cause photolytic, thermo-oxidative and photo-oxidative reactions resulting in breaking of carbon-hydrogen bonds, polymer degradation and internal and external stresses. One of the main reasons is the weak protective coatings/paints on the composite blades. This process accelerates the aging and fatigue cracks, and reduces the overall mechanical properties of the blades. Thus, the lack of technology on coatings for blade manufacturing is forcing many government agencies and private companies (local and national windmill companies) to find a better solution for the composite wind blades. Kansas has a great wind potential for the future energy demand, so efficient wind generators can be an option for continuous energy production. The research goal of the present project was to develop nanocomposite coatings using various inclusions against UV degradation and corrosion, and advance the fundamental understanding of degradation (i.e., physical, chemical and physiochemical property changes) on those coatings. In pursuit of the research goal, the research objective of the present program was to investigate the effects of UV light and duration on various nanocomposites made mainly of carbon nanotubes and graphene nanoflakes, contribute the valuable information to this emerging field of advanced materials and manufacturing and advance the Kansas economy through creation of engineering knowledge and products in the wind energy. The proposed work was involved in a multidisciplinary research program that incorporates nanocomposite fabrication, advanced coating, characterization, surface and colloidal chemistry, physicochemistry, corrosion science, and analysis with a simple and effective testing methodology. The findings were closely related to our hypothesis and approaches that we proposed in this proposal. The data produced in the study offered to advance the physical understanding of the behavior of nanostructured materials for the prevention of UV light at different exposure time and salt fogging. Founding of this proposal enabled the first UV resistive nanocomposite corrosion coating effort in Kansas to impact the local and national wind mill industry. Results of this program provided valuable opportunities for the multidisciplinary training of undergraduate and graduate students at Wichita State University (WSU), as well as a number of aircraft companies (e.g., Cessna, Hawker Beechcraft, Spirit, Boeing and Bombardier/Learjet) and other local and regional industries.

  6. REPORT OF RESEARCH ACTIVITIES FOR THE YEARS 2000 - 2003; HIGH ENERGY PHYSICS GROUP; SOUTHERN METHODIST UNIVERSITY; EXPERIMENTAL TASK A AND THEORY TASK B

    SciTech Connect (OSTI)

    Dr. Ryszard Stroynowski

    2003-07-01

    The experimental program in High Energy Physics at SMU was initiated in 1992. Its main goal is the search for new physics phenomena beyond the Standard Model (SSC, LHC) and the study of the properties of heavy quarks and leptons (CLEO, BTeV).

  7. Dark matter beams at LBNF (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Dark matter beams at LBNF High-intensity ... We characterize the spatial and energy distributions of the dark matter and neutrino ...

  8. Dark Matter Jets at the LHC (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such ...

  9. TASK ORDER

    National Nuclear Security Administration (NNSA)

    NA0000XXX Task Order No: DE-DT000XXXX Statement of Work August 7, 2015 Task Order Title: Design, Integration, Construction, Communications, and Engineering (DICCE) Services for Port of Cat Lai, Vietnam. Scope: The Contractor shall design, construct, and integrate fully functional portal monitor and communications systems at designated sites in Vietnam. * Port of Cat Lai Requirements Documents: The following task order requirements describe key milestones and deliverables. For a more complete

  10. A Search for dark matter in events with one jet and missing transverse energy in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-03-01

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp collisions at {radical}s = 1.96 TeV corresponding to an integrated luminosity of 6.7 fb{sup -1} recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c{sup 2}, and on spin-dependent interactions up to masses of 200 GeV/c{sup 2}.

  11. A SEARCH FOR THE HIGGS BOSON AND A SEARCH FOR DARK-MATTER PARTICLE WITH JETS AND MISSING TRANSVERSE ENERGY AT COLLIDER DETECTOR AT FERMILAB

    SciTech Connect (OSTI)

    Liu, Qiuguang

    2013-01-01

    Finding the standard model Higgs boson and discovering beyond-standard model physics phenomena have been the most important goals for the high-energy physics in the last decades. In this thesis, we present two such searches. First is the search for the low mass standard model Higgs boson produced in association with a vector boson; second is the rst search for a dark-matter candidate (D) produced in association with a top quark (t) in particle colliders. We search in events with energetic jets and large missing transverse energy { a signature characterized by complicated backgrounds { in data collected by the CDF detector with proton-antiproton collisions at p s = 1:96 TeV. We discuss the techniques that have been developed for background modeling, for discriminating signal from background, and for reducing background resulting from detector e ects. In the Higgs search, we report the 95% con dence level upper limits on the pro- duction cross section across masses of 90 to 150 GeV/c2. The expected limits are improved by an average of 14% relative to the previous analysis. The Large Hadron Collider experiments reported a Higgs-like particle with mass of 125 GeV/c2 by study- ing the data collected in year 2011/12. At a Higgs boson mass of 125 GeV/c2, our observed (expected) limit is 3.06 (3.33) times the standard model prediction, corre- sponding to one of the most sensitive searches to date in this nal state. In the dark matter search, we nd the data are consistent with the standard model prediction, thus set 95% con dence level upper limits on the cross section of the process p p ! t + D as a function of the mass of the dark-matter candidate. The xviii upper limits are approximately 0.5 pb for a dark-matter particle with masses in the range of 0 􀀀 150 GeV/c2.

  12. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect (OSTI)

    Catena, Riccardo

    2015-07-20

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  13. Dark matter beams at LBNF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  14. Quintessence with quadratic coupling to dark matter

    SciTech Connect (OSTI)

    Boehmer, Christian G.; Chan, Nyein; Caldera-Cabral, Gabriela; Lazkoz, Ruth; Maartens, Roy

    2010-04-15

    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.

  15. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    SciTech Connect (OSTI)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  16. Dipolar dark matter with massive bigravity

    SciTech Connect (OSTI)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  17. Optimization of energy window for {sup 90}Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch

    SciTech Connect (OSTI)

    Rong Xing; Ghaly, Michael; Frey, Eric C.

    2013-06-15

    Purpose: In yttrium-90 ({sup 90}Y) microsphere brachytherapy (radioembolization) of unresectable liver cancer, posttherapy {sup 90}Y bremsstrahlung single photon emission computed tomography (SPECT) has been used to document the distribution of microspheres in the patient and to help predict potential side effects. The energy window used during projection acquisition can have a significant effect on image quality. Thus, using an optimal energy window is desirable. However, there has been great variability in the choice of energy window due to the continuous and broad energy distribution of {sup 90}Y bremsstrahlung photons. The area under the receiver operating characteristic curve (AUC) for the ideal observer (IO) is a widely used figure of merit (FOM) for optimizing the imaging system for detection tasks. The IO implicitly assumes a perfect model of the image formation process. However, for {sup 90}Y bremsstrahlung SPECT there can be substantial model-mismatch (i.e., difference between the actual image formation process and the model of it assumed in reconstruction), and the amount of the model-mismatch depends on the energy window. It is thus important to account for the degradation of the observer performance due to model-mismatch in the optimization of the energy window. The purpose of this paper is to optimize the energy window for {sup 90}Y bremsstrahlung SPECT for a detection task while taking into account the effects of the model-mismatch. Methods: An observer, termed the ideal observer with model-mismatch (IO-MM), has been proposed previously to account for the effects of the model-mismatch on IO performance. In this work, the AUC for the IO-MM was used as the FOM for the optimization. To provide a clinically realistic object model and imaging simulation, the authors used a background-known-statistically and signal-known-statistically task. The background was modeled as multiple compartments in the liver with activity parameters independently following a Gaussian distribution; the signal was modeled as a tumor with a Gaussian-distributed activity parameter located randomly with equal probability at one of three positions. The IO test statistics (i.e., likelihood ratios) were estimated using Markov-chain Monte Carlo methods. The authors realistically modeled human anatomy using a digital phantom code, and realistically simulated {sup 90}Y bremsstrahlung SPECT imaging with a clinical SPECT system and typical imaging parameters using a previously validated Monte Carlo bremsstrahlung simulation method. Model-mismatch was included by modeling image formation process in the calculation of IO test statistics using an analytic modeling method previously developed for quantitative {sup 90}Y bremsstrahlung SPECT. To demonstrate the effects of the model-mismatch on the detection task, the authors optimized the energy window both with and without model-mismatch included in the IO. Results: For all the energy windows, the AUC values for the IO-MM were smaller than that for the IO. The optimal windows for the IO-MM and the IO were 80-180 and 60-400 keV, respectively. Conclusions: The authors have demonstrated the degradation of the ideal performance due to model-mismatch and optimized the energy window for {sup 90}Y bremsstrahlung SPECT for detection tasks by accounting for the effects of the model-mismatch. The obtained optimal window was much narrower when taking into account the model-mismatch and similar to that obtained previously for estimation tasks.

  18. Asymmetric dark matter

    SciTech Connect (OSTI)

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  19. Oak Ridge Reservation volume I. Y-12 mercury task force files: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    1995-02-17

    The purpose of this guide is to describe each of the series of records identified in the documents of the Y-12 Mercury Task Force Files that pertain to the use of mercury in the separation and enrichment of lithium isotopes at the Department of Energy`s (DOE) Y-12 Plant in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project. Specific attention will be given to the history of the DOE-Oak Ridge Reservation, the development of the Y-12 Plant, and the use of mercury in the production of nuclear weapons during the 1950s and early 1960s. This introduction provides background information on the Y-12 Mercury Task Force Files, an assembly of documents resulting from the 1983 investigation of the Mercury Task Force into the effects of mercury toxicity upon workplace hygiene and worker health, the unaccountable loss of mercury, and the impact of those losses upon the environment. This introduction also explains the methodology used in the selection and inventory of these record series. Other topics include the methodology used to produce this guide, the arrangement of the detailed record series descriptions, and information concerning access to the collection.

  20. Redshift-space distortions in massive neutrino and evolving dark...

    Office of Scientific and Technical Information (OSTI)

    Redshift-space distortions in massive neutrino and evolving dark energy cosmologies ... This content will become publicly available on March 16, 2017 Title: Redshift-space ...

  1. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  2. A possible explanation of low energy γ-ray excess from galactic centre and Fermi bubble by a Dark Matter model with two real scalars

    SciTech Connect (OSTI)

    Modak, Kamakshya Prasad; Majumdar, Debasish

    2015-03-09

    We promote the idea of multi-component Dark Matter (DM) to explain results from both direct and indirect detection experiments. In these models as contribution of each DM candidate to relic abundance is summed up to meet WMAP/Planck measurements of Ω{sub DM}, these candidates have larger annihilation cross-sections compared to the single-component DM models. We illustrate this fact by introducing an extra scalar to the popular single real scalar DM model. We also present detailed calculations for the vacuum stability bounds, perturbative unitarity and triviality constraints on this model. As direct detection experimental results still show some conflict, we kept our options open, discussing different scenarios with different DM mass zones. In the framework of our model we make an interesting observation: the existing direct detection experiments like CDMS II, CoGeNT, CRESST II, XENON 100 or LUX together with the observation of excess low energy γ-ray from galactic centre and Fermi bubble by Fermi Gamma-ray Space Telescope (FGST) already have the capability to distinguish between different DM halo profiles.

  3. Sustainable Energy Solutions Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

  4. The darkness of spin-0 dark radiation

    SciTech Connect (OSTI)

    Marsh, M.C. David

    2015-01-01

    We show that the scattering of a general spin-0 sector of dark radiation off the pre-recombination thermal plasma results in undetectably small spectral distortions of the Cosmic Microwave Background.

  5. Dark Forces and Light Dark Matter

    SciTech Connect (OSTI)

    Hooper, Dan; Weiner, Neal; Xue, Wei

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  6. ESPC ENABLE Draft Task Order

    Broader source: Energy.gov [DOE]

    Document provides a draft for an agency to use when forming an ESPC ENABLE contract and making a task order award. This draft task order provides the framework for a contract that agencies and energy service companies can tailor to the particular needs of each site or project.

