Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Record of Decision for the Interconnection of the Sutter Power Project With the Western Area Power Administration's Keswick-Elverta/Olinda-Elverta 230-Kilovolt Double-Circuit Transmission Line, June 15, 1999  

Broader source: Energy.gov (indexed) [DOE]

41 41 Federal Register / Vol. 64, No. 114 / Tuesday, June 15, 1999 / Notices DEPARTMENT OF ENERGY Western Area Power Administration Record of Decision for the Interconnection of the Sutter Power Project With the Western Area Power Administration's Keswick-Elverta/ Olinda-Elverta 230-Kilovolt Double- Circuit Transmission Line AGENCY: Western Area Power Administration, DOE. ACTION: Record of decision. SUMMARY: The Western Area Power Administration (Western) prepared this Record of Decision in response to a request submitted to Western for a direct interconnection of Calpine Corporation's (Calpine) proposed Sutter Power Project (SPP) with Western's electric transmission system. In response to this request, Western completed an Interconnection Feasibility Study that determined that

2

Switchyards Rebuild and Upgrade Project in Mohave County, Arizona  

Broader source: Energy.gov (indexed) [DOE]

. . Categorical Exclusion for the Demolition of a Service Building at Davis Dam Lower 230-kV Switchyard as part of the Overall Switchyards Rebuild and Upgrade Project in Mohave County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western Area Power Administration (Western) plans to demolish a service building located in the Lower 230-kV Switchyard at Davis Dam, because it no longer meets our needs and we do not anticipate finding a use for it in the future. The building is currently vacant and has been for years. We plan to begin the work on April 1 ,2011 and complete it by December 31,2011. The attached map shows the project area location. Aerial photographs show that much of this area is developed. Western owns the land. The legal description is

3

Switchyards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Within the laser beam enclosures are two stages of spatial filters that condition the beams after amplification. As NIF's laser beams are propagated four times through the main...

4

Recovery Act Project Clears Portsmouth Switchyard, Benefits Community  

Broader source: Energy.gov (indexed) [DOE]

Project Clears Portsmouth Switchyard, Benefits Project Clears Portsmouth Switchyard, Benefits Community through Recycling Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling American Recovery and Reinvestment Act workers recently completed the demolition of structures in an electrical switchyard used to help power the Portsmouth Site's uranium enrichment processes for defense and commercial uses for nearly five decades. In the $28 million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling More Documents & Publications Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent

5

CX-003193: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

93: Categorical Exclusion Determination 93: Categorical Exclusion Determination CX-003193: Categorical Exclusion Determination Davis Dam 230-Kilovolt Switchyards Stage 06 Upgrade (Double Breaker Double Bus) in Mohave County, Arizona CX(s) Applied: B4.11 Date: 06/30/2010 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western Area Power Administration plans to upgrade the existing Upper and Lower Davis Dam 230-kilovolt switchyards in order to provide additional operational flexibility and reliability to the bulk electric system. Construction activities will take place within the existing switchyard fences in areas previously graded and covered with gravel. Existing gravel access roads will be used to reach the project area. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

6

CX-003193: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3193: Categorical Exclusion Determination 3193: Categorical Exclusion Determination CX-003193: Categorical Exclusion Determination Davis Dam 230-Kilovolt Switchyards Stage 06 Upgrade (Double Breaker Double Bus) in Mohave County, Arizona CX(s) Applied: B4.11 Date: 06/30/2010 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western Area Power Administration plans to upgrade the existing Upper and Lower Davis Dam 230-kilovolt switchyards in order to provide additional operational flexibility and reliability to the bulk electric system. Construction activities will take place within the existing switchyard fences in areas previously graded and covered with gravel. Existing gravel access roads will be used to reach the project area. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

7

LANSCE Wire Scanner System Prototype: Switchyard Test  

SciTech Connect (OSTI)

On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

Sedillo, James D [Los Alamos National Laboratory

2012-04-11T23:59:59.000Z

8

Recovery Act Project Clears Portsmouth Switchyard, Benefits Community  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Project Clears Portsmouth Switchyard, Benefits Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling American Recovery and Reinvestment Act workers recently completed the demolition of structures in an electrical switchyard used to help power the Portsmouth Site's uranium enrichment processes for defense and commercial uses for nearly five decades. In the $28 million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2

9

Recovery Act Project Clears Portsmouth Switchyard, Benefits Community through Recycling  

Broader source: Energy.gov (indexed) [DOE]

Project Clears Portsmouth Project Clears Portsmouth Switchyard, Benefits Community through Recycling PIKETON, Ohio - American Recovery and Reinvestment Act workers recently completed the demolition of structures in an electrical switchyard used to help power the Portsmouth Site's uranium enrichment processes for defense and commercial uses for nearly five decades. In the $28 million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard. The 20-acre complex was one of two high-voltage switchyards that together provided up to 2,200 megawatts of power - enough to light up New York City at the time the Portsmouth Gaseous Diffu- sion Plant was constructed in the 1950s. The remaining switch-

10

CX-007137: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

37: Categorical Exclusion Determination 37: Categorical Exclusion Determination CX-007137: Categorical Exclusion Determination Davis Dam Lower 230-kilovolt Substation Service Building Demolition CX(s) Applied: B1.23 Date: 03/03/2011 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western Area Power Administration (Western) plans to demolish a service building located in the Lower 230-kilovolt Switchyard at Davis Dam, because it no longer meets our needs and we do not anticipate finding a use for it in the future. The building is currently vacant and has been for years. We plan to begin the work on April 1, 2011 and complete it by December 31, 2011. CX-007137.pdf More Documents & Publications EA-1595: Mitigation Action Plan EA-1595: Final Environmental Assessment

11

Switchyard in the Main Injector era conceptual design report  

SciTech Connect (OSTI)

This report presents elements of a design of the Switchyard and of the present fixed target beamlines in the era of the Main Injector (MI). It presumes that 800 GeV Tevatron beam will be transported to this area in the MI era, and permits it to share cycles with 120 GeV Main Injector beam if this option is desired. Geographically, the region discussed extends from the vicinity of AO to downstream points beyond which beam properties will be determined by the requirements of specific experiments. New neutrino lines not utilizing the present Switchyard (NuMI, BooNE) are not addressed. Similarly Main Injector beams upstream of AO are described fully in MI documentation and are unaffected by what is presented here. The timing both of the preparation of this report and of its recommendations for proceeding with construction relate to a desire to do required work in Transfer Hall and Enclosure B during the Main Injector construction shutdown (September 1997 - September 1998). As these areas are off-limits during any Tevatron operation, it is necessary for the fixed target program that work be completed here during this extended down period. The design presented here enables the operation of all beamlines in the manner specified in the current Laboratory plans for future fixed- target physics.

Brown, C.; Kobilarcik, T.; Lucas, P.; Malensek, A.; Murphy, C.T.; Yang, M.-J.

1997-08-01T23:59:59.000Z

12

EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission  

Broader source: Energy.gov (indexed) [DOE]

EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Summary Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69-kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing

13

EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission  

Broader source: Energy.gov (indexed) [DOE]

00: Granby Pumping Plant Switchyard-Windy Gap Substation 00: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Summary Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69-kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing

14

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Appendices  

Broader source: Energy.gov (indexed) [DOE]

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Appendices Grand County, Colorado June 2013 Appendix A EIS Scoping Report GRANBY PUMPING PLANT - WINDY GAP TRANSMISSION LINE REBUILD PROJECT ENVIRONMENTAL IMPACT STATEMENT SCOPING SUMMARY REPORT December 4, 2007

15

CX-004896: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4896: Categorical Exclusion Determination 4896: Categorical Exclusion Determination CX-004896: Categorical Exclusion Determination Davis Dam Switchyards (Erosion Control) CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western Area Power Administration proposes to conduct erosion control between the new Davis Dam 69-kilovolts and upper 230-kilovolts wwitchyards. This will consist of building two 3 feet by 3 feet by 12 feet gabions, which are rock-filled with 4-8 inch riprap stocked one on top of the other on the north ends of the wwitchyards. The 6 feet by 6 feet by 6 feet washed out area shall be filled and compacted with native soil and a high survivability filter fabric spread out beneath the gabions.

16

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

61 - 24270 of 31,917 results. 61 - 24270 of 31,917 results. Download CX-003194: Categorical Exclusion Determination Installation of a Mid-Span Interset Structure between Structures 141/1 and 141/2 on the Existing Davis Dam-Prescott 230-Kilovolt Transmission Line in Yavapai County, Arizona CX(s) Applied: B4.13 Date: 06/10/2010 Location(s): Yavapai County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-003194-categorical-exclusion-determination Download CX-004896: Categorical Exclusion Determination Davis Dam Switchyards (Erosion Control) CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-004896-categorical-exclusion-determination

17

Be dammed.  

E-Print Network [OSTI]

??Be Dammed is a research?based project that explores concepts of flow and containment, particularly looking at the interrelations between the planning and construction of large… (more)

Caycedo, Carolina

2014-01-01T23:59:59.000Z

18

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-003624: Categorical Exclusion Determination Replacement of Twenty 22-L Structures on the Satsop-Aberdeen Number 2 230-kilovolt Transmission Line CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Gray's Harbor County, Washington Office(s): Bonneville Power Administration August 12, 2010 CX-004896: Categorical Exclusion Determination Davis Dam Switchyards (Erosion Control) CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region August 12, 2010 CX-003417: Categorical Exclusion Determination Energy Efficiency Projects CX(s) Applied: B5.1 Date: 08/12/2010 Location(s): Plover, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 12, 2010 CX-003405: Categorical Exclusion Determination

19

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Executive Summary  

Broader source: Energy.gov (indexed) [DOE]

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Executive Summary Grand County, Colorado June 2013 Granby Pumping Plant-Windy Gap Substation Transmission Line Rebuild Project FEIS Executive Summary ES-1 EXECUTIVE SUMMARY Introduction Western Area Power Administration (Western), a power marketing administration within the U.S. Department of Energy (DOE), is proposing to rebuild and upgrade the Granby Pumping Plant Switchyard-Windy Gap Substation transmission line in Grand County, Colorado (Grand County). This Environmental Impact Statement (EIS) analyzes the impacts associated with the proposal to remove approximately 13.6 miles of 69-kilovolt (kV) transmission line, construct approximately

20

CX-010544: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Glen Canyon Switchyard - 230 Kilovolt Wavetrap Removal - TZ9A2 on the Navajo Line CX(s) Applied: B4.11 Date: 06/21/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of ion injection into the BNL test electron beam ion source using a prototype low energy beam transfer switchyard and a hollow  

E-Print Network [OSTI]

Development of ion injection into the BNL test electron beam ion source using a prototype low-to-pulse basis, the BNL RHIC electron beam ion source EBIS will use injection of primary "seed" ions from energy beam transfer switchyard and a hollow cathode ion source ,,abstract...a...,b... E. N. Beebe, J. G

22

Dam Safety Program (Florida)  

Broader source: Energy.gov [DOE]

Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

23

Dam Safety (North Carolina)  

Broader source: Energy.gov [DOE]

North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

24

Flood Protection and Dam Safety (Virginia)  

Broader source: Energy.gov [DOE]

All dams in Virginia are subject to the Dam Safety Act and Dam Safety Regulations unless specifically excluded. A dam is excluded if it: (a) is less than six feet high; (b) has a maximum capacity...

25

Regulations and Permits Related to Dams (Vermont)  

Broader source: Energy.gov [DOE]

Vermont law requires a permit, or a dam order, for the construction, alteration, or removal of dams impounding more than 500,000 cubic feet of water, including any accumulated sediments. Dam...

26

Dams, Dikes, and Other Devices; Dam Safety Program (North Dakota) |  

Broader source: Energy.gov (indexed) [DOE]

Dikes, and Other Devices; Dam Safety Program (North Dakota) Dikes, and Other Devices; Dam Safety Program (North Dakota) Dams, Dikes, and Other Devices; Dam Safety Program (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State North Dakota Program Type Siting and Permitting These regulations govern the permitting, construction, operation, inspection, and hazard classifications of dams, dikes, and other water

27

Safety of Dams and Reservoirs Act (Nebraska)  

Broader source: Energy.gov [DOE]

This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

28

EA-1478: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

478: Finding of No Significant Impact 478: Finding of No Significant Impact EA-1478: Finding of No Significant Impact Hoover Dam Bypass Project Phase II, Nevada Western Area Power Administration proposes to double-circuit a portion of the Hoover Dam Bypass Project PHase II (Double-Circuiting a Portion of the Hoover-Mead No. 5 and No. 7 230-kilovolt (kv) Transmission LInes with the Henderson-Mead No. 1 230-kV Transmission Line. In addition, a fiber optic cable would be placed as an overhead ground wire on the double-circuited transmission lines form the area of Hoover Dam to Mead Substation. Finding of No Significant Impact Hoover Dam Bypass Project Phase II (Double-Circuiting a Portion of the Hoover-Mead No. 5 and No. 7 230-kilovolt (kv) Transmission LInes with the Henderson-Mead No. 1 230-kV

29

Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive  

E-Print Network [OSTI]

Retirement of Dams and Hydroelectric Facilities. ASCE, Newon the Allier River, a hydroelectric plant in France. Thethe dam generating hydroelectric power versus the ecological

Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

2008-01-01T23:59:59.000Z

30

Dam Safety Regulation (Mississippi) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dam Safety Regulation (Mississippi) Dam Safety Regulation (Mississippi) Dam Safety Regulation (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Department of Environmental Quality The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. Any person or entity proposing to construct, enlarge, repair, or alter a dam or reservoir

31

Non-Powered Dams Resource Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Powered Dams Resource Assessment Non-Powered Dams Resource Assessment 652011waterpowerpeerreviewnpdornloctober2011.pptx More Documents & Publications An...

32

Ethanol Consumption by Rat Dams During Gestation,  

E-Print Network [OSTI]

Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

Galef Jr., Bennett G.

33

Salmon study sparks row over dams  

Science Journals Connector (OSTI)

... see some of the dams removed against federal agencies charged with maintaining the dams, providing power and protecting salmon. Thirty-one federal dams on the Columbia River and its tributaries ... River and its tributaries collectively provide some 60% of the region's electricity. The Bonneville ...

Jeff Tollefson

2008-10-27T23:59:59.000Z

34

CX-007989: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

proposes to interconnect Grant's new 230-kilovolt transmission line into bay 7 within the BPA owned 230-kilovolt Columbia Substation. Microsoft Word - GrantPUD-CX.docx More...

35

CX-003194: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

194: Categorical Exclusion Determination 194: Categorical Exclusion Determination CX-003194: Categorical Exclusion Determination Installation of a Mid-Span Interset Structure between Structures 141/1 and 141/2 on the Existing Davis Dam-Prescott 230-Kilovolt Transmission Line in Yavapai County, Arizona CX(s) Applied: B4.13 Date: 06/10/2010 Location(s): Yavapai County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western Area Power Administration plans to install a mid-span (interset) structure between structures 141/1 and 141/2 of the existing Davis Dam-Prescott 230-kilovolt transmission line. The proposed undertaking entails constructing a 100-foot tall steel H-frame near the midpoint of the 1900-foot-long span between two lattice tower structures. The H-frame will

36

Dam Safety (Delaware) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dam Safety (Delaware) Dam Safety (Delaware) Dam Safety (Delaware) < Back Eligibility Construction Fed. Government Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info Start Date 2004 State Delaware Program Type Safety and Operational Guidelines Provider Delaware Department of Natural Resources and Environmental Control The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety, and welfare. The law requires licensing, inspections and preparation of emergency action plans (EAPs) for publicly owned dams with a high or significant hazard potential.

37

Power Plant Dams (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

38

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky  

E-Print Network [OSTI]

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

US Army Corps of Engineers

39

Categorical Exclusion Determinations: Arizona | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Arizona Arizona Categorical Exclusion Determinations: Arizona Location Categorical Exclusion Determinations issued for actions in Arizona. DOCUMENTS AVAILABLE FOR DOWNLOAD September 13, 2013 CX-010988: Categorical Exclusion Determination High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements CX(s) Applied: B3.6, B5.15 Date: 09/13/2013 Location(s): Arizona Offices(s): National Energy Technology Laboratory August 22, 2013 CX-010882: Categorical Exclusion Determination Liberty-Parker Dam #2 230-Kilovolt Transmission Line, Optical Power Ground Wire Repair CX(s) Applied: B4.7 Date: 08/22/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region August 12, 2013 CX-010883: Categorical Exclusion Determination PHX-LOB and LIB-LOB 230-Kilovolt Double-Circuit- Replace Insulators at

40

Categorical Exclusion Determinations: Western Area Power  

Broader source: Energy.gov (indexed) [DOE]

Desert Southwest Region Desert Southwest Region Categorical Exclusion Determinations: Western Area Power Administration-Desert Southwest Region Categorical Exclusion Determinations issued by Western Area Power Administration-Desert Southwest Region. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 2013 CX-010882: Categorical Exclusion Determination Liberty-Parker Dam #2 230-Kilovolt Transmission Line, Optical Power Ground Wire Repair CX(s) Applied: B4.7 Date: 08/22/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region August 12, 2013 CX-010883: Categorical Exclusion Determination PHX-LOB and LIB-LOB 230-Kilovolt Double-Circuit- Replace Insulators at Structure No. 28-2 With NCI Type Polymers CX(s) Applied: B1.3 Date: 08/12/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dam Safety Regulations (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safety Regulations (Connecticut) Safety Regulations (Connecticut) Dam Safety Regulations (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection All dams, except those owned by the U.S., are under the jurisdiction of these regulations. These dams will be classified by hazard rating, and may

42

Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive  

E-Print Network [OSTI]

supply, flood control, hydropower, and recreation. However,as changes induced by hydropower, flood control, or waterFERC requires private hydropower dams to provide “equal

Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

2008-01-01T23:59:59.000Z

43

Providing protection: Agencies receive funding to repair, upgrade dams  

E-Print Network [OSTI]

Story by Kathy Wythe tx H2O | pg. 26 Providing protection Agencies receive funding to repair, upgrade dams along with local partners, can apply for grant funds, he said. Construction of the dams began through four federal authorizations... totaling about $11 million. Of the 343 dams currently classified as high hazard, Scattered across Texas are almost 2,000 nondescript, earthen dams built on private land to protect property, roads, and bridges from flood damages. Some of these dams...

Wythe, Kathy

2009-01-01T23:59:59.000Z

44

Milner Dam Wind Park | Open Energy Information  

Open Energy Info (EERE)

Milner Dam Wind Park Milner Dam Wind Park Jump to: navigation, search Name Milner Dam Wind Park Facility Milner Dam Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.495962°, -114.021106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.495962,"lon":-114.021106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Dams (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Dams (South Dakota) Dams (South Dakota) < Back Eligibility Agricultural Commercial Construction Fed. Government General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources Dam construction in South Dakota requires a Location Notice or a Water Right Permit. A Location Notice is a form that must be filed with the County Register of Deeds, and is the only paperwork required if (a) the proposed dam will impound 25 acre feet of water or less at the primary

46

Dams and Energy Sectors Interdependency Study  

Broader source: Energy.gov (indexed) [DOE]

[Type text] [Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. In recent years, various regions of the Nation suffered drought, impacting stakeholders in both the Dams and Energy Sectors. Droughts have the potential to affect the operation of dams and reduce hydropower production,

47

Grand River Dam Authority | Open Energy Information  

Open Energy Info (EERE)

Dam Authority Dam Authority Jump to: navigation, search Name Grand River Dam Authority Place Oklahoma Utility Id 7490 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png general service Commercial general service commercial Commercial large general servic time of use distributional Commercial

48

MFR PAPER 1222 Effects of Dams on Pacific Salmon  

E-Print Network [OSTI]

. Their numbers were few and their total effect was relatively minor. In the 1880's dams for hydroelectric power. In the 1930's major hydroelectric dams were built on the mainstem Columbia River (Fig. I), initiating

49

Hydropower Generators Will Deliver New Energy from an Old Dam  

Office of Energy Efficiency and Renewable Energy (EERE)

City of Tacoma expands hydroelectric dam to produce more than 23,000 megawatt hours of electricity annually.

50

Design of a Sediment Mitigation System for Conowingo Dam  

E-Print Network [OSTI]

Design of a Sediment Mitigation System for Conowingo Dam Rayhan Ain, Kevin Cazenas, Sheri Gravette as enhanced erosion of sediment due to significantly increased flow rates and constant interaction of water with the Dam. During these events, the sediment build up at Conowingo Dam in the Lower Susquehanna River has

51

Flood of protest hits Indian dams  

Science Journals Connector (OSTI)

... up once more in the Indian state of Sikkim, where the 520-mega­watt Teesta IV hydroelectric project would block a tributary of the Brahmaputra (see ‘A deluge of dams’) ... a panacea for both problems, and it plans to add another 110,000 megawatts of hydroelectric capacity by 2025, an eightfold increase. ...

Jane Qiu

2012-12-05T23:59:59.000Z

52

Chapter 13 Water Resources Hoover Dam  

E-Print Network [OSTI]

Chapter 13 Water Resources #12;Hoover Dam #12;The Colorado River Basin Population growth and removed by evaporation. Decrease or loss of vegetation due to climate change, wildfire, or land use affect the stream-channel form and processes. Vegetation Factors #12;Wildfire increases soil erosion

Pan, Feifei

53

Integrative seismic safety evaluation of a high concrete arch dam  

Science Journals Connector (OSTI)

Abstract An integrative seismic safety evaluation of an arch dam should include all sources of nonlinearities, dynamic interactions between different components and the external loads. The present paper investigates the calibration procedure and nonlinear seismic response of an existing high arch dam. The first part explains the conducted analyses for the static and thermal calibrations of the dam based on site measurements. The second part investigates the nonlinear seismic analysis of the calibrated model considering the effect of joints, cracking of mass concrete, reservoir–dam–rock interaction, hydrodynamic pressure inside the opened joints and the geometric nonlinearity. Penetration of the water inside the opened joints accelerates the damage process. The integrative seismic assessment of a case study shows that the dam will fail under the maximum credible earthquake scenario. The dam is judged to be severely damaged with extensive cracking and the joints undergo opening/sliding. A systematic procedure is proposed for seismic and post-seismic safety of dams.

M.A. Hariri-Ardebili; M.R. Kianoush

2014-01-01T23:59:59.000Z

54

Sustainable Energy Dam: research into possible improvement of dam/dike safety by application of sustainable energy on dams/dikes:.  

E-Print Network [OSTI]

??A study on the use of the Afsluitdijk (or more generic, enclosure dams in general) for the generation of energy. Focus in this study in… (more)

Wondergem, D.

2008-01-01T23:59:59.000Z

55

Hoover Dam Bypass Project Phase II  

Broader source: Energy.gov (indexed) [DOE]

DOE/EA-1478 DOE/EA-1478 ENVIRONMENTAL ASSESSMENT Western' s Hoover Dam Bypass Project Phase II (Double-Circuiting a Portion of the Hoover-Mead #5 and #7 230-kV Transmission Lines with the Henderson-Mead #1 230-kV Transmission Line, Clark County, Nevada) Prepared for: U.S. Department of Energy Western Area Power Administration 615 S. 43 rd Avenue Phoenix, Arizona 85009 Prepared by: Transcon Environmental 3740 East Southern Avenue, Suite 218 Mesa, Arizona 85206 (480) 807-0095 October 2003 Western Area Power Administration Hoover Dam Bypass Project Phase II page i Environmental Assessment TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................................1 1.1 Background..................................................................................................................................1

56

Dams and Reservoirs Safety Act (South Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Savings Category Water Buying & Making Electricity Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Department of Health and Environmental Control The Dams and Reservoirs Safety Act provides for the certification and inspection of dams in South Carolina and confers regulatory authority on the Department of Health and Environmental Control. Owners of dams and reservoirs are responsible for maintaining the safety of the structures,

57

Safe Dams Act of 1972 (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safe Dams Act of 1972 (Tennessee) Safe Dams Act of 1972 (Tennessee) Safe Dams Act of 1972 (Tennessee) < Back Eligibility Agricultural Commercial Construction General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Transportation Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Safe Dams Act of 1973 (SDA) gives the Commissioner of the Department of Environment and Conservation the power to issue certificates authorizing the construction, alteration, or operation of a dam. A dam is defined as any artificial barrier, together with appurtenant works, which does or may impound or divert water, and which either (1) is or will be twenty (20)

58

Women @ Energy: Kerstin Kleese van Dam | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kerstin Kleese van Dam Kerstin Kleese van Dam Women @ Energy: Kerstin Kleese van Dam March 27, 2013 - 3:41pm Addthis Kerstin Kleese van Dam is an associate division director of the Computational Science and Mathematics Division and leads the Scientific Data Management Group at Pacific Northwest National Laboratory. Kerstin Kleese van Dam is an associate division director of the Computational Science and Mathematics Division and leads the Scientific Data Management Group at Pacific Northwest National Laboratory. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Kerstin Kleese van Dam has led the charge at Pacific Northwest National Laboratory to resolve data management, analysis, and knowledge discovery challenges in extreme-scale data environments. She also directs data

59

Modeling the costs and benefits of dam construction from a multidisciplinary perspective  

E-Print Network [OSTI]

, energy, and environmental protection well into the future, a broader view of dams is needed. We thus and to articulate priorities associated with a dam project, making the decision process about dams more informed dams, the next generation may witness a renewed intensity in large dam development in the U.S. More

Tullos, Desiree

60

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

61 - 6170 of 28,905 results. 61 - 6170 of 28,905 results. Download CX-010544: Categorical Exclusion Determination Glen Canyon Switchyard - 230 Kilovolt Wavetrap Removal - TZ9A2 on the Navajo Line CX(s) Applied: B4.11 Date: 06/21/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-010544-categorical-exclusion-determination Download CX-010546: Categorical Exclusion Determination Liberty Substation Transformer Replacement Project, Maricopa County, Arizona CX(s) Applied: B4.11 Date: 06/06/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-010546-categorical-exclusion-determination Download CX-010552: Categorical Exclusion Determination

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Microsoft Word - CX-Coulee_Westside_Relay_Replacement_130205.docx  

Broader source: Energy.gov (indexed) [DOE]

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Roy Slocum Project Manager - TEP-CSB-2 Proposed Action: Coulee-Westside Transfer Trip Replacement Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic Equipment Locations: Grand Coulee, WA and Spokane, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA has entered into a three-party agreement with Bureau of Reclamation (Bureau) and Avista Corporation (Avista) to coordinate the replacement of relays and removal of transfer trip equipment at Avista's Westside Substation and the Bureau's Grand Coulee Switchyard on the Grand Coulee-Westside 230-kilovolt (kV) Transmission Line. Under this agreement, BPA proposes to:

62

Georgia Safe Dams Act of 1978 (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safe Dams Act of 1978 (Georgia) Safe Dams Act of 1978 (Georgia) Georgia Safe Dams Act of 1978 (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The purpose of the Georgia Safe Dams Act is to provide regulation,

63

Montana Dam Safety Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana Dam Safety Act (Montana) Montana Dam Safety Act (Montana) Montana Dam Safety Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1985 State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation This Act establishes the state's interest in the construction of dams for water control and regulation and for hydropower generation purposes. It

64

Dam Design and Construction (Wisconsin) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dam Design and Construction (Wisconsin) Dam Design and Construction (Wisconsin) Dam Design and Construction (Wisconsin) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1985 State Wisconsin Program Type Safety and Operational Guidelines Provider Department of Natural Resources These regulations apply to dams that are not owned by the U.S. government

65

Environmental Impacts of Increased Hydroelectric Development at Existing Dams  

Broader source: Energy.gov [DOE]

This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams.

66

Potential Geomorphic and Ecological Impacts of Marmot Dam Removal, Sandy River, OR  

E-Print Network [OSTI]

Marmot Dam is a 13-meter (42 ft) high hydroelectric diversion dam on the Sandy River that is owned Run Hydroelectric project and began the process of creating a decommissioning plan for the dam

67

The distribution of dams in Costa Rica and their hydrologic impacts  

E-Print Network [OSTI]

Dam construction has increased exponentially over the past century, primarily in temperate environments. While the impacts of dams in temperate regions have been well-documented, a parallel level of research on dam impacts has not been achieved...