  7. FAQS Job Task Analyses - Deactivation and Decommissioning

    Office of Environmental Management (EM)

    Energy Civil/Structural Engineering FAQS Job Task Analyses - Civil/Structural Engineering FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF

  8. The C-4 Dark Matter Experiment

    SciTech Connect (OSTI)

    Bonicalzi, Ricco; Collar, J. I.; Colaresi, J.; Fast, James E.; Fields, N.; Fuller, Erin S.; Hai, M.; Hossbach, Todd W.; Kos, Marek S.; Orrell, John L.; Overman, Cory T.; Reid, Douglas J.; VanDevender, Brent A.; Wiseman, Clinton G.; Yocum, K. M.

    2013-06-01

    Abstract We describe the experimental design of C-4, an expansion of the CoGeNT dark matter search to four identical detectors each approximately three times the mass of the p-type point contact (PPC) germanium diode presently taking data at the Soudan Underground Laboratory. Expected reductions of radioactive backgrounds and energy threshold are discussed, including an estimate of the additional sensitivity to low-mass dark matter candidates to be obtained with this search.

  9. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    SciTech Connect (OSTI)

    Cort, Katherine A.; Culp, Thomas D.

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  10. Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium

    SciTech Connect (OSTI)

    1980-01-01

    A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

  11. Ratcheting Up The Search for Dark Matter

    SciTech Connect (OSTI)

    McDermott, Samuel Dylan

    2014-04-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and decay of the Higgs boson represent a unique entry p! oint to searches for new kinds of physics. Continuing to refine our understanding of the Higgs boson will also allow us to learn about a vast array of possible new physics. This dissertation includes work parameterizing some of the scenarios that are most likely to be discovered with future Higgs data.

  12. Interagency Task Force on Carbon Capture and Storage | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Federal Agencies establishing an Interagency Task Force on Carbon Capture and Storage. ... The Task Force, co-chaired by the Department of Energy and the Environmental Protection ...

  13. Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H{sup ?}) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors

    SciTech Connect (OSTI)

    Mandal, A.; Ghadi, H.; Mathur, K.L.; Basu, A.; Subrahmanyam, N.B.V.; Singh, P.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Abstract: Here we propose a carrier transport mechanism for low energy H{sup ?} ions implanted InAs/GaAs quantum dot infrared photodetectors supportive of the experimental results obtained. Dark current density suppression of up to four orders was observed in the implanted quantum dot infrared photodetectors, which further demonstrates that they are effectively operational. We concentrated on determining how defect-related material and structural changes attributed to implantation helped in dark current density reduction for InAs/GaAs quantum dot infrared photodetectors. This is the first study to report the electrical carrier transport mechanism of H{sup ?} ion-implanted InAs/GaAs quantum dot infrared photodetectors.

  14. Comment on ''Interacting holographic dark energy model and generalized second law of thermodynamics in a non-flat universe{sup ,} by M.R. Setare (JCAP 01 (2007) 023)

    SciTech Connect (OSTI)

    Karami, K.

    2010-01-01

    Author of ref. 1, M.R. Setare (JCAP 01 (2007) 023), by redefining the event horizon measured from the sphere of the horizon as the system's IR cut-off for an interacting holographic dark energy model in a non-flat universe, showed that the generalized second law of thermodynamics is satisfied for the special range of the deceleration parameter. His paper includes an erroneous calculation of the entropy of the cold dark matter. Also there are some missing terms and some misprints in the equations of his paper. Here we present that his conclusion is not true and the generalized second law is violated for the present time independently of the deceleration parameter.

  15. Identifying dark matter interactions in monojet searches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Rentala, Vikram

    2014-05-22

    We study the discrimination of quark-initiated jets from gluon-initiated jets in monojet searches for dark matter using the technique of averaged jet energy profiles. We demonstrate our results in the context of effective field theories of dark matter interactions with quarks and gluons, but our methods apply more generally to a wide class of models. Different effective theories of dark matter and the standard model backgrounds each have a characteristic quark/gluon fraction for the leading jet. When used in conjunction with the traditional cut-and-count monojet search, the jet energy profile can be used to set stronger bounds on contact interactionsmore » of dark matter. In the event of a discovery of a monojet excess at the 14 TeV LHC, contact interactions between dark matter with quarks or with gluons can be differentiated at the 95% confidence level. For a given rate at the LHC, signal predictions at direct detection experiments for different dark matter interactions can span five orders of magnitude. Lastly, the ability to identify these interactions allows us to make a tighter connection between LHC searches and direct detection experiments.« less

  16. Identifying dark matter interactions in monojet searches

    SciTech Connect (OSTI)

    Agrawal, Prateek; Rentala, Vikram

    2014-05-01

    We study the discrimination of quark-initiated jets from gluon-initiated jets in monojet searches for dark matter using the technique of averaged jet energy profiles. We demonstrate our results in the context of effective field theories of dark matter interactions with quarks and gluons, but our methods apply more generally to a wide class of models. Different effective theories of dark matter and the standard model backgrounds each have a characteristic quark/gluon fraction for the leading jet. When used in conjunction with the traditional cut-and-count monojet search, the jet energy profile can be used to set stronger bounds on contact interactions of dark matter. In the event of a discovery of a monojet excess at the 14 TeV LHC, contact interactions between dark matter with quarks or with gluons can be differentiated at the 95% confidence level. For a given rate at the LHC, signal predictions at direct detection experiments for different dark matter interactions can span five orders of magnitude. The ability to identify these interactions allows us to make a tighter connection between LHC searches and direct detection experiments.

  17. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  18. Distance Probes of Dark Energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D' Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; et al

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  19. Wind Supply Curves and Location Scenarios in the West: Summary of the Clean and Diverse Energy Wind Task Force Report; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Parsons, B.; Shimshak, R.; Larson, D.; Carr, T.

    2006-06-01

    This paper presents supply curves and scenarios that were developed by the Wind Task Force. Much of this information has been adapted from the original Wind Task Force report.

  20. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2011-12-01

    This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  1. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2009-06-01

    This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  2. Ghost dark matter

    SciTech Connect (OSTI)

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  3. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect (OSTI)

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  4. Mass map shines light on dark matter | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass map shines light on dark matter By Sarah Schlieder * July 9, 2015 Tweet EmailPrint Dark matter may find it tougher to hide in our universe. An international team of researchers has developed a new map of the distribution of dark matter in the universe using data from the Dark Energy Survey (DES). The DES, underway at the Blanco telescope in Chile, is a cosmological galaxy survey that will map approximately an eighth of the visible sky. The primary aim of the DES is to better characterize

  5. The darkside multiton detector for the direct dark matter search

    SciTech Connect (OSTI)

    Aalseth, C. E.; Agnes, P.; Alton, A.; Arisaka, K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Condon, C.; Crippa, L.; D’Angelo, D.; D’Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Foxe, M.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hime, A.; Humble, P.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jaffe, D. E.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lissia, M.; Lombardi, P.; Ludhova, L.; Luitz, S.; Lukyachenko, G.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Markov, D.; Martoff, J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Montanari, D.; Nelson, A.; Odrowski, S.; Odrzywolek, A.; Orrell, J. L.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, B.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Perasso, L.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Recine, K.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, N.; Rossi, B.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smallcomb, M.; Smirnov, O.; Sotnikov, A.; Suvurov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S. E.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Williams, R.; Wojcik, M.; Xu, J.; Yang, C. G.; Yoo, J.; Yu, B.; Zavatarelli, S.; Zhong, W. L.; Zuzel, G.

    2015-01-01

    Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as well as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.

  6. The darkside multiton detector for the direct dark matter search

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aalseth, C. E.; Agnes, P.; Alton, A.; Arisaka, K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; et al

    2015-01-01

    Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as wellmore » as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.« less

  7. TaskFarmer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TaskFarmer TaskFarmer TaskFarmer is a utility developed in-house at NERSC to farm tasks onto a compute node - these can be single- or multi-core tasks. It tracks which tasks have completed successfully, and allows straightforward re-submission of failed or un-run jobs from a task list. The base functionality is contained within the runcommands.sh script. This launches a server on the head node of the compute allocation that will keep track of your tasks, and workers on cores of the other compute

  8. Vector field models of modified gravity and the dark sector

    SciTech Connect (OSTI)

    Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.

    2010-05-15

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.

  9. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect (OSTI)

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  10. Big Questions: Dark Matter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  11. Big Questions: Dark Matter

    SciTech Connect (OSTI)

    Lincoln, Don

    2013-12-05

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  12. Asymmetric twin Dark Matter

    SciTech Connect (OSTI)

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  13. Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  14. Draft Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  15. Supercomputing Sheds Light on the Dark Universe

    SciTech Connect (OSTI)

    Salman Habib

    2012-11-15

    At Argonne National Laboratory, scientists are using supercomputers to shed light on one of the great mysteries in science today, the Dark Universe. With Mira, a petascale supercomputer at the Argonne Leadership Computing Facility, a team led by physicists Salman Habib and Katrin Heitmann will run the largest, most complex simulation of the universe ever attempted. By contrasting the results from Mira with state-of-the-art telescope surveys, the scientists hope to gain new insights into the distribution of matter in the universe, advancing future investigations of dark energy and dark matter into a new realm. The team's research was named a finalist for the 2012 Gordon Bell Prize, an award recognizing outstanding achievement in high-performance computing.

  16. Fermilab | Newsroom | Press Releases | August 18, 2014: Dark...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab Photos photo Download image: Med Res | Hi Res This image of the NGC 1398 galaxy was taken with the Dark Energy Camera. This galaxy lives in the Fornax cluster,...

  17. The Search for Dark Matter

    SciTech Connect (OSTI)

    Orrell, John

    2013-11-20

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  18. The Search for Dark Matter

    ScienceCinema (OSTI)

    Orrell, John

    2014-07-24

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  19. Hidden sector monopole, vector dark matter and dark radiation with Higgs portal

    SciTech Connect (OSTI)

    Baek, Seungwon; Ko, P.; Park, Wan-Il E-mail: pko@kias.re.kr

    2014-10-01

    We show that the 't Hooft-Polyakov monopole model in the hidden sector with Higgs portal interaction makes a viable dark matter model, where monopole and massive vector dark matter (VDM) are stable due to topological conservation and the unbroken subgroup U(1 {sub X}. We show that, even though observed CMB data requires the dark gauge coupling to be quite small, a right amount of VDM thermal relic can be obtained via s-channel resonant annihilation for the mass of VDM close to or smaller than the half of SM higgs mass, thanks to Higgs portal interaction. Monopole relic density turns out to be several orders of magnitude smaller than the observed dark matter relic density. Direct detection experiments, particularly, the projected XENON1T experiment, may probe the parameter space where the dark Higgs is lighter than ?<50 GeV. In addition, the dark photon associated with the unbroken U(1 {sub X} contributes to the radiation energy density at present, giving ?N{sub eff}{sup ?}?0.1 as the extra relativistic neutrino species.

  20. Inflatable Dark Matter

    SciTech Connect (OSTI)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2015-07-30

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.

  1. Task Force on Biofuels Infrastructure

    Broader source: Energy.gov [DOE]

    Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation’s transportation fuel supply. Specifically, the Task Force explored issues and developed recommendations for advancing the infrastructure investments needed to support timely and cost-effective implementation of the current biofuels mandate.

  2. LSST and the Physics of the Dark Universe

    ScienceCinema (OSTI)

    Tyson, Anthony [UC Davis, California, United States

    2010-09-01

    The physics that underlies the accelerating cosmic expansion is unknown. This, 'dark energy' and the equally mysterious 'dark matter' comprise most of the mass-energy of the universe and are outside the standard model. Recent advances in optics, detectors, and information technology, has led to the design of a facility that will repeatedly image an unprecedented volume of the universe: LSST. For the first time, the sky will be surveyed wide, deep and fast. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. I will review the technology of LSST, and focus on several independent probes of the nature of dark energy and dark matter. These new investigations will rely on the statistical precision obtainable with billions of galaxies.

  3. Task Time Tracker

    Energy Science and Technology Software Center (OSTI)

    2013-07-24

    This client-side web app tracks the amount of time spent on arbitrary tasks. It allosw the creation of an unlimited number of arbitrarily named tasks ans via simple interactions, tracks the amount of time spent working on the drfined tasks.

  4. Probing the Dark Matter mass and nature with neutrinos

    SciTech Connect (OSTI)

    Blennow, Mattias; Carrigan, Marcus; Martinez, Enrique Fernandez E-mail: carri@kth.se

    2013-06-01

    We study the possible indirect neutrino signal from dark matter annihilations inside the Sun's core for relatively light dark matter masses in the O(10) GeV range. Due to their excellent energy reconstruction capabilities, we focus on the detection of this flux in liquid argon or magnetized iron calorimeter detectors, proposed for the next generation of far detectors of neutrino oscillation experiments and neutrino telescopes. The aim of the study is to probe the ability of these detectors to determine fundamental properties of the dark matter nature such as its mass or its relative annihilation branching fractions to different channels. We find that these detectors will be able to accurately measure the dark matter mass as long as the dark matter annihilations have a significant branching into the neutrino or at least the τ channel. We have also discovered degeneracies between different dark matter masses and annihilation channels, where a hard τ channel spectrum for a lower dark matter mass may mimic that of a softer quark channel spectrum for a larger dark matter mass. Finally, we discuss the sensitivity of the detectors to the different branching ratios and find that it is between one and two orders of magnitude better than the current bounds from those coming from analysis of Super-Kamiokande data.

  5. THE DARK MOLECULAR GAS

    SciTech Connect (OSTI)

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  6. FAQS Job Task Analyses - Deactivation and Decommissioning | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FAQS Job Task Analyses - Deactivation and Decommissioning FAQS Job Task Analyses - Deactivation and Decommissioning FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between

  7. FAQS Job Task Analyses - Civil/Structural Engineering | Department of

    Energy Savers [EERE]

    Energy Civil/Structural Engineering FAQS Job Task Analyses - Civil/Structural Engineering FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF

  8. Can WIMP dark matter overcome the nightmare scenario? (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Can WIMP dark matter overcome the nightmare scenario? Citation Details In-Document Search Title: Can WIMP dark matter overcome the nightmare scenario? Even if new physics beyond the standard model indeed exists, the energy scale of new physics might be beyond the reach at the Large Hadron Collider (LHC), and the LHC could find only the Higgs boson but nothing else. This is the so-called ''nightmare scenario.'' On the other hand, the existence of the dark matter has been

  9. A couplet from flavored dark matter

    SciTech Connect (OSTI)

    Agrawal, Prateek; Chacko, Zackaria; Kilic, Can; Verhaaren, Christopher B.

    2015-08-17

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In this scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to three photon lines. Two of these lines are closely spaced, and constitute the couplet. Provided the flavor violation is sufficiently small, the ratios of the line energies are determined in terms of the charged lepton masses, and constitute a prediction of this framework. Furthermore, for dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 keV line. As a result, the next generation of X-ray telescopes may have the necessary resolution to resolve the double line structure of such a couplet.

  10. A couplet from flavored dark matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Chacko, Zackaria; Kilic, Can; Verhaaren, Christopher B.

    2015-08-17

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In this scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to threemore » photon lines. Two of these lines are closely spaced, and constitute the couplet. Provided the flavor violation is sufficiently small, the ratios of the line energies are determined in terms of the charged lepton masses, and constitute a prediction of this framework. Furthermore, for dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 keV line. As a result, the next generation of X-ray telescopes may have the necessary resolution to resolve the double line structure of such a couplet.« less

  11. Electroweak fragmentation functions for dark matter annihilation

    SciTech Connect (OSTI)

    Cavasonza, Leila Ali; Krämer, Michael; Pellen, Mathieu

    2015-02-18

    Electroweak corrections can play a crucial role in dark matter annihilation. The emission of gauge bosons, in particular, leads to a secondary flux consisting of all Standard Model particles, and may be described by electroweak fragmentation functions. To assess the quality of the fragmentation function approximation to electroweak radiation in dark matter annihilation, we have calculated the flux of secondary particles from gauge-boson emission in models with Majorana fermion and vector dark matter, respectively. For both models, we have compared cross sections and energy spectra of positrons and antiprotons after propagation through the galactic halo in the fragmentation function approximation and in the full calculation. Fragmentation functions fail to describe the particle fluxes in the case of Majorana fermion annihilation into light fermions: the helicity suppression of the lowest-order cross section in such models cannot be lifted by the leading logarithmic contributions included in the fragmentation function approach. However, for other classes of models like vector dark matter, where the lowest-order cross section is not suppressed, electroweak fragmentation functions provide a simple, model-independent and accurate description of secondary particle fluxes.

  12. Task Order Awarded for Environmental Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order for environmental technical services to Professional Project Services, Inc., of Oak Ridge, TN, for support services at the Paducah Gaseous Diffusion Plant located near Paducah, KY.

  13. Dark aspects of massive spinor electrodynamics

    SciTech Connect (OSTI)

    Kim, Edward J.; Kouwn, Seyen; Oh, Phillial; Park, Chan-Gyung E-mail: seyen@ewha.ac.kr E-mail: parkc@jbnu.ac.kr

    2014-07-01

    We investigate the cosmology of massive spinor electrodynamics when torsion is non-vanishing. A non-minimal interaction is introduced between the torsion and the vector field and the coupling constant between them plays an important role in subsequential cosmology. It is shown that the mass of the vector field and torsion conspire to generate dark energy and pressureless dark matter, and for generic values of the coupling constant, the theory effectively provides an interacting model between them with an additional energy density of the form ? 1/a{sup 6}. The evolution equations mimic ?CDM behavior up to 1/a{sup 3} term and the additional term represents a deviation from ?CDM. We show that the deviation is compatible with the observational data, if it is very small. We find that the non-minimal interaction is responsible for generating an effective cosmological constant which is directly proportional to the mass squared of the vector field and the mass of the photon within its current observational limit could be the source of the dark energy.

  14. Dark matter annihilation or unresolved astrophysical sources? Anisotropy

    Office of Scientific and Technical Information (OSTI)

    probe of the origin of the cosmic gamma-ray background (Journal Article) | SciTech Connect Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin of the cosmic gamma-ray background Citation Details In-Document Search Title: Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin of the cosmic gamma-ray background The origin of the cosmic gamma-ray background (CGB) is a longstanding mystery in high-energy astrophysics.

  15. Maximum patch method for directional dark matter detection

    SciTech Connect (OSTI)

    Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Laboratory for Nuclear Science, MIT Kavli Institute for Astrophysics and Space Research, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2008-07-01

    Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.

  16. Direct search for dark matter

    SciTech Connect (OSTI)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  17. Decoding dark matter in genes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decoding dark matter in genes Decoding dark matter in genes Possible future applications, for example, include making new cancer therapies based on how ribosomes differentiate in healthy versus cancerous tissue. February 19, 2016 Decoding dark matter in genes In 1994, researchers from Harvard and Stanford published a paper in which they described three mice: one was yellow and fat, one mottled and fat, and the last one was brown and lean. An ordinary image, except for one thing: despite being so

  18. Constraints on particle dark matter from cosmic-ray antiprotons

    SciTech Connect (OSTI)

    Fornengo, N.; Vittino, A.; Maccione, L. E-mail: luca.maccione@lmu.de

    2014-04-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints.

  19. Discrete dark matter

    SciTech Connect (OSTI)

    Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apartado 22085, E-46071 Valencia (Spain)

    2010-12-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z{sub 2} subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while {theta}{sub 13}=0 gives no CP violation in neutrino oscillations.

  20. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; et al

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements,more » basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.« less

  1. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    SciTech Connect (OSTI)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  2. Perturbed recombination from dark matter annihilation (Journal...

    Office of Scientific and Technical Information (OSTI)

    Perturbed recombination from dark matter annihilation Citation Details In-Document Search Title: Perturbed recombination from dark matter annihilation Authors: Dvorkin, Cora ; ...

  3. How the scalar field of unified dark matter models can cluster

    SciTech Connect (OSTI)

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino; Diaferio, Antonaldo E-mail: nicola.bartolo@pd.infn.it E-mail: sabino.matarrese@pd.infn.it

    2008-10-15

    We use scalar field Lagrangians with a non-canonical kinetic term to obtain unified dark matter models where both the dark matter and the dark energy, the latter mimicking a cosmological constant, are described by the scalar field itself. In this framework, we propose a technique for reconstructing models where the effective speed of sound is small enough that the scalar field can cluster. These models avoid the strong time evolution of the gravitational potential and the large integrated Sachs-Wolfe effect which have been serious drawbacks of models considered previously. Moreover, these unified dark matter scalar field models can be easily generalized to behave as dark matter plus a dark energy component behaving like any type of quintessence fluid.

  4. Thermoacoustic engine simulations with lattice Boltzmann CFD. Tasks 3, 4 and 5 progress report

    SciTech Connect (OSTI)

    1995-02-06

    Advanced Projects Research Incorporated has completed tasks number 3, 4 and 5 of the specified tasks in the LANL subcontract. Task 3 required measurement of the acoustic attenuation for various thermoacoustic conditions and Task 4 involved the analysis of the energy transfer mechanisms for the geometries of Task 3. Finally, Task 5 specified that simulations of thermoacoustic engine configurations used at LANL were to be performed. Discussion of all 3 task results is presented.

  5. Advanced power assessment for Czech lignite, Task 3.6, Part 2. The 2nd international conference on energy and environment: Transitions in East Central Europe

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    On November 1-5, 1994, the Energy & Environmental Research Center (EERC) and Power Research Institute of Prague cosponsored their second conference since 1991 in the Czech Republic, entitled ``Energy and Environment: Transitions in East Central Europe.`` This conference was a continuation of the EERC`s joint commitment, initiated in 1190, to facilitate solutions to short- and long-term energy and environmental problems in East Central Europe. Production of energy from coal in an environmentally acceptable manner is a critical issue facing East Central Europe, because the region continues to rely on coal as its primary energy source. The goal of the conference was to develop partnerships between industry, government, and the research community in East Central Europe and the United States to solve energy and environmental issues in a manner that fosters economic development. Among the topics addressed at the conference were: conventional and advanced energy generation systems; economic operation of energy systems; air pollution controls; power system retrofitting and repowering, financing options; regulatory issues; energy resource options; waste utilization and disposal; and long-range environmental issues. Selected papers in the proceedings have been processed separately for inclusion in the Energy Science and Technology database.

  6. Measurements of charge and light in pure high pressure Xe towards the study of Xe+TMA mixtures with dark matter directionality sensitivity and supra-intrinsic energy resolution for 0νββ decay searches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oliveira, C. A.B.; Gehman, V.; Goldschmidt, A.; Nygren, D.; Renner, J.

    2015-03-24

    Trimethylamine (TMA) may improve the energy resolution of gaseous xenon based detectors for 0νββ decay searches through the reduction of the Fano factor by the Penning effect. This molecule may also be the key for sensing directionality of nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) in monolithic massive (ton-scale) detectors, without the need of track imaging, by making use of columnar recombination. Nuclear recoil directionality may be the path for a definite discovery of the WIMP nature of Dark Matter. An ionization chamber has been constructed and operated to explore the properties of high pressure gaseous Xe +more »TMA mixtures for particle detection in rare-event experiments. The ionization, scintillation and electroluminescence (EL) signals are measured as function of pressure and electric field. We present results for pure xenon at pressures up to 8 bar. This work has been carried out within the context of the NEXT collaboration.« less

  7. Measurements of charge and light in pure high pressure Xe towards the study of Xe+TMA mixtures with dark matter directionality sensitivity and supra-intrinsic energy resolution for 0νββ decay searches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oliveira, C. A.B.; Gehman, V.; Goldschmidt, A.; Nygren, D.; Renner, J.