Laurencio, Laura Richards

2006-04-12T23:59:59.000Z

68

A DETAILED RESEARCH PLAN TO ASSESS BEHAVIOR OF ADULT SUMMER/FALL CHINOOK UPSTREAM OF WELLS DAM USING  

E-Print Network [OSTI]

........................................................................ 11 3.6.3 Chief Joseph Dam Powerhouse

69

Processes affecting the spatial and temporal variability of methane in a temperate dammed river system  

E-Print Network [OSTI]

gas emissions from a hydroelectric reservoir (Brazil’sgas emissions from hydroelectric dams: controversies provideP. M. , 2005a. Do hydroelectric dams mitigate global

Bilsley, Nicole A.

2012-01-01T23:59:59.000Z

70

Dam Safety and Encroachments Act (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dam Safety and Encroachments Act (Pennsylvania) Dam Safety and Encroachments Act (Pennsylvania) Dam Safety and Encroachments Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Savings Category Water Buying & Making Electricity Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection This act sets the standards and criteria for the siting and design of dams, water obstructions and encroachments considering both existing and projected conditions. It requires operational plans to be prepared and implemented by owners and also requires monitoring, inspection and reporting of conditions affecting the safety of dams, water obstructions

71

Dams and Energy Sectors Interdependency Study, September 2011 | Department  

Broader source: Energy.gov (indexed) [DOE]

Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. Dams-Energy Interdependency Study.pdf More Documents & Publications Hydroelectric Webinar Presentation Slides and Text Version Impacts of Long-term Drought on Power Systems in the U.S. Southwest - July 2012 Before the Senate Energy and Natural Resources Committee

72

Dams, Mills, and Electric Power (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mills, and Electric Power (Missouri) Mills, and Electric Power (Missouri) Dams, Mills, and Electric Power (Missouri) < Back Eligibility Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources The Water Resources Center of the Missouri Department of Natural Resources is responsible for implementing regulations pertaining to dam and reservoir safety. Any person or corporation may erect a dam across any watercourse, provided that: (a) the entity is chartered to construct, operate and

73

Regulation of Dams and Bridges Affecting Navigable Waters (Wisconsin) |  

Broader source: Energy.gov (indexed) [DOE]

Dams and Bridges Affecting Navigable Waters Dams and Bridges Affecting Navigable Waters (Wisconsin) Regulation of Dams and Bridges Affecting Navigable Waters (Wisconsin) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 2007 State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources Chapter 31 of the Wisconsin Statutes lays out the regulations relevant to

74

TSSGNEO suggestions for refinement of safety criteria for dam at the Sayano-Shushenskaya HPP  

SciTech Connect (OSTI)

Analysis of radial-displacements of the dam, measured by direct and inverted plumb lines, indicates that curves of the variation in radial displacements of the dam at different elevations make it possible to plot diagrams of increases in the radial displacement over the entire height of the dam, i.e., inclines of the axis of the dam to the vertical.

Savich, A. I.; Gaziev, E. G. [Expert Commission on Assessment of the 'Dam - Bed' System at the Sayano-Shushenskaya HPP (Russian Federation)] [Expert Commission on Assessment of the 'Dam - Bed' System at the Sayano-Shushenskaya HPP (Russian Federation)

2013-09-15T23:59:59.000Z

75

Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA  

E-Print Network [OSTI]

produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 Canyon; Colorado river; Pleistocene floods; Lava dams; Hydraulic modeling; Paleoflood indicators; DamPeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

76

Route-Specific Passage Proportions and Survival Rates for Fish Passing through John Day Dam, The Dalles Dam, and Bonneville Dam in 2010 and 2011  

SciTech Connect (OSTI)

This report fulfills a request of the U.S. Army Engineer District, Portland, Oregon, to produce an interim report of estimates of route-specific fish passage proportions and survival rates for lower Columbia River dams in 2010 and 2011. The estimates are needed to update the Compass Model for the Columbia River Treaty and the new Biological Opinion before detail technical reports are published in late 2012. This report tabulates route-specific fish-passage proportions and survival rates for steelhead and Chinook salmon smolts passing through various sampled routes at John Day Dam, The Dalles Dam, and Bonneville Dam in 2010 and 2011. Results were compiled from analyses of data acquired in spring 2010 and 2011 studies that were specifically designed to estimate dam-passage and forebay-to-tailrace survival rates, travel time metrics, and spill passage efficiency, as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the Columbia Basin Fish Accords. The study designs allowed for estimation of route-specific fish passage proportions and survival rates as well as estimation of forebay-passage survival, all of which are summarized herein.

Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

2012-06-04T23:59:59.000Z

77

REVIEW PLAN John Redmond Dam Reservoir, Coffee County, Kansas  

E-Print Network [OSTI]

#12;#12;REVIEW PLAN John Redmond Dam Reservoir, Coffee County, Kansas Reallocation Study Tulsa...................................................................................................................11 12. REVIEW PLAN APPROVAL AND UPDATES........................................................................................11 13. REVIEW PLAN POINTS OF CONTACT

US Army Corps of Engineers

78

Libby Dam Wildlife Habitat Enhancement, 1992 Final Report.  

SciTech Connect (OSTI)

This is the final report of a project that was initiated in September, 1984 to mitigate for the loss of big game winter and spring range by the Libby Dam hydroelectric facility.

Holifield, Jennifer; Komac, Ron (Kootenai National Forest, Fisher River Ranger District, Libby MT)

1993-03-01T23:59:59.000Z

79

IMPACTS OF LANDSLIDE DAMS ON MOUNTAIN VALLEY MORPHOLOGY  

Science Journals Connector (OSTI)

Landslide dams can influence mountain-valley morphology significantly in the vicinity of the ... and their impoundments, and thus influence the long-term effects of these natural features on mountain-valley morph...

R.L. SCHUSTER

2006-01-01T23:59:59.000Z

80

A hydraulic model study of the gray reef dam spillway  

E-Print Network [OSTI]

A HYDRAULIC MODEL STUDY OF THE GRAY REEF DAM SPILLWAY A Thesis by ALI AKHTAR QURAISHI Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE January 1961 Major Subject: Civil Engineering A HYDRAULIC MODEL STUDY OF THE GRAY REEF DAM SPILLWAY A Thesis ALI AKHTAR QURAISHI Approved as to style and content by: Chairman of Comm' e Head of the Depa ment January 1961 ACKNOWLEDGMENT...

Quraishi, Ali Akhtar

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Underwater noise generated by Columbia River hydroelectric dams  

Science Journals Connector (OSTI)

Low?frequency (10–1000 Hz) underwater noise measurements have been made in water within and upstream from four Columbia River hydroelectric dams. The motivation for these measurements was to map out the sound field within and upstream from the power dams as a first step in understanding the effect of this field on the behavior of migrating salmonids that must choose between the bypass system or intakes to the turbines. Eventually sound may be used to guide the juvenile fish safely past the turbine intakes and into the bypass system. Thus far single hydrophonemeasurements have been made in the bypass slots within the dam and at a number of locations upstream from the dam. The noise level varies with location decreasing as the hydrophone is moved upsteam from the dam and as the hydrophone is moved closer to the water surface immediately upstream of the dam as well as in the bypass slot. The noise spectra below 200 Hz are highly modulated displaying one or more sharp peaks which indicates resonances in the structural generating mechanism or propagation path. The spectrum level and modulation vary significantly from one dam to another and sometimes from one configuration to another (e.g. when one of the turbines is on or off). A final set of measurements will be made at the Bonneville Dam using several hydrophones placed at a number of locations in the vicinity of the intake channel and these may help identify sources and propagation paths to the hydrophone. [Work sponsored by U. S. Army Corps of Engineers.

Robert T. Miyamoto; Steven O. McConnell; James J. Anderson; Blake E. Feist

1989-01-01T23:59:59.000Z

82

Division of Water, Part 673: Dam Safety Regulations (New York) | Department  

Broader source: Energy.gov (indexed) [DOE]

3: Dam Safety Regulations (New York) 3: Dam Safety Regulations (New York) Division of Water, Part 673: Dam Safety Regulations (New York) < Back Eligibility Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations address dam safety, define dam hazard categories and inspection procedures, and apply to any owner of a dam. Dam owners are required to maintain dams in a safe condition at all times and to comply with Department inquiries for information on the status of a given dam

83

Four Dam Pool Power Agency FDPPA | Open Energy Information  

Open Energy Info (EERE)

Dam Pool Power Agency FDPPA Dam Pool Power Agency FDPPA Jump to: navigation, search Name Four Dam Pool Power Agency (FDPPA) Place Anchorage, Alaska Zip 99515 Sector Hydro Product Joint action agency consisting of four hydroelectric projects that was organized by five electric cooperatives that purchase power from the facilities. Coordinates 38.264985°, -85.539014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

EA-1588: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

88: Final Environmental Assessment 88: Final Environmental Assessment EA-1588: Final Environmental Assessment Sacramento Municipal Utility District 230-kV Folsom Dam Transmission Line Relocation The U.S. Army Corps of Engineers proposes to construct a new vehicle bridge across the American River Downstream about 800 feet east and 1,100 feet west of Folsom Dam, which will be located in an existing right-of-way currently occupied by the Sacramento Municipal Utility District double-circuit Orangevale-Lake/Whiterock-Orangevale 230-kilovolt and 12-kilovolt transmission lines. Finding on No Significant Impact for the Sacramento Municipal Utility District 230-kV Folsom Dam Transmission Line Relocation, EA-1588 (January 2007) More Documents & Publications EA-1588: Finding of No Significant Impact

85

E-Print Network 3.0 - analysis model dam Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water from Yongdam Dam. The advantages of a model such as the one... , irrigation, hydropower, and recreation. Two major dams are ... Source: Kim, Young-Oh - Department of Civil...

86

E-Print Network 3.0 - arch dams including Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

part of the East Branch Dam Safety Initiative in Elk County, Pa. The site development work went to Tab... seepage-related dam safety concerns at East Branch Clarion River Lake in...

87

Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective  

Science Journals Connector (OSTI)

By means of a theoretical model, bootstrap resampling and data provided by the International Commission On Large Dams (ICOLD (2003) World register of dams. http://www.icold-cigb.org) we found that global large da...

Ivan B. T. Lima; Fernando M. Ramos…

2008-02-01T23:59:59.000Z

88

DOWNSTREAM BENTHIC RESPONSES TO SMALL DAM REMOVAL IN A COLDWATER STREAM  

E-Print Network [OSTI]

removals on downstream periphyton and macroinvertebrates in Boulder Creek, WI (USA). The dams were 180 m such as flood abatement, irrigation, recreation and hydropower. There are more than 75 000 dams over 1.8 m high

Stanley, Emily

89

Mills, Dams, and Reservoirs (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Mills, Dams, and Reservoirs (Massachusetts) Mills, Dams, and Reservoirs (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Conservation and Recreation This chapter of the Massachusetts General Laws outlines procedures to

90

The Sensor Fish - Making Dams More Salmon-Friendly  

SciTech Connect (OSTI)

This article describes the Sensor Fish, an instrument package that travels through hydroelectric dams collecting data on the hazardous conditions that migrating salmon smolt encounter. The Sensor Fish was developed by Pacific Northwest National Laboratory with funding from DOE and the US Army Corps of Engineers and has been used at several federal and utility-run hydroelectric projects on the Snake and Columbia Rivers of the US Pacific Northwest. The article describes the evolution of the Sensor Fish design and provides examples of its use at McNary and Ice Harbor dams.

Carlson, Thomas J.; Duncan, Joanne P.; Gilbride, Theresa L.; Keilman, Geogre

2004-07-31T23:59:59.000Z

91

Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012  

SciTech Connect (OSTI)

The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

2013-05-01T23:59:59.000Z

92

Existing schemes for constructing high concrete dams and ways to improve them  

Science Journals Connector (OSTI)

1. Improvement of the existing cyclic methods of constructing concrete dams in recent years made it possible to ...

V. I. Teleshev; V. K. Loshak

1982-10-01T23:59:59.000Z

93

An Assessment of Energy Potential at Non-Powered Dams in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DAM CEMVR DES MOINES POLK IA DES MOINES 1975 94.2 2,021 119,400 24.3 84 B. EVERETT JORDAN DAM CESAW HAYWOOD CHATHAM NC HAW 1974 61.0 1,460 55,846 23.9 85 LOCK C-1 DAM AT...

94

Green River Lake and Dam interim plan benefits ecosystem By John Hickey  

E-Print Network [OSTI]

11 Green River Lake and Dam interim plan benefits ecosystem By John Hickey Hydrologic Engineering that water is released from Green River Dam in Kentucky. In May 2006, the interim plan was approved shown that operation of Green River Dam can be changed in ways that improve ecosystems while continuing

US Army Corps of Engineers

95

Flood Control Reservoirs Operable September 30, 2007 Characteristics of Dam  

E-Print Network [OSTI]

Creek Superior 960 34,500 NPP F Earth 25 978 ARKANSAS Blakely Mountain Ouachita Dam Ouachita Hot Springs-Ft.) Permanent Pool (Acreage) or No Pool (NPP) Project Functions Type Height (Feet) Length (Feet) ALASKA Chena River Lakes Chena Tanana Chena River Fairbanks 1979 2,000 NPP FRD Earth 50 40,200 ARIZONA Adobe Gila

US Army Corps of Engineers

96

Flood Control Reservoirs Operable September 30, 2008 Characteristics of Dam  

E-Print Network [OSTI]

Creek Superior 960 34,500 NPP F Earth 25 978 ARKANSAS Blakely Mountain Ouachita Dam Ouachita Hot Springs-Ft.) Permanent Pool (Acreage) or No Pool (NPP) Project Functions Type Height (Feet) Length (Feet) ALASKA Chena River Lakes Chena Tanana Chena River Fairbanks 1979 2,000 NPP FRD Earth 50 40,200 ARIZONA Adobe Gila

US Army Corps of Engineers

97

10 Questions for a Computational Scientist: Kerstin Kleese-Van Dam |  

Broader source: Energy.gov (indexed) [DOE]

a Computational Scientist: Kerstin Kleese-Van Dam a Computational Scientist: Kerstin Kleese-Van Dam 10 Questions for a Computational Scientist: Kerstin Kleese-Van Dam June 9, 2011 - 4:35pm Addthis Kerstin Kleese-Van Dam Kerstin Kleese-Van Dam Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Science gave me the opportunity to contribute to addressing some of society's big challenges - climate change, environmental remediation, sustainable clean energy and secure power. Kerstin Kleese-Dam, Computational Scientist Meet Kerstin Kleese-Van Dam. At Pacific Northwest National Lab, she's a master of computers and data - covering a wide span of projects from genomic sciences and climate change to nanometer-scale imaging and power grids. She recently spent some time to give us the download on her many

98

Dam Construction and Maintenance (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Construction and Maintenance (Minnesota) Construction and Maintenance (Minnesota) Dam Construction and Maintenance (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting Dams may be constructed, improved, or repaired on private, non-navigable waters subject to certain timelines; however, previously-developed hydropower mechanisms cannot be disrupted. The State may also choose to

99

Turbocharger with sliding piston, and having vanes and leakage dams  

DOE Patents [OSTI]

A turbocharger having a sliding piston for regulating exhaust gas flow into the turbine wheel includes a set of first vanes mounted on a fixed first wall of the turbine nozzle and projecting axially toward an opposite second wall of the nozzle, and/or a set of second vanes mounted on the end of the piston and projecting in an opposite axial direction toward the first wall of the nozzle. For the/each set of vanes, there are leakage dams formed on the wall that is adjacent the vane tips when the piston is closed. The leakage dams are closely adjacent the vane tips and discourage exhaust gas from leaking in a generally radial direction past the vane tips as the piston just begins to open from its fully closed position.

Roberts, Quentin (Nancy, FR); Alnega, Ahmed (Thaon Les Vosges, FR)

2011-12-06T23:59:59.000Z

100

Seismic safety of earth dams: A probabilistic approach  

SciTech Connect (OSTI)

The evaluation of the potential for slope sliding and/or liquefaction failure of earthen dams subjected to earthquake loadings is most often based on deterministic procedures of both the excitation input and of the physical model. Such treatment provides answers in the form of either factor of safety values or a yes or no as to whether liquefaction will occur or not. Uncertainties in the physical properties of the soil in the embankment and the foundation layers underlying the dam are typically treated with parametric studies. Consideration of probabilities pertaining to the uncertainties of the earthquake and of the site characterization is expected to augment the prediction of failure potential by associating slope and liquefaction failure to generic properties of the earthquake and of the site characterization. In this study, the procedures for conditional slope failure/liquefaction probabilities are formulated based on a series of simulated deterministic analyses of a dam cross section . These synthetic earthquakes emanate from a 1-D stationary stochastic process of zero mean and an analytical form of power spectral density function. The response of the dam section is formed upon a dynamic finite element approach which provides the temporal variations of the stresses, strains and pore water pressure throughout the model. The constitutive response of the granular soil skeleton and its coupling with the fluid phase is formulated based on the Biot dynamic equations of motion with nonlinear terms compensated for into soil hysteretic damping. Lastly, a stochastic approach to liquefaction based on the transferring of the input motion statistics to the cross section is presented.

Simos, N.; Costantino, C.J.; Reich, M.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flood Control Reservoirs Operable September 30, 2009 Characteristics of Dam  

E-Print Network [OSTI]

Pine 1953 2,768,500 20,900 FPRSW Earth 235 1,100 Blue Mountain Arkansas Petit Jean River Paris 1947 257 Marysville 1941 69,000 400 DR Concrete 280 1,142 Hidden Dam- Hensley Lake San Joaquin Fresno River Madera 1975 90,000 5,000 FIRW Earth 163 5,730 Isabella San Joaquin Kern River Bakersfield 1953 567,100 1

US Army Corps of Engineers

102

Hydroacoustic Evaluation of Fish Passage through Bonneville Dam in 2004  

SciTech Connect (OSTI)

The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2004. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of four studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 15 and July 15, 2004, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, (2) B2 fish guidance efficiency and gap loss, (3) smolt approach and fate at the B2 Corner Collector (B2CC), and (4) B2 vertical barrier screen head differential.

Ploskey, Gene R.; Weiland, Mark A.; Schilt, Carl R.; Kim, Jina; Johnson, Peter N.; Hanks, Michael E.; Patterson, Deborah S.; Skalski, John R.; Hedgepeth, J

2005-12-22T23:59:59.000Z

103

Estimating the seismic stability of the arch dam in the Chirkeiskaya hydrosystem  

SciTech Connect (OSTI)

A calculation analysis of the arch dam constructed in an area with standardized seismicity of magnitude 9-10 is presented.

Khrapkov, A. A.; Skomorovskaya, E. Ya

2004-11-15T23:59:59.000Z

104

Damming the Mekong: the social, economic and environmental consequences of the Nam Theun 2 Hydroelectric Project.  

E-Print Network [OSTI]

??More than a decade after the World Bank was forced out of the dam-building industry due to the social and environmental consequences of the projects… (more)

Wolf, Jason

2013-01-01T23:59:59.000Z

105

CX-004895: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Davis Dam Switchyard (Breaker Cable Replacement)CX(s) Applied: B4.6Date: 08/05/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

106

Hydroacoustic Evaluation of Fish Passage Through Bonneville Dam in 2005  

SciTech Connect (OSTI)

The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2005. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of two studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 16 and July 15, 2005, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, and (2) smolt approach and fate at B1 Sluiceway Outlet 3C from the B1 forebay. Some of the large appendices are only presented on the compact disk (CD) that accompanies the final report. Examples include six large comma-separated-variable (.CSV) files of hourly fish passage, hourly variances, and Project operations for spring and summer from Appendix E, and large Audio Video Interleave (AVI) files with DIDSON-movie clips of the area upstream of B1 Sluiceway Outlet 3C (Appendix H). Those video clips show smolts approaching the outlet, predators feeding on smolts, and vortices that sometimes entrained approaching smolts into turbines. The CD also includes Adobe Acrobat Portable Document Files (PDF) of the entire report and appendices.

Ploskey, Gene R.; Weiland, Mark A.; Zimmerman, Shon A.; Hughes, James S.; Bouchard, Kyle E.; Fischer, Eric S.; Schilt, Carl R.; Hanks, Michael E.; Kim, Jina; Skalski, John R.; Hedgepeth, J.; Nagy, William T.

2006-12-04T23:59:59.000Z

107

Dam Safety Rules (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safety Rules (West Virginia) Safety Rules (West Virginia) Dam Safety Rules (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Department of Environmental Protection This establishes requirements relating to the design, placement, construction, enlargement, alteration, removal, abandonment, and repair of

108

and 19% of the stomachs of late-lifted fish were Food of the striped bass at Holyoke Dam was  

E-Print Network [OSTI]

below hydroelectric dams and feed on the parts of fish (anadromous or freshwater species) that die Kaplan turbine at a low-head hydroelectric dam. North Am. J. Fish. Manage. 5:33-38. HOLLIS, E. H. 1952

109

Water quality and sedimentation implications of installing a hydroelectric dam on the Río Baker in Chilean Patagonia  

E-Print Network [OSTI]

HidroAysen, a Chilean corporation operated by energy giant Endesa, has proposed to build two hydroelectric dams on the Rio Baker in the Aysin Region of Chilean Patagonia. The proposed dams have been met with a variety of ...

Leandro, Gianna Dee

2009-01-01T23:59:59.000Z

110

Dam and Hydroelectric Powerplant University of Hawai`i CEE 491University of Hawai`i CEE 491  

E-Print Network [OSTI]

Karun 3 Dam and Hydroelectric Powerplant University of Hawai`i ­ CEE 491University of Hawai`i ­ CEE;Location #12;Description/Background Hydroelectric dam on Karun River Help with national energy needs

Prevedouros, Panos D.

111

Research Report Long lasting effects of rearing by an ethanol-consuming dam  

E-Print Network [OSTI]

Research Report Long lasting effects of rearing by an ethanol-consuming dam on voluntary ethanol rats as subjects, we examined effects of exposure during weaning to a dam consuming ethanol on adolescents' later affinity for ethanol. In a preliminary experiment, we offered rat pups a choice between 8

Galef Jr., Bennett G.

112

Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain  

E-Print Network [OSTI]

Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations topography with a model of hydrology and nitrogen biogeochemistry to simulate floods of different magnitude a generalized floodplain biogeochemical model to determine whether dams and flood-control levees affect

Turner, Monica G.

113

Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations.  

E-Print Network [OSTI]

to GUA while requiring only one simulation instead of several hundreds or thousands. For the floodUncertainty analysis of river flooding and dam failure risks using local sensitivity computations) for uncertainty analysis with respect to two major types of risk in river hydrodynamics: flash flood and dam

Paris-Sud XI, Université de

114

Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado  

E-Print Network [OSTI]

Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado Victor G. deWolfe a, Colorado School of Mines, Golden, CO 80401, United States b Florida Water Conservancy District, Lemon Dam May 2007 Abstract To reduce the hazards from debris flows in drainage basins burned by wildfire

115

Independent External Peer Review Report Rough River Dam 18 August 2011 ii  

E-Print Network [OSTI]

#12;Independent External Peer Review Report ­ Rough River Dam 18 August 2011 ii This page intentionally blank. #12;Independent External Peer Review Report ­ Rough River Dam 18 August 2011 iii Table.3 Preparation and Charge for Peer Review Panel 7 3.4 Performing the IEPR 8 3.5 Preparation and Review of Draft

US Army Corps of Engineers

116

Whistling Ridge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

230-kilovolt transmission line approximately five miles west of BPA's Underwood Substation. BPA completed a joint environmental impact statement in August 2011 with the...

117

CX-007993: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007993: Categorical Exclusion Determination Hatwai 230-Kilovolt Substation Breaker Replacement CX(s) Applied: B4.6 Date: 02092012 Location(s): Idaho...

118

EIS-0433-S1: EPA Notice of Availability of Final Supplemental...  

Energy Savers [EERE]

to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction of a new substation. The review period ends: 031014....

119

CX-011648: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-011648: Categorical Exclusion Determination Davis-Parker 230 Kilovolt Transmission Line- Marker Ball(s) Replacement CX(s) Applied: B1.3 Date: 12172013...

120

ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project  

SciTech Connect (OSTI)

Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.

Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dam Control and Safety Act (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Control and Safety Act (West Virginia) Control and Safety Act (West Virginia) Dam Control and Safety Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Department of Environmental Protection This law grants authority to the secretary of the Department of Environmental Protection to control and exercise regulatory jurisdiction

122

Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010  

SciTech Connect (OSTI)

The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

2011-02-01T23:59:59.000Z

123

Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010  

SciTech Connect (OSTI)

The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

2012-09-01T23:59:59.000Z

124

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5001 - 25010 of 29,416 results. 5001 - 25010 of 29,416 results. Download CX-010882: Categorical Exclusion Determination Liberty-Parker Dam #2 230-Kilovolt Transmission Line, Optical Power Ground Wire Repair CX(s) Applied: B4.7 Date: 08/22/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-010882-categorical-exclusion-determination Download WAPA Purchase of Energy Contractor Template http://energy.gov/indianenergy/downloads/wapa-purchase-energy-contractor-template Download Audit Report: OAS-L-12-08 Y-12 National Security Complex's Waste Diversion Efforts http://energy.gov/ig/downloads/audit-report-oas-l-12-08 Rebate Renewable Energy Business Tax Incentives [http://www.azleg.gov/legtext/49leg/1r/bills/sb1403s.pdf SB 1403], signed

125

Categorical Exclusion Determinations: B1.23 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 17, 2011 May 17, 2011 CX-005976: Categorical Exclusion Determination Demolition of Trailers T116, T124, T134 CX(s) Applied: B1.23 Date: 05/17/2011 Location(s): Batavia, Illinois Office(s): Science, Fermi Site Office March 22, 2011 CX-005547: Categorical Exclusion Determination Specific Manufacturing Capability (SMC) Incinerator and Propane Tank System Removal CX(s) Applied: B1.23 Date: 03/22/2011 Location(s): Idaho Office(s): Nuclear Energy, Idaho Operations Office March 3, 2011 CX-007137: Categorical Exclusion Determination Davis Dam Lower 230-kilovolt Substation Service Building Demolition CX(s) Applied: B1.23 Date: 03/03/2011 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region February 14, 2011 CX-005280: Categorical Exclusion Determination

126

Categorical Exclusion Determinations: B4.7 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 7 Categorical Exclusion Determinations: B4.7 Existing Regulations B4.7: Fiber optic cable Adding fiber optic cables to transmission facilities or burying fiber optic cable in existing powerline or pipeline rights-of-way. Covered actions may include associated vaults and pulling and tensioning sites outside of rights-of-way in nearby previously disturbed or developed areas. Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final Rulemaking (76 FR 63763, 10/13/2011) for information changes to this categorical exclusion. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 2013 CX-010882: Categorical Exclusion Determination Liberty-Parker Dam #2 230-Kilovolt Transmission Line, Optical Power Ground

127

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21 - 14830 of 29,416 results. 21 - 14830 of 29,416 results. Download CX-007136: Categorical Exclusion Determination Coolidge-Oracle Pole Replacement CX(s) Applied: B4.6 Date: 11/13/2009 Location(s): Pinal County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-007136-categorical-exclusion-determination Download CX-007137: Categorical Exclusion Determination Davis Dam Lower 230-kilovolt Substation Service Building Demolition CX(s) Applied: B1.23 Date: 03/03/2011 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-007137-categorical-exclusion-determination Download CX-007138: Categorical Exclusion Determination Davis-MKT Kingman Tap Crossarm Replacement

128

Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010  

SciTech Connect (OSTI)

The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

2012-09-01T23:59:59.000Z

129

Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010  

SciTech Connect (OSTI)

The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

2011-02-01T23:59:59.000Z

130

Water-Power Development, Conservation of Hydroelectric Power Dams and Works  

Broader source: Energy.gov (indexed) [DOE]

Water-Power Development, Conservation of Hydroelectric Power Dams Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission It is the policy of the Commonwealth of Virginia to encourage the utilization of its water resources to the greatest practicable extent, to control the waters of the Commonwealth, and also to construct or reconstruct dams in any rivers or streams within the Commonwealth for the

131

Wind Tunnel Experiments and Numerical Simulation of Snow Drifting around an Avalanche Protecting Dam  

Science Journals Connector (OSTI)

To learn about wind flow and snow drifting around avalanche dams, ... experiments were done in the Jules Verne Climatic Wind Tunnel. The paper reports the results from numerical wind flow simulations that were do...

Skuli Thordarson

2002-12-01T23:59:59.000Z

132

Two-dimensional dam break flooding simulation: a GIS-embedded approach  

Science Journals Connector (OSTI)

In the twenty-first century, around 200 notable dam and reservoir failures happened worldwide causing massive fatalities and economic costs. In order to reduce the losses, managers usually define mitigation st...

Massimiliano Cannata; Roberto Marzocchi

2012-04-01T23:59:59.000Z

133

Shape optimization of arch dams under earthquake loading using meta-heuristic algorithms  

Science Journals Connector (OSTI)

This paper presents efficiency of three meta-heuristic algorithms for large-scale shape optimization of double curvature arch dams under seismic loading condition with different constraints such as failure, st...

A. Kaveh; V. R. Mahdavi

2013-11-01T23:59:59.000Z

134

EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT  

Broader source: Energy.gov [DOE]

The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

135

EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam  

Broader source: Energy.gov [DOE]

Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

136

Hydropower and the environment: A case study at Glen Canyon Dam  

SciTech Connect (OSTI)

The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

Wegner, D.L. [Denver Technical Service Center, Flagstaff, AZ (United States)

1995-12-31T23:59:59.000Z

137

3D Simulation of Dam-break effect on a Solid Wall using Smoothed Particle Hydrodynamics  

E-Print Network [OSTI]

Dam is built for water supply, water flow or flooding control and electricity energy storage, but in other hand, dam is one of the most dangerous natural disaster in many countries including in Indonesia. The impact of dam break in neighbour area and is huge and many flooding in remote area, as happen in Dam Situ Gintung in Tangerang (close to Jakarta) in 2009. Smoothed Particle Hydrodynamics (SPH), is one of numerical method based on Lagrangian grid which is ap- plied in astrophysical simulation may be used to solve the simulation on dam break effect. The development of SPH methods become alternative methods to solving Navier Stokes equation, which is main key in fluid dynamic simulation. In this paper, SPH is developed for supporting solid par- ticles in use for 3D dam break effect (3D-DBE) simulation. Solid particle have been treated same as fluid particles with additional calculation for converting gained position became translation and rotation of solid object in a whole body. With this capability, the r...

Suprijadi,; Naa, Christian; Putra, Anggy Trisnawan

2013-01-01T23:59:59.000Z

138

(DOE/EIS-0183-SA-05): Supplement Analysis for the Boise River Diversion Dam Powerplant Rehabilitation, 10/17/02  

Broader source: Energy.gov (indexed) [DOE]

October 17, 2002 October 17, 2002 REPLY TO ATTN OF: KECP-4 SUBJECT: Supplement Analysis for the Boise River Diversion Dam Powerplant Rehabilitation, DOE/EIS-0183-SA-05 memorandum Mark A. Jones Program Analyst - PGF-6 TO : Proposed Action: Boise River Diversion Dam - Amendment to Capital Investment Sub-Agreement, Contract Number DE-MS79-94BP94618 Proposed By: Bonneville Power Administration (BPA) and Bureau of Reclamation (Reclamation) Location: Near Boise, in Ada County, Idaho Description of the Proposed Action: BPA proposes to fund Reclamation's rehabilitation of the powerplant at the existing Boise River Diversion Dam (Diversion Dam) to use the water resource at Diversion Dam for electrical power production. Analysis: The Diversion Dam is located about 7 miles southeast of Boise, Idaho on the Boise River, about

139

Evaluation of Behavioral Guidance Structure on Juvenile Salmonid Passage and Survival at Bonneville Dam in 2009  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) conducted an acoustic-telemetry study at Bonneville Dam in 2009 to evaluate the effects of a behavioral guidance structure (BGS) in the Bonneville Dam second powerhouse forebay on fish passage and survival through the second powerhouse (B2), the dam as a whole, and through the first powerhouse and spillway combined. The BGS was deployed to increase the survival of fish passing through B2 by increasing the percentage of outmigrating smolts entering the B2 Corner Collector (B2CC)—a surface flow outlet known to be a relatively benign route for downstream passage at this dam. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. Study results indicated that having turbine 11 in service is important for providing flow conditions that are comparable to those observed in pre-BGS years (2004 and 2005) and in 2008. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; Kim, Jin A.; Fu, Tao; Fischer, Eric S.; Monter, Tyrell J.; Skalski, J. R.

2011-03-01T23:59:59.000Z

140

A Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In  

Open Energy Info (EERE)

Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In A Philippine Aborigine Legend Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In A Philippine Aborigine Legend Details Activities (0) Areas (0) Regions (0) Abstract: The prehistoric eruptions of Mount Pinatubo have followed a cycle: centuries of repose terminated by a caldera-forming eruption with large pyroclastic flows; a post-eruption aftermath of rain-triggered lahars in surrounding drainages and dome-building that fills the caldera; and then another long quiescent period. During and after the eruptions lahars descending along volcano channels may block tributaries from watersheds

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Glen Canyon Dam Long-Term Experimental and Management Plan EIS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glen Canyon LTEMP EIS Glen Canyon LTEMP EIS Glen Canyon Dam, a 1,300-MW water-storage and hydroelectric facility is located on the Colorado River upstream of the Grand Canyon. EVS is evaluating the effects of dam operations on the Colorado River. A comprehensive evaluation of Glen Canyon Dam operations and their effects on the Colorado River through the Grand Canyon is being conducted by the Department of the Interior with EVS assistance. The Long-Term Experimental and Management Plan (LTEMP) Environmental Impact Statement (EIS) - the first such evaluation in over 15 years - will examine flow regimes to meet the goals of supplying water for communities, agriculture, and industry and will protect the resources of the Grand Canyon, while providing clean hydropower. The LTEMP EIS, which is expected to be completed by the end of 2013, will

142

A biometrical evaluation of relationships between dam weight and progeny preweaning performance in beef cattle  

E-Print Network [OSTI]

. "' F&. 0 I. 2 7 vari at ion. For hei fers in the two and six to nine age-of- dam categor i es, the F-r at los for heterogene i ty of regres- s ion coeff icients for birth weight were greater than one, but not s i gn i f i cant . These were the two...-?Isis sex-of ? progeny subcl asses. The model f it led for birth weight (BW), 100-day weight (WW), and preweaning aver age da i iy gain IADG) in each subclass included year and season of bi r I'h, d m wc i gist, dam we i qh I squared, and dam weiqht...

Smith, Gerald Max

2012-06-07T23:59:59.000Z

143

Fish Migration, Dams, and Loss of Ecosystem Services in the Mekong Basin  

SciTech Connect (OSTI)

The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin's fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur

Dugan, Patrick J. [WorldFish Center; Barlow, Chris [Australian Center for International Agricultural Research (ACIAR); Agostinho, Angelo A. [Fundacao University, Parana Brazil; Baran, Eric [WorldFish Center; Cada, Glenn F [ORNL; Chen, Daqing [Yangtze River Fisheries Research Institute, People's Republic of China; Cowx, Ian G. [Hull International Fisheries Research Institute, England; Ferguson, John W. [North West Fisheries Science Center, Seattle, WA; Jutagate, Tuantong [Ubon Ratchathani University, Ubon Ratchathani, Thailand; Mallen-Cooper, Martin [Fishway Consulting Service, Australia; Marmulla, Gerd [Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Nestler, John [USA Corps Engineers, Concord, MA USA; Petrere, Miquel [Universidade Estadual Paulista, Rio Claro, Brazil; Winemiller, Kirk O. [Texas A& M University

2010-06-01T23:59:59.000Z

144

Evaluation of a Behavioral Guidance Structure at Bonneville Dam Second Powerhouse including Passage Survival of Juvenile Salmon and Steelhead using Acoustic Telemetry, 2008  

SciTech Connect (OSTI)

Summarizes research conducted at Bonneville Dam in 2008 to evaluate a prototype Behavioral Guidance Structure, that was deployed by the US Army Corps of Engineers in an effort to increase survival of outmigrating smolts at Bonneville Dam.

Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; McComas, Roy L.; Kim, Jina; Townsend, R. L.; Fu, Tao; Skalski, J. R.; Fischer, Eric S.

2010-02-12T23:59:59.000Z

145

Pages 41-52 Short-term effects of small dam removal on a freshwater mussel assemblage.  

E-Print Network [OSTI]

with appropriate planning, timing, and removal techniques, but additional monitoring is warrantePages 41-52 Short-term effects of small dam removal on a freshwater mussel assemblage. Ryan J 1053-637X EDITORIAL REVIEW BOARD #12;SHORT-TERM EFFECTS OF SMALL DAM REMOVAL ON A FRESHWATER MUSSEL

Kwak, Thomas J.

146

Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam  

DOE Patents [OSTI]

An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

Praeg, W.F.

1997-02-11T23:59:59.000Z

147

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.  

SciTech Connect (OSTI)

We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

2004-02-01T23:59:59.000Z

148

Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011  

SciTech Connect (OSTI)

The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

2012-03-01T23:59:59.000Z

149

Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011  

SciTech Connect (OSTI)

The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

2012-06-07T23:59:59.000Z

150

White Sturgeon Mitigation & Restoration in the Columbia & Snake River Upstream from Bonneville Dam  

Broader source: Energy.gov (indexed) [DOE]

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Finding of No Significant Impact (FONSI) Summary: Bonneville Power Administration (BPA) is proposing to fund the White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Project. The project proposes to continue to carry out harvest monitoring and stock status updates coordinated with fisheries management planning, annual young-of-the year recruitment indexing, research, experimental artificial propagation, and transport of white sturgeon to less densely populated areas of the river(s). Additionally, release of hatchery-reared juveniles is proposed to evaluate release

151

Hungry Horse Dam Fisheries Mitigation; Kokanee Stocking and Monitoring in Flathead Lake, 1995 Annual Report.  

SciTech Connect (OSTI)

The operation of Hungry Horse Dam on the South Fork-of the Flathead River reduced the reproductive success of kokanee (Oncorhynchus nerka) spawning in the Flathead River. Montana Fish, Wildlife and Parks (MFWP) and the Confederated Salish and Kootenai Tribes (CSKT) authored a mitigation plan to offset those losses. The mitigation goal, stated in the Fisheries Mitigation Plan for Losses Attributed to the Construction and Operation of Hungry Horse Dam, is to: {open_quotes}Replace lost annual production of 100,000 kokanee adults, initially through hatchery production and pen rearing in Flathead Lake, partially replacing lost forage for lake trout (Salvelinus namaycush) in Flathead Lake.{close_quotes}

Fredenberg, Wade; Carty, Daniel (US Fish and Wildlife Service, Kalispell, MT); Cavigli, Jon (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

1996-06-01T23:59:59.000Z

152

Survival of Juvenile Chinook Salmon Passing the Bonneville Dam Spillway in 2007  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers Portland District (CENWP) funds numerous evaluations of fish passage and survival on the Columbia River. In 2007, the CENWP asked Pacific Northwest National Laboratory to conduct an acoustic telemetry study to estimate the survival of juvenile Chinook salmon passing the spillway at Bonneville Dam. This report documents the study results which are intended to be used to improve the conditions juvenile anadromous fish experience when passing through the dams that the Corps operates on the river.

Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; McComas, Roy L.

2008-12-01T23:59:59.000Z

153

Eco-Design of River Fishways for Upstream Passage: Application for Hanfeng Dam, Pengxi River, China  

SciTech Connect (OSTI)

This paper provides a scientific approach to eco-design of river fishways to allow upstream movement of fish past new and existing dams in China. This eco-design approach integrates principles of fish ecology/behavior and engineering, a scientific field also known as bio-engineering or eco-hydraulics. We define a fishway as a structure or mechanism to convey fish upstream past a dam. Man-made or natural stream beds can be part of the fishway mechanism. Fish include bony and non-bony fishes, and upstream passage is the concern here, not downstream passage. The problem is dams block access to upstream habitat used for spawning, rearing, and refuge, i.e., dams decrease habitat connectivity. A solution to alleviate this problem is to design fishways, preferably while the dam is being designed, but if necessary, as retrofits afterward to provide a route that fish can and will use to pass safely upstream without undue delay. Our eco-design approach for fishways involves eight steps: 1) identify the primary species of importance; 2) understand basic ecology and behavior of these fish; 3) characterize the environmental conditions where passage is or will be blocked; 4 identify fishway alternatives and select a preferred alternative; 5) establish eco-design criteria for the fishway, either from management agencies or, if necessary, developed specifically for the given site; 6) where needed, identify and perform research required to resolve critical uncertainties and finalize the eco-design criteria; 7) apply the eco-design criteria and site-specific considerations to design the fishway, involving peer-review by local stakeholders in the process; 8) build the fishway, monitor its effectiveness, and apply the lessons learned. Example fishways are described showing a range of eco-designs depending on the dam site and fish species of concern. We apply the eco-design principles to recommend an approach and next steps for a fishway to pass fish upstream at Hanfeng Dam, an existing regulating dam forming Hanfeng Lake on the Pengxi River near Kaixian, China.

Johnson, Gary E.; Rainey, William S.

2012-05-20T23:59:59.000Z

154

Gravity currents with tailwaters in Boussinesq and non-Boussinesq systems: two-layer shallow-water dam-break solutions and Navier–Stokes simulations  

Science Journals Connector (OSTI)

We consider the dam-break initial stage of propagation of a gravity current of density $$\\rho _{c}$$ ...

M. Ungarish; Z. Borden; E. Meiburg

2014-04-01T23:59:59.000Z

155

A new way to study teaching in animals: despite demonstrable benefits, rat dams do not teach their young what to eat  

E-Print Network [OSTI]

by mothers would be effective, if it occurred. We examined food choices of rat dams trained to eat one of twoA new way to study teaching in animals: despite demonstrable benefits, rat dams do not teach taught are large. Here, we determined, first, whether Rattus novegicus dams would modify their food

Galef Jr., Bennett G.

156

An Assessment of Energy Potential at Non-Powered Dams in the United States  

Broader source: Energy.gov [DOE]

An Assessment of Energy Potential at Non-Powered Dams in the United States- The United States has produced clean, renewable electricity from hydropower for more than 100 years, but hydropower producing facilities represent only a fraction of the infrastructure development that has taken place on the nation’s waterways.

157

Passive revolution in the green economy: activism and the Belo Monte dam  

Science Journals Connector (OSTI)

Belo Monte is slated to be the world’s third largest dam, and it is Brazil’s largest infrastructure project, at a cost of at least USD 13 billion. It is forecast to produce around 11,000 GW of energy

Eve Bratman

2014-11-01T23:59:59.000Z

158

Durability Assessment of an Arch Dam using Inverse Analysis with Neural Networks and High Performance Computing.  

E-Print Network [OSTI]

the viscoelastic parameters; 3D FEM analysis using High Performance Computing (parallel and vector features) to run Performance Computing. E. M. R. Fairbairn, E. Goulart, A. L. G. A. Coutinho, N. F. F. Ebecken COPPEDurability Assessment of an Arch Dam using Inverse Analysis with Neural Networks and High

Coutinho, Alvaro L. G. A.

159

Assessment of Natural Stream Sites for Hydroelectric Dams in the Pacific Northwest Region  

SciTech Connect (OSTI)

This pilot study presents a methodology for modeling project characteristics using a development model of a stream obstructing dam. The model is applied to all individual stream reaches in hydrologic region 17, which encompasses nearly all of Idaho, Oregon, and Washington. Project site characteristics produced by the modeling technique include: capacity potential, principal dam dimensions, number of required auxiliary dams, total extent of the constructed impoundment boundary, and the surface area of the resulting reservoir. Aggregated capacity potential values for the region are presented in capacity categories including total, that at existing dams, within federal and environmentally sensitive exclusion zones, and the balance which is consider available for greenfield development within the limits of the study. Distributions of site characteristics for small hydropower sites are presented and discussed. These sites are screened to identify candidate small hydropower sites and distributions of the site characteristics of this site population are presented and discussed. Recommendations are made for upgrading the methodology and extensions to make the results more accessible and available on a larger scale.

Douglas G. Hall; Kristin L. Verdin; Randy D. Lee

2012-03-01T23:59:59.000Z

160

Updating of Safety Criteria for Basic Diagnostic Indicators of Dam at the Sayano-Shushenskaya HPP  

SciTech Connect (OSTI)

Values of diagnostic indicators [K]-limitations placed on radial displacements and turn angles of horizontal sections of the dam - which are permitted for each upper-pool level within the range from 520 to 539 m are determined and proposed for inclusion in the Declaration of Safety. Empirical relationships used to develop safety criteria K1 and K2 are modified.

Gordon, L. A.; Skvortsova, A. E. [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)] [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)

2013-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation  

E-Print Network [OSTI]

E Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation, and Lepolt Linkimer Online Material: Plot of viable focal mechanisms and table of regional seismic velocity model. INTRODUCTION Rate and distribution of seismic activity are important indica- tors of the overall

Fouch, Matthew J.

162

ANCOLD 2000 Conference on Dams 1 ADVANCES IN THE PRACTICE AND USE OF  

E-Print Network [OSTI]

business environment. In addition to engineering inputs, the new decision paradigm involves manifold, Ph.D., P.E., P.H., F.ASCE. Professor, Utah State University and Principal, RAC Engineers & Economists, Utah, USA. 2 A portfolio is a group of dams, which are the responsibility of a single owner

Bowles, David S.

163

EA-1994: Malheur Resource Area Jonesboro Diversion Dam Replacement Project, Malheur County, Oregon  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with the Bonneville Power Administration (BPA) as a cooperating agency, prepared an EA that assesses the potential environmental impacts of the proposed authorization of a right of way to the Burns Paiute Tribe for replacement of an existing diversion dam and installation of a fish passage structure. BPA’s proposed action was to fund the project

164

Sluiceway Operations to Pass Juvenile Salmonids at The Dalles Dam, Columbia River, USA  

SciTech Connect (OSTI)

Existing ice and trash sluiceways are commonly used to pass juvenile salmonids downstream at hydropower dams through a benign, non-turbine route. At The Dalles Dam on the Columbia River, managers undertook optimizing operations of sluiceway weirs to maximize survival of juvenile salmonids at the powerhouse. We applied fixed-location hydroacoustic methods to compare fish passage rates and sluiceway efficiencies for two weir configurations during 2004 and 2005: three weirs versus six weirs, located at the mid- versus east powerhouse, respectively. We also analyzed horizontal distributions of passage at the sluiceway and turbines and the effects of operating turbines beneath open sluiceway gates to provide supporting data relevant to operations optimization. Based on the findings, we recommend the following for long-term operations for the sluiceway at The Dalles Dam: open six rather than three sluiceway weirs to take advantage of the maximum hydraulic capacity of the sluiceway; open the three weirs above the western-most operating main turbine unit (MU) and the three weirs at MU 8 where turbine passage rates are relatively high; operate the turbine units below open sluiceway weirs as a standard procedure; operate the sluiceway 24 h/d year-round to maximize its benefits to juvenile salmonids; and use the same operations for spring and summer emigrants. These operational concepts are transferable to dams where sluiceway surface flow outlets are used protect downstream migrating fishes.

Johnson, Gary E.; Khan, Fenton; Skalski, J. R.; Klatte, Bernard A.

2013-11-20T23:59:59.000Z

165

Ice storm impacts on woody debris and debris dam formation in northeastern U.S. streams  

E-Print Network [OSTI]

Ice storm impacts on woody debris and debris dam formation in northeastern U.S. streams Clifford E and associated streams. During 1999 and 2000, tree canopy damage, stream physical habitat, and wood deposition were evaluated within 51 first-, second-, and third-order streams located within five eastern

Kraft, Clifford E.

166

Environmental Assessment and Finding of No Significant Impact: Western's Hoover Dam Bypass Project Phase II (Double-Circuiting a Portion of the Hoover-Mead No.5 and No.7 230-kV Transmission Lines with the Henderson-Mead No.1 230-kV Transmission Line, Clark County, Nevada)  

SciTech Connect (OSTI)

The U.S. Highway 93 (U.S. 93) Hoover Dam Bypass Project calls for the U.S. Department of Energy (DOE) Western Area Power Administration (Western) to remove its Arizona and Nevada (A&N) Switchyard. As a result of this action, Western must reconfigure its existing electrical transmission system in the Hoover Dam area. Western proposes to double-circuit a portion of the Hoover-Mead No.5 and No.7 230-kV Transmission Lines with the Henderson-Mead No.1 Transmission Line (see Figure 1-1). Double-circuiting is the placement of two separate electrical circuits, typically in the form of three separate conductors or bundles of conductors, on the same set of transmission line structures. The old Henderson-Hoover 230-kV Transmission Line would become the new Henderson-Mead No.1 and would extend approximately eight miles to connect with the Mead Substation. Western owns, operates, and maintains the Hoover-Mead No.5 and No.7, and Henderson-Hoover electrical power transmission lines. Additionally, approximately 0.25 miles of new right-of-way (ROW) would be needed for the Henderson-Mead No.1 when it transfers from double-circuiting with the Hoover-Mead No.7 to the Hoover-Mead No.5 at the Boulder City Tap. The proposed project would also involve a new transmission line ROW and structures where the Henderson-Mead No.1 will split from the Hoover-Mead No.5 and enter the northeast corner of the Mead Substation. Lastly, Western has proposed adding fiber optic overhead ground wire from the Hoover Power Plant to the Mead Substation on to the Henderson-Mead No.1, Hoover-Mead No.5 and No.7 Transmission Lines. The proposed project includes replacing existing transmission line tower structures, installing new structures, and adding new electrical conductors and fiber optic cables. As a consequence of these activities, ground disturbance may result from grading areas for structure placement, constructing new roads, improving existing roads for vehicle and equipment access, and from installing structures, conductors, and fiber optic cables. Project construction activities would be conducted within the existing 200-foot transmission line ROW and 50-foot access road ROW, although new spur access roads could occur outside of existing ROWs. As lead Federal agency for this action under National Environmental Policy Act (NEPA), Western must ensure that adverse environmental effects on Federal and non-Federal lands and resources are avoided or minimized. This Environmental Assessment (EA) is intended to be a concise public document that assesses the probable and known impacts to the environment from Western's Proposed Action and alternatives, and reaches a conclusion about the significance of the impacts. This EA was prepared in compliance with NEPA regulations published by the Council on Environmental Quality (40 CFR 1500-1508) and implementing procedures of the Department of Energy (10 CFR 1021).

N /A

2003-10-27T23:59:59.000Z

167

Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico  

Science Journals Connector (OSTI)

The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes ( 232 Th and 230 Th ) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input midpoint and near to dam wall. In this last point a depth sampling was also carried out. Here three depth points were taken at 0.4 8 and 15 meters. To evaluate the thorium behavior in surface water from every water sample the colloidal fraction was separated between 1 and 0.1 ?m. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232 Th and 230 Th in surface points ranged from 0.3 to 0.5 Bq ? L-1 whereas in depth points ranged from 0.4 to 3.2 Bq ? L-1 respectively. The results show that 230 Th is in higher concentration than 232 Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus the activity ratio 230 Th / 232 Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam 230 Th activity concentration decreases while 232 Th concentration remains constant. On the other hand activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes which suggest that thorium is non-homogeneously distributed along San Marcos dam.

2013-01-01T23:59:59.000Z

168

Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam  

Science Journals Connector (OSTI)

Abstract Large hydroelectric dams are major drivers of habitat loss and degradation in lowland Amazonia. Hydroelectric reservoirs reduce the habitat available for terrestrial species, but create new open-water and shoreline lake habitat that can potentially boost populations of aquatic and semi-aquatic species, such as the threatened giant otter (Pteronura brasiliensis). To assess the impacts of mega-dams on this apex-predator, we surveyed the giant otter population across the 443,772-hectare Balbina Hydroelectric Reservoir of central Brazilian Amazonia between 14 and 25 years after this reservoir creation. We compared changes in habitat area and estimated giant otter population size between the reservoir pre- and post-filling stages. The Balbina dam created ?3525 islands and increased the open-water surface and total reservoir perimeter available to otters by a factor of 62.7 and 8.9, respectively. Some 25 years after damming, however, the estimated post-filling giant otter population size was only twice greater than that estimated before filling and 4.5 times smaller than would be predicted given the total available habitat area and density of dens quantified at a neighbouring undisturbed area used as a surrogate of the pre-filling phase. The observed mismatch between the proportional increase in otter population size and the much greater newly available reservoir habitat area is likely due to low habitat quality in terms of low fish prey productivity and scarcity of suitable sites for denning and territory demarcation. This should be considered in strategic environmental impact assessments of planned hydroelectric dams and in managing existing and future hydropower development in lowland tropical forests.

Ana Filipa Palmeirim; Carlos A. Peres; Fernando C.W. Rosas

2014-01-01T23:59:59.000Z

169

The Impacts of Wind Power Integration on Sub-Daily Variation in River Flows Downstream of Hydroelectric Dams  

Science Journals Connector (OSTI)

The Impacts of Wind Power Integration on Sub-Daily Variation in River Flows Downstream of Hydroelectric Dams ... Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. ... In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). ...

Jordan D. Kern; Dalia Patino-Echeverri; Gregory W. Characklis

2014-07-25T23:59:59.000Z

170

MHK Projects/Lock and Dam No 2 Hydroelectric Project | Open Energy  

Open Energy Info (EERE)

Lock and Dam No 2 Hydroelectric Project Lock and Dam No 2 Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7486,"lon":-92.8048,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

171

MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS  

Office of Legacy Management (LM)

MISCELLANEOUS PAPER S71-17 MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS Report 2 ANALYSIS OF RESPONSE O F RIFLE.GAP D A M TO PROJECT RULISON UNDERGROUND NUCLEAR DETONATION bv J. E. Ahlberg, J. Fowler, L W. Heller ........ . . . . . . . . - . . . . . . . . . . . . . . . - . . - ...... *- , .... . . . - ->-w-J- * - : - . . June 1972 s~omsored by Office, Chief of Engineers, U. S. Army Conducted by U. S. A m y Engineer Waterways Experiment Station Soils and Pavements Laboratory Vicksburg, Mississippi APPROVED FOR WBLlC RELEASE: DISTRIBUTION UNLIMITED L i s t o f Associated Reports Previous reports under Engineering Study 540 are: "A Comparative Summary o f Current Earth Dam Analysis Methods for Earthquake Response," issued by Office, Chief o f Engineers, a s Inclosure 1 to Engineer

172

Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, T. D.; Monter, Tyrell J.; Skalski, J. R.; Townsend, Richard L.; Zimmerman, Shon A.

2012-09-01T23:59:59.000Z

173

Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, Tyler; Monter, Tyrell J.; Skalski, John R.; Townsend, Richard L.; Zimmerman, Shon A.

2011-12-01T23:59:59.000Z

174

Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1989-1990 Annual Report.  

SciTech Connect (OSTI)

We report on our progress from April 1989 through March 1990 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from McNary Dam, to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam, to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams, and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights from this work is also included. 47 refs., 33 figs., 66 tabs.