    2015-03-24

    Trimethylamine (TMA) may improve the energy resolution of gaseous xenon based detectors for 0νββ decay searches through the reduction of the Fano factor by the Penning effect. This molecule may also be the key for sensing directionality of nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) in monolithic massive (ton-scale) detectors, without the need of track imaging, by making use of columnar recombination. Nuclear recoil directionality may be the path for a definite discovery of the WIMP nature of Dark Matter. An ionization chamber has been constructed and operated to explore the properties of high pressure gaseous Xe +more » TMA mixtures for particle detection in rare-event experiments. The ionization, scintillation and electroluminescence (EL) signals are measured as function of pressure and electric field. We present results for pure xenon at pressures up to 8 bar. This work has been carried out within the context of the NEXT collaboration.« less

  8. Task Order Price Evaluation Worksheet for SUPER ESPC

    Broader source: Energy.gov [DOE]

    Document provides a worksheet for evaluating price for a task order as part of a Super Energy Savings Performance Contract (ESPC).

  9. PROJECT TASK STATEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROJECT TASK STATEMENT BETWEEN Sandia Corporation AND British East India Company a corporation of the United Kingdom having a principal office in London, United Kingdom (hereinafter "Participant") Geothermal Dynamics This Project Task Statement (PTS) is under the authority and subject to all terms and conditions of Cooperative Research and Development Agreement (CRADA) No. SC##/####.##.##. A. PURPOSE Sandia National Laboratories (Sandia) and the British East India Company (BEIC) are

  10. Solving the Dark Matter Problem

    ScienceCinema (OSTI)

    Baltz, Ted

    2009-09-01

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  11. Dark-matter harmonics beyond annual modulation

    SciTech Connect (OSTI)

    Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R. E-mail: mlisanti@princeton.edu

    2013-11-01

    The count rate at dark-matter direct-detection experiments should modulate annually due to the motion of the Earth around the Sun. We show that higher-frequency modulations, including daily modulation, are also present and in some cases are nearly as strong as the annual modulation. These higher-order modes are particularly relevant if (i) the dark matter is light, O(10) GeV, (ii) the scattering is inelastic, or (iii) velocity substructure is present; for these cases, the higher-frequency modes are potentially observable at current and ton-scale detectors. We derive simple expressions for the harmonic modes as functions of the astrophysical and geophysical parameters describing the Earth's orbit, using an updated expression for the Earth's velocity that corrects a common error in the literature. For an isotropic halo velocity distribution, certain ratios of the modes are approximately constant as a function of nuclear recoil energy. Anisotropic distributions can also leave observable features in the harmonic spectrum. Consequently, the higher-order harmonic modes are a powerful tool for identifying a potential signal from interactions with the Galactic dark-matter halo.

  12. GeoVision Study Task Forces

    Broader source: Energy.gov [DOE]

    GeoVision, an Energy Department initiative, is undertaking a rigorous study that will culminate in growth scenarios for the geothermal energy sector over the next three decades. Seven current task forces assigned by the Visionary Team comprise the scope of the study.

  13. Dark matter search with CUORE-0 and CUORE

    SciTech Connect (OSTI)

    Aguirre, C. P.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; De Biasi, A.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; ODonnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2015-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale experiment made of TeO? bolometers that will probe the neutrinoless double beta decay of ?Te. Excellent energy resolution, low threshold and low background make CUORE sensitive to nuclear recoils, allowing a search for dark matter interactions. With a total mass of 741 kg of TeO?, CUORE can search for an annual modulation of the counting rate at low energies. We present data obtained with CUORE-like detectors and the prospects for a dark matter search in CUORE-0, a 40-kg prototype, and CUORE.

  14. Dark matter search with CUORE-0 and CUORE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguirre, C. P.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; et al

    2015-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale experiment made of TeO₂ bolometers that will probe the neutrinoless double beta decay of ¹³⁰Te. Excellent energy resolution, low threshold and low background make CUORE sensitive to nuclear recoils, allowing a search for dark matter interactions. With a total mass of 741 kg of TeO₂, CUORE can search for an annual modulation of the counting rate at low energies. We present data obtained with CUORE-like detectors and the prospects for a dark matter search in CUORE-0, a 40-kg prototype, and CUORE.

  15. Employee Job Task Analysis (EJTA) PIA, Richland Operations Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office PDF icon Employee Job Task Analysis (EJTA) PIA, Richland Operations Office More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - GovTrip (DOE data

  16. Dark matter with topological defects in the Inert Doublet Model

    SciTech Connect (OSTI)

    Hindmarsh, Mark; Kirk, Russell; No, Jose Miguel; West, Stephen M.

    2015-05-26

    We examine the production of dark matter by decaying topological defects in the high mass region m{sub DM}≫m{sub W} of the Inert Doublet Model, extended with an extra U(1) gauge symmetry. The density of dark matter states (the neutral Higgs states of the inert doublet) is determined by the interplay of the freeze-out mechanism and the additional production of dark matter states from the decays of topological defects, in this case cosmic strings. These decays increase the predicted relic abundance compared to the standard freeze-out only case, and as a consequence the viable parameter space of the Inert Doublet Model can be widened substantially. In particular, for a given dark matter annihilation rate lower dark matter masses become viable. We investigate the allowed mass range taking into account constraints on the energy injection rate from the diffuse γ-ray background and Big Bang Nucleosynthesis, together with constraints on the dark matter properties coming from direct and indirect detection limits. For the Inert Doublet Model high-mass region, an inert Higgs mass as low as ∼200 GeV is permitted. There is also an upper limit on string mass per unit length, and hence the symmetry breaking scale, from the relic abundance in this scenario. Depending on assumptions made about the string decays, the limits are in the range 10{sup 12} GeV to 10{sup 13} GeV.

  17. Boosted dark matter signals uplifted with self-interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong -Chul

    2015-04-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in themoreassisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.less

  18. Probing gravitational dark matter

    SciTech Connect (OSTI)

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  19. Antideuterons from decaying gravitino dark matter

    SciTech Connect (OSTI)

    Delahaye, Timur; Grefe, Michael

    2015-07-08

    We study the possibility of improving the constraints on the lifetime of gravitino dark matter in scenarios with bilinear R-parity violation by estimating the amount of cosmic-ray antideuterons that can be produced in gravitino decays. Taking into account all different sources of theoretical uncertainties, we find that the margin of improvement beyond the limits already set by cosmic-ray antiproton data are quite narrow and unachievable for the next generation of experiments. However, we also identify more promising energy ranges for future experiments.

  20. [Energy and environmental research emphasizing low-rank coal]: Task 7.1, Strategic planning. Topical report, February 1, 1994--June 30, 1995

    SciTech Connect (OSTI)

    1996-01-01

    The nations of East Central Europe regained their political and economic freedom in 1989, ending nearly a half century of centrally planned economies under the hegemony of the former Soviet Union (FSU). These nations are now emerging from economic conditions marked by price distortions and a focus on heavy industry, isolation from world markets, and a lack of occupational health and environmental safeguards. Economic recovery, environmental restoration, and political stability, as well as eventual entrance into the European Community (EC), require a reordering of policies and priorities, including those bearing on energy and the environment. This report, prepared as a background document for the Second International Conference on Energy and Environment to be held in Prague in November 1994, is composed of a summary table (Table 1) and supporting text and is intended to provide a concise review of issues related to energy and the environment for the Czech and Slovak Republics, Hungary, Poland, and Bulgaria. Organized by subject and country, Table 1 contains country profiles (Row A), information on the economy (Row B), primary energy consumption, environmental priorities, energy resources, production, and utilization (Rows C, D, F, G, H, and I), electrical generation and transmission (Rows J and K), district heating (Row L), briquettes (Row M), and environmental regulations (Row N). Pertinent policy goals, issues, and trends are noted. The reports is based largely on a review of documents published by the International Energy Agency (IEA) and the U.S. Department of Energy (DOE), as well as selected sources obtained from the countries of the region. Reference citations are keyed to information presented in Table 1.

  1. Federal Task Force Sends Recommendations to President on Fostering Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Technology | Department of Energy Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12, 2010 - 12:00am Addthis WASHINGTON - President Obama's Interagency Task Force on Carbon Capture and Storage (CCS), co-chaired by the U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE), delivered a series of recommendations to the president today on

  2. Hanford Waste Treatment Plant Support Task Order Modified | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hanford Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value

  3. Chizu Task Mapping Tool

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    Chizu is a tool for Mapping MPI processes or tasks to physical processors or nodes for optimizing communication performance. It takes the communication graph of a High Performance Computing (HPC) application and the interconnection topology of a supercomputer as input. It outputs a new MPI rand to processor mapping, which can be used when launching the HPC application.

  4. Microbial Dark Matter & Beyond

    SciTech Connect (OSTI)

    Rubin, Eddy [DOE JGI Director

    2014-03-19

    Eddy Rubin, DOE JGI Director, at the 9th Annual Genomics of Energy & Environment Meeting on March 19, 2014 in Walnut Creek, Calif. The talk is related to a study published in the journal Science

  5. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    Related Topics: Curiosity, dark energy, dark matter, DOE Science Showcase, free-electron lasers, heat pump, metamaterials, quantum computing, R&D Collections, William Watson Read ...

  6. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    Related Topics: Curiosity, dark energy, dark matter, DOE Science Showcase, free-electron lasers, heat pump, metamaterials, quantum computing, R&D Collections, William Watson

  7. Direct search for dark matter with DarkSide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agnes, P.

    2015-11-16

    Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.« less

  8. Report on Project Action Sheet PP05 task 3 between the U.S. Department of Energy and the Republic of Korea Ministry of Education, Science, and Technology (MEST).

    SciTech Connect (OSTI)

    Snell, Mark Kamerer

    2013-01-01

    This report documents the results of Task 3 of Project Action Sheet PP05 between the United States Department of Energy (DOE) and the Republic of Korea (ROK) Ministry of Education, Science, and Technology (MEST) for Support with Review of an ROK Risk Evaluation Process. This task was to have Sandia National Laboratories collaborate with the Korea Institute of Nuclear Nonproliferation and Control (KINAC) on several activities concerning how to determine the Probability of Neutralization, PN, and the Probability of System Effectiveness, PE, to include: providing descriptions on how combat simulations are used to determine PN and PE; comparisons of the strengths and weaknesses of two neutralization models (the Neutralization.xls spreadsheet model versus the Brief Adversary Threat-Loss Estimator (BATLE) software); and demonstrating how computer simulations can be used to determine PN. Note that the computer simulation used for the demonstration was the Scenario Toolkit And Generation Environment (STAGE) simulation, which is a stand-alone synthetic tactical simulation sold by Presagis Canada Incorporated. The demonstration is provided in a separate Audio Video Interleave (.AVI) file.

  9. Z-portal dark matter

    SciTech Connect (OSTI)

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  10. WIMP Dark Matter Limit-Direct Detection Data and Sensitivity Plots from the Cryogenic Dark Matter Search II and the University of California at Santa Barbara

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Expectations for non-baryonic dark matter are founded principally in Big Bang nucleosynthesis calculations, which indicate that the missing mass of the universe is not likely to be baryonic. The supersymmetric standard model (SUSY) offers a promising framework for expectations of particle species which could satisfy the observed properties of dark matter. WIMPs are the most likely SUSY candidate for a dark matter particle. The High Energy Physics Group at University of California, Santa Barbara, is part of the CDMSII Collaboration and have provided the Interactive Plotter for WIMP Dark Matter Limit-Direct Detection Data on their website. They invite other collaborations working on dark matter research to submit datasets and, as a result, have more than 150 data sets now available for use with the plotting tool. The published source of the data is provided with each data set.

  11. January 6, 2014 SEAB FracFocus 2.0 Task Force Meeting

    Broader source: Energy.gov [DOE]

    SECRETARY OF ENERGY ADVISORY BOARDFRACFOCUS 2.0 TASK FORCE MEETINGJanuary 6, 20141000 Independence Avenue, SW, Washington, DC

  12. Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document provides task order schedule descriptions and information on the placement of pricing for energy savings performance contracts (ESPCs).