Nigro, Anthony A. (Oregon Department of Fish and Wildlife, Portland, OR)

1990-09-01T23:59:59.000Z

175

Oxygenation cost estimates in 1983 dollars for Cherokee and Douglas Dams  

SciTech Connect (OSTI)

As part of the Reservoir Releases Program, estimates of costs associated with providing high purity oxygen injection systems at Cherokee and Douglas Dams were computed in 1983 dollars. This report presents results of the computations. An 8.125% interest rate, a 25-year economic life, and a 10-year diffuser life were assumed. Weekly average dissolved oxygen concentration (DO) and turbine flowrate data were available for the years 1958 through 1980. 4 refs., 6 figs., 3 tabs.

Fain, T.G.; Boyd, J.W.

1983-12-01T23:59:59.000Z

176

Scientific substantiation of safe operation of the Earthen Dams at the Votkinsk HPP  

SciTech Connect (OSTI)

Over a period of 15 years, coworkers of the B. E. Vedeneev Scientific-Research Institute of Hydraulic Engineering have conducted scientific accompaniment of the operation of the earthen dams at the Votkinsk HPP. During that time, basic performance characteristics associated with complex hydrogeologic and hydrochemical conditions, and the forms of their unfavorable manifestations influencing the reliability and safety of the structures were revealed, and, recommendations and measures were developed for their elimination.

Deev, A. P.; Fisenko, V. F. [Votkinsk HPP Branch of the JSC 'RusGidro,' Chaikovskii (Russian Federation); Sol'skii, S. V.; Lopatina, M. G.; Gints, A. V.; Aref'eva, A. N. [JSC 'VNIIG im. B. E. Vedeneeva', Branch of JSC 'RusGidro' (Russian Federation)

2012-11-15T23:59:59.000Z

177

Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project  

SciTech Connect (OSTI)

Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

2013-06-25T23:59:59.000Z

178

Alternatives for physically modifying John Sevier detention dam to allow fish passage  

SciTech Connect (OSTI)

Studies conducted in the vicinity of John Sevier Steam-Electric Plant (JSF) indicated some modification of the fish assemblage from that expected. By blocking movements of fish between Cherokee Reservoir and the upper Holston River, John Sevier detention dam has affected the fisheries in both systems. Providing passage for river-spawning fish at John Sevier detention dam might improve fish communities and fisheries in Cherokee Reservoir as well as upstream habitats. This would include enhanced reproductive success of river-spawning species found in Cherokee Reservoir (e.g., white bass and possibly striped bass and paddlefish) and repopulation of John Sevier Reservoir and the upper Holston River by several species presently found only downstream of the detention dam. TVA has identified and studied several alternatives that alone or in combination might improve the fisheries. Cost estimates were developed for three alternatives. These three alternatives with cost estimates are discussed briefly along with two other alternatives for which cost estimates have not been made. Merits of the three alternatives which have at least some possibility to improve migratory fish stocks are discussed in detail. 5 references.

Not Available

1984-09-01T23:59:59.000Z

179

Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam  

SciTech Connect (OSTI)

At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

2007-01-30T23:59:59.000Z

180

Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam with Emphasis on the Prototype Surface Flow Outlet, 2008  

SciTech Connect (OSTI)

The main purpose of the study was to evaluate the performance of Top Spill Weirs installed at two spillbays at John Day Dam and evaluate the effectiveness of these surface flow outlets at attracting juvenile salmon away from the powerhouse and reducing turbine passage. The Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate survival of juvenile salmonids passing the dam and also for calculating performance metrics used to evaluate the efficiency and effectiveness of the dam at passing juvenile salmonids.

Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Deng, Zhiqun; Fu, Tao; Monter, Tyrell J.; Johnson, Gary E.; Khan, Fenton; Wilberding, Matthew C.; Cushing, Aaron W.; Zimmerman, Shon A.; Faber, Derrek M.; Durham, Robin E.; Townsend, Richard L.; Skalski, John R.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Light-Emitting Tag Testing in Conjunction with Testing of the Minimum Gap Runner Turbine Design at Bonneville Dam Powerhouse 1  

SciTech Connect (OSTI)

This report describes a pilot study conducted by Tom Carlson of PNNL and Mark Weiland of MEVATEC Corp to test the feasibility of using light-emitting tags to visually track objects passing through the turbine environment of a hydroelectric dam. Light sticks were released at the blade tip, mid-blade, and hub in the MGR turbine and a Kaplan turbine at Bonneville Dam and videotaped passing thru the dam to determine visibility and object trajectories.

Carlson, Thomas J.; Weiland, Mark A.

2001-01-30T23:59:59.000Z

182

Synthesis of Sensor Fish Data for Assessment of Fish Passage Conditions at Turbines, Spillways, and Bypass Facilities – Phase 1: The Dalles Dam Spillway Case Study  

SciTech Connect (OSTI)

This report summarizes the characterization of spillway passage conditions at The Dalles Dam in 2006 and the effort to complete a comprehensive database for data sets from The Dalles Dam spillway Sensor Fish and balloon-tagged live fish experiments. Through The Dalles Dam spillway case study, Pacific Northwest National Laboratory (PNNL) researchers evaluated the database as an efficient means for accessing and retrieving system-wide data for the U.S Army Corps of Engineers (USACE).

Deng, Zhiqun; Serkowski, John A.; Fu, Tao; Carlson, Thomas J.; Richmond, Marshall C.

2007-12-31T23:59:59.000Z

183

Characterization of Fish Passage Conditions through the Fish Weir and Turbine Unit 1 at Foster Dam, Oregon, Using Sensor Fish, 2012  

SciTech Connect (OSTI)

This report documents investigations of downstream fish passage research involving a spillway fish weir and turbine passage conditions at Foster Dam in May 2012.

Duncan, Joanne P.

2013-02-01T23:59:59.000Z

184

Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA  

SciTech Connect (OSTI)

Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to merging and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.

Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.; Khan, Fenton; Mueller, Robert P.; Nagy, William T.; Richmond, Marshall C.; Weiland, Mark A.

2008-07-29T23:59:59.000Z

185

Survival Rates of Juvenile Salmonids Passing Through the Bonneville Dam and Spillway in 2008  

SciTech Connect (OSTI)

This report describes a 2008 acoustic telemetry survival study conducted by the Pacific Northwest National Laboratory for the Portland District of the U.S. Army Corps of Engineers. The study estimated the survival of juvenile Chinook salmon and steelhead passing Bonneville Dam (BON) and its spillway. Of particular interest was the relative survival of smolts detected passing through end spill bays 1-3 and 16-18, which had deep flow deflectors immediately downstream of spill gates, versus survival of smolts passing middle spill bays 4-15, which had shallow flow deflectors.

Ploskey, Gene R.; Weiland, Mark A.; Faber, Derrek M.; Deng, Zhiqun; Johnson, Gary E.; Hughes, James S.; Zimmerman, Shon A.; Monter, Tyrell J.; Cushing, Aaron W.; Wilberding, Matthew C.; Durham, Robin E.; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.; McComas, Roy L.; Everett, Jason

2009-12-28T23:59:59.000Z

186

FINAL TECHNICAL REPORT AMERICAN RECOVERY AND REINVESTMENT ACT NORTH FORK SKOKOMISH POWERHOUSE AT CUSHMAN NO. 2 DAM  

SciTech Connect (OSTI)

The objective of this project was to add generating capacity on an in-stream flow release at Tacoma Power's Cushman hydroelectric project, Cushman No. 2 Dam, FERC Project P-460. The flow that is being used to generate additional electricity was being discharged from a valve at the base of the dam without recovery of the energy. A second objective to the project was to incorporate upstream fish passage by use of a fish collection structure attached to the draft tubes of the hydroelectric units. This will enable reintroduction of native anadromous fish above the dams which have blocked fish passage since the late 1920's. The project was funded in part by the American Recovery and Reinvestment Act through the Department of Energy, Office of Energy, Efficiency and Renewable Energy, Wind and Water Power Program.

Fischer, Steve; Wilson, Matthew

2013-09-30T23:59:59.000Z

187

Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir.  

E-Print Network [OSTI]

Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir. Prolonged wave overtopping or a combination of wave the actions of wind generated waves and wave overtopping. The uneven elevations of the dam crest

Bowles, David S.

188

Impacts of elevation data spatial resolution on two-dimensional dam break flood simulation and consequence assessment  

SciTech Connect (OSTI)

A grid resolution sensitivity analysis using a two-dimensional flood inundation model has been presented in this paper. Simulations for 6 dam breaches located randomly in the United States were run at 10,30,60,90, and 120 meter resolutions. The dams represent a range of topographic conditions, ranging from 0% slope to 1.5% downstream of the dam. Using 10 meter digital elevation model (DEM) simulation results as the baseline, the coarser simulation results were compared in terms of flood inundation area, peak depths, flood wave travel time, daytime and nighttime population in flooded area, and economic impacts. The results of the study were consistent with previous grid resolution studies in terms of inundated area, depths, and velocity impacts. The results showed that as grid resolution is decreased, the relative fit of inundated area between the baseline and coarser resolution decreased slightly. This is further characterized by increasing over prediction as well as increasing under prediction with decreasing resolution. Comparison of average peak depths showed that depths generally decreased as resolution decreased, as well as the velocity. It is, however, noted that the trends in depth and velocity showed less consistency than the inundation area metrics. This may indicate that for studies in which velocity and depths must be resolved more accurately (urban environments when flow around buildings is important in the calculation of drag effects), higher resolution DEM data should be used. Perhaps the most significant finding from this study is the perceived insensitivity of socio-economic impacts to grid resolution. The difference in population at risk (PAR) and economic cost generally remained within 10% of the estimated impacts using the high resolution DEM. This insensitivity has been attributed to over estimated flood area and associated socio-economic impacts compensating for under estimated flooded area and associated socio-economic impacts. The United States has many dams that are classified as high-hazard potential that need an emergency action plan (EAP). It has been found that the development of EAPs for all high-hazard dams is handicapped due to funding limitations. The majority of the cost associated with developing an EAP is determining the flooded area. The results of this study have shown that coarse resolution dam breach studies can be used to provide an acceptable estimate of the inundated area and economic impacts, with very little computational cost. Therefore, the solution to limited funding may be to perform coarse resolution dam breach studies on high-hazard potential dams and use the results to help prioritize the order in which detailed EAPs should be developed.

Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV OF UTAH

2009-01-01T23:59:59.000Z

189

White Sturgeon Mitgation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2003-2004 Annual Report.  

SciTech Connect (OSTI)

We report on our progress from April 2003 through March 2004 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

Rein, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

2005-08-01T23:59:59.000Z

190

Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia  

SciTech Connect (OSTI)

The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

Pasha, MD Fayzul K [ORNL] [ORNL; Hadjerioua, Boualem [ORNL] [ORNL; Stewart, Kevin M [ORNL] [ORNL; Bender, Merlynn [Bureau of Reclamation] [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers] [U.S. Army Corps of Engineers

2012-01-01T23:59:59.000Z

191

Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse  

SciTech Connect (OSTI)

Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

2011-11-22T23:59:59.000Z

192

A young stellar environment for the superluminous supernova PTF12dam  

E-Print Network [OSTI]

The progenitors of super luminous supernovae (SLSNe) are still a mystery. Hydrogen-poor SLSN hosts are often highly star-forming dwarf galaxies and the majority belongs to the class of extreme emission line galaxies hosting young and highly star-forming stellar populations. Here we present a resolved long-slit study of the host of the hydrogen-poor SLSN PTF12dam probing the kpc environment of the SN site to determine the age of the progenitor. The galaxy is a "tadpole" with uniform properties and the SN occurred in a star-forming region in the head of the tadpole. The galaxy experienced a recent star-burst superimposed on an underlying old stellar population. We measure a very young stellar population at the SN site with an age of ~3 Myr and a metallicity of 12+log(O/H)=8.0 at the SN site but do not observe any WR features. The progenitor of PTF12dam must have been a massive star of at least 60 M_solar and one of the first stars exploding as a SN in this extremely young starburst.

Thöne, C C; García-Benito, R; Leloudas, G; Schulze, S; Amorín, R

2014-01-01T23:59:59.000Z

193

Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passage and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early spring months. Passage rates were highest during late fall, winter and early spring months and low during summer. Horizontal distribution for hours when both turbine units were operated simultaneously indicated Unit 2 passed almost twice as much fish as Unit 1. Diel distribution for smolt-size fish during the study period was fairly uniform, indicating fish were passing the turbines at all times of the day. A total of 5,083 smolt-size fish (± 312 fish, 95% CI) were estimated passed via the spillway when it was open between June 23 and September 27, 2011. Daily passage was low at the spillway during the June-August period, and increased somewhat in September 2011. When the spillway was operated simultaneously with the turbines, spillway efficiency (efficiency is estimated as spillway passage divided by total project passage) was 0.72 and effectiveness (fish:flow ratio—proportion fish passage at a route (e.g., spillway) divided by proportion water through that route out of the total project) was 2.69. That is, when the spillway was open, 72% of the fish passing the dam used the spillway and 28% passed into the turbine penstocks. Diel distribution for smolt-size fish at the spillway shows a distinct peak in passage between mid-morning and mid-afternoon and low passage at night. We estimated that 23,339 smolt-size fish (± 572 fish, 95% CI) passed via the Regulating Outlet (RO) when it was open from October 29 through November 12, 2011, January 2-6, and January 20 through February 3, 2012. During the October–November period, RO passage peaked at 1,086 fish on November 5, with a second peak on November 7 (1,075 fish). When the RO was operated simultaneously with the turbines, RO efficiency was 0.33 and effectiveness was 0.89. In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed fish passage data well. The best model included forebay temperature at depth, forebay elevation, total discharge, hours of daylight, and the operation period. The vertical distribution of fish in the forebay near the face of the dam where the transducers sampled showed fish were generally distributed throughout the water column during all four operational periods. During the refill and full pool periods, vertical distribution was bi-modal with surface-layer and mid-water modes. Patterns for day and night distributions were variable. Fish were distributed above and below the thermocline when it was present (full pool and drawdown periods).

Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Ham, Kenneth D.

2012-11-15T23:59:59.000Z

194

Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.  

SciTech Connect (OSTI)

Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

Dunnigan, James; DeShazer, J.; Garrow, L.

2009-05-26T23:59:59.000Z

195

CX-012076: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

230-Kilovolt Reconductoring Project CX(s) Applied: B1.3 Date: 04252014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region In 2013,...

196

EIS-0414: EPA Notice of Availability of the Draft Environmental Impact Statement  

Broader source: Energy.gov [DOE]

Energia Sierra Juarez U.S. Transmission Line Project, Construction, Operation, Maintenance, and Connection of either 230-kilovolt or a 500-kilovolt Electric Transmission Line Crossing U.S.-Mexico Border

197

Microsoft Word - CX_HatRockEquipmentDisposition.docx  

Broader source: Energy.gov (indexed) [DOE]

station taps PacifiCorp's McNary-Wallula 230-kilovolt (kV) line to serve BPA's Hat Rock Substation. PacifiCorp is in the process of rebuilding the switching station, including...

198

Microsoft Word - CFAC 7-Year PSA.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.5 "CFAC Plant" means the CFAC aluminum smelting facilities served from BPA's Conkelly Substation, where the 13.8 or 230 kilovolt facilities of BPA and CFAC are connected. 2.6...

199

CX-012194: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Santiam Substation 230 Kilovolt Shunt Reactor Replacement CX(s) Applied: B4.11 Date: 05/05/2014 Location(s): Oregon Offices(s): Bonneville Power Administration

200

EIS-0323-S1: Draft Supplement Environmental Impact Statement...  

Broader source: Energy.gov (indexed) [DOE]

been proposed of approximately 31 to 38 miles of new, double-circuit, 230-kilovolt (kV) transmission line between Western's O'Banion Substation and the area just south of SMUD's...

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CX-011723: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Happy Jack 230 Kilovolt Substation Fiber Optic Installation in Laramie County, Wyoming CX(s) Applied: B4.7 Date: 12/31/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

202

CX-010891: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Archer-Stegall 230-Kilovolt Fiber Optic Ground Wire Addition CX(s) Applied: B4.7 Date: 08/20/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

203

CX-011209: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Archer-North Park 230-Kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 09/10/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

204

CX-011204: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Hayden-North Park 230-Kilovolt Transmission Lane Danger Tree Management CX(s) Applied: B1.3 Date: 08/30/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

205

CX-011208: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Danger Tree Management on Malta-Mount Elbert 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 09/09/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

206

CX-008685: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Big Eddy – Troutdale No. 1 230 Kilovolt Transmission Line Upgrade CX(s) Applied: B4.13 Date: 07/11/2012 Location(s): Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

207

CX-010107: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Curecanti-Morrow Point 230 Kilovolt (kV) and 12.47-kV Transmission Lines Access Road Maintenance CX(s) Applied: B1.3 Date: 04122013 Location(s): Colorado...

208

EIS-0106: Great Falls-Conrad Transmission Line Project, Montana  

Broader source: Energy.gov [DOE]

The Western Area Power Administration prepared this EIS to evaluate the environmental impacts of the construction and operation of a 230-kilovolt transmission line from Great Falls, Montana, to Conrad, Montana.

209

CX-011205: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Lost Canyon-Shiprock 230-Kilovolt Transmission Line Road Maintenance CX(s) Applied: B1.3 Date: 08/30/2013 Location(s): New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region

210

CX-010886: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Curecanti-Lost Canyon 230-Kilovolt Emergency Repairs of Downed Conductor CX(s) Applied: B1.3 Date: 08/06/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

211

CX-011228: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011228: Categorical Exclusion Determination Structure 112-4 LIBPAD1 230-kilovolt Transmission Line "Live Line" Maintenance Training CX(s) Applied: B1.2 Date: 10252013...

212

EIS-0496: San Luis Transmission Project, Alameda, Merced, San...  

Energy Savers [EERE]

proposes at a minimum to construct, own, operate, and maintain a new 230-kilovolt (kV) transmission line about 62 miles in length between Western's Tracy Substation and...

213

Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013  

SciTech Connect (OSTI)

In 2012 and 2013, Pacific Northwest National Laboratory conducted a study that summarized the passage proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged-kelts. Kelts were also tagged with Passive Integrated Transponder tags to monitor passage through juvenile bypass systems and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify individual, behavioral, environmental and dam operation variables that were related to passage and survival of steelhead kelts that passed through FCRPS dams. Bayesian model averaging of multivariable logistic regression models was used to identify the environmental, temporal, operational, individual, and behavioral variables that had the highest probability of influencing the route of passage and the route-specific survival probabilities for kelts that passed Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams in 2012 and 2013. The posterior probabilities of the best models for predicting route of passage ranged from 0.106 for traditional spill at LMN to 0.720 for turbine passage at LGS. Generally, the behavior (depth and near-dam searching activity) of kelts in the forebay appeared to have the greatest influence on their route of passage. Shallower-migrating kelts had a higher probability of passing via the weir and deeper-migrating kelts had a higher probability of passing via the JBS and turbines than other routes. Kelts that displayed a higher level of near-dam searching activity had a higher probability of passing via the spillway weir and those that did less near-dam searching had a higher probability of passing via the JBS and turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

Harnish, Ryan A.; Colotelo, Alison HA; Li, Xinya; Ham, Kenneth D.; Deng, Zhiqun

2014-12-15T23:59:59.000Z

214

Figure 1. The wet area is flooded by damming up a small stream adjacent to the study area once a year for a period of 2-3 months. By  

E-Print Network [OSTI]

Figure 1. The wet area is flooded by damming up a small stream adjacent to the study area once. Figure 1.g The wet area is flooded by damming up a small streamded by damming up a smded by damwet area Vegetation data are obtained from two ri- parian grassland sites with strong hydro- logical gradients

Schierup, Mikkel Heide

215

Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams  

SciTech Connect (OSTI)

Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

Carlson, J.L.

1995-03-01T23:59:59.000Z

216

Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

2010-10-13T23:59:59.000Z

217

Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to project discharge (P<0.001). This relationship was positive, but there was no relationship between total project passage and forebay elevation (P=0.48) or forebay elevation delta, i.e., day-to-day change in forebay elevation (P=0.16). In multiple regression analyses, a relatively parsimonious model was selected that predicted the observed data well. The multiple regression model indicates a positive trend between expected daily fish passage and each of the three variables in the model-Julian day, log(discharge), and log(abs(forebay delta)); i.e., as any of the environmental variables increase, expected daily fish passage increases. For vertical distribution of fish at the face of the dam, fish were surface-oriented with 62%-80% occurring above 10 m deep. The highest percentage of fish (30%-60%) was found between 5-10-m-deep. During spring and summer, mean target strengths for the analysis periods ranged from -44.2 to -42.1 dB. These values are indicative of yearling-sized juvenile salmon. In contrast, mean target strengths in fall and winter were about -49.0 dB, which are representative of subyearling-sized fish. The high-resolution spatial and temporal data reported herein provide detailed information about vertical, horizontal, diel, daily, and seasonal fish passage rates and distributions at LOP from March 2010 through January 2011. This information will support management decisions on design and development of surface passage and collection devices to help restore Chinook salmon populations in the Middle Fork Willamette River watershed above LOP.

Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

2012-05-31T23:59:59.000Z

218

An Assessment of Energy Potential at Non-Powered Dams in the United States  

SciTech Connect (OSTI)

fleet by 15%. A majority of this potential is concentrated in just 100 NPDs, which could contribute approximately 8 GW of clean, reliable hydropower; the top 10 facilities alone could add up to 3 GW of new hydropower. Eighty-one of the 100 top NPDs are U.S. Army Corps of Engineers (USACE) facilities, many of which, including all of the top 10, are navigation locks on the Ohio River, Mississippi River, Alabama River, and Arkansas River, as well as their major tributaries. This study also shows that dams owned by the U.S. Bureau of Reclamation hold the potential to add approximately 260 MW of capacity; the Bureau has also engaged in an effort to conduct a more detailed evaluation of its own facilities.

Hadjerioua, Boualem [ORNL; Wei, Yaxing [ORNL; Kao, Shih-Chieh [ORNL

2012-04-01T23:59:59.000Z

219

Little Goose Dam Full Flow PIT-Tag Detection System Project Summary.  

SciTech Connect (OSTI)

In 2006, the design phase of this project was kicked off and was for the most part modeled after the Full Flow PIT installation installed at Lower Monumental Dam during winter and spring of 2006 and 2007. As the Goose Full Flow design progressed and the project started to move towards construction, issues within contracting occurred and the project was put on delay for 1 year. Starting in mid December of 2008, Harcon Inc. was awarded the contract and construction of the new Goose Full Flow PIT-tag detection system began. The purpose of this document is to summarize the installation of the Little Goose Full Flow project from start to finish and to highlight the notable successes and challenges that the installation presented along with the final results and current status.

Warf, Don; Livingston, Scott [Pacific States Marine Fisheries Commission

2009-04-16T23:59:59.000Z

220

Evaluation of Fish Passage Conditions for Juvenile Salmonids Using Sensor Fish at Detroit Dam, Oregon  

SciTech Connect (OSTI)

Fish passage conditions through two spillways at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions through Spillbay 3 and Spillbay 6 at 1.5- and 3.5-ft gate openings, identifying potential fish injury regions of the routes. The study was performed in July 2009, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish and live fish were deployed at elevations approximately 3 ft above structure at depths determined using a computational fluid dynamics model. Data collected were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates.

Duncan, Joanne P.

2010-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Billy Shaw Dam and Reservoir : Environmental Assessment and Finding of No Significant Impacts.  

SciTech Connect (OSTI)

This notice announces BPA`s decision to fund the construction, operation, and maintenance of the Billy Shaw Dam and Reservoir on the Duck Valley Reservation. This project is part of a continuing effort to address system-wide fish and wildlife losses caused by the development of the hydropower system in the Columbia River Basin. BPA has prepared an Environmental Assessment (EA) evaluating the potential environmental impacts of the proposed project. Based on the analysis in the EA, BPA has determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

United States. Bonneville Power Administration; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada.

1997-03-01T23:59:59.000Z

222

White Sturgeon Mitigation & Restoration in the Columbia & Snake River Upstream from Bonneville Dam  

Broader source: Energy.gov (indexed) [DOE]

29, 2003 29, 2003 To: People Interested in the Project to Mitigate and Restore White Sturgeon Populations in the Columbia and Snake Rivers Bonneville Power Administration (BPA) has prepared the Final Environmental Assessment (EA), which includes a Finding of No Significant Impact (FONSI), for the White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Project. The document is enclosed for your information. Background: Since 1986, State, Federal, and Tribal fisheries agencies have been gathering data and studying habitats, movements, population dynamics, feeding, and distribution of white sturgeon in the Columbia River system. With the decline in anadromous salmonid runs there has been an increase in the importance of the white sturgeon fisheries. The Oregon Department of

223

Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.  

SciTech Connect (OSTI)

On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

2010-07-31T23:59:59.000Z

224

Lower Granite Dam Smolt Monitoring Program, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

The 2004 fish collection season at Lower Granite Dam (LGR) was characterized by above average water temperatures, below average flows and spill, low levels of debris. The number of smolts collected for all species groups (with the exception of clipped and unclipped sockeye/kokanee) exceeded all previous collection numbers. With the continued release of unclipped supplementation chinook, steelhead and sockeye above LGR, we can not accurately distinguish wild chinook, wild steelhead and wild sockeye/kokanee from hatchery reared unclipped chinook and sockeye/kokanee in the sample. Wild steelhead can be identified from hatchery steelhead by the eroded dorsal and pectoral fins exhibited on unclipped hatchery steelhead. The numbers in the wild columns beginning in 1998 include wild and unclipped hatchery origin smolts. This season a total of 11,787,539 juvenile salmonids was collected at LGR. Of these, 11,253,837 were transported to release sites below Bonneville Dam, 11,164,132 by barge and 89,705 by truck. An additional 501,395 fish were bypassed to the river due to over-capacity of the raceways and for research purposes. According to the PTAGIS database, 177,009 PIT-tagged fish were detected at LGR in 2004. Of these, 105,894 (59.8%) were bypassed through the PIT-tag diversion system, 69,130 (39.1%) were diverted to the raceways to be transported, 1,640 (0.9%) were diverted to the sample tank, sampled and then transported, 345 (0.2%) were undetected at any of the bypass, raceway or sample exit monitors.

Mensik, Fred; Rapp, Shawn; Ross Doug (Washington Department of Fish and Wildlife, Olympia, WA)

2005-11-01T23:59:59.000Z

225

Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam  

SciTech Connect (OSTI)

At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

2009-01-29T23:59:59.000Z

226

Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective  

Science Journals Connector (OSTI)

Abstract Glacial lake outburst floods (GLOFs) are highly mobile mixtures of water and sediment that occur suddenly and are capable of traveling tens to hundreds of kilometers with peak discharges and volumes several orders of magnitude larger than those of normal floods. They travel along existing river channels, in some instances into populated downstream regions, and thus pose a risk to people and infrastructure. Many recent events involve process chains, such as mass movements impacting glacial lakes and triggering dam breaches with subsequent outburst floods. A concern is that effects of climate change and associated increased instability of high mountain slopes may exacerbate such process chains and associated extreme flows. Modeling tools can be used to assess the hazard of potential future GLOFs, and process modeling can provide insights into complex processes that are difficult to observe in nature. A number of numerical models have been developed and applied to simulate different types of extreme flows, but such modeling faces challenges stemming from a lack of process understanding and difficulties in measuring extreme flows for calibration purposes. Here we review the state of knowledge of key aspects of modeling GLOFs, with a focus on process cascades. Analysis and simulation of the onset, propagation, and potential impact of \\{GLOFs\\} are based on illustrative case studies. Numerical models are presently available for simulating impact waves in lakes, dam failures, and flow propagation but have been used only to a limited extent for integrated simulations of process cascades. We present a spectrum of case studies from Patagonia, the European Alps, central Asia, and the Himalayas in which we simulate single processes and process chains of past and potential future events. We conclude that process understanding and process chain modeling need to be strengthened and that research efforts should focus on a more integrative treatment of processes in numerical models.

Raphael Worni; Christian Huggel; John J. Clague; Yvonne Schaub; Markus Stoffel

2014-01-01T23:59:59.000Z

227

Physical characteristics of the performance and increase of the reliability of functioning of overflow dams with a {open_quotes}second limit state{close_quotes} of the rock foundation  

SciTech Connect (OSTI)

The main danger for the stability of high-head overflow dams having large safety factors is related to unfavorable processes in two zones of the foundation - near the upstream and downstream sides of the dam - due to fracturing of the rock foundation next to the dam by flood discharges. Fracturing of the toe of a dam, especially a gravity-arch dam, is accompanied by an increase of shear stresses in the rock under it to values exceeding the design values, and owing to fracturing of the rock below the dam foundation deformation movements of the dam toward the lower pool increase markedly, moreover, the greater amount, the more considerable the depth of fracturing below the dam foundation. As a result the tensile stresses in the rock in front of the dam increase to values exceeding the allowable, which intensifies cracking of this rock zone to a greater depth, the deeper the fracturing of the rock beyond the dam. Owing to this, the stress state of the foundation directly under the dam, accompanied by a decrease of the bearing capacity of the rock and increase of its deformation with loss of the required seepage strength, worsens.

Khlopenkov, P.R.

1994-08-01T23:59:59.000Z

228

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the fo

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

229

Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part I: model development  

Science Journals Connector (OSTI)

Dam-break floods have been of increasing concern to safety ... of complex terrain in inundation areas multiplies the simulation difficulty of flood routing. In previous studies, representing the flood routing par...

Ruirui Sun; Xiaoling Wang; Zhengyin Zhou; Xuefei Ao; Xiaopei Sun…

2014-09-01T23:59:59.000Z

230

Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part II: Model application and results  

Science Journals Connector (OSTI)

The present model and methodology described in Part I of this work are applied to perform a comprehensive risk analysis of the dam-break flood of five reservoirs in the Haihe River ... The results indicate that t...

Zhengyin Zhou; Xiaoling Wang; Ruirui Sun; Xuefei Ao; Xiaopei Sun…

2014-06-01T23:59:59.000Z

231

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.  

SciTech Connect (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

2003-09-01T23:59:59.000Z

232

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.  

SciTech Connect (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2005-11-01T23:59:59.000Z

233

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.  

SciTech Connect (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of seven streams and four lakes on the Spokane Indian Reservation were completed by 2000. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in southern Pend Oreille County, and water bodies within and near the Spokane Indian Reservation were conducted in 2001. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O'Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

2003-01-01T23:59:59.000Z

234

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.  

SciTech Connect (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2006-02-01T23:59:59.000Z

235

Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2  

SciTech Connect (OSTI)

Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; McMichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, X.; Fu, Tao

2014-03-28T23:59:59.000Z

236

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2000 Annual Report.  

SciTech Connect (OSTI)

The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project began to address some of the identified data gaps, throughout the blocked area, with a variety of newly developed sampling projects, as well as, continuing with ongoing data collection of established projects.

Crossley, Brian (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA); Lockwood, Jr., Neil W. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA)

2001-01-01T23:59:59.000Z

237

Lower Granite Dam Smolt Monitoring Program, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam, 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.

Mensik, Fred; Rapp, Shawn; Ross, Doug (Washington Department of Fish and Wildlife, Olympia, WA)

2007-01-01T23:59:59.000Z

238

Lower Granite Dam Smolt Monitoring Program, Annual Report 2005-2006.  

SciTech Connect (OSTI)

The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam, 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.

Menski, Fred

2007-01-01T23:59:59.000Z

239

Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam  

SciTech Connect (OSTI)

Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

2010-10-13T23:59:59.000Z

240

Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations  

SciTech Connect (OSTI)

Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

Shuifer, M. I.; Argal, E. S. [JSC 'SPII Gidroproekt' (Russian Federation)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Movements and Distribution of Northern Squawfish Downstream of Lower Snake River Dams Relative to the Migration of Juvenile Salmonids, 1992-1993 Completion Report.  

SciTech Connect (OSTI)

Northern squawfish Ptychocheilus oregonensis movements were monitored downstream of two lower Snake River dams during the juvenile salmonid migrations of 1992 and 1993. During a high flow year in 1993, the abundance of squawfish in the tailrace of Lower Granite Dam peaked in July, after the majority of juveniles had moved past Lower Granite Dam, and peak abundance was inversely related to river discharge. Few squawfish moved into the tailrace of Ice Harbor Dam in 1993 because of the extended period of spill. Distributions of squawfish in the tailrace of Lower Granite Dam varied between and within years and shifted in response to changing prey densities, flow patterns, water temperature, and diel cycles, but fish consistently used low velocity habitats. Data from Ice Harbor Dam is less extensive, but squawfish distributions there appeared to be affected by changing flow patterns and fish used low velocity habitats. The changes in distribution and abundance of squawfish in tailrace areas are evidence that predation on seaward migrating salmonids depends on the timing of migration and size and timing of runoff. Juvenile salmonids migrating in the spring and early summer will probably be less affected by squawfish predation in tailrace areas than salmon that migrate later in the summer.

Isaak, D.J.; Bjornn, T.C. (University of Idaho, Idaho Cooperative Fish and Wildlife Research Unit, Moscow, ID)

1996-03-01T23:59:59.000Z

242

Route-Specific Passage and Survival of Steelhead Kelts at The Dalles and Bonneville Dams, 2012 - Final Report  

SciTech Connect (OSTI)

This study was mainly focused on evaluating the route-specific passage and migration success of steelhead kelts passing downstream through The Dalles Dam (TDA) and Bonneville Dam (BON) at Columbia River (CR) river kilometers 309 and 234 respectively. Oregon Department of Fish and Wildlife (ODFW) personnel collected, tagged and released out-migrating steelhead kelts in the tributaries of the Deschutes River, 15 Mile Creek and Hood River between April 14 and June 4, 2012. A PIT tag was injected into each kelt’s dorsal sinus whereas a Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic micro-transmitter was attached to an external FLoy T-bar tag and inserted into the dorsal back musculature using a Floy tagging gun. JSATS cabled arrays were deployed at TDA and BON and autonomous node arrays were deployed near Celilo, Oregon (CR325); the BON forebay (CR236); the BON tailrace (CR233); near Knapp, Washington (CR156); and near Kalama, Washington (CR113) to monitor the kelts movement while passing through the dams and above mentioned river cross-sections.

Rayamajhi, Bishes; Ploskey, Gene R.; Woodley, Christa M.; Weiland, Mark A.; Faber, Derek M.; Kim, Jin A.; Colotelo, Alison HA; Deng, Zhiqun; Fu, Tao

2013-07-31T23:59:59.000Z

243

Survival and Passage of Yearling Chinook Salmon and Steelhead at The Dalles Dam, Spring 2011 - FINAL REPORT  

SciTech Connect (OSTI)

The study reported herein was conducted by the Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The PNNL and UW project managers were Drs. Thomas J. Carlson and John R. Skalski, respectively. The USACE technical lead was Mr. Brad Eppard. The study was designed to estimate dam passage survival and other performance measures at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System Biological Opinion (BiOp) and the 2008 Columbia Basin Fish Accords. The study is being documented in two types of reports: compliance and technical. A compliance report is delivered within 6 months of the completion of the field season and focuses on results of the performance metrics outlined in the 2008 BiOp and Fish Accords. A technical report is produced within the 18 months after field work, providing comprehensive documentation of a given study and results on route-specific survival estimates and fish passage distributions, which are not included in compliance reports. This technical report concerns the 2011 acoustic telemetry study at The Dalles Dam.

Johnson, Gary E.; Hennen, Matthew J.; Zimmerman, Shon A.; Batten, G.; Carpenter, Scott M.; Deng, Zhiqun; Fu, Tao; Hughes, James S.; Martinez, Jayson J.; Ploskey, Gene R.; Royer, Ida M.; Townsend, Richard L.; Woodley, Christa M.; Kim, Jeongkwon; Etherington, D. J.; Skalski, J. R.; Carlson, Thomas J.; Cushing, Aaron W.; Fisher, Erik J.; Greiner, Michael J.; Khan, Fenton; Mitchell, T. D.; Rayamajhi, Bishes; Seaburg, Adam; Weiland, Mark A.

2012-10-01T23:59:59.000Z

244

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monume

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

245

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

246

Characterization of The Dalles Dam Spillbay 6 Vortex Using Surface Entrained Sensor Fish Device: Preliminary Report  

SciTech Connect (OSTI)

This document summarizes the pilot study to characterize The Dalles Dam Spillbay 6 vortex using a surface entrained Sensor Fish device. It was conducted by Pacific Northwest National Laboratory (PNNL) on April 13 and 14, 2006. The total spill was controlled at approximately 110 kcfs, the forebay elevation was 157.89 ft, and the discharge of Bay 6 at the tested gate opening of 14 ft was approximately 18 kcfs. The objectives of the full study are to (1) develop baseline conditions for the detailed analysis of Sensor Fish measurements by deploying Sensor Fish in different surface locations in the vortex periphery; (2) observe the entrainment pattern and extract hydraulic data of interest such as acceleration, rotation, pressure, and estimated velocity of Sensor Fish or drogues; (3) integrate the experimental results with companion computational fluid dynamics (CFD) simulations and inertial particle tracking studies. A total of 12 Sensor Fish were released in the surface at upstream edge, left edge, downstream edge, and the core of the vortex at Bay 6. Because of the high discharge, the vortex patterns at the test condition were less consistent than the patterns observed at lower discharges. Compared with the Sensor Fish released at mid-bay at Bay 6, Sensor Fish released from the surface at the vortex experienced higher pressure fluctuations, a larger percentage of severe events, and much more rapid angular velocities.

Deng, Zhiqun; Richmond, Marshall C.; Carlson, Thomas J.

2006-06-22T23:59:59.000Z

247

CX-002446: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2446: Categorical Exclusion Determination 2446: Categorical Exclusion Determination CX-002446: Categorical Exclusion Determination Green Mountain Switchyard Stage 06 Spring 2010 CX(s) Applied: B4.6, B4.11 Date: 05/25/2010 Location(s): Colorado Office(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration proposes to install a new control building and a relay and control system and associated equipment at Green Mountain Switchyard, which is located on Bureau of Reclamation land, at Green Mountain Dam, in Summit County, Colorado (Township 2 South, Range 80 West, Section 15; King Creek 7.5' United States Geological Survey quadrangle map). All proposed construction and installation will occur at the existing, disturbed switchyard facilities. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

248

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1998 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and wild chinook salmon there was a 2.0- and 2.6-fold increase in migration rate, respectively, between 50 and 100 thousands of cubic feet per second (kcfs). For hatchery steelhead trout there was a 2.6-fold increase in migration rate between 50 kcfs and 100 kcfs. For fish marked at the Salmon River trap, statistical analysis of the 1998 data detected a significant relation between migration rate and discharge for hatchery and wild chinook salmon hatchery and found a 3.3- and 2.6-fold increase in migration rate, respectively, between 50 and 100 kcfs. A significant relation between migration rate and discharge was not detected for hatchery steelhead trout. Insufficient numbers of wild steelhead trout were PIT-tagged at the Salmon River trap to estimate travel time and migration rate to Lower Granite Dam.

Buettner, Edwin W.; Brimmer, Arnold F.

2000-04-01T23:59:59.000Z

249

Development of nondestructive evaluation techniques for DAM inspection. Progress report, January 1995 through August 1997  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory has concluded a two and a half year study on the development of an ultrasonic inspection system to inspect post stressed steel tendons on dams and flood gates. The inspection systems were part of a program for the California Department of Water Resources. The effort included the identification of the location and amount of corrosion damage to the tendons, identification of the cause of corrosion, and the technology for inhibiting corrosion. Several NDE methods for inspecting and quantifying damage to steel reinforced concrete water pipes were investigated and presented to the DWR for their consideration. The additional methods included Ground Penetrating RADAR, Electro- Potential Measurements, Infrared Technology, Pipe Inspection Crawlers (designed to travel inside pipelines and simultaneously report on the pipe condition as viewed by ultrasonic methods and video cameras from within the pipeline.) Reference to consultants hired by LLNL for similar on-site corrosion inspections were given to the DWR. The LLNL research into industries that have products to prevent corrosion resulted in the identification of an Innsbruck, Austria, company. This company claims to have products to permanently protect post- or pre-stressed tendons. The caveat is that the tendon protection system must be installed when the tendons are installed because no retrofit is available. Corrosion mitigation on the steel reinforcements surrounding the concrete was addressed through active and passive cathodic protection schemes. The combination of corrosion and erosion were addressed during consideration for the inspection of water-pump impeller-blades that are used in the three stage, million horsepower, pumping stations at Edmunston.

Brown, A. E.; Thomas, G.H.

1997-09-04T23:59:59.000Z

250

Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 - September 2007.  

SciTech Connect (OSTI)

From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering.

Arntzen, Evan V.; Mueller, Robert P.; Murray, Katherine J.; Bott, Yi-Ju [Pacific Northwest National Laboratory

2008-08-08T23:59:59.000Z

251

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1997 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris.

Buettner, Edwin W.; Nelson, William R.

1999-04-01T23:59:59.000Z

252

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1999 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris.

Buettner, Edwin W.; Brimmer, Arnold F.; Putnam, Scott A.

2001-06-01T23:59:59.000Z

253

Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

N /A

1999-09-27T23:59:59.000Z

254

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume One, Libby Dam Project, Operator, U.S. Army Corps of Engineers.  

SciTech Connect (OSTI)

This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Libby Dam project on the Kootenai River and previous mitigation of these losses. The current assessment documents the best available information concerning the impacts to the wildlife populations inhabiting the project area prior to construction of the dam and creation of the reservoir. Many of the impacts reported in this assessment differ from those contained in the earlier document compiled by the Fish and Wildlife Service; however, this document is a thorough compilation of the available data (habitat and wildlife) and, though conservative, attempts to realistically assess the impacts related to the Libby Dam project. Where appropriate the impacts resulting from highway construction and railroad relocation were included in the assessment. This was consistent with the previous assessments.

Yde, Chris A.

1984-10-01T23:59:59.000Z

255

Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.  

SciTech Connect (OSTI)

This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. M

Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

2007-11-13T23:59:59.000Z

256

Effects of exposure of rat dams to 1-bromopropane during pregnancy and lactation on growth and sexual maturation of their offspring  

Science Journals Connector (OSTI)

1-Bromopropane (1-BP) exhibits neuroreproductive toxicities in adult rats and humans. Here, we determined the effects of exposure of rat dams to 1-BP during pregnancy and lactation on the growth and sexual maturation of their offspring. In Experiment 1, 40 rats were exposed to 0, 100, 400 and 800 ppm 1-BP during pregnancy and lactation for 8 h/day. Ten rats that were not placed in chambers throughout the experiment served to observe the effect of separation of dams from offspring. In Experiment 2, three groups of 10 pregnant rats each were exposed to fresh air in three chambers and 10 other rats were exposed to 800 ppm 1-BP during pregnancy and lactation for 8 h/day. After delivery, offspring of the exposed and non-exposed dams were swapped so that they were nursed by the opposite dams. In Experiment 1, the survival rate and body weight of offspring were lower than the non-exposed in 1-BP dose-dependent manner. In Experiment 2, the survival rate and body weight of offspring (Group A) nursed by exposed dams and those (Group B) of exposed dams were significantly lower than non-exposed groups. The body weight of Group A was lower than that of Group B, although the two groups showed a significant equal decrease in the survival rate. The number of dead offspring from Group A was significantly higher. Our results indicate that exposure to 1-BP during pregnancy and lactation has comparable effects on survival rate, but exposure during lactation has a more adverse effect on growth of offspring than that during pregnancy. Moreover, exposure during lactation is associated with reduced early survival of third generation (F2) rats.

Koichi Furuhashi; Junzoh Kitoh; Hiroko Tsukamura; Kei-ichiro Maeda; Hailan Wang; Weihua Li; Sahoko Ichihara; Tamie Nakajima; Gaku Ichihara

2006-01-01T23:59:59.000Z

257

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.  

SciTech Connect (OSTI)

We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

2002-02-01T23:59:59.000Z

258

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high flows. There were zero days when the trap was out of operation due to high flow or debris. The decrease in hatchery Chinook catch in 2003 was partially due to differences in flow between years because there was a 5.9% increase in hatchery production in the Salmon River drainage in 2003. The decrease in hatchery steelhead catch may be partially due to a 13% decrease in hatchery production in the Salmon River drainage in 2003. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2003 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook was probably caused by age 0 fall Chinook being mixed in with the age 1 Chinook. Age 0 fall Chinook migrate much slower than age 1 Chinook, which would confuse the ability to detect the migration rate discharge relation. For wild Chinook salmon there was a 1.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.7-fold and a 1.9-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2003 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 14-fold for hatchery Chinook salmon, 8.3-fold for wild Chinook salmon and 2.4-fold for hatchery steelhead as discharge increased between 50 kcfs and

Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

2009-02-18T23:59:59.000Z

259

Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam Turbines, Early Spring 2011  

SciTech Connect (OSTI)

This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam turbines during early spring 2011. The study was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE) to investigate whether adult steelhead are passing through turbines during early spring before annual sluiceway operations typically begin. The sluiceway surface flow outlet is the optimal non-turbine route for adult steelhead, although operating the sluiceway reduces hydropower production. This is a follow-up study to similar studies of adult steelhead passage at the sluiceway and turbines we conducted in the fall/winter 2008, early spring 2009, fall/winter 2009, and early spring 2010. The goal of the 2011 study was to characterize adult steelhead passage rates at the turbines while the sluiceway was closed so fisheries managers would have additional information to use in decision-making relative to sluiceway operations. Sluiceway operations were not scheduled to begin until April 10, 2011. However, based on a management decision in late February, sluiceway operations commenced on March 1, 2011. Therefore, this study provided estimates of fish passage rates through the turbines, and not the sluiceway, while the sluiceway was open. The study period was March 1 through April 10, 2011 (41 days total). The study objective was to estimate the number and distribution of adult steelhead and kelt-sized targets passing into turbine units. We obtained fish passage data using fixed-location hydroacoustics with transducers deployed at all 22 main turbine units at The Dalles Dam. Adult steelhead passage through the turbines occurred on 9 days during the study (March 9, 12, 30, and 31 and April 2, 3, 5, 7, and 9). We estimated a total of 215 {+-} 98 (95% confidence interval) adult steelhead targets passed through the turbines between March 1 and April 10, 2011. Horizontal distribution data indicated Main Unit 18 passed the majority of fish. Fish passage occurred throughout the day. We conclude that adult steelhead passed through turbines during early spring 2011 at The Dalles Dam.

Khan, Fenton; Royer, Ida M.

2012-02-01T23:59:59.000Z

260

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2007 Annual Report.  

SciTech Connect (OSTI)

Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2007; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches counted upstream of Lower Granite Dam into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2007 was funded by the Bonneville Power Administration and Idaho Power Company.

Garcia, A.P.; Bradbury, S. [U.S. Fish and Wildlife Service; Arnsberg, B.D. [Nez Perce Tribe; Groves, P.A. [Idaho Power Company

2008-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Re-Analysis of Hydroacoustic Fish-Passage Data from Bonneville Dam after Spill-Discharge Corrections  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers - Portland District asked Pacific Northwest National Laboratory to re-analyze four years of fixed-aspect hydroacoustic data after the District made adjustments to spill discharge estimates. In this report, we present new estimates of all major fish-passage metrics for study years 2000, 2001, 2002, and 2004, as well as estimates for 2005. This study supports the Portland District and its effort to maximize survival of juvenile salmon passing Bonneville Dam. Major passage routes through Bonneville Dam include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines at Powerhouse 2 (B2) and a sluiceway including the B2 Corner Collector. The original reports and all associated results, discussion, and conclusions for non flow-related metrics remain valid and useful, but effectiveness measures for study years 2000, 2001, 2002, and 2004 as reported in previous reports by Ploskey et al. should be superseded with the new estimates reported here. The fish-passage metrics that changed the most were related to effectiveness. Re-analysis produced spill effectiveness estimates that ranged from 12% to 21% higher than previous estimates in spring and 16.7% to 27.5% higher in summer, but the mean spill effectiveness over all years was only slightly above 1:1 (1.17 for spring and 1.29 for summer). Conversely surface-passage effectiveness decreased in the years this metric was measured (by 10.1% in spring and 10.7% in summer of 2002 and 9.5% in spring and 10.2% in summer of 2004). The smallest changes in the re-analysis were in project fish passage efficiency (0%-1%) and spill efficiency (0.9%-3.0%).

Ploskey, Gene R.; Kim, Jina; Weiland, Mark A.; Hughes, James S.; Fischer, Eric S.

2007-06-07T23:59:59.000Z

262

Survival of Subyearling Fall Chinook Salmon in the Free-flowing Snake River and Lower Snake River Reservoirs in 2003 and from McNary Dam Tailrace to John Day Dam Tailrace in the Columbia River from 1999 to 2002, 1999-2003 Technical Report.  

SciTech Connect (OSTI)

We report results from an ongoing study of survival and travel time of subyearling fall Chinook salmon in the Snake River during 2003 and in the Columbia River during 1999-2002. Earlier years of the study included serial releases of PIT-tagged hatchery subyearling Chinook salmon upstream from Lower Granite Dam, but these were discontinued in 2003. Instead, we estimated survival from a large number of PIT-tagged fish released upstream from Lower Granite Dam to evaluate transportation from Snake River Dams. During late May and early June 2003, 68,572 hatchery-reared subyearling fall Chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released at Couse Creek and Pittsburg Landing in the free-flowing Snake River. We estimated survival for these fish from release to Lower Granite Dam tailrace. In comparison to wild subyearling fall Chinook salmon PIT tagged and released in the free-flowing Snake River, the hatchery fish we released traveled faster and had higher survival to Lower Granite Dam, likely because of their larger size at release. For fish left in the river to migrate we estimated survival from Lower Granite Dam tailrace to McNary Dam tailrace. Each year, a small proportion of fish released are not detected until the following spring. However, the number of fish released in 2003 that overwintered in the river and were detected as they migrated seaward as yearlings in 2004 was small (<1.0%) and had minimal effect on survival estimates. We evaluated a prototype floating PIT-tag detector deployed upstream from Lower Granite reservoir to collect data for use in partitioning travel time and survival between free-flowing and reservoir habitats. The floating detector performed poorly, detecting only 27 PIT tags in 340 h of operation from a targeted release of 68,572; far too few to partition travel time and survival between habitats. We collected river-run subyearling Chinook salmon (mostly wild fish from the Hanford Reach) at McNary Dam, PIT tagged them, and released them to the tailrace as part of an evaluation of transportation from McNary Dam in 2002. Estimated survival in 2002 from the tailrace of McNary Dam to the tailrace of John Day Dam was 0.746 (s.e. 0.036). For migration years 1999-2002, we found that in the reach from McNary to John Day Dam reach, travel time was shorter (migration rate was greater) and survival probabilities were greater when flow volume was greater. Survival was also correlated with water temperature: warmer water was associated with decreased survival, and there was an apparent survival threshold at about 19.3 C (above this temperature survival decreased substantially).

Muir, William D.; Axel, Gordon A.; Smith, Steven G. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

2004-12-01T23:59:59.000Z

263

CX-006253: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

53: Categorical Exclusion Determination 53: Categorical Exclusion Determination CX-006253: Categorical Exclusion Determination North Bonneville-Ross #1 230-Kilovolt, North Bonneville-Troutdale #2 230-Kilovolt Transmission Line Maintenance CX(s) Applied: B4.13 Date: 06/14/2011 Location(s): Clark County, Washington Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to conduct transmission line maintenance along a portion of the North Bonneville-Ross #1 and North Bonneville-Troutdale #2 230-kilovolt transmission lines. The maintenance activities will take place within the existing transmission line and access road right-of-way easements and includes upgrading existing roads, developing new roads, installing two new wood pole structures and two new steel tower structures.

264

Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2  

SciTech Connect (OSTI)

After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in the Fukushima environment. The issues to be addressed in future are the following: • Validate the simulation results by comparison with the investigation data. • Confirm the applicability of the FLESCOT code to Fukushima coastal areas. • Increase computation speed by parallelizing the FLESCOT code.

Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

2014-03-28T23:59:59.000Z

265

Overview of the Performance of PIT-Tag Interrogation Systems for Adult Salmonids at Bonneville and McNary Dams, 2002.  

SciTech Connect (OSTI)

During winter 2001, the U.S. Army Corps of Engineers (Corps) and Bonneville Power Administration (BPA) installed a prototype orifice-based PIT-tag interrogation system into the Washington Shore Ladder at Bonneville Dam (BWSL). Detectors were installed into 12 weirs: 4 downstream (Weirs 334-337) and 8 upstream (Weirs 352-359) from the fish release point (i.e., the exit ladder for the Adult Fish Facility). NOAA Fisheries (National Marine Fisheries Service--NMFS) tagged and released salmonids during 2001 to determine tag-reading efficiencies for different salmonid populations. Data analyses focused on the upper eight weirs. The 2001 tagging results for spring chinook salmon indicated that having detectors in four consecutive weirs would have been sufficient to yield a reading efficiency of 95%. The BWSL orifice-based system performed well until the coho and fall chinook salmon migrations began. Coho and fall chinook salmon appeared to use the weir overflows, and thus avoid detection, at much higher rates than biologists expected. During 2001, technology advances led to the development of significantly larger antennas than had been available earlier, and thus it was possible to build antennas of approximately 2 x 6 ft. Consequently, it became feasible to design interrogation systems for ladder locations where all fish would have to go through the antennas and thus could not avoid detection by using the weir overflows (Fig. 1). Destron Technologies by Digital Angel designed a prototype interrogation system with two antennas that was installed into the counting-window area in the Oregon Ladder at McNary Dam, where its performance could then be directly compared to that of the orifice-based system in the same ladder. Although the orifice-based systems appeared less effective than the fisheries community wanted for fall chinook and coho salmon, the decision was made to proceed with installations planned for Bonneville and McNary Dams because valuable data would still be collected. During the winter of 2002, the Corps and BPA installed PIT-tag interrogation systems into the Bradford Island and Cascades Island Fish Ladders at Bonneville Dam and into the Washington and Oregon Ladders at McNary Dam. Like BWSL in 2001, these ladders had eight weirs (16 orifices) outfitted with fiberglass antennas. Douglas County Public Utility District also installed an orifice-based system into its ladders at Wells Dam, but they were able to use weirs with no overflow sections wherein all fish had to swim through the orifice antennas. Thus, 2002 was the first year that the fisheries community had PIT-tag detection of adult salmonids at Bonneville, McNary, Wells, and Lower Granite Dams (Fig. 2). This overview will provide information on how well the systems at Bonneville and McNary Dams performed.

Downing, Sandra L.; Prentice, Earl F.

2003-06-01T23:59:59.000Z

266

Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam, Columbia River : Annual Report 2005-2006.  

SciTech Connect (OSTI)

In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific riverbed elevation and providing minimum spawning flows that have the greatest chance of being maintained through egg incubation and fry emergence. However, managing the lower Columbia River for a stable tailwater elevation does not provide much operational flexibility at Bonneville Dam, which has little storage capacity. When river discharges increase due to rain events, the traditional approach has been to pass excess water at night to maintain stable tailwater elevations during the daytime. The underlying assumption of this strategy, referred to as reverse load following, is that fish do not spawn at night. However, Tiffan et al. (2005) showed that this assumption is false by documenting nighttime spawning by chum salmon in the Ives Island area. Similarly, McMichael et al. (2005) reported nighttime spawning by Chinook salmon (O. tshawytscha) in the Columbia River, indicating that diel spawning may be a common occurrence in Pacific salmon. During the latter portion of the chum spawning period in December 2003 and 2004, discharges from Bonneville Dam increased from an average of 3,398 m3/s (tailwater elevation {approx} 3.5 m above mean sea level) during the day to over 5,664 m3/s (tailwater elevation {approx} 5.1 m) at night, with peak discharges of 7,080 m{sup 3}/s (tailwater elevation {approx} 6.1 m). This caused concern among fishery managers regarding the potential effects of these high discharges on this population of spawning chum salmon, which is listed under the Endangered Species Act (National Oceanic and Atmospheric Administration 1999). We hypothesized that increased water velocities associated with elevated tailwaters might alter chum salmon spawning behavior if water velocities at redd locations increased beyond the range of suitability (>0.8 m/s; Salo 1991). In 2005, we investigated the movement and behavioral responses of spawning chum salmon at Ives Island to increased tailwater elevations at Bonneville Dam. We used acoustic telemetry to determine if the higher velocities associated with increased tailwater elevations caused fish to leave their re

Tiffan, Kenneth F.; Haskell, Craig A.; Kock, Tobias J.