  13. Dark Forces At The Tevatron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buckley, Matt; Fileviez Perez, Pavel; Hooper, Dan; Neil, Ethan

    2011-08-19

    A simple explanation of the W + dijet excess recently reported by the CDF collaboration involves the introduction of a new gauge boson with sizable couplings to quarks, but with no or highly suppressed couplings to leptons. Anomaly-free theories which include such a leptophobic gauge boson must also include additional particle content, which may include a stable and otherwise viable candidate for dark matter. Based on the couplings and mass of the Z` required to generate the CDF excess, we predict such a dark matter candidate to possess an elastic scattering cross section with nucleons on the order of σmore » ~ 10-40 cm2, providing a natural explanation for the signals reported by the CoGeNT and DAMA/LIBRA collaborations. In this light, CDF may be observing the gauge boson responsible for the force which mediates the interactions between the dark and visible matter of our universe.« less

  14. Dark matter in 3D

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our methodmore » using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. Furthermore, we conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.« less

  15. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  16. Enhancement of Majorana dark matter annihilation through Higgs bremsstrahlung

    SciTech Connect (OSTI)

    Luo, Feng; You, Tevong E-mail: tevong.you@kcl.ac.uk

    2013-12-01

    For Majorana dark matter, gauge boson bremsstrahlung plays an important role in enhancing an otherwise helicity-suppressed s-wave annihilation cross-section. This is well known for processes involving a radiated photon or gluon together with a Standard Model fermion-antifermion pair, and the case of massive electroweak gauge bosons has also recently been studied. Here we show that internal Higgs bremsstrahlung also lifts helicity suppression and could be the dominant contribution to the annihilation rate in the late Universe for dark matter masses below ? 1 TeV. Using a toy model of leptophilic dark matter, we calculate the annihilation cross-section into a lepton-antilepton pair with a Higgs boson and investigate the energy spectra of the final stable particles at the annihilation point.

  17. Halo-independent tests of dark matter annual modulation signals

    SciTech Connect (OSTI)

    Herrero-Garcia, Juan

    2015-09-02

    New halo-independent lower bounds on the product of the dark matter-nucleon scattering cross section and the local dark matter density that are valid for annual modulations of dark matter direct detection signals are derived. They are obtained by making use of halo-independent bounds based on an expansion of the rate on the Earth’s velocity that were derived in previous works. In combination with astrophysical measurements of the local energy density, an observed annual modulation implies a lower bound on the cross section that is independent of the velocity distribution and that must be fulfilled by any particle physics model. In order to illustrate the power of the bounds we apply them to DAMA/LIBRA data and obtain quite strong results when compared to the standard halo model predictions. We also extend the bounds to the case of multi-target detectors.

  18. DOE Awards Research and Systems Engineering Task Order | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research and Systems Engineering Task Order DOE Awards Research and Systems Engineering Task Order April 28, 2016 - 2:00pm Addthis Media Contact: Lynette Chafin (513) 246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to the MITRE Corporation, of McLean Virginia. MITRE will provide research and development in support of DOE's Office of Environmental Management. The task order has an approximate value of $1.176 million,

  19. THE COLD AND DARK PROCESS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31

    The deactivation and decommissioning (D&D) of a facility exposes D&D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold & Dark''. Several ''near miss'' events involving cutting of energized conductors during D&D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D&D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold & Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold & Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that the Cold & Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards.

  20. Energy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Curiosity rover's ChemCam, which uses a laser and camera to hunt for traces of water on Mars. June 11, 2015 Zoomed-in image from the Dark Energy Camera of the barred spiral...

  1. Task Group report to the Assistant Secretary for Environment, Safety and Health on oversight of chemical safety at the Department of Energy. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This report presents the results of a preliminary review of chemical safety within the Department of Energy (DOE). The review was conducted by Chemical Safety Oversight Review (CSOR) Teams composed of Office of Environment, Safety and Health (EH) staff members and contractors. The primary objective of the CSOR was to assess, the safety status of DOE chemical operations and identify any significant deficiencies associated with such operations. Significant was defined as any situation posing unacceptable risk, that is, imminent danger or threat to workers, co-located workers, the general public, or the environment, that requires prompt action by EH or the line organizations. A secondary objective of the CSOR was to gather and analyze technical and programmatic information related to chemical safety to be used in conjunction with the longer-range EH Workplace Chemical Accident Risk Review (WCARR) Program. The WCARR Program is part of the ongoing EH oversight of nonnuclear safety at all DOE facilities. `` The program objective is to analyze DOE and industry chemical safety programs and performance and determine the need for additional or improved safety guidance for DOE. During the period June 6, 1992, through July 31, 1992, EH conducted CSORs at five DOE sites. The sites visited were Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 Plant (Y-12), Oak Ridge National Laboratory (ORNL), and Lawrence Livermore National Laboratory (LLNL).

  2. Wino dark matter under siege

    SciTech Connect (OSTI)

    Cohen, Timothy; Lisanti, Mariangela; Pierce, Aaron; Slatyer, Tracy R. E-mail: mlisanti@princeton.edu E-mail: tslatyer@mit.edu

    2013-10-01

    A fermion triplet of SU(2){sub L} a wino is a well-motivated dark matter candidate. This work shows that present-day wino annihilations are constrained by indirect detection experiments, with the strongest limits coming from H.E.S.S. and Fermi. The bounds on wino dark matter are presented as a function of mass for two scenarios: thermal (winos constitute a subdominant component of the dark matter for masses less than 3.1 TeV) and non-thermal (winos comprise all the dark matter). Assuming the NFW halo model, the H.E.S.S. search for gamma-ray lines excludes the 3.1 TeV thermal wino; the combined H.E.S.S. and Fermi results completely exclude the non-thermal scenario. Uncertainties in the exclusions are explored. Indirect detection may provide the only probe for models of anomaly plus gravity mediation where the wino is the lightest superpartner and scalars reside at the 100 TeV scale.

  3. A Search for Dark Higgs Bosons

    SciTech Connect (OSTI)

    Lees, J.P.

    2012-06-08

    Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb{sup -1} of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the Standard Model-dark sector mixing angle and the dark sector coupling constant.

  4. Dark matter in a bouncing universe

    SciTech Connect (OSTI)

    Cheung, Yeuk-Kwan E.; Kang, Jin U; Li, Changhong E-mail: jin.u.kang2@gmail.com

    2014-11-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  5. Collaborative Utility Task Force Partners with DOE to Develop Cyber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Requirements for Advanced Metering Infrastructure | Department of Energy Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure The Advanced Metering Infrastructure Security (AMI-SEC) Task Force announces the release of the AMI System Security Requirements, a first-of-its-kind for the

  6. Task Force on Climate Preparedness and Resilience Announces Tribal Climate

    Energy Savers [EERE]

    Resilience Program | Department of Energy Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program July 16, 2014 - 3:38pm Addthis Access Recordings from the Climate Change Impacts and Indian Country Webinar Series On July 16, at the fourth and final meeting of the White House State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience, the

  7. The Cold and Dark Process at the Savannah River Site

    SciTech Connect (OSTI)

    Gilmour, John C.; Willis, Michael L.

    2008-01-15

    The deactivation and decommissioning (D and D) of a facility exposes D and D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called 'Cold and Dark'. Several 'near miss' events involving cutting of energized conductors during D and D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D and D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold and Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold and Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tag-out, arc flash PPE). It is important to note that the Cold and Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards. Savannah River Site experienced 6 electrical events prior to declaring a facility 'cold and dark' and has had zero electrical events after 'cold and dark' declaration (263 facilities to date). The formal Cold and Dark process developed at SRS has eliminated D and D worker exposures to hazardous energy sources. Since the implementation of the process there have been no incidents involving energized conductors or pressurized liquids/gases. During this time SRS has demolished over 200 facilities. The ability to perform intrusive D and D activities without the normal controls such as lock outs results in shorter schedule durations and lower overall costs for a facility D and D.

  8. GeV-scale dark matter: Production at the Main Injector

    SciTech Connect (OSTI)

    Dobrescu, Bogdan A.; Frugiuele, Claudia

    2015-02-03

    Assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NO?A near detector is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes.

  9. GeV-scale dark matter: Production at the main injector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dobrescu, Bogdan A.; Frugiuele, Claudia

    2015-02-03

    In this study, assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NOνA near detectormore » is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes.« less

  10. GeV-scale dark matter: Production at the Main Injector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dobrescu, Bogdan A.; Frugiuele, Claudia

    2015-02-03

    Assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NO?A near detector is well positionedmorefor probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes.less

  11. U.S. Support Program tasks

    SciTech Connect (OSTI)

    Langner, D.G.

    1998-09-01

    In the fall of 1993, President Clinton announced before the United Nations General Assembly, that the US would voluntarily offer excess fissile material of weapons origin to International Atomic Energy Agency (IAEA) safeguards. There are presently five US Support Program tasks at work. Three are complete, and two are underway. Reports are available from two of the completed SP-1s; a draft is in preparation for the third. These tasks are: (1) plutonium scrap multiplicity counter at Hanford; (2) calorimeter authentication at Hanford; (3) large neutron multiplicity counter at Rocky Flats; (4) calorimeter authentication at Rocky Flats; and (5) safeguards approach support at the APSF, SRS. The status of the first four tasks above is described here. Information on the work at Savannah River is contained in a separate paper.

  12. Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun

    SciTech Connect (OSTI)

    Pokrovsky, Yu. E.

    2015-12-15

    The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.

  13. Flavored dark matter beyond minimal flavor violation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3)x associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter ? which transforms asmoretriplet under U(3)x , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator ? with a coupling ?. We identify a number of flavor-safe scenarios for the structure of ? which are beyond Minimal Flavor Violation. For dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. The combined flavor and dark matter constraints on the parameter space of ? turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.less

  14. Flavored dark matter beyond Minimal Flavor Violation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less

  15. Functional Area Qualification Standard Job Task Analyses | Department of

    Energy Savers [EERE]

    Energy Job Task Analyses Functional Area Qualification Standard Job Task Analyses DOE Aviation Manager DOE Aviation Safety Officer Chemical Processing Civil/Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Criticality Safety Deactivation and Decommissioning Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Representative Fire Protection Engineering General Technical Base

  16. DARK-FIELD ILLUMINATION SYSTEM

    DOE Patents [OSTI]

    Norgren, D.U.

    1962-07-24

    A means was developed for viewing objects against a dark background from a viewing point close to the light which illuminates the objects and under conditions where the back scattering of light by the objects is minimal. A broad light retro-directing member on the opposite side of the objects from the light returns direct light back towards the source while directing other light away from the viewing point. The viewing point is offset from the light and thus receives only light which is forwardly scattered by an object while returning towards the source. The object is seen, at its true location, against a dark background. The invention is particularly adapted for illuminating and viewing nuclear particle tracks in a liquid hydrogen bubble chamber through a single chamber window. (AEC)

  17. Appendix 3. Task Force Meeting Agendas and Materials Reviewed by

    Energy Savers [EERE]

    3. Task Force Meeting Agendas and Materials Reviewed by the Hubs+ Task Force December 3-4 Task Force Meeting Agenda Hubs+ Task Force Meeting Agenda December 3-4, 2013 Lawrence Livermore National Laboratory HPCIC, Yosemite Room 7000 East Avenue Livermore, CA Tuesday, December 3 4:00-4:15 PM Introductions and Overview of Agenda Cherry Murray, TF Chair 4:15-5:30 PM Hubs Management Council Paper Presentation Pat Dehmer, Acting Director of Science *Pete Lyons, Assistant Secretary for Nuclear Energy

  18. Decaying leptophilic dark matter at IceCube

    SciTech Connect (OSTI)

    Boucenna, Sofiane M.; Chianese, Marco; Mangano, Gianpiero; Miele, Gennaro; Morisi, Stefano; Pisanti, Ofelia; Vitagliano, Edoardo

    2015-12-29

    We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with the IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale — unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.

  19. U.S. - Canada Power System Outage Task Force: Final Report on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Task Force Recommendations | Department of Energy - Canada Power System Outage Task Force: Final Report on the Implementation of Task Force Recommendations U.S. - Canada Power System Outage Task Force: Final Report on the Implementation of Task Force Recommendations On August 14, 2003, the largest power blackout in North American history affected an area with an estimated 50 million people and 61,800 megawatts (MW) of electric load in the states of Ohio, Michigan,

  20. Energy Solutions Partners, LLC | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Organizations Energy Distribution Organizations Companies Articles with outstanding TODO tasks...