2008-12-01T23:59:59.000Z

267

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.  

SciTech Connect (OSTI)

We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

Mallette, Christine [Oregon Department of Fish and Wildlife

2009-07-28T23:59:59.000Z

268

Evaluation of Steelhead Kelt Passage into the Bonneville Dam Second Powerhouse Corner Collector Prior to the Juvenile Migration Seasons, 2007 and 2008  

SciTech Connect (OSTI)

This report documents the results of a steelhead kelt passage study conducted by the PNNL for the U.S. Army Corps of Engineers at Bonneville Dam in early spring 2007 and 2008. At the Second Powerhouse, a surface flow outlet called the corner collector (B2CC) may be an effective non-turbine passage route for steelhead kelt moving downstream in early spring before the main juvenile emigration season. The goal of this project was to inform management decisions regarding B2CC operations by estimating the number of kelt using the B2CC for downstream passage at Bonneville Dam prior to the juvenile spring migration season. We performed a hydroacoustic study from March 2 to April 10, 2007 and from March 13 to April 15, 2008.

Weiland, Mark A.; Kim, Jina; Nagy, William T.; Johnson, Gary E.

2009-09-01T23:59:59.000Z

269

Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned  

SciTech Connect (OSTI)

Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

Shuifer, M. I.; Argal, E. S. [JSC 'Gidrospetsproekt' (Russian Federation)

2012-05-15T23:59:59.000Z

270

Evaluation of laboratory test method for determining the potential alkali contribution from aggregate and the ASR safety of the Three-Gorges dam concrete  

SciTech Connect (OSTI)

The releasable alkali from granite, which was used in the Three-Gorges concrete dam project in China, and from gneiss and feldspar was estimated by extraction in distilled water and super-saturated Ca(OH){sub 2} solution. Results show that: i) the finer the particles and the higher the temperature, the greater and faster the release of alkali; ii) compared with extraction by distilled water, super-saturated Ca(OH){sub 2} solution had a stronger activation on feldspar than on granite and gneiss; iii) for the three rocks tested, thermal activation had the largest effect on gneiss and a lower and similar effect on granite and feldspar. For very fine particles, temperature had a similar effect on the release of alkali by all three rocks. Because the aggregate used in the Three-Gorges dam concrete is non-reactive and a low calcium fly ash was used in the concrete, ASR would not be an issue for the dam, despite the release of alkali from the aggregate into the concrete.

Lu Duyou [College of Materials Science and Engineering, Nanjing University of Technology, No. 5 Xin Mafan Road, Nanjing, Jiangsu, 210009 (China)]. E-mail: duyoulu@njut.edu.cn; Zhou, Xiaoling [College of Materials Science and Engineering, Nanjing University of Technology, No. 5 Xin Mafan Road, Nanjing, Jiangsu, 210009 (China); Xu Zhongzi [College of Materials Science and Engineering, Nanjing University of Technology, No. 5 Xin Mafan Road, Nanjing, Jiangsu, 210009 (China); Lan Xianghui [College of Materials Science and Engineering, Nanjing University of Technology, No. 5 Xin Mafan Road, Nanjing, Jiangsu, 210009 (China); Tang Mingshu [College of Materials Science and Engineering, Nanjing University of Technology, No. 5 Xin Mafan Road, Nanjing, Jiangsu, 210009 (China); Fournier, Benoit [ICON/CANMET, Natural Resources Canada, 405 Rocherster Street, Ottawa, ON, K1A 0G1 (Canada)

2006-06-15T23:59:59.000Z

271

Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2000 Annual Report.  

SciTech Connect (OSTI)

In 2000, the National Marine Fisheries Service and the University of Washington completed the eight year of a study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. A total of 20,313 hatchery steelhead were tagged with passive integrated transpoder (PIT) tags and released at Lower Granite Dam for reach survival estimation. They did not PIT tag any yearlying chinook salmon (O. tshawytscha) for reach survival estimates in 2000 because sufficient numbers for these estimates were available from other studies. Primary research objectives in 2000 were (1) to estimate reach and project survival in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations, and (2) to evaluate the survival-estimation models under prevailing conditions. In addition, they estimated survival from point of release to Lower Granite Dam and below for chinook salmon, steelhead, and sockeye salmon (O.nerka) PIT tagged and released at Snake River basin hatcheries and chinook salmon and steelhead PIT tagged and released at Snake River basin hatcheries and chinook salmon and steelhead PIT tagged and released at Snake River basin smolt traps. This report provides reach survival and travel time estimates for 2000 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures. Further details on methodology and statistical models used are provided in previous reports cited in the text.

Zabel, Richard; Smith, Steven G.; Muir, William D. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

2001-02-01T23:59:59.000Z

272

Evidence of a Quaternary dammed Lake in the Mawat–Chwarta area, Western Zagros, Kurdistan Region, NE-Iraq  

Science Journals Connector (OSTI)

Abstract The Mawat–Chwarta valley is located north of the Sulaimania City at Northern Iraq and is surrounded by high mountains on all sides. White laminated sediments with annual varves on a millimetre scale have been recorded at eight localities on the valley gentle slopes. Sedimentological, palaeontological and geomorphological data of these sediments suggest that a lake occupied the valley during the Quaternary. The sediments are of two types, purely fine-grained and fine-grained with coarse interbeds, the two types occur at an elevation difference of about 62 m. The two types are interpreted as representing deep (abyssal) and shoreline deposits, respectively, and indicate the approximate depth of the lake. The sediments contain the fresh water green algae of the genus Botryococcus in addition to a few leaves, scattered plant debris and some pollen grains mainly of herbaceous plants. Contrary to the general south-western drainage pattern in Northern Iraq the Mawat–Chwarta valley is drained to the north, where the Mawat River passes now through deep and narrow gorges along which rock slides and debris plugs are known to have occurred in the past. These mass wasting events are considered here to have blogged the runoff of the valley in the past and eventually led to the formation of a large dammed lake. Numerical chronology work failed, which requires further investigation in the future.

Polla Khanaqa; Kamal Haji Karim; Walter Riegel

2015-01-01T23:59:59.000Z

273

Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code  

SciTech Connect (OSTI)

The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high flow moving through these reservoirs. • The reservoirs play a major role as a sink of sediment and cesium in the river systems. Some amounts of sediment pass through them along with cesium in dissolved and clay-sorbed cesium forms. • Effects of countermeasures such as overland decontamination, dam control and sorbent injection were tentatively estimated. The simulation suggested that overland decontamination and sorbent injection would be effective for decreasing the contamination of water in the reservoir and in the river below the dam.

Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

2014-03-28T23:59:59.000Z

274

The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.  

SciTech Connect (OSTI)

Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

2010-06-25T23:59:59.000Z

275

BCP Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boulder Canyon Project Information Module Boulder Canyon Project Information Module HOME MODULE OVERVIEW LEGISLATION TIMELINE TIMELINE SUMMARY CASE LAW PROJECT HISTORY MISC. DOCUMENTS RELATED LINKS Home Page Image Welcome Hoover Dam is the highest and third largest concrete dam in the United States. The dam, power plant, and high-voltage switchyards are located in the Black Canyon of the Colorado River on the Arizona-Nevada state line. Lake Mead, the reservoir behind the dam, will hold the average two-year flow of the Colorado River. Hoover Dam´s authorized purposes are: first, river regulation, improvement of navigation, and flood control; second, delivery of stored water for irrigation and other domestic uses; and third, power generation. This Page was last modified on : 05-12-2009

276

Microsoft PowerPoint - 2013_Nov_ TCumberland_WOL.pptx  

Broader source: Energy.gov (indexed) [DOE]

Wolf Creek Dam Wolf Creek Dam Wolf Creek Dam Wolf Creek Dam DSAC I Classification Karst foundation seepage DSAC I Classification - Karst foundation seepage $594M Cost, $572M Obligated, 93% Complete Barrier Wall Completed March 2013 Total Project Completion Estimated Summer 2014 Gallery Grouting Complete j p Grouting - $70M Completed Oct 2008 Contractor: ACT Barrier Wall - $420M Award Jul 2008 - 95% Complete Contractor: Treviicos & Soletanche S it h d W ll Barrier Wall Complete Gallery Grouting - $11.0M Completed July 2012 Contractor: Judy Company Switchyard Wall 15% Complete p ) Halcomb's Landing Complete Halcomb's Landing - $9.5M Completed Oct 2007 Contractor: VCI-Doyon JV Rock Foundation Beneath CA 1 as of 4 Nov 13 1 Wolf Creek Dam Safety Project Update B i W ll C l t d * Barrier Wall Completed

277

Acoustic Camera Evaluation of Juvenile Salmonid Approach and Fate at Surface Flow Outlets of Two Hydropower Dams  

SciTech Connect (OSTI)

The objective of this study was to estimate and compare fate probabilities for juvenile salmon approaching two surface flow outlets (SFOs) to identify effective design characteristics. The SFOs differed principally in forebay location, depth, discharge, and water velocity over a sharp-crested weir. Both outlets were about 20 ft wide. The 22-ft deep Bonneville Powerhouse 2 Corner Collector (B2CC) was located in the southwest corner of the forebay and passed 5,000 ft3/s of water at normal-pool elevation. In contrast, The Dalles Dam ice and trash sluiceway outlet above Main Unit 1-3 (TDITC) was not located in a forebay corner, was only 7-ft deep, and discharged about 933 ft3/s at normal-pool elevation. The linear velocity of water over the weir was about 15 ft/s at the B2CC and 5 ft/s at the TDITC. We used a Dual-Frequency Identification Sonar (DIDSON) to record movements of fish within about 65 ft of the B2CC and within 35 ft of the TDITC. We actively tracked fish by manually adjusting pan and tilt rotator angles to keep targets in view. Contrary to expectations, active tracking did not provide a predominance of long tracks that clearly indicated fish fate because most tracks were incomplete. Active tracking did increase error in fish-position estimation, which complicated data processing, so we plan to sample multiple fixed zones in the future. The probability of fish entering each SFO was estimated by a Markov chain analysis, which did not require complete fish tracks. At the B2CC, we tracked 7,943 juvenile salmonids and most of them entered the B2CC. Fish moving south 40 to 60 ft upstream of the dam face were more likely to enter the eddy at the south end of the powerhouse than to enter the B2CC. At the TDITC, we tracked 2,821 smolts. Fish movement was complex with active swimming toward and away from the entrance. The high entrance probability zone (EPZ), where over 90% of tracked fish entered the SFO, extended 32 ft out at the B2CC and only 8 ft out at the TDITC. Greater discharge at the B2CC pushed the entrainment zone (EZ - where flow exceeded 7 ft/s) upstream from the entrance so that fish were entrained before they began to struggle against the flow. The high EPZ also was extended by flow along the powerhouse face at both sites, but more at the B2CC (about 450 ft) than at the TDITC (about 50 ft). Fish entering the large south eddy that circulated past the B2CC entrance were provided multiple opportunities to discover and enter. In contrast, fish moving past the sampled TDITC entrance either entered adjacent sluiceway openings or moved west to the spillway because there was no eddy to provide additional opportunities. Information from our study should be useful to fisheries managers and engineers seeking to transfer SFO technologies from one site to another. There are two important components to designing SFOs, the location within the forebay to take advantage of forebay circulation and specific entrance characteristics such as discharge and depth which affect the size and shape of the EZ and the high EPZ. Providing SFOs with an EZ extending upstream of structure could reduce entrance rejection, decrease forebay residence time and risk of predation, and increase passage of schools of smolts.

Ploskey, Gene R.; Johnson, Gary E.; Weiland, Mark A.; Khan, Fenton; Mueller, Robert P.; Serkowski, John A.; Rakowski, Cynthia L.; Hedgepeth, J.; Skalski, John R.; Ebberts, Blaine D.; Klatte, Bernard A.

2006-08-04T23:59:59.000Z

278

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2003.  

SciTech Connect (OSTI)

Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2003; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2003 was funded by the Bonneville Power Administration (Projects 199801003, 199801004, 199403400, 198335003), Idaho Power Company, and Bureau of Land Management.

Garcia, A.P.; Bradbury, S.M.; Arnsberg, B.D.

2004-08-01T23:59:59.000Z

279

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2005 Annual Report.  

SciTech Connect (OSTI)

Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2005; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U.S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2005 was funded by the Bonneville Power Administration and Idaho Power Company.

Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

2006-10-01T23:59:59.000Z

280

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2004 Annual Report.  

SciTech Connect (OSTI)

Redd counts were used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U.S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2004; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2004 was funded by the Bonneville Power Administration, Idaho Power Company, and Bureau of Land Management.

Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2002.  

SciTech Connect (OSTI)

Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2001; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2002 was funded by the Bonneville Power Administration (Projects 1998-01-003 and 1994-03-400) and the Idaho Power Company.

Garcia, Aaron P.; Bradbury, S.M.; Arnsberg, Billy D.

2003-09-01T23:59:59.000Z

282

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

Johnson, R.; McKinstry, C.; Simmons, C. (Pacific Northwest National Laboratory)

2003-01-01T23:59:59.000Z

283

Survey of Radionuclide Distributions Resulting from the Church Rock, New Mexico, Uranium Mill Tailings Pond Dam Failure  

SciTech Connect (OSTI)

An intensive site survey and on-site analysis program were conducted to evaluate the distribution of four radionucliGes in the general vicinity of Gallup, New Mexico, subsequent to the accidental breach of a uranium mill tailings pond dam and the release of a large quantity of tailings pond materials. The objective of this work was to determine the distribution and concentration levels of {sup 210}Pb, {sup 226}Ra, {sup 230}Th, and {sup 238}U in the arroyo that is immediately adjacent to the uranium tailings pond (pipeline arroyo) and in the Rio Puerco arroyo into which the pipeline arroyo drains. An intensive survey between the United Nuclear Corporation (UNC) Church Rock Mill site and the New Mexico-Arizona state border was performed. Sampling locations were established at approximately 500-ft intervals along the arroyo. During the weeks of September 24 through October 5, 1979, a series of samples was collected from alternate sampling locations along the arroyo. The purpose of this collection of samples and their subsequent analysis was to provide an immediate evaluation of the extent and the levels of radioactive contamination. The data obtained from this extensive survey were then compared to action levels which had been proposed by the Nuclear Regulatory Commission and were adapted by the New Mexico Environmental Improvement Division (NMEID) for {sup 230}Th and {sup 226}Ra concentrations that would require site cleanup. The Pacific Northwest Laboratory/Nuclear Regulatory Commission mobile laboratory van was on-site at the UNC Church Rock Mill from September 22, 1979, through December 13, 1979, and was manned by one or more PNL personnel for all but four weeks of this time period. Approximately 1200 samples associated with the Rio Puerco survey were analyzed 1n the laboratory. An additional 1200 samples related to the Rio Puerco cleanup operations which the United Nuclear Corporation was conducting were analyzed on-site in the mobile laboratory. The purpose of these analyses was to determine the effectiveness of the cleanup operations that were ongoing and to evaluate what additional cleanup would be required. This on-site analysis of radioactive contamination constituted the principal task of this project, with the identification of those portions of the arroyo exceeding the NMEID proposed cleanup criteria being the major output. Additiond1 tasks included an evaluation of the initial soil sampling scheme (letter from T. Wolff [NMEID] to J. Abiss [UNC]. oated September 25, 1979) and the proposed NMEID verification sampling scheme (letter from T. Buhl [NMEID] to H. Miller [NRC]. dated April 23, 1980).

Weimer, W. C.; Kinnison, R. R.; Reeves, J. H.

1981-12-01T23:59:59.000Z

284

Characterization of Fish Passage Conditions through a Francis Turbine, Spillway, and Regulating Outlet at Detroit Dam, Oregon, Using Sensor Fish, 2009  

SciTech Connect (OSTI)

Fish passage conditions through two spillways, a Francis turbine, and a regulating outlet (RO) at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions within the routes. The study was performed in July, October, and December 2009 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe strike, collision, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Detroit Dam indicates that the RO passage route through the 5-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine and spillway passage. However, none of the passage routes tested is safe for juvenile salmonid passage.

Duncan, Joanne P.; Carlson, Thomas J.

2011-05-06T23:59:59.000Z

285

Blue-Dam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April but not fully described or represented in the Manual until now. Correction: In the Heat Pump Equipment Conversion and Upgrade in Commercial Buildings section, the custom...

286

Huub van Dam | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

process termination) and soft errors (intermittent incorrect behavior of the compute platform often leading to silent data corruption) can be addressed in quantum chemistry...

287

Blue-Dam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Change: The requirements of "qualified installer" and "by code" for Commercial Ductless Heat Pumps has been removed. Rationale: Not every jurisdiction has an applicable code, and...

288

Blue-Dam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

align with the Interim Reference Deemed Measure List. Change: Specifications for Ductless Heat Pumps in Commercial Buildings have been corrected. This expands acceptable...

289

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.  

SciTech Connect (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

Simmons, M.; McKinstry, C.; Cook, C.

2004-01-01T23:59:59.000Z

290

CX-012090: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Henderson-Mead Number 2 230-Kilovolt Transmission Line, Erosion Repair at Structure 2/4 CX(s) Applied: B1.3 Date: 09/11/2013 Location(s): Nevada, Nevada Offices(s): Western Area Power Administration-Desert Southwest Region

291

CX-011615: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Curecanti-North Fork 230-kilovolt Transmission Line Routine Maintenance of Right-of-Way Roads CX(s) Applied: B1.3 Date: 12/02/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

292

CX-012348: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Danger Tree Management on Curecanti to Poncha 230-kilovolt Transmission Line, Gunnison County, Colorado CX(s) Applied: B1.3 Date: 07/02/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

293

CX-012347: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Danger Tree Management on Craig-Rifle 230-kilovolt Transmission Line, Moffat, Rio Blanco, and Garfield Counties, Colorado CX(s) Applied: B1.3 Date: 06/02/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

294

CX-012355: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Kayenta-Navajo 230-kilovolt Transmission Line Landing Construction and Insulator Replacement, Navajo County, Arizona CX(s) Applied: B1.3 Date: 06/05/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Rocky Mountain Region

295

EIS-0323-S1: Sacramento Area Voltage Support Project Supplemental Environmental Impact Statement and Environmental Impact Report, Placer, Sacramento, and Sutter Counties, California  

Broader source: Energy.gov [DOE]

Construction and operation has been proposed of approximately 31 to 38 miles of new, double-circuit, 230-kilovolt (kV) transmission line between Western's O'Banion Substation and the area just south of SMUD's Elverta Substation and the reconstruciton of SMUD's existing 230-kV/115kV transmission line between SMUD's Elverta and Natomas substations.

296

EIS-0067: 230-kV International Transmission Line San Diego County, California to Tijuana, Mexico, San Diego Gas and Electric Company  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration and the California Public Utilities Commission jointly prepared this EIS to evaluate the environmental impacts of the construction, maintenance and operation of a 10-mile, 230-kilovolt transmission line across the U.S./Mexico border for the purpose of economic exchange of power and increased reliability.

297

EIS-0294: Sutter Power Project, Sutter County, California  

Broader source: Energy.gov [DOE]

This EIS analyzes Western Area Power Administration's (Western) decision to support Calpine Corporation (Calpine) to construct an electric generating facility and associated 230-kilovolt (kV) transmission line, approximately 3.5 miles in length, known as the Sutter Power Plant (SPP).

298

CX-008783: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Fiber Optic Installation at the Stegall 230 Kilovolt Substation Scotts Bluff County, Nebraska CX(s) Applied: B4.7 Date: 06/20/2012 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

299

CX-012075: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Cheyenne-Snowy Range 230-Kilovolt Central Rig Upgrade Eaglenet Communications Cable Interconnection CX(s) Applied: B4.7 Date: 02/10/2014 Location(s): Wyoming, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

300

EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIS-0101: Thermopolis, Alcova, Casper Transmission Line Project  

Broader source: Energy.gov [DOE]

The Western Area Power Administration developed this statement to evaluate the environmental impacts of constructing, operating and maintaining a 230-kilovolt transmission line between Thermopolis, Wyoming, and Alcova, Wyoming, and a 230/345-kilovolt transmission line between Alcova, Wyoming, and Casper, Wyoming.

302

CX-010883: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

PHX-LOB and LIB-LOB 230-Kilovolt Double-Circuit- Replace Insulators at Structure No. 28-2 With NCI Type Polymers CX(s) Applied: B1.3 Date: 08/12/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

303

CX-012074: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Canyon City West-Midway 230-Kilovolt Transmission Line Safety Marker Ball Installation CX(s) Applied: B.13 Date: 04/07/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

304

Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.  

SciTech Connect (OSTI)

Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous to the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.

Griswold, Jim; Townsend, Richard L.; Skalski, John R.

2008-12-01T23:59:59.000Z

305

Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1988-1989 Annual Report.  

SciTech Connect (OSTI)

We report on our progress from April 1988 through March 1989 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. Highlights of results of our work in the Dalles and Bonneville reservoirs are: using setlines, we caught 1,586 sturgeon in The Dalles Reservoir and 484 sturgeon in Bonneville Reservoir in 1988. Fork length of fish caught ranged from 34 cm to 274 cm. Of the fish caught we marked 1,248 in The Dalles Reservoir and 341 in Bonneville Reservoir. Of the fish marked in 1988, we recaptured 82 in The Dalles Reservoir and none in Bonneville Reservoir. We recaptured 89 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 35 fish marked in 1988 and 16 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 2 sturgeon marked in 1988 in Bonneville Reservoir. Individual papers were processed separately for the data base.

Nigro, Anthony A. (Oregon Dept. of Fish and Wildlife, Portland, OR (USA))

1989-09-01T23:59:59.000Z

306

Data Overview for Sensor Fish Samples Acquired at Ice Harbor, John Day, and Bonneville II Dams in 2005, 2006, and 2007  

SciTech Connect (OSTI)

The purpose of this work was to acquire Sensor Fish data on turbine passage at Bonneville II, John Day, and Ice Harbor dams for later analysis and use. The original data sets have been entered into a database and are being maintained by Pacific Northwest National Laboratory pending delivery to the U.S. Army Corps of Engineers when requested. This report provides documentation for the data sets acquired and details about the operations of the Sensor Fish and interpretation of Sensor Fish data that will be necessary for later use of the acquired data. A limited review of the acquired data was conducted to assess its quality and to extract information that might prove useful to its later use.

Carlson, Thomas J.; Duncan, Joanne P.; Deng, Zhiqun

2008-03-12T23:59:59.000Z

307

Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.  

SciTech Connect (OSTI)

In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and other features necessary for a long-term implementation plan.

Fraley, John J.; Marotz, Brian L. (Montana Department of Fish, Wildlife and Parks, Helena, MT); DosSantos, Joseph M. (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

2003-04-01T23:59:59.000Z

308

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2000 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2000 spring out-migration at migrant traps on the Snake River and Salmon River. In 2000 the Nez Perce Tribe released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 36% of the 1999 number. The wild chinook catch was 34% of the previous year's catch. Hatchery steelhead trout catch was 121% of 1999 numbers. Wild steelhead trout catch was 139% of 1999 numbers. The Snake River trap collected 689 age-0 chinook salmon. During 2000, the Snake River trap captured 40 hatchery and 92 wild/natural sockeye salmon and 159 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 13 and were terminated for the season due to high flows on June 16. There were no down days due to high flows or debris. Hatchery chinook salmon catch at the Salmon River trap was 96%, and wild chinook salmon catch was 66% of 1999 numbers. The hatchery steelhead trout collection in 2000 was 90% of the 1999 numbers. Wild steelhead trout collection in 2000 was 147% of the previous years catch. Trap operations began on March 13 and were terminated for the season due to high flows on May 22. There were no days where the trap was out of operation due to high flow or debris. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged chinook salmon and steelhead trout, marked at the head of the reservoir, were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 2000 data detected a significant relation between migration rate and discharge. For hatchery and wild chinook salmon, there was a 3.0 and 16.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. For hatchery steelhead, there was a 2.7-fold increase in migration rate, respectively, between 50 kcfs and 100 kcfs. The statistical analysis could not detect a significant relation between migration rate and discharge for wild steelhead in 2000. For fish marked at the Salmon River trap, statistical analysis of the 2000 data detected a significant relation between migration rate and discharge for hatchery chinook salmon at the 0.05 level of significance and at the 0.1 level of significance for wild chinook salmon. Migration rate increased 3.2- and 1.9-fold, respectively, between 50 and 100 kcfs. For hatchery steelhead there was a 1.5-fold increase in migration rate between 50 kcfs and 100 kcfs. Insufficient numbers of wild steelhead trout were PIT tagged at the Salmon River trap to estimate travel time and migration rate to Lower Granite Dam. Fish tagged with PIT tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 57% for hatchery chinook, 65% for wild chinook, 73% for hatchery steelhead and 71% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 53% for hatchery chinook, 64% for wild chinook salmon, 68% for hatchery steelhead trout, and 65% for wild steelhead trout.

Buettner, Edwin W.; Putnam, Scott A.

2002-08-01T23:59:59.000Z

309

Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.  

SciTech Connect (OSTI)

Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

Griswold, Jim

2007-01-01T23:59:59.000Z

310

Stocking of Offsite Waters for Hungry Horse Dam Mitigation Creston National Fish Hatchery, FY 2006 Annual Report.  

SciTech Connect (OSTI)

A total of 350,000, M012 strain, westslope cutthroat trout (WCT) eggs were received from Montana Fish Wildlife & Parks (MFWP), Washoe Park State Fish Hatchery in June of 2005 to accomplish this fishery management objective. These eggs were incubated, hatched and reared entirely inside the hatchery nursery building using a protected well water supply. Fish grew according to schedule and survival was excellent. The hatchery achieved a 0.78 feed fed to pounds gained conversion ratio for this group of WCT. Not all of the progenies from this fish lot were used for Hungry Horse Dam Fishery Mitigation Implementation. Some were used for other regional fishery management projects. Westslope cutthroat trout were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook and also utilizing a regimen adapted for hatchery specific site conditions. The fish health for these WCT was very good. Survival from first feeding fry stage to stocking was 79%. The hatchery had an annual fish health inspection performed by the USFWS Bozeman Fish Health Center in mid March of 2006. This inspection found all fish lots at Creston to be disease free. The Montana State Fish Health Board has placed the hatchery under a limited quarantine since May of 2005 due to an epizootic of Furunculosis. This classification has allowed the Creston NFH to stock disease free fish in locations approved by regional fish managers. The hatchery has been working with the State Fish Pathologist to remove the limited quarantine classification from the facility. Although fish health for all station fish lots remains disease free, MFWP has asserted it will not remove the limited quarantine until the new influent water treatment system, including the ultraviolet disinfection unit, is running full time, year round. The USFWS is working to secure the additional funding necessary to operate the treatment building year round. Distribution of the WCT took place from March through June. The stocking locations on the Flathead Reservation and State managed waters were identified by Confederated Salish and Kootenai Tribe (CSKT) and MFWP fishery biologists. Post release survival and angler success is monitored routinely by CSKT and MFWP fishery technicians. Stocking numbers and locations vary annually based on the results of biological monitoring, creel evaluations and adaptive management decisions. A total of 99,126 WCT were stocked during nine distribution trips in management approved waters (see Table 1). The average size of WCT at stocking was 3.91-inches. A total of 101,600, Arlee strain, rainbow trout (RBT) eggs were received from the Ennis National Fish Hatchery, Ennis, Montana, in December of 2005 and 35,000 Kamloops strain eggs were received from Murray Springs SFH, Eureka, Montana, in March of 2006 to accomplish this fishery management objective. The RBT were reared using approved fish culture techniques as recommended in the USFWS Fish Hatchery Management Handbook. There was no fish health related problems associated with this lot of fish. Survival from swim up fry stage to stocking was 93% for the Arlee's and 79% for the Kamloops. The hatchery achieved a 0.68 feed fed to pounds gained conversion ratio for the Arlee and 0.97 for the Kamloops RBT. The excellent feed conversion ratio can be attributed to refined feeding techniques and the use of an extruded high performance fry feed made with premium fish meal and marine fish oil. The Arlee strain of rainbow trout is requested for this fishery mitigation objective because the chosen stocking locations are terminal basin reservoirs or lakes, habitat conditions prevent natural spawning runs and returns to the creel are more favorable then for native westslope cutthroat trout. MFWP also requested a fall plant of Kamloops strain RBT and they will be evaluated for performance and future fall stockings in Echo Lake. Post release survival and angler success is monitored routinely by the Confederated Salish and Kootenai Tribe (CSKT) and Montana Fish Wildlife & Parks (MFWP) fishery techn

Hooley, Sharon

2009-03-20T23:59:59.000Z

311

Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.  