  1. St. Clair County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in St. Clair County, Illinois DarkStar VI Mid America Advanced Power Solutions Midwest Biodiesel Products Energy Generation Facilities in St. Clair County, Illinois Milam Gas...

  2. IEA Wind Task 26 - Multi-national Case Study of the Financial...

    Open Energy Info (EERE)

    Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy, Work Package 1, Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA Wind Task...

  3. Task Order Awarded for Audit and Review Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services.

  4. ARI Task Force, ECA Work to Stimulate Regional Economies

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – DOE’s Asset Revitalization Initiative (ARI) Task Force met with the Energy Communities Alliance (ECA) this week to advance the Department’s processes for transferring excess land...

  5. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan The natural resources of the Gulf's ecosystem are vital to many of the region's industries that directly support economic progress and job creation, including tourism and recreation, seafood production and sales, energy production and navigation and commerce. Among the key priorities of the strategy are: 1) Stopping the Loss of Critical

  6. Secretary Chu Tasks Environmental, Industry and State Leaders to Recommend

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices for Safe, Responsible Development of America's Onshore Natural Gas Resources | Department of Energy Tasks Environmental, Industry and State Leaders to Recommend Best Practices for Safe, Responsible Development of America's Onshore Natural Gas Resources Secretary Chu Tasks Environmental, Industry and State Leaders to Recommend Best Practices for Safe, Responsible Development of America's Onshore Natural Gas Resources May 5, 2011 - 12:00am Addthis Washington, D.C. -- U.S. Energy

  7. Interim Report of the Task Force on DOE National Laboratories | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Interim Report of the Task Force on DOE National Laboratories Interim Report of the Task Force on DOE National Laboratories The SEAB Task Force on DOE National Laboratories was established by the Secretary of Energy on June 16, 2014, to provide advice, guidance, and recommendations on important issues related to improving the health and management of the labs. The Task Force has been charged to review past studies, Congressional reports and direction, and Departmental deliberations

  8. Dark photons as fractional cosmic neutrino masquerader

    SciTech Connect (OSTI)

    Ng, Kin-Wang; Tu, Huitzu; Yuan, Tzu-Chiang E-mail: huitzu@phys.sinica.edu.tw

    2014-09-01

    Recently, Weinberg proposed a Higgs portal model with a spontaneously broken global U(1) symmetry in which Goldstone bosons may be masquerading as fractional cosmic neutrinos. We extend the model by gauging the U(1) symmetry. This gives rise to the so-called dark photon and dark Higgs. The dark photons can constitute about 0.912 (0.167) to the effective number of light neutrino species if they decouple from the thermal bath before the pions become non-relativistic and after (before) the QCD transition. Restriction on the parameter space of the portal coupling and the dark Higgs mass is obtained from the freeze-out condition of the dark photons. Combining with the collider data constraints on the invisible width of the standard model Higgs requires the dark Higgs mass to be less than a few GeV.

  9. TASI 2008 Lectures on Dark Matter

    SciTech Connect (OSTI)

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2009-01-01

    Based on lectures given at the 2008 Theoretical Advanced Study Institute (TASI), I review here some aspects of the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  10. SEAB Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report of the Task Force on Methane Hydrates This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates. ...

  11. Dark Matter in the MSSM

    SciTech Connect (OSTI)

    Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2009-04-07

    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

  12. Three Ways to Bust Ghostly Dark Matter

    Broader source: Energy.gov [DOE]

    How the National Labs hunt for invisible “dark matter" on the Earth’s surface, underground and in space.

  13. The positron excess as a smoking gun for dynamical dark matter?

    SciTech Connect (OSTI)

    Dienes, Keith R.; Kumar, Jason; Thomas, Brooks

    2014-06-24

    One of the most puzzling aspects of recent data from the AMS-02 experiment is an apparent rise in the cosmic-ray positron fraction as a function of energy. This feature is observed out to energies of approximately 350 GeV. One explanation of these results interprets the extra positrons as arising from the decays of dark-matter particles. This in turn typically requires that such particles have rather heavy TeV-scale masses and not undergo simple two-body decays to leptons. In this talk, by contrast, we show that Dynamical Dark Matter (DDM) can not only match existing AMS-02 data on the positron excess, but also accomplish this feat with significantly lighter dark-matter constituents undergoing simple two-body decays to leptons. We also demonstrate that the Dynamical Dark Matter framework makes a fairly robust prediction that the positron fraction should level off and then remain roughly constant out to approximately 1 TeV, without experiencing any sharp downturns. Thus, if we interpret the positron excess in terms of decaying dark matter, the existence of a plateau in the positron fraction at energies less than 1 TeV may be taken as a “smoking gun” of Dynamical Dark Matter.

  14. Dark matter searches with cosmic antideuterons: status and perspectives

    SciTech Connect (OSTI)

    Fornengo, N.; Vittino, A.; Maccione, L. E-mail: luca.maccione@lmu.de

    2013-09-01

    The search for antideuterons in cosmic rays has been proposed as a promising channel for dark matter indirect detection, especially for dark matter particles with a low or intermediate mass. With the current operational phase of the AMS-02 experiment and the ongoing development of a future dedicated experiment, the General Antiparticle Spectrometer (GAPS), there are exciting prospects for a dark matter detection in the near future. In this paper we develop a detailed and complete re-analysis of the cosmic-ray antideuteron signal, by discussing the main relevant issues related to antideuteron production and propagation through the interstellar medium and the heliosphere. In particular, we first critically revisit the coalescence mechanism for antideuteron production in dark matter annihilation processes. Then, since antideuteron searches have their best prospects of detection at low kinetic energies where the effect of the solar wind and magnetic field are most relevant, we address the impact of solar modulation modeling on the antideuteron flux at the Earth by developing a full numerical 4D solution of cosmic rays transport in the heliosphere. We finally use these improved predictions to provide updated estimates of the reaching capabilities for AMS-02 and GAPS, compatible with the current constraints imposed by the antiprotons measurements of PAMELA. After the antiproton bound is applied, prospects of detection of up to about 15 events in GAPS LDB+ and AMS-02 missions are found, depending on the dark matter mass, annihilation rate and production channel from one side, and on the coalescence process, galactic and solar transport parameters on the other.

  15. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2011-09-30

    A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

  16. Unusual light in dark space revealed by Los Alamos, NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unusual light in dark space revealed by Los Alamos, NASA Unusual light in dark space revealed by Los Alamos, NASA By looking at the dark spaces between visible galaxies and stars ...

  17. Darke County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gordon, Ohio Greenville, Ohio Hollansburg, Ohio Ithaca, Ohio New Madison, Ohio New Weston, Ohio North Star, Ohio Osgood, Ohio Palestine, Ohio Pitsburg, Ohio Rossburg, Ohio...

  18. Dark matter searches for monoenergetic neutrinos arising from stopped meson decay in the Sun

    SciTech Connect (OSTI)

    Rott, Carsten; In, Seongjin; Kumar, Jason; Yaylali, David

    2015-11-24

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showers give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.

  19. Flavored Dark Matter and the Galactic Center Gamma-Ray Excess

    SciTech Connect (OSTI)

    Agrawal, Prateek; Batell, Brian; Hooper, Dan; Lin, Tongyan

    2014-09-01

    Thermal relic dark matter particles with a mass of 31-40 GeV and that dominantly annihilate to bottom quarks have been shown to provide an excellent description of the excess gamma rays observed from the center of the Milky Way. Flavored dark matter provides a well-motivated framework in which the dark matter can dominantly couple to bottom quarks in a flavor-safe manner. We propose a phenomenologically viable model of bottom flavored dark matter that can account for the spectral shape and normalization of the gamma-ray excess while naturally suppressing the elastic scattering cross sections probed by direct detection experiments. This model will be definitively tested with increased exposure at LUX and with data from the upcoming high-energy run of the Large Hadron Collider (LHC).

  20. Detecting electron neutrinos from solar dark matter annihilation...

    Office of Scientific and Technical Information (OSTI)

    Detecting electron neutrinos from solar dark matter annihilation by JUNO Citation Details In-Document Search Title: Detecting electron neutrinos from solar dark matter annihilation ...

  1. Relativistic Dark Matter at the Galactic Center (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Title: Relativistic Dark Matter at the Galactic Center In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly ...

  2. Dark spaces could change the way we think about galaxies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    By looking at the dark spaces between visible galaxies and stars the NASAJPL CIBER ... By looking at the dark spaces between visible galaxies and stars, the NASAJPL CIBER ...

  3. The Effective Field Theory of Dark Matter Direct Detection (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effective Field Theory of Dark Matter Direct Detection Citation Details In-Document Search Title: The Effective Field Theory of Dark Matter Direct Detection You are accessing a...

  4. The Effective Field Theory of Dark Matter Direct Detection (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Effective Field Theory of Dark Matter Direct Detection Citation Details In-Document Search Title: The Effective Field Theory of Dark Matter Direct Detection Authors: ...

  5. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  6. July 15, 2014 SEAB Task Force Meeting on Technology Development for Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    The SEAB Task Force on Technology Development for Environmental Management met at U.S. Department of Energy in Washington, DC.

  7. Physics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Physics On January 13, 2012, Lawrence Berkeley National Laboratory senior scientist Dr. Saul Perlmutter spoke with Energy Department staff about his research that earned him a 2011 Nobel Prize in Physics. Featured Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how

  8. Illinois' 12th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Illinois' 12th congressional district Coaltec Energy USA Inc DarkStar VI Heartland Biodiesel Inc Mid America Advanced Power Solutions Midwest...

  9. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment ... Energy Engineering High Energy Density Plasmas, Fluids Information Science, ...

  10. Testing and Characterization of SuperCDMS Dark Matter Detectors

    SciTech Connect (OSTI)

    Shank, Benjamin

    2014-01-01

    The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al. This thesis is not intended to be read straight through. For those new to CDMS or dark matter searches, the first two chapters are meant to be a gentle introduction for experimentalists. They are by no means exhaustive. The remaining chapters each stand alone, with different audiences.

  11. Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Permutter, Saul; Schlegel, David; Leauthaud, Alexie

    2011-04-28

    No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.

  12. The miniCLEAN single-phase noble liquid dark mater experiment (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Conference: The miniCLEAN single-phase noble liquid dark mater experiment Citation Details In-Document Search Title: The miniCLEAN single-phase noble liquid dark mater experiment × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology.

  13. Feasibility Study for the Formation of a Renewable Energy Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Project Tasks Project Tasks Renewable Energy Resources and Technology Assessment Wind Biogas Biodiesel Solar Detailed Reservation Load Profile Assessment of Energy Storage and Load ...

  14. WIMP and SIMP dark matter from the spontaneous breaking of a global group

    SciTech Connect (OSTI)

    Bernal, Nicolás; Garcia-Cely, Camilo; Rosenfeld, Rogério

    2015-04-09

    We propose and study a scalar extension of the Standard Model which respects a ℤ{sub 3} symmetry remnant of the spontaneous breaking of a global U(1){sub DM} symmetry. Consequently, this model has a natural dark matter candidate and a Goldstone boson in the physical spectrum. In addition, the Higgs boson properties are changed with respect to the Standard Model due to the mixing with a new particle. We explore regions in the parameter space taking into account bounds from the measured Higgs properties, dark matter direct detection as well as measurements of the effective number of neutrino species before recombination. The dark matter relic density is determined by three classes of processes: the usual self-annihilation, semi-annihilation and purely dark matter 3→2 processes. The latter has been subject of recent interest leading to the so-called ‘Strongly Interacting Massive Particle’ (SIMP) scenario. We show under which conditions our model can lead to a concrete realization of such scenario and study the possibility that the dark matter self-interactions could address the small scale structure problems. In particular, we find that in order for the SIMP scenario to work, the dark matter mass must be in the range 7−115 MeV, with the global symmetry energy breaking scale in the TeV range.