SciTech Connect (OSTI)

The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish and Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.

Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

1999-02-01T23:59:59.000Z

312

Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2001-2002 Annual Report.  

SciTech Connect (OSTI)

This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2001 spring out-migration at migrant traps on the Snake River and Salmon River. In 2001 fish management agencies released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 11% of the 2000 numbers. The wild chinook catch was 3% of the previous year's catch. Hatchery steelhead trout catch was 49% of 2000 numbers. Wild steelhead trout catch was 69% of 2000 numbers. The Snake River trap collected 28 age-0 chinook salmon. During 2001 the Snake River trap captured zero hatchery and zero wild/natural sockeye salmon and six hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant reduction in catch during 2001 was due to a reduction in hatchery chinook production (60% of 2000 release) and due to extreme low flows. Trap operations began on March 11 and were terminated on June 29. The trap was out of operation for a total of two days due to mechanical failure or debris. Hatchery chinook salmon catch at the Salmon River trap was 47% and wild chinook salmon catch was 67% of 2000 numbers. The hatchery steelhead trout collection in 2001 was 178% of the 2000 numbers. Wild steelhead trout collection in 2001 was 145% of the previous year's catch. Trap operations began on March 11 and were terminated on June 8 due to the end of the smolt monitoring season. There were no days where the trap was out of operation due to high flow or debris. The decrease in hatchery chinook catch in 2001 was due to a reduction in hatchery production (39% of 2000 releases). The increase in hatchery and wild steelhead trap catch is due to the ability to operate the trap in the thalweg for a longer period of time because of the extreme low flow condition in 2001. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout marked at the head of the reservoir were affected by discharge. There were not enough hatchery and wild chinook salmon tagged at the Snake River trap in 2001 to allow migration rate/discharge analysis. For steelhead trout tagged at the Snake River trap, statistical analysis of 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 1.5-fold increase in migration rate in, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery and wild chinook salmon and hatchery and wild steelhead trout. Migration rate increased 3.7-fold for hatchery chinook salmon and 2.5-fold for wild chinook salmon between 50 and 100 kcfs. For hatchery steelhead there was a 1.6-fold increase in migration rate, and for wild steelhead trout there was a 2.2-fold increase between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 86% for hatchery chinook, 70% for wild chinook, 71% for hatchery steelhead, and 89% for wild steelhead. Cumulat

Buettner, Edwin W.; Putnam, Scott A.

2003-06-01T23:59:59.000Z

313

Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake; Effects of Operation of Kerr and Hungry Horse Dam on Reproductive Success, 1983 Annual Report.  

SciTech Connect (OSTI)

Koktneesalmon (Oncorhvnchusnerka), the land-locked form of sockeye salmon, were originally introduced to Flathead Lake in 1916. My 1933, kokanee had become established in the lake and provided a popular summer trolling fishery as well as a fall snagging fishery in shoreline areas. Presently, Flathead Lake supports the second highest fishing pressure of any lake or reservoir in Montana (Montana Department of Fish and Game 1976). During 1981-82, the lake provided 168,792 man-days of fishing pressure. Ninety-two percent of the estimated 536,870 fish caught in Flathead Lake in 1981-82 were kokanee salmon. Kokanee also provided forage for bull trout seasonally and year round for lake trout. Kokanee rear to maturity in Flathead Lake, then return to various total grounds to spawn. Spawning occurred in lake outlet streams, springs, larger rivers and lake shoreline areas in suitable but often limited habitat. Shoreline spawning in Flathead Lake was first documented in the mid-1930's. Spawning kokanee were seized from shoreline areas in 1933 and 21,000 cans were processed and packed for distribution to the needy. Stefanich (1953 and 1954) later documented extensive but an unquantified amount of spawning along the shoreline as well as runs in Whitefish River and McDonald Creek in the 1950's. A creel census conducted in 1962-63 determined 11 to 13 percent of the kokanee caught annually were taken during the spawning period (Robbins 1966). During a 1981-82 creel census, less than one percent of the fishermen on Flathead Lake were snagging kokanee (Graham and Fredenberg 1982). The operation of Kerr Dam, located below Flathead Lake on the Flathead River, has altered seasonal fluctuations of Flathead Lake. Lake levels presently remain high during kokanee spawning in November and decline during the incubation and emergence periods. Groundwater plays an important role in embryo and fry survival in redds of shoreline areas exposed by lake drawdown. Stefanich (1954) and Domrose (1968) found live eggs and fry only in shoreline spawning areas wetted by groundwater seeps. Impacts of the operation of Kerr Dam on lakeshore spawning have not been quantified. Recent studies have revealed that operation of Hungry Horse Dam severely impacted successful kokanee spawning and incubation in the Flathead River above Flathead Lake (Graham et al. 1980, McMullin and Graham 1981, Fraley and Graham 1982 and Fraley and McMullin 1983). Flows from Hungry Horse Dam to enhance kokanee reproduction in the river system have been voluntarily met by the Bureau of Reclamation since 1981. In lakeshore spawning areas in other Pacific Northwest systems, spawning habitat for kokanee and sockeye salmon was characterized by seepage or groundwater flow where suitable substrate composition existed (Foerster 1968). Spawning primarily occurred in shallower depths (<6 m) where gravels were cleaned by wave action (Hassemer and Rieman 1979 and 1980, Stober et al. 1979a). Seasonal drawdown of reservoirs can adversely affect survival of incubating kokanee eggs and fry spawned in shallow shoreline areas. Jeppon (1955 and 1960) and Whitt (1957) estimated 10-75 percent kokanee egg loss in shoreline areas of Pend Oreille Lake, Idaho after regulation of the upper three meters occurred in 1952. After 20 years of operation, Bowler (1979) found Pend Oreille shoreline spawning to occur in fewer areas with generally lower numbers of adults. In studies on Priest Lake, Idaho, Bjornn (1957) attributed frozen eggs and stranded fry to winter fluctuations of the upper three meters of the lake. Eggs and fry frozen during winter drawdown accounted for a 90 percent loss to shoreline spawning kokanee in Donner Lake, California (Kimsey 1951). Stober et al. (1979a) determined irrigation drawdown of Banks Lake, Washington reduced shoreline survival during five of the seven years the system was studied. The goal of this phase of the study was to evaluate and document effects of the operation of Kerr Dam on kokanee shoreline reproduction in Flathead Lake. Specific objectives to meet this goal are: (1) Del

Decker-Hess, Janet; McMullin, Steve L.

1983-11-01T23:59:59.000Z

314

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1997 Annual Report.  

SciTech Connect (OSTI)

During 1997 the first phase of the Nez Perce Tribe White Sturgeon Project was completed and the second phase was initiated. During Phase I the ''Upper Snake River White Sturgeon Biological Assessment'' was completed, successfully: (1) compiling regional white sturgeon management objectives, and (2) identifying potential mitigation actions needed to rebuild the white sturgeon population in the Snake River between Hells Canyon and Lower Granite dams. Risks and uncertainties associated with implementation of these potential mitigative actions could not be fully assessed because critical information concerning the status of the population and their habitat requirements were unknown. The biological risk assessment identified the fundamental information concerning the white sturgeon population that is needed to fully evaluate the effectiveness of alternative mitigative strategies. Accordingly, a multi-year research plan was developed to collect specific biological and environmental data needed to assess the health and status of the population and characterize habitat used for spawning and rearing. In addition, in 1997 Phase II of the project was initiated. White sturgeon were captured, marked, and population data were collected between Lower Granite Dam and the mouth of the Salmon River. During 1997, 316 white sturgeon were captured in the Snake River. Of these, 298 were marked. Differences in the fork length frequency distributions of the white sturgeon were not affected by collection method. No significant differences in length frequency distributions of sturgeon captured in Lower Granite Reservoir and the mid- and upper free-flowing reaches of the Snake River were detected. The length frequency distribution indicated that white sturgeon between 92 and 183 cm are prevalent in the reaches of the Snake River that were sampled. However, white sturgeon >183 have not changed markedly since 1970. I would speculate that some factor other than past over-fishing practices is limiting the recruitment of white sturgeon into larger size classes (>183 cm). Habitat, food resources, and migration have been severely altered by the impoundment of the Snake River and it appears that the recruitment of young may not be severely affected as recruitment of fish into size classes > 183 cm.

Hoefs, Nancy (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-02-01T23:59:59.000Z

315

Table EA-1. Stream-water dissolved Mn at basin outflow of perennial stream at Inspiration Dam illustrating decreases in dissolved Mn in response to remediation efforts. Dissolved Mn in  

E-Print Network [OSTI]

-Jul-98 2.8E-04 24-Nov-98 3.6E-04 11-Feb-99 1.2E-05 Remedial ground-water pumping begins 24-Mar-99 8.9E) and ground-water (GW) chemistry data for streambed sediment sampling sites. Dissolved concentrations in moleTable EA-1. Stream-water dissolved Mn at basin outflow of perennial stream at Inspiration Dam

316

Effect of the Operation of Kerr and Hungry Horse Dams on the Reproductive Success of Kokanee in the Flathead System; Technical Addendum to the Final Report.  

SciTech Connect (OSTI)

This addendum to the Final Report presents results of research on the zooplankton and fish communities of Flathead Lade. The intent of the Study has been to identify the impacts of hydroelectric operations at Kerr and Hungry Horse Dam on the reproductive success of kokanee an to propose mitigation for these impacts. Recent changes in the trophic ecology of the lake, have reduced the survival of kokanee. In the last three year the Study has been redirected to identify, if possible, the biological mechanisms which now limit kokanee survival, and to test methods of enhancing the kokanee fishery by artificial supplementation. These studies were necessary to the formulation of mitigation plans. The possibility of successfully rehabilitating the kokanee population, is the doubt because of change in the trophic ecology of the system. This report first presents the results of studies of the population dynamics of crustacean zooplankton, upon which planktivorous fish depend. A modest effort was directed to measuring the spawning escapement of kokanee in 1988. Because of its relevance to the study, we also report assessments of 1989 kokanee spawning escapement. Hydroacoustic assessment of the abundance of all fish species in Flathead Lake was conducted in November, 1988. Summary of the continued efforts to document the growth rates and food habits of kokanee and lake whitefish are included in this report. Revised kokanee spawning and harvest estimates, and management implications of the altered ecology of Flathead Lake comprise the final sections of this addendum. 83 refs., 20 figs., 25 tabs.

Beattie, Will; Tohtz, Joel

1990-03-01T23:59:59.000Z

317

Nucleotide sequence of the Dpn II DNA methylase gene of Streptococcus pneumoniae and its relationship to the dam gene of Escherichia coli  

SciTech Connect (OSTI)

The structural gene (dpnM) for the Dpn II DNA methylase of Streptococcus pneumoniae, which is part of the Dpn II restriction system and methylates adenine in the sequence 5'-G-A-T-C-3', was identified by subcloning fragments of a chromosomal segment from a Dpn II-producing strain in an S. pneumoniae host/vector cloning system and demonstrating function of the gene also in Bacillus subtilis. Determination of the nucleotide sequence of the gene and adjacent DNA indicates that it encodes a polypeptide of 32,903 daltons. A putative promoter for transcription of the gene lies within a hundred nucleotides of the polypeptide start codon. Comparison of the coding sequence to that of the dam gene of Escherichia coli, which encodes a similar methylase, revealed 30% of the amino acid residues in the two enzymes to be identical. This homology presumably reflects a common origin of the two genes prior to the divergence of Gram-positive and Gram-negative bacteria. It is suggested that the restriction function of the gene is primitive, and that the homologous restriction system in E. coli has evolved to play an accessory role in heteroduplex DNA base mismatch repair.

Mannarelli, B.M.; Balganesh, T.S.; Greenberg, B.; Springhorn, S.S.; Lacks, S.A.

1985-07-01T23:59:59.000Z

318

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.  

SciTech Connect (OSTI)

The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P < 0.001) were detected in front of the trash racks when the lights were on at night. On a count-per-hour basis, the difference between lights off and lights on was apparent in the early morning hours at depths between 25 m and 50 m from the transducers. The lights were approximately 34 m below the splitbeam transducers, and fish detected at night with lights on were found at a median depth of approximately 35 m, compared to a median depth of from 20.6 to 23.5 m when the lights were off. The differences in depth between lights on and off at night were also significant (P < 0.001). Additionally, the increase in fish occurred only in front of the trash rack where the strobe lights were mounted; there was no increase in the number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. Howeve

Simmons, M.; Johnson, Robert; McKinstry, C. [Pacific Northwest National Laboratory

2006-03-01T23:59:59.000Z

319

101112-FINAL.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Voice 918-595-6600 Fax 918-595-6656 www.swpa.gov The UPDATE is published by and for customers, retirees, and employees of Southwestern Power Administration like: Linda Mummey Realty Offi cer Tulsa, Oklahoma Special thanks to: Scott Carpenter Vicki Clarke Gary Cox Ruben Garcia Larry Harp William Hiller Beth Nielsen Kathy O'Neal Carrie Quick Angela Summer Mike Wech Jon Worthington U P DAT E S O U T H W E S T E R N P O W E R A D M I N I S T R A T I O N O C T O B E R - D E C E M B E R 2 0 0 8 Keystone Switchyard Switches Hands Keystone Dam Switchyard, located approximately 20 miles west of Southwestern's downtown Tulsa headquarters, became the fi rst switchyard to be transferred from the U.S. Army Corps of Engineers' Tulsa District (Corps) to Southwestern under a new Memorandum of Understanding (MOU) executed November 5, 2008.

320

Along the Laser Beampath  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 20 | Next | Last Back to Index Switchyards The 30-meter (98 feet)-high switchyards are designed for convenient access and maintenance. The pedestrian and equipment platforms...

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index Switchyard Construction The switchyards' support structures are built to resist vibration. They are firmly anchored to the building's reinforced concrete walls, which are 0.6...

322

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.  

SciTech Connect (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 31 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 138 aged white sturgeon. The results suggests fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. A total of 34 white sturgeon eggs were recovered: 27 in the Snake River, and seven in the Salmon River.

Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fishereis Resource Management, Lapwai, ID)

2003-03-01T23:59:59.000Z

323

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2001 Annual Report.  

SciTech Connect (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2001 annual report covers the fifth year of sampling of this multi-year study. In 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 45,907 hours of setline effort and 186 hours of hook-and-line effort was employed in 2001. A total of 390 white sturgeon were captured and tagged in the Snake River and 12 in the Salmon River. Since 1997, 36.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 42 cm to 307 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 66 cm to 235 cm and averaged 160 cm. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. An additional 10 white sturgeon were fitted with radio-tags during 2001. The locations of 17 radio-tagged white sturgeon were monitored in 2001. The movement of these fish ranged from 38.6 km (24 miles) downstream to 54.7 km (34 miles) upstream; however, 62.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 309 aged white sturgeon. The results suggest fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. A total of 14 white sturgeon eggs were recovered in the Snake River in 2001.

Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-03-01T23:59:59.000Z

324

Integrated Dam Assessment Models Towards Sustainability of Dams  

E-Print Network [OSTI]

· Expired permits - Federal Energy Resource Commission (FERC) relicensing hydropower projects at expiration and habitat · Cultural resources · Recreation · Spread of disease · Water quality · Air quality #12, hydroelectric project Infrastructure 1/1/76 Ganges Bangladesh-- India--United Nations -2 Bangladesh lodges

Tullos, Desiree

325

CX-007359: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

359: Categorical Exclusion Determination 359: Categorical Exclusion Determination CX-007359: Categorical Exclusion Determination McNary-Horse Heaven 230-kilovolt Transmission Line Raise (Structures 15/2 to 16/3) CX(s) Applied: B1.3 Date: 12/01/2011 Location(s): Washington Offices(s): Bonneville Power Administration Bonneville Power Administration (BPA) is proposing to add six wooden prop structures to the McNary-Horse Heaven No. 1 230-kilovolt transmission line between structures 15/2-16/3. The prop structures are needed to raise the existing line so that the conductor meets the necessary Minimum Approach Distance from the orchard below. An augur truck would use existing BPA roads to access the site and install wooden poles. More Documents & Publications CX-006582: Categorical Exclusion Determination

326

CX-006582: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

582: Categorical Exclusion Determination 582: Categorical Exclusion Determination CX-006582: Categorical Exclusion Determination Access Road Maintenance Along the McNary-Santiam 230-Kilovolt and Jones Canyon-Santiam 230-Kilovolt Transmission Line Corridors CX(s) Applied: B1.3 Date: 08/22/2011 Location(s): Wasco County, Oregon Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to perform routine road maintenance activities along existing access roads, both on and off the rights-of-way. The work involves approximately 5,000 linear feet of road reconstruction or improvement work. The roadwork is needed to improve access for crews that will be maintaining the transmission line and towers within the transmission line corridor. The work will consist primarily of

327

CX-003624: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

624: Categorical Exclusion Determination 624: Categorical Exclusion Determination CX-003624: Categorical Exclusion Determination Replacement of Twenty 22-L Structures on the Satsop-Aberdeen Number 2 230-kilovolt Transmission Line CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Gray's Harbor County, Washington Office(s): Bonneville Power Administration Replacement of twenty 22-L structures on the Satsop-Aberdeen Number 2 230-kilovolt (kV) transmission line. The project work would involve removal of the existing towers and building replacement towers, replacing insulators, and attaching the existing conductor to the new towers. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003624.pdf More Documents & Publications CX-003025: Categorical Exclusion Determination CX-001179: Categorical Exclusion Determination

328

CX-005115: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-005115: Categorical Exclusion Determination Weld Substation Transformer Placement, Greeley, Weld County, Colorado CX(s) Applied: B4.6 Date: 01/07/2011 Location(s): Greeley, Colorado Office(s): Western Area Power Administration-Rocky Mountain Region Western Power Administration will install; one-150 megavolt-ampere transformer 230/115-kilovolt (KV2A), two-230-kilovolt power circuit breaker, four-230-kilovolt switches, one-115-kilovolt power circuit breaker, three-115-kilovolt switches, and associated bus, meter, and control equipment. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-005115.pdf More Documents & Publications CX-002585: Categorical Exclusion Determination CX-008378: Categorical Exclusion Determination CX-008785

329

CX-005379: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5379: Categorical Exclusion Determination 5379: Categorical Exclusion Determination CX-005379: Categorical Exclusion Determination Insulator Replacement in Agricultural Lands Along the Grand Coulee-Bell Number 3/Grand Coulee-Westside No. 1 Double Circuit 230 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/02/2011 Location(s): Lincoln County, Washington Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to replace worn insulators on sections of the Grand Coulee-Bell Number 3/Grand Coulee-Westside Number 1 double circuit 230-kilovolt (kV) transmission line. This portion of the transmission line is located in Lincoln County, Washington, in BPA?s Spokane Operations and Maintenance District. Townships, Ranges, and Sections crossed by the proposed project are listed below.

330

CX-009230: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30: Categorical Exclusion Determination 30: Categorical Exclusion Determination CX-009230: Categorical Exclusion Determination Curecanti-Rifle 230 Kilovolt Transmission Line Sullivan Ranch Irrigation Water Pipeline Project Between Structures 25/5 to 26/1 CX(s) Applied: B4.9 Date: 09/28/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration (Western) proposes to grant permission to Mr. Dan Sullivan for the Sullivan Ranch Pipeline Project on Western's right-of-way (ROW) between structures 25/5 to 2611 on the Curecanti-Rifle (CCI-RFL) 230 kilovolt Transmission Line. CX-009230.pdf More Documents & Publications CX-010110: Categorical Exclusion Determination CX-010413: Categorical Exclusion Determination EIS-0442: Draft Environmental Impact Statement

331

CX-008380: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

80: Categorical Exclusion Determination 80: Categorical Exclusion Determination CX-008380: Categorical Exclusion Determination Archer to Ault 230 Kilovolt Transmission Line Structure Replacement, Weld County, Colorado CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration (Western) proposes to replace an existing three pole wood structure along the Archer to Ault 230 kilovolt (kV) transmission line. The structure is located on private land adjacent to County Road 27 northwest of the town of Nunn in Weld County, Colorado. The structure will be replaced in-kind with wood poles of the same height, hardware, configuration, and at the same location. All work will be confined to Western's right-of way easement.

332

CX-008716: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

716: Categorical Exclusion Determination 716: Categorical Exclusion Determination CX-008716: Categorical Exclusion Determination Bonneville Power Administration (BPA) Tacoma Power Chehalis- Covington 230-Kilovolt (kV) Line/Convert Microwave Signals From Analog To Digital CX(s) Applied: B1.7 Date: 05/21/2012 Location(s): Washington, Washington, Washington Offices(s): Bonneville Power Administration The Bonneville Power Administration (BPA) and Tacoma Power (TPWR) have developed a joint plan to convert the microwave transfer trip signals on BPA's Chehalis-Covington 230 kilovolt (kV) line, which includes the 230-kV tap line to TPWR's Cowlitz Substation, from analog to digital. Microsoft Word - CX Tacoma Power Chehalis-Covington analog-digital conversion Final.docx More Documents & Publications CX-006198: Categorical Exclusion Determination

333

Categorical Exclusion Determinations: Western Area Power  

Broader source: Energy.gov (indexed) [DOE]

July 25, 2012 July 25, 2012 CX-008787: Categorical Exclusion Determination Midway Substation 230 Kilovolt Upgrades El Paso County, Colorado CX(s) Applied: B4.6, B4.11 Date: 07/25/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region July 23, 2012 CX-008784: Categorical Exclusion Determination License Outgrant to Owl Creek Water District Town of Thermopolis, Hot Springs County, Wyoming CX(s) Applied: B4.9 Date: 07/23/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region July 3, 2012 CX-008779: Categorical Exclusion Determination Curecanti-Poncha-Canon City West-Midway 230-Kilovolt Transmission Line Road Maintenance Gunnison, Chaffee, Fremont, Pueblo, and El Paso Counties, Colorado CX(s) Applied: B1.3

334

Categorical Exclusion Determinations: Washington | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 14, 2011 June 14, 2011 CX-006253: Categorical Exclusion Determination North Bonneville-Ross #1 230-Kilovolt, North Bonneville-Troutdale #2 230-Kilovolt Transmission Line Maintenance CX(s) Applied: B4.13 Date: 06/14/2011 Location(s): Clark County, Washington Office(s): Bonneville Power Administration June 10, 2011 CX-006198: Categorical Exclusion Determination South Tacoma - Frederickson Power Fiber Project CX(s) Applied: B4.7 Date: 06/10/2011 Location(s): Pierce County, Washington Office(s): Bonneville Power Administration June 9, 2011 CX-006197: Categorical Exclusion Determination Omak Area 3G Radio Site Upgrades CX(s) Applied: B1.19 Date: 06/09/2011 Location(s): Okanogan, Washington Office(s): Bonneville Power Administration June 8, 2011 CX-006049: Categorical Exclusion Determination

335

CX-006257: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

257: Categorical Exclusion Determination 257: Categorical Exclusion Determination CX-006257: Categorical Exclusion Determination Ponderosa 500-230 Kilovolt (kV) Transformer Addition CX(s) Applied: B4.6 Date: 06/29/2011 Location(s): Prineville, Oregon Office(s): Bonneville Power Administration The proposed project includes modification of existing substation equipment, installation of a new 500-230-kilovolt (kV) transformer, and an eight acre expansion northwest of the existing yard. The yard expansion is to facilitate the addition of a new 230-kV 2-bay breaker-and-a-half bus, four bays and the new transformer. A new control house would be built to accommodate controls and protection for the new equipment. The existing road to the south would be modified and graveled. All activities would occur on previously disturbed soils within Bonneville Power

336

CX-006819: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

19: Categorical Exclusion Determination 19: Categorical Exclusion Determination CX-006819: Categorical Exclusion Determination Replace Aging Wood Poles on Trans Alta?s Centralia Tap to Chehalis-Covington No. 1 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 09/16/2011 Location(s): Lewis County, Washington Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) will perform routine maintenance and replacement of aging wood pole transmission line support structures, including all hardware and guy support structures on the Centralia Tap to Chehalis-Covington No. 1 230-kilovolt (kV) transmission line. The transmission line is owned and operated by Trans Alta and BPA maintains the line at Trans Alta?s expense. Trans Alta is contracting with BPA to complete the maintenance work.