  15. Supernova cooling in a dark matter smog

    SciTech Connect (OSTI)

    Zhang, Yue

    2014-11-27

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  16. Multistep cascade annihilations of dark matter and the Galactic Center excess

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect ofmore » multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.« less

  17. Nuclear Radiological Threat Task Force Established | National...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Threat Task Force Established Washington, DC NNSA's Administrator Linton Brooks announces the establishment of the Nuclear Radiological Threat Reduction Task ...

  18. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. DOE Awards Task Order Modification for Support Services to Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management | Department of Energy Task Order Modification for Support Services to Office of Environmental Management DOE Awards Task Order Modification for Support Services to Office of Environmental Management March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to Task Order DE-DT0005235 to J.G. Management Systems, Inc. of Grand Junction, CO for

  2. Report of the Task Force on Next Generation High Performance Computing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Next Generation High Performance Computing Report of the Task Force on Next Generation High Performance Computing The SEAB Task Force on Next Generation High Performance Computing (TFHPC) was established by the Secretary of Energy on December 20, 2014 to review the mission and national capabilities related to next generation high performance computing. The Task Force's findings and recommendations are framed by three broad considerations including a "new"

  3. Searching for dark matter annihilation to monoenergetic neutrinos with liquid scintillation detectors

    SciTech Connect (OSTI)

    Kumar, J.; Sandick, P.

    2015-06-22

    We consider searches for dark matter annihilation to monoenergetic neutrinos in the core of the Sun. We find that liquid scintillation neutrino detectors have enhanced sensitivity to this class of dark matter models, due to the energy and angular resolution possible for electron neutrinos and antineutrinos that scatter via charged-current interactions. In particular we find that KamLAND, utilizing existing data, could provide better sensitivity to such models than any current direct detection experiment for m{sub X}≲15 Gev. KamLAND’s sensitivity is signal-limited, and future liquid scintillation or liquid argon detectors with similar energy and angular resolution, but with larger exposure, will provide significantly better sensitivity. These detectors may be particularly powerful probes of dark matter with mass O(10) GeV.

  4. Long-lived light mediator to dark matter and primordial small scale spectrum

    SciTech Connect (OSTI)

    Zhang, Yue

    2015-05-06

    We calculate the early universe evolution of perturbations in the dark matter energy density in the context of simple dark sector models containing a GeV scale light mediator. We consider the case that the mediator is long-lived, with lifetime up to a second, and before decaying it temporarily dominates the energy density of the universe. We show that for primordial perturbations that enter the horizon around this period, the interplay between linear growth during matter domination and collisional damping can generically lead to a sharp peak in the spectrum of dark matter density perturbation. As a result, the population of the smallest DM halos gets enhanced. Possible implications of this scenario are discussed.

  5. Task

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IH Activity/Hazard Table - Does not include all construction activities. Review the rules of use on Page 1 before determining the applicable controls required for your work. 1/4/2016 REV 10 1 Rules for the use of this table 1. DO NOT just copy from the table without modifying the hazards and control sets to the specific scope of work, means and methods of how work will be performed, applying the requirements of approved CSSPs, and duration, frequency, location, and extent of work to be

  6. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    SciTech Connect (OSTI)

    Arrenberg, Sebastian; et al.,

    2013-10-31

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

  7. Testing an e2v CCD230-42 sensor for dark current performance at ambient temperatures - Final Paper

    SciTech Connect (OSTI)

    Dungee, Ryan

    2015-08-20

    The design of the Guidance Focus and Alignment (GFA) system for the Dark Energy Spectroscopic Instrument (DESI) project calls for a set of charge-coupled devices (CCDs) which operate at ambient temperature. Here we assess the performance of these CCDs under such conditions. Data was collected from –21°C to 28°C and used to determine the effect of temperature on the effectiveness of dark current subtraction. Comparing the dark current uncertainty to our expected signal has shown that the DESI design specifications will be met without need for significant changes.

  8. Task Group 9 Update (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.

    2014-04-01

    This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

  9. Press Release | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the award of a Firm-Fixed Unit Rate Task Order to Sage Energy Trading of Jenks, OK. Sage Energy Trading is a Woman Owned Small Business. The Task Order will have a maximum...

  10. FAQS Job Task Analyses- Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. FAQS Job Task Analyses- DOE Aviation Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. FAQS Job Task Analyses- Technical Program Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  13. FAQS Job Task Analyses- Weapons Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Facility Representative

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- Criticality Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. FAQS Job Task Analyses- Radiation Protection

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  18. FAQS Job Task Analyses- General Technical Base

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  19. FAQS Job Task Analyses- Chemical Processing

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  20. FAQS Job Task Analyses- Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. FAQS Job Task Analyses- Emergency Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  2. FAQS Job Task Analyses- Technical Training

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  3. FAQS Job Task Analyses- Environmental Compliance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  4. FAQS Job Task Analyses- Industrial Hygiene

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  5. DOE ESPC Task Order Request for Proposal (TO-RFP) Template | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ESPC Task Order Request for Proposal (TO-RFP) Template DOE ESPC Task Order Request for Proposal (TO-RFP) Template Template federal agencies may use for communicating specific terms and conditions to an energy services company regarding a U.S. Department of Energy energy savings performance contract (ESPC) project. Microsoft Office document icon Download the TO-RFP Template. More Documents & Publications Guide to Government Witnessing and Review of Measurement and Verification

  6. 2001 ''You Have the Power'' campaign [Federal Energy Management Program]. Final technical report

    SciTech Connect (OSTI)

    2002-01-01

    The Tasks of 2001 ''You Have the Power'' campaign by the Federal Energy Management Program (FEMP) are: Task 1--Interagency Planning Meetings; Task 2--Ear Day Event; Task 3--Earth Day and Energy Awareness Month Activities; Task 4--Regional Target; Task 5--Outreach Tools and Campaign Products; Task 6--Private Sector Participation; Task 7--''You Have the Power'' on the FEMP Web Site; and Task 8--Effective Communications.

  7. Task XVIII. Technology base assessment

    SciTech Connect (OSTI)

    1980-06-30

    International Conservation and solar energy activities are discussed in view of the enormous increase in oil prices. The current economic outlook of non-oil producing countries is examined. The specific international US energy activities and programs relating to developed and developing countries are described. Problems facing international energy activities are examined. Information on the regional US solar energy centers is included. (MCW)

  8. Sustainable Energy Ventures | Open Energy Information

    Open Energy Info (EERE)

    from "http:en.openei.orgwindex.php?titleSustainableEnergyVentures&oldid765943" Categories: Organizations Financial Organizations Stubs Articles with outstanding TODO tasks...

  9. U.S. Department of Energy Secretary of Energy Advisory Board

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary of Energy Advisory Board Report of the Task Force on Methane Hydrates January 26, 2016 ii Contents Executive Summary ...................................................................................................................................... iii Introduction .................................................................................................................................................. 1 Task Force Findings

  10. Blackout 2003: U.S. - Canada Task Force Presents Final Report onBlackout of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2003 | Department of Energy U.S. - Canada Task Force Presents Final Report onBlackout of August 2003 Blackout 2003: U.S. - Canada Task Force Presents Final Report onBlackout of August 2003 August 14, 2003, saw the worst blackout in North American history. Today, Spencer Abraham, U.S. Secretary of Energy, and the Honorable R. John Efford, Minister of Natural Resources Canada, released the Final Report of the U.S. -Canada Power System Outage Task Force. PDF icon U.S. - Canada Task Force

  11. Improved dark matter search results from PICO-2L Run 2 (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Improved dark matter search results from PICO-2L Run 2 Citation Details In-Document Search Title: Improved dark matter search results from PICO-2L Run 2 New data are reported from a second run of the 2-liter PICO-2L C3F8 bubble chamber with a total exposure of 129 kg-days at a thermodynamic threshold energy of 3.3 keV. These data show that measures taken to control particulate contamination in the superheated fluid resulted in the absence of the anomalous background events

  12. Improved dark matter search results from PICO-2L Run 2 (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Improved dark matter search results from PICO-2L Run 2 Citation Details In-Document Search Title: Improved dark matter search results from PICO-2L Run 2 New data are reported from a second run of the 2-liter PICO-2L C3F8 bubble chamber with a total exposure of 129 kg-days at a thermodynamic threshold energy of 3.3 keV. These data show that measures taken to control particulate contamination in the superheated fluid resulted in the absence of the anomalous background events

  13. PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos

    SciTech Connect (OSTI)

    Park, Wan-Il

    2014-06-01

    We propose a supersymmetric scenario in which the small Yukawa couplings for the Dirac neutrino mass term are generated by the spontaneous-breaking of Pecci-Quinn symmetry. In this scenario, a right amount of dark matter relic density can be obtained by either right-handed sneutrino or axino LSP, and a sizable amount of axion dark radiation can be obtained. Interestingly, the decay of right-handed sneutrino NLSP to axino LSP is delayed to around the present epoch, and can leave an observable cosmological background of neutrinos at the energy scale of O(10−100) GeV.

  14. Indirect searches for dark matter with the Fermi large area telescope

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Albert, Andrea

    2015-03-24

    There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce γ rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for γ-ray spectral lines and γ-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.

  15. Indirect searches for dark matter with the Fermi large area telescope

    SciTech Connect (OSTI)

    Albert, Andrea

    2015-03-24

    There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce ? rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for ?-ray spectral lines and ?-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.

  16. Dark Decay of the Top Quark

    SciTech Connect (OSTI)

    Kong, Kyoungchul; Lee, Hye-Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. The top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6sigma deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t-->bW+Z's. This is the same as the dominant top quark decay (t-->bW) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. We discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  17. Dark decay of the top quark

    SciTech Connect (OSTI)

    Kong, Kyoungchul; Lee, Hye -Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 ? deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t ? b W + Z's. This is the same as the dominant top quark decay (t ? b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. In addition, we discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  18. Cold Positrons from Decaying Dark Matter

    SciTech Connect (OSTI)

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  19. Neutralino dark matter in BMSSM effective theory

    SciTech Connect (OSTI)

    Berg, Marcus; Edsj, Joakim; Lundstrm, Erik; Sjrs, Stefan; Gondolo, Paolo E-mail: edsjo@physto.se E-mail: erik@physto.se

    2009-08-01

    We study thermal neutralino dark matter in an effective field theory extension of the MSSM, called ''Beyond the MSSM'' (BMSSM) in Dine, Seiberg and Thomas (2007). In this class of effective field theories, the field content of the MSSM is unchanged, but the little hierarchy problem is alleviated by allowing small corrections to the Higgs/higgsino part of the Lagrangian. We perform parameter scans and compute the dark matter relic density. The light higgsino LSP scenario is modified the most; we find new regions of parameter space compared to the standard MSSM. This involves interesting interplay between the WMAP dark matter bounds and the LEP chargino bound. We also find some changes for gaugino LSPs, partly due to annihilation through a Higgs resonance, and partly due to coannihilation with light top squarks in models that are ruled in by the new effective terms.

  20. Axions as hot and cold dark matter

    SciTech Connect (OSTI)

    Jeong, Kwang Sik; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    The presence of a hot dark matter component has been hinted at 3? by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}?

  1. Dark matter detection in the BMSSM

    SciTech Connect (OSTI)

    Bernal, Nicolás; Goudelis, Andreas E-mail: andreas.goudelis@th.u-psud.fr

    2010-03-01

    The addition of non-renormalizable terms involving the Higgs fields to the MSSM (BMSSM) ameliorates the little hierarchy problem of the MSSM. For neutralino dark matter, new regions for which the relic abundance of the LSP is consistent with WMAP (as the bulk region and the stop coannihilation region) are now permitted. In this framework, we analyze in detail the direct dark matter detection prospects in a XENON-like experiment. On the other hand, we study the capability of detecting gamma-rays, antiprotons and positrons produced in the annihilation of neutralino LSPs in the Fermi and oncoming AMS-02 experiments.

  2. Dark matter as a ghost free conformal extension of Einstein theory

    SciTech Connect (OSTI)

    Barvinsky, A.O.

    2014-01-01

    We discuss ghost free models of the recently suggested mimetic dark matter theory. This theory is shown to be a conformal extension of Einstein general relativity. Dark matter originates from gauging out its local Weyl invariance as an extra degree of freedom which describes a potential flow of the pressureless perfect fluid. For a positive energy density of this fluid the theory is free of ghost instabilities, which gives strong preference to stable configurations with a positive scalar curvature and trace of the matter stress tensor. Instabilities caused by caustics of the geodesic flow, inherent in this model, serve as a motivation for an alternative conformal extension of Einstein theory, based on the generalized Proca vector field. A potential part of this field modifies the inflationary stage in cosmology, whereas its rotational part at the post inflationary epoch might simulate rotating flows of dark matter.

  3. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect (OSTI)

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  4. Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters

    SciTech Connect (OSTI)

    Dugger, Leanna; Profumo, Stefano [Department of Astronomy and Department of Physics, University of California Berkeley, 601 Campbell Hall, Berkeley, CA (United States); Jeltema, Tesla E., E-mail: greentee01@gmail.com, E-mail: tesla@ucolick.org, E-mail: profumo@scipp.ucsc.edu [UCO/Lick Observatories, 1156 High St., Santa Cruz, CA 95064 (United States)

    2010-12-01

    We analyze the impact of Fermi gamma-ray observations (primarily non-detections) of selected nearby galaxies, including dwarf spheroidals, and of clusters of galaxies on decaying dark matter models. We show that the fact that galaxy clusters do not shine in gamma rays puts the most stringent limits available to-date on the lifetime of dark matter particles for a wide range of particle masses and decay final states. In particular, our results put strong constraints on the possibility of ascribing to decaying dark matter both the increasing positron fraction reported by PAMELA and the high-energy feature in the electron-positron spectrum measured by Fermi. Observations of nearby dwarf galaxies and of the Andromeda Galaxy (M31) do not provide as strong limits as those from galaxy clusters, while still improving on previous constraints in some cases.

  5. Reducing 68Ge Background in Dark Matter Experiments

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Orrell, John L.

    2011-03-01

    Experimental searches for dark matter include experiments with sub-0.5 keV-energy threshold high purity germanium detectors. Experimental efforts, in partnership with the CoGeNT Collaboration operating at the Soudan Underground Laboratory, are focusing on energy threshold reduction via noise abatement, reduction of backgrounds from cosmic ray generated isotopes, and ubiquitous environmental radioactive sources. The most significant cosmic ray produced radionuclide is 68Ge. This paper evaluates reducing this background by freshly mining and processing germanium ore. The most probable outcome is a reduction of the background by a factor of two, and at most a factor of four. A very cost effective alternative is to obtain processed Ge as soon as possible and store it underground for 18 months.

  6. What is the probability that direct detection experiments have observed dark matter?

    SciTech Connect (OSTI)

    Bozorgnia, Nassim; Schwetz, Thomas E-mail: schwetz@fysik.su.se

    2014-12-01

    In Dark Matter direct detection we are facing the situation of some experiments reporting positive signals which are in conflict with limits from other experiments. Such conclusions are subject to large uncertainties introduced by the poorly known local Dark Matter distribution. We present a method to calculate an upper bound on the joint probability of obtaining the outcome of two potentially conflicting experiments under the assumption that the Dark Matter hypothesis is correct, but completely independent of assumptions about the Dark Matter distribution. In this way we can quantify the compatibility of two experiments in an astrophysics independent way. We illustrate our method by testing the compatibility of the hints reported by DAMA and CDMS-Si with the limits from the LUX and SuperCDMS experiments. The method does not require Monte Carlo simulations but is mostly based on using Poisson statistics. In order to deal with signals of few events we introduce the so-called ''signal length'' to take into account energy information. The signal length method provides a simple way to calculate the probability to obtain a given experimental outcome under a specified Dark Matter and background hypothesis.

  7. ENERGY

    Energy Savers [EERE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  8. SU-E-T-66: Characterization of Radiation Dose Associated with Dark Currents During Beam Hold for Respiratory-Gated Electron Therapy

    SciTech Connect (OSTI)

    Hessler, J; Gupta, N; Rong, Y; Weldon, M

    2014-06-01

    Purpose: The main objective of this study was to estimate the radiation dose contributed by dark currents associated with the respiratory-gated electron therapy during beam hold. The secondary aim was to determine clinical benefits of using respiratory-gated electron therapy for left-sided breast cancer patients with positive internal mammary nodes (IMN). Methods: Measurements of the dark current-induced dose in all electron modes were performed on multiple Siemens and Varian linear accelerators by manually simulating beam-hold during respiratory gating. Dose was quantified at the machine isocenter by comparing the collected charge to the known output for all energies ranging from 6 to 18 MeV for a 10cm 10cm field at 100 SSD with appropriate solid-water buildup. Using the Eclipse treatment planning system, we compared the additional dose associated with dark current using gated electron fields to the dose uncertainties associated with matching gated photon fields and ungated electron fields. Dose uncertainties were seen as hot and cold spots along the match line of the fields. Results: The magnitude of the dose associated with dark current is highly correlated to the energy of the beam and the amount of time the beam is on hold. For lower energies (612 MeV), there was minimal dark current dose (0.11.3 cGy/min). Higher energies (1518 MeV) showed measurable amount of doses. The dark current associated with the electron beam-hold varied between linear accelerator vendors and depended on dark current suppression and the age of the linear accelerator. Conclusion: For energies up to 12 MeV, the dose associated with the dark current for respiratorygated electron therapy was shown to be negligible, and therefore should be considered an option for treating IMN positive left-sided breast cancer patients. However, at higher energies the benefit of respiratory gating may be outweighed by dose due to the dark current.

  9. Generalised form factor dark matter in the Sun

    SciTech Connect (OSTI)

    Vincent, Aaron C.; Serenelli, Aldo

    2015-08-19

    We study the effects of energy transport in the Sun by asymmetric dark matter with momentum and velocity-dependent interactions, with an eye to solving the decade-old Solar Abundance Problem. We study effective theories where the dark matter-nucleon scattering cross-section goes as v{sub rel}{sup 2n} and q{sup 2n} with n=−1,0,1 or 2, where v{sub rel} is the dark matter-nucleon relative velocity and q is the momentum exchanged in the collision. Such cross-sections can arise generically as leading terms from the most basic nonstandard DM-quark operators. We employ a high-precision solar simulation code to study the impact on solar neutrino rates, the sound speed profile, convective zone depth, surface helium abundance and small frequency separations. We find that the majority of models that improve agreement with the observed sound speed profile and depth of the convection zone also reduce neutrino fluxes beyond the level that can be reasonably accommodated by measurement and theory errors. However, a few specific points in parameter space yield a significant overall improvement. A 3–5 GeV DM particle with σ{sub SI}∝q{sup 2} is particularly appealing, yielding more than a 6σ improvement with respect to standard solar models, while being allowed by direct detection and collider limits. We provide full analytical capture expressions for q- and v{sub rel}-dependent scattering, as well as complete likelihood tables for all models.

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  11. Identifying the theory of dark matter with direct detection

    SciTech Connect (OSTI)

    Gluscevic, Vera; Gresham, Moira I.; McDermott, Samuel D.; Peter, Annika H.G.; Zurek, Kathryn M.

    2015-12-29

    Identifying the true theory of dark matter depends crucially on accurately characterizing interactions of dark matter (DM) with other species. In the context of DM direct detection, we present a study of the prospects for correctly identifying the low-energy effective DM-nucleus scattering operators connected to UV-complete models of DM-quark interactions. We take a census of plausible UV-complete interaction models with different low-energy leading-order DM-nuclear responses. For each model (corresponding to different spin–, momentum–, and velocity-dependent responses), we create a large number of realizations of recoil-energy spectra, and use Bayesian methods to investigate the probability that experiments will be able to select the correct scattering model within a broad set of competing scattering hypotheses. We conclude that agnostic analysis of a strong signal (such as Generation-2 would see if cross sections are just below the current limits) seen on xenon and germanium experiments is likely to correctly identify momentum dependence of the dominant response, ruling out models with either “heavy” or “light” mediators, and enabling downselection of allowed models. However, a unique determination of the correct UV completion will critically depend on the availability of measurements from a wider variety of nuclear targets, including iodine or fluorine. We investigate how model-selection prospects depend on the energy window available for the analysis. In addition, we discuss accuracy of the DM particle mass determination under a wide variety of scattering models, and investigate impact of the specific types of particle-physics uncertainties on prospects for model selection.

  12. Light Higgs And Dark Photon Searches at BABAR (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Title: Light Higgs And Dark Photon Searches at BABAR Several new-physics (NP) models predict the existence of low-mass Higgs states and light dark matter candidates. Previous BABAR ...

  13. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities In Support Marine and Hydrokinetic Energy Deployment: Task 2.1.7 Permitting and Planning Fiscal Year 2012 Year-End Report

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Hanna, Luke A.; Judd, Chaeli R.; Blake, Kara M.

    2012-09-01

    This fiscal year 2012 year-end report summarizes activities carried out under DOE Water Power task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the MHK industry, including regulatory and resource management agencies, tribes, NGOs, and industry. Objectives for 2.1.7 are the following: • To work with stakeholders to streamline the MHK regulatory permitting process. • To work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development. • To communicate research findings and directions to the MHK industry and stakeholders. • To engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which are described in this report: • 2.1.7.1—Regulatory Assistance • 2.1.7.2—Stakeholder Outreach • 2.1.7.3—Coastal and Marine Spatial Planning As the MHK industry works with the regulatory community and stakeholders to plan, site, permit and license MHK technologies they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under 2.1.7 is to understand these varied interests, explore mechanisms to reduce conflict, identify efficiencies, and ultimately identify pathways to reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  14. Axino LSP baryogenesis and dark matter

    SciTech Connect (OSTI)

    Monteux, Angelo; Shin, Chang Sub

    2015-05-20

    We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft X{sub t} terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitino can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 10{sup 4}–10{sup 5} GeV in the gravitino dark matter scenario.

  15. Determining Supersymmetric Parameters With Dark Matter Experiments

    SciTech Connect (OSTI)

    Hooper, Dan; Taylor, Andrew M.; /Oxford U.

    2006-07-01

    In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of {mu} (and the composition of the lightest neutralino), m{sub A} and tan {beta}. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, {mu} can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m{sub A} to roughly {+-}100 GeV, even when heavy neutral MSSM Higgs bosons (A, H{sub 1}) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.

  16. Form factor dark matter (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Form factor dark matter Citation Details In-Document Search Title: Form factor dark matter We present a dynamical alternative to inelastic dark matter as a way of reconciling the modulating signal seen at DAMA with null results at other direct detection experiments. The essential ingredient is a new form factor which introduces momentum dependence in the interaction of dark matter with nuclei. The role of the form factor is to suppress events at low momentum transfer. We find that a form factor

  17. On the capture of dark matter by neutron stars

    SciTech Connect (OSTI)

    Gver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall E-mail: aeerkoca@gmail.com E-mail: ina@physics.arizona.edu

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10{sup 3} GeV/cm{sup 3}and dark matter mass m{sub ?} ?< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m{sub ?} ? 10 GeV when the dark matter interaction cross section with the nucleons ranges from ?{sub ?n} ? 10{sup ?52} cm{sup 2} to ?{sub ?n} ? 10{sup ?57} cm{sup 2}, the dark matter self-interaction cross section limit is ?{sub ??} ?< 10{sup ?33} cm{sup 2}, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  18. Task Order Awarded for Audit and Review Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services. These services will include: pricing proposals, requests for equitable adjustment, change order proposals, business systems (accounting, purchasing and billing systems), forward pricing rates, incurred costs audits, and terminations. Individual subtask orders will be placed for each specific assignment as needed from October 1, 2012 through September 30, 2013. The total not-toexceed value of the task order is $2,993,733.00.

  19. Fault-tolerant dynamic task graph scheduling

    SciTech Connect (OSTI)

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  20. NREL Job Task Analysis: Crew Leader

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Task 8: Conduct interior and exterior visual home inspection review with crew in order ... for a particular task * Safely use basic hand and power tools * Use a basic first ...