337

EIS-0308: Record of Decision and Floodplain Statement | Department of  

Broader source: Energy.gov (indexed) [DOE]

8: Record of Decision and Floodplain Statement 8: Record of Decision and Floodplain Statement EIS-0308: Record of Decision and Floodplain Statement Interconnection of the Southpoint Power Plant with the Wester Area Power Administration's Parker-Davis No. 1 and No. 2, 230-kilovolt Transmission Lines Western has determined that no significant environmental impacts will result from construction, operation and maintenance of Calpine Corporation's Southpoint Power Plant, the two natural gas pipelines, or the approximately 7 miles of high voltage transmission lines, or from the upgrade of the Parker-Davis No. 1 230-kilovolt (kV) transmission line. Therefore, Western has decided to provide an interconnection with the plant and Western's transmission system in west central Arizona. However, Calpine has yet to obtain a permit from the Bureau of Land Management (BLM)

338

EIS-0294: Record of Decision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4: Record of Decision 4: Record of Decision EIS-0294: Record of Decision Interconnection of the Sutter Power Project With the Western Area Power Administration's Keswick-Elverta/Olinda-Elverta 230-Kilovolt Double-Circuit Transmission Line (June 1999) Record of Decision for the Interconnection of the Sutter Power Project With the Western Area Power Administration's Keswick-Elverta/Olinda-Elverta 230-Kilovolt Double-Circuit Transmission Line. The Western Area Power Administration (Western) prepared this Record of Decision in response to a request submitted to Western for a direct interconnection of Calpine Corporation's (Calpine) proposed Sutter Power Project (SPP) with Western's electric transmission system. Western Area Power Administration Record of Decision for the Interconnection of the Sutter Power Project With the Western Area Power

339

CX-008779: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9: Categorical Exclusion Determination 9: Categorical Exclusion Determination CX-008779: Categorical Exclusion Determination Curecanti-Poncha-Canon City West-Midway 230-Kilovolt Transmission Line Road Maintenance Gunnison, Chaffee, Fremont, Pueblo, and El Paso Counties, Colorado CX(s) Applied: B1.3 Date: 07/03/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration (Western) proposes to maintain sections of its access roads along the Curecanti (CCI)- Poncha (PON)- Canon City West (CCW) Midway (MID) 230-kilovolt transmission line segments. CX-008779.pdf More Documents & Publications CX-008778: Categorical Exclusion Determination CX-010109: Categorical Exclusion Determination EIS-0442: Draft Environmental Impact Statement

340

CX-008399: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

99: Categorical Exclusion Determination 99: Categorical Exclusion Determination CX-008399: Categorical Exclusion Determination Erosion Control Measures Structure No. 110-3 Dave Johnston to Stegall 230 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration (Western) will repair erosion damage at Structure No. 110-3 of the Dave Johnston to Stegall 230 kilovolt (kV) transmission line located near southeast Torrington. Wyoming. Flood flows along the North Platte River in 2011 migrated the active channel bank towards Structure No. 110-3. The potential exists for future channel meandering to underline the foundation supports of the 80 foot steel lattice structure. To mitigate this potential, Western proposes to

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CX-001048: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

48: Categorical Exclusion Determination 48: Categorical Exclusion Determination CX-001048: Categorical Exclusion Determination Lower Mid-Columbia/Midway - Vantage 230-Kilovolt Transmission Line Upgrade Project CX(s) Applied: B4.6, B4.7, B4.13 Date: 02/23/2010 Location(s): Grant County, Washington Office(s): Bonneville Power Administration Upgrade the lower Mid-Columbia area 230-kilovolt (kV) transmission system in Grant and Benton counties, Washington. The project requires re-conductoring 10.6 miles of the Midway-Vantage 230-kV transmission line, re-terminating the existing Vantage-Columbia 230-kV line at the Vantage Substation, and installing related transmission and communications equipment within the Midway and Vantage substations. Upgrades are needed to mitigate thermal overloads due to Columbia River flow management changes

342

CX-005852: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

852: Categorical Exclusion Determination 852: Categorical Exclusion Determination CX-005852: Categorical Exclusion Determination Stegall-Wayside 230 Kilovolt Access Road Extension CX(s) Applied: B1.13 Date: 05/05/2011 Location(s): Dawes County, Wyoming Office(s): Western Area Power Administration-Rocky Mountain Region Western Power Administration plans to construct an extension of an existing access road between structures 111-1 and 111-2 on the Stegall-Wayside 230 kilovolt transmission line. This road construction will provide access for removal of previously felled hazard trees along the transmission line right-of-way on private land. The project will extend the existing access road to the south from its present terminus at structure 111-1 and terminate before reaching structure 111-2. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

343

Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010  

SciTech Connect (OSTI)

This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish length during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, the average fish length remained relatively consistent (132 {+-} 54 mm), after which average lengths increased to 295 {+-} 148 mm for mid-November though early December. From mid-December through January the average fish length decreased to 151 {+-} 76 mm. Milling in front of the WTC tower was the most common fish behavior observed throughout the study period. Traversing along the front of the tower, east-to-west and west-to-east, was the next common behavior. The percentage of fish events showing movement from the forebay to the tower or from the tower to the forebay was generally low throughout the spring, summer, and early fall (0 to 30% for both directions combined, March through early November). From mid-November 2010 through the end of the study (January 31, 2011), the combined percentages of fish moving into and out of the tower were higher (25 to 70%) than during previous months of the study. Schooling behavior was most distinct in the spring. Schooling events were present in 30 to 96% of the fish events during that period, with a peak on May 19. Schooling events were also present in the summer, but at lower numbers. With the exception of some schooling in mid-December, few to no schooling events were observed in the fall and winter months. Diel distributions for schooling fish during spring and fall months indicate schooling was concentrated during daylight hours and no schooling was observed at night. However, in December, schooling occurred at night, after midnight, and during daylight hours. Predator activity, most likely bull trout or rainbow trout according to a USACE biologist, was observed during late spring, when fish abundance index and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months.

Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

2012-04-01T23:59:59.000Z

344

Categorical Exclusions 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Garrison Switchyard Transmission Line Reconstruction (804kb pdf) Prairie Rose Transmission Line Crossing (68...

345

EIS-0400: EPA Notice of Availability of Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

346

White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.  

SciTech Connect (OSTI)

White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates of early life stages by modifying flows in the HCR, reducing mortality imposed by the catch and release fishery, augmenting natural production through translocation or hatchery releases, and assessing detrimental effects of contaminants on reproductive potential. These proposed actions were evaluated by assessing their relative potential to affect population growth rate and by determining the feasibility of their execution, including a realistic timeframe (short-term, mid-term, long-term) for their implementation and evaluation. A multi-pronged approach for management was decided upon whereby various actions will be implemented and evaluated under different timeframes. Priority management actions include: Action I- Produce juvenile white sturgeon in a hatchery and release into the management area; Action G- Collect juvenile white sturgeon from other populations in the Snake or Columbia rivers and release them into the management area; and Action D- Restore white sturgeon passage upriver and downriver at Lower Snake and Idaho Power dams. An integral part of this approach is the continual monitoring of performance measures to assess the progressive response of the population to implemented actions, to evaluate the actions efficacy toward achieving objectives, and to refine and redirect strategies if warranted.

Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-09-01T23:59:59.000Z

347

Evaluate Potenial Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2002 Annual Report.  

SciTech Connect (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This report presents a summary of results from the 1997-2002 Phase II data collection and represents the end of phase II. From 1997 to 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon. A total of 1,785 white sturgeon were captured and tagged in the Snake River and 77 in the Salmon River. Since 1997, 25.8 percent of the tagged white sturgeon have been recaptured. Relative density of white sturgeon was highest in the free-flowing segment of the Snake River, with reduced densities of fish in Lower Granite Reservoir, and low densities the Salmon River. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir, the free-flowing Snake River and the Salmon River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. Total annual mortality rate was estimated to be 0.14 (95% confidence interval of 0.12 to 0.17). A total of 35 white sturgeon were fitted with radio-tags during 1999-2002. The movement of these fish ranged from 53 km (33 miles) downstream to 77 km (48 miles) upstream; however, 38.8 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. The results suggest fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate egg mats documented white sturgeon spawning in four consecutive years. A total of 49 white sturgeon eggs were recovered in the Snake River from 1999-2002, and seven from the Salmon River during 2000.

Everett, Scott R.; Tuell, Michael A.; Hesse, Jay A. (Nez Perce Tribe, Department of Fisheries Management, Lapwai, ID)

2004-02-01T23:59:59.000Z

348

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.  

SciTech Connect (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 29 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 49 aged white sturgeon. The results suggests the fish are currently growing faster than fish historicly inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. Five white sturgeon eggs were recovered in the Snake River.

Tuell, Michael A.; Everett, Scott R. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-03-01T23:59:59.000Z

349

Microsoft Word - Roza_Transformer_Replacement_CX_Final.doc  

Broader source: Energy.gov (indexed) [DOE]

Clearance Memorandum Clearance Memorandum Patricia Smith Project Manager KEWU-4 Proposed Action: Replace two broken transformers near the Roza Dam adult trap facility Budget Information: Work Order #188534, Task #1 Fish and Wildlife Project No.: 1997-013-25 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area including, but not limited to, switchyard rock grounding upgrades, secondary containment projects, paving projects, seismic upgrading, tower modifications, changing insulators, and replacement of poles, circuit breakers, conductors, transformers, and crossarms. Location: Roza Diversion Dam Adult Trap Facility , Township 15 North, Range 19 East,

350

Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase I, Volume Two (A), Clark Fork Projects, Thompson Falls Dam, Operator, Montana Power Company.  

SciTech Connect (OSTI)

The Thompson Falls Dam inundated approximately 347 acres of wildlife habitat that likely included conifer forests, deciduous bottoms, mixed conifer-deciduous forests and grassland/hay meadows. Additionally, at least one island, and several gravel bars were inundated when the river was transformed into a reservoir. The loss of riparian and riverine habitat adversely affected the diverse wildlife community inhabiting the lower Clark Fork River area. Quantitative loss estimates were determined for selected target species based on best available information. The loss estimates were based on inundation of the habitat capable of supporting the target species. Whenever possible, loss estimates bounds were developed by determining ranges of impacts based on density estimates and/or acreage loss estimates. Of the twelve target species or species groups, nine were assessed as having net negative impacts. 86 refs., 2 figs., 5 tabs.

Wood, Marilyn

1984-03-27T23:59:59.000Z

351

Evaluation of the state of the dam and foundation of the Sayano-Shushenskoe Hydroelectric Station and measures to ensure its reliability (based on materials of the expert commission formed by the Engineering Academy of the Russian Federation)  

SciTech Connect (OSTI)

During the first years of operation of the Sayano-Shushenskoe hydrostation deviations from the design premises were detected in the {open_quotes}dam-foundation{close_quotes} system, and some of them can be assigned to the second group of limit states. In connection with this, P.R. Khlopenkov sent a letter to the State Committee for Emergency Situations about the emergency, in his opinion, state of the Sayano-Shushenskoe hydrostation. The indicated letter was the cause for creating an independent expert commission formed by the Engineering Academy of the Russian Federation at the request of O.V. Britvin, vice-president of the Russian Power and Electrification joint-stock company, the task of which included an objective evaluation of the reliability of that structure and, when necessary, giving recommendations aimed at ensuring its further normal operation.

Rozanov, N.P.; Kubetskii, V.L.

1994-08-01T23:59:59.000Z

352

Status and Habitat Requirements of the White Sturgeon Populations in the Columbia River Downstream from McNary Dam Volume II; Supplemental Papers and Data Documentation, 1986-1992 Final Report.  

SciTech Connect (OSTI)

This is the final report for research on white sturgeon Acipenser transmontanus from 1986--92 and conducted by the National Marine Fisheries Service (NMFS), Oregon Department of Fish and Wildlife (ODFW), US Fish and Wildlife Service (USFWS), and Washington Department of Fisheries (WDF). Findings are presented as a series of papers, each detailing objectives, methods, results, and conclusions for a portion of this research. This volume includes supplemental papers which provide background information needed to support results of the primary investigations addressed in Volume 1. This study addresses measure 903(e)(1) of the Northwest Power Planning Council's 1987 Fish and Wildlife Program that calls for ''research to determine the impact of development and operation of the hydropower system on sturgeon in the Columbia River Basin.'' Study objectives correspond to those of the ''White Sturgeon Research Program Implementation Plan'' developed by BPA and approved by the Northwest Power Planning Council in 1985. Work was conducted on the Columbia River from McNary Dam to the estuary.

Beamesderfer, Raymond C.; Nigro, Anthony A. [Oregon Dept. of Fish and Wildlife, Clackamas, OR (US)

1995-01-01T23:59:59.000Z

353

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

STRONG STRONG ® US Army Corps of Engineers BUILDING STRONG ® SOUTHEASTERN FEDERAL POWER ALLIANCE South Atlantic Division Major Maintenance Update Steve Jones, Chris Ludwig & Daniel Rabon 09 October 2013 BUILDING STRONG ® Philpott Dam & Powerhouse BUILDING STRONG ® Governor Replacement BUILDING STRONG ® Station Service Governor BUILDING STRONG ® Exciter Replacement BUILDING STRONG ® Switchgear Replacement BUILDING STRONG ® Switchgear Replacement BUILDING STRONG ® Switchgear Replacement BUILDING STRONG ® Switchgear Building Location BUILDING STRONG ®  Allatoona Transformer Install - Scope ►Replace GSU transformers ►Replace Station Service switchgear, bus work, etc. ►Convert 2300V system to 13.8kV system ►Convert switchyard to ring bus configuration

354

EA-1665: Davis-Kingman 69-kV Transmission Line Rebuild Project, Arizona |  

Broader source: Energy.gov (indexed) [DOE]

65: Davis-Kingman 69-kV Transmission Line Rebuild Project, 65: Davis-Kingman 69-kV Transmission Line Rebuild Project, Arizona EA-1665: Davis-Kingman 69-kV Transmission Line Rebuild Project, Arizona Overview Western plans to rebuild a 26.6-mile-long portion of the existing 27.3-mile-long Davis-Kingman Tap 69-kV Transmission Line within the existing ROW in order to improve the reliability of the transmission service. The line has been in service well beyond its projected service life, customer load on the line has increased considerably over the years, and reliability has decreased due to natural aging, extreme weather exposure, vandalism, and lightning strikes. The western-most 0.7 mile of the existing line was rebuilt as part of the Davis Dam Switchyard in 2010. Public Comment Opportunities No public comment opportunities available at this time.

355

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 22150 of 29,416 results. 41 - 22150 of 29,416 results. Download CX-003498: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Newman Memorial Hospital CX(s) Applied: B1.4, B2.1, B5.1 Date: 08/17/2010 Location(s): Shattuck, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-003498-categorical-exclusion-determination Download CX-004896: Categorical Exclusion Determination Davis Dam Switchyards (Erosion Control) CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Mohave County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region http://energy.gov/nepa/downloads/cx-004896-categorical-exclusion-determination Download CX-003358: Categorical Exclusion Determination

356

EA-1665: Final Environmental Assessment and Finding of No Significant  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment and Finding of No Final Environmental Assessment and Finding of No Significant Impact EA-1665: Final Environmental Assessment and Finding of No Significant Impact Davis-Kingman Tap 69-kV Transmission Line Rebuild Project, Mohave County, Arizona For more information, contact: Ms. Linette King Desert Southwest Region Western Area Power Administration P.O. Box 6457 Phoenix, AZ 85005-6457 Telephone: 602-605-2434 Fax: 602-605-2630 Electronic mail: lking@wapa.gov The Western Area Power Administration (Western) plans to rebuild a 26.2-mile-long portion of the existing Davis-Kingman Tap 69-kilovolt (kV) Transmission Line located in Mohave County,Arizona. The existing Davis-Kingman Tap 69-kV Transmission Line originates in Bullhead City, Arizona, at the Davis Dam Switchyard and extends northwest of Kingman, Arizona, four

357

ConceptualDesignfor ChiefJosephDam  

E-Print Network [OSTI]

............................................................................................... 10 Parameters Needed to Assess the Demographic Consequences of Supplementation... 11 Assessment................................................................................ 19 Ecological Risk Assessment ...................................................................... 21 General Program Objectives for Genetics, Harvest and Natural Production................ 21 Habitat

358

Dam choices: Analyses for multiple needs  

Science Journals Connector (OSTI)

...and biodiversity, whereas developers worry about energy and capital for growth. The problem is that unnecessary costs are inflicted...when decision makers consider other energy sources such as natural gas or renewables. These analyses would recognize that fisheries...

Peter M. Kareiva

2012-01-01T23:59:59.000Z

359

DOE/EA-1366; Environmental Assessment Santiam-Bethel Transmission Line Project (09/2001)  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Environmental Assessment Preliminary Environmental Assessment Santiam-Bethel Transmission Line Project Bonneville Power Administration September 2001 Santiam-Bethel Transmission Line Project Responsible Agency: U.S. Department of Energy, Bonneville Power Administration (BPA) Name of Proposed Project: Santiam-Bethel Transmission Line Project Abstract: Bonneville Power Administration proposes to rebuild the first 17 miles of the Santiam-Chemawa transmission line from Santiam Substation to the line's connection to Portland General Electric's Bethel Substation. BPA would replace the existing single-circuit 230-kilovolt (kV) line with towers that could support two circuits. The existing line supplies both Bethel Substation and BPA's Chemawa Substation. The new lines would eliminate

360

EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska)  

Broader source: Energy.gov [DOE]

This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new substations and the expansion of six existing substations.

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIS-0477: San Juan Basin Energy Connect Project, San Juan County, New Mexico and La Plata County, Colorado  

Broader source: Energy.gov [DOE]

The Department of the Interior’s Bureau of Land Management is preparing an EIS to evaluate the potential environmental impacts of a proposal to construct a 230-kilovolt transmission line from the Farmington area in northwest New Mexico to Ignacio, Colorado, to relieve transmission constraints, serve new loads, and offer economic development through renewable energy development in the San Juan Basin. DOE’s Western Area Power Administration is a cooperating agency; the proposed transmission line would require an interconnection with Western's Shiprock Substation, near Farmington, and a new Three Rivers Substation on Western's reserved lands.

362

CX-008789: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

89: Categorical Exclusion Determination 89: Categorical Exclusion Determination CX-008789: Categorical Exclusion Determination Routine Maintenance of Curecanti-Lost Canyon 230 Kilovolt Access Roads and Western Area Power Administration Right-of-Way in Montrose, Ouray, San Miguel, Dolores, and Montezuma Counties, Colorado CX(s) Applied: B1.3 Date: 05/22/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration (Western) proposes to perform routine maintenance of existing access roads and right-of-way (ROW) along the Curecanti-Lost Canyon (CCI-LCN) 230-kilovolt (kV) transmission line at structures 0/2 to 1/3, 3/2, 8/1, 8/6, 9/6 to 9/7, 12/2 to 14/2, 15/5, 17/2, 17/3, 36/5, 37/1, 43/2, 47/2, 47/4, and 56/4 (approximately 60 miles).

363

E-Print Network 3.0 - arctic ocean archaeal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Switchyard. This is Ellesmere Island, here, next to Summary: to better understand the ocean currents that are moving in the Arctic Ocean towards the North Atlantic Ocean......

364

E-Print Network 3.0 - arctic pilot project Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the world." Mike Steele: "The Switchyard Project is designed... to better understand the ocean currents that are moving in the Arctic Ocean towards the North ... Source:...

365

APPLICATION OF A CATEGORICAL EXCLUSION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

optimization of electric power at the Portsmouth Gaseous Diffusion Facility to support the Decontamination and Demolition and remediation of the X-530 Switchyard while satisfying...

366

Microsoft Word - FCRPS Awardees for news site.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and project management for the Chandler Power Plant switchyard upgrade and transformer replacement, Green Springs Power Plant relay upgrade and the Roza Power Plant...

367

UNIT N~E C-S31 Sw1tchvard REGULA-TORY STATUS CERCLA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STATUS Av I DATES OPERATED 1951 to oresent SITEPROCESS DESCRIPTION: Power transformer and switchyard. solvents were used to clean transformer external surfaces. WASTE...

368

G:\\ESS\\248 RCRA\\SWMU Report Cor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

established as a GSA to store an impeder, which contained PCB oil, removed from a transformer in one of electrical switchyards. OPERATIONAL STATUS: Inactive. DATES OPERATED: 12...

369

R&D for a Soft X-Ray Free Electron Laser Facility  

E-Print Network [OSTI]

Quantum-degenerate Electron Source, Physical Review LettersHigh brightness electron source, beam instrumentation andFEL Requires high rep-rate electron source Beam switchyard

Staples, John

2009-01-01T23:59:59.000Z

370

EIS-0400: Record of Decision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EIS-0400: Record of Decision Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Western Area Power Administration...

371

Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement  

SciTech Connect (OSTI)

BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability standards that minimize risks to public safety and to equipment. BPA is considering two construction alternatives, the Agency Proposed Action and the Alternative Action. The Alternative Action would include all the components of the Preferred Action except a double-circuit line would be constructed in the Spokane area between a point about 2 miles west of the Spokane River and Bell Substation, a distance of about 9 miles. BPA is also considering the No Action Alternative.

N /A

2002-08-09T23:59:59.000Z

372

James W. Van Dam US Burning Plasma Organization  

E-Print Network [OSTI]

transport barriers, electron thermal transport, momentum transport, ... · MHD macrostability ­ Resistive materials, divertor design, ... · Long-pulse operation ­ Heating and current drive, profile control, hybrid Uniquely BP issues · Alpha particles ­ Large population of supra- thermal ions · Self-heating ­ "Autonomous

373

Chilean glacial lake outburst flood impacts on dam construction  

E-Print Network [OSTI]

Four Glacial Lake Outburst Floods (GLOF) occurred in the Colonia Glacier (Northern Patagonia Icefield, Chile) from April 2008 to March 2009. Lago Cachet 2 emptied four times producing a maximum excess discharge in the ...

Tauro, Flavia

2009-01-01T23:59:59.000Z

374

The 2005 Upper Taum Sauk Dam Failure: A Case History  

Science Journals Connector (OSTI)

...they began testing the turbine generators in late August...uplift problems in the turbines at high rpm values...to upgrade the pump/turbine units in 1999, which...deep. AmerenUE thought wind-whipped waves from...postponed until the annual maintenance period, scheduled for...

J. DAVID ROGERS; CONOR M WATKINS; JAE-WON CHUNG

375

Geologic Hazards Associated With a Proposed Dam on the Yarlung-  

E-Print Network [OSTI]

such reports (Biron and Dodin, 2007). However, given the persistent media reports, the pressing water-resources downstream in the Brahmapu- tra system in northeastern India and Bangladesh, and hazards asso- ciated

Kidd, William S. F.

376

Hydropower Generators Will Deliver New Energy from an Old Dam...  

Office of Environmental Management (EM)

2,000 homes for a year. The project also developed and installed an innovative fish collection and passage system that is reintroducing Washington's endangered steelhead...

377

As Salmon Stage Disappearing Act, Dams May Too  

Science Journals Connector (OSTI)

...1960s and 1970s to generate power for the Pacific Northwest, can...in 1995 by NMFS and the Bonneville Power Administration, which markets power from...in 1995 by NMFS and the Bonneville Power Administration, which markets...

Richard A. Lovett

1999-04-23T23:59:59.000Z

378

Optimal Dam Construction under Climate Change Uncertainty and Anticipated Learning  

E-Print Network [OSTI]

Expected present value of project given climate belief. q(j)expected value of the project given climate i and beginningterm capital projects using beliefs about climate change or

Cameron-Loyd, Patricia Jane

2012-01-01T23:59:59.000Z

379

Optimal Dam Construction under Climate Change Uncertainty and Anticipated Learning  

E-Print Network [OSTI]

level of green-house-gas (GHG) stocks, both of which change17 2.3.1 Deterministic GHG18 2.3.2 Stochastic GHG

Cameron-Loyd, Patricia Jane

2012-01-01T23:59:59.000Z

380

Carbon impact of proposed hydroelectric dams in Chilean Patagonia  

E-Print Network [OSTI]

The concern for and awareness of climate change is growing, and the world needs to react quickly and efficiently to manage the carbon intensity of the global energy industry. Making smart decisions about energy technology ...

Mar, Laura E. (Laura Elizabeth)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Productivity growth and biased technological change in hydroelectric dams  

Science Journals Connector (OSTI)

This paper analyses productivity growth and the nature of technical change in a sample of Portuguese hydroelectric generating plants over the period 2001 to 2008. In a first step, we employ the Luenberger productivity indicator to estimate and decompose productivity change. A Malmquist productivity index is also used for a comparative purpose. The results paint a picture of mixed productivity performance in the Portuguese energy sector. The first decomposition underlines that, in average, the productivity variation is explained by the technological change. Then, in a second step, we analyse the nature of this technical change by using the recent concept of parallel neutrality (Briec et al., 2006). We observe a global shift in the best practice frontier as well as in the evidence of input bias in technical change.

Walter Briec; Nicolas Peypoch; Hermann Ratsimbanierana

2011-01-01T23:59:59.000Z

382

Dam break risk assessment in Baker Valley (Chilean Patagonia)  

E-Print Network [OSTI]

An hydroelectric project was proposed by HidroAysen Company in the Aysen Region of Chilean Patagonia. It consisted of the installation of five hydroelectric power stations, two on Rio Baker and three on Rio Pascua, with ...

Natale, Elisabetta

2009-01-01T23:59:59.000Z

383

Carbon impact of proposed hydroelectric dams in Chilean Patagonia .  

E-Print Network [OSTI]

??The concern for and awareness of climate change is growing, and the world needs to react quickly and efficiently to manage the carbon intensity of… (more)

Mar, Laura E. (Laura Elizabeth)

2009-01-01T23:59:59.000Z

384

Lower Granite Dam Smolt Monitoring Program; 1997 Annual Report.  

SciTech Connect (OSTI)

The 1997 fish collection season at Lower Granite was characterized by high spring flows, extensive spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database of fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

Verhey, Peter; Witalis, Shirley; Morrill, Charles (Washington Department of Fish and Wildlife, Olympia, WA)

1998-01-01T23:59:59.000Z

385

Microsoft Word - Appendix H - Emergency Response Plan for Dams...  

Office of Legacy Management (LM)

TO WALNUT CREEK WOMAN CREEK N.WALNUT CR. BYPASS P NORTH WALNUT CREEK S. WALNUT CR. BYPASS PIPELINE SOUTH INTERCEPTOR DITCH SOUTH WALNUT CREEK S M A R T D I T C H 2 PIPELINE DE-N...

386

Appropriation or Use of Waters, Reservoirs, and Dams (Maryland)  

Broader source: Energy.gov [DOE]

It is state policy to control the use and appropriation of ground and surface waters of the state. A permit from the Department of the Environment is required prior to the construction or operation...

387

EIS-0414: EPA Notice of Availability of a Final Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

a Final Environmental a Final Environmental Impact Statement EIS-0414: EPA Notice of Availability of a Final Environmental Impact Statement Energia Sierra Juarez Transmission Project EPA announces the availability of the Final Environmental Impact Statement for the Energia Sierra Juarez Transmission Project. The proposal includes construction, operation, maintenance, and connection of either 230-Kilovolt or a 500-Kilovolt Electric Transmission Line Crossing U.S.-Mexico Border, Presidential Permit Approval, San Diego County, CA. Review Period Ends: 07/09/2012. EIS-0414-EPANOA-FEIS-2012.pdf More Documents & Publications EIS-0427: EPA Notice of Availability of a Final Environmental Impact Statement EIS-0391: EPA Notice of Availability of a Final Environmental Impact Statement EIS-0413: EPA Notice of Availability of a

388

Microsoft Word - PonderosaSub_TransformerAdd_CX.doc  

Broader source: Energy.gov (indexed) [DOE]

Amy Freel - TEP TPP 1 Amy Freel - TEP TPP 1 Proposed Action: Ponderosa 500-230 kilovolt (kV) Transformer Addition Budget Information: 00276365 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 "Additions/modifications to electric power transmission facilities within previously developed Facility area..." Location: Prineville, Crook County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The proposed project includes modification of existing substation equipment, installation of a new 500-230-kV transformer, and an eight acre expansion northwest of the existing yard. The yard expansion is to facilitate the addition of a new 230-kV 2-bay breaker-and-a-half bus, four bays and the new transformer. A new control

389

EIS-0414: Draft Environmental Impact Statement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

14: Draft Environmental Impact Statement 14: Draft Environmental Impact Statement EIS-0414: Draft Environmental Impact Statement Energia Sierra Juarez Transmission Project Energia Sierra Juarez U.S. Transmission, LLC (ESJ-U.S.), a subsidiary of Sempra Generation, has applied to the U.S. Department of Energy (DOE) for a Presidential permit to construct, operate, maintain, and connect a 1.7-mile transmission line (0.65 miles in the U.S.) across the international border between the U.S. and Mexico, near the town of Jacumba, California. The EIS addresses the environmental impacts of the proposed transmission line and the range of reasonable alternatives. Five alternatives were identified in this EIS, three of which were carried forward for detailed analysis (the No Action Alternative, a Double-Circuit 230-kilovolt (kV) Transmission Line

390

Categorical Exclusion Determinations: Western Area Power  

Broader source: Energy.gov (indexed) [DOE]

March 29, 2012 March 29, 2012 CX-008407: Categorical Exclusion Determination Terry Ranch Road Substation CX(s) Applied: B1.24, B4.11 Date: 03/29/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region March 29, 2012 CX-008403: Categorical Exclusion Determination Multiple Structure Replacement Flaming Gorge to Vernal No. 1 138 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region March 29, 2012 CX-008399: Categorical Exclusion Determination Erosion Control Measures Structure No. 110-3 Dave Johnston to Stegall 230 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

391

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2013 2, 2013 CX-011107: Categorical Exclusion Determination High Efficiency Thin Film Fe2SiS4 and Fe2GeS4-based Cells Prepared from Low-Cost Solution CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Delaware Offices(s): Golden Field Office August 12, 2013 CX-010883: Categorical Exclusion Determination PHX-LOB and LIB-LOB 230-Kilovolt Double-Circuit- Replace Insulators at Structure No. 28-2 With NCI Type Polymers CX(s) Applied: B1.3 Date: 08/12/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region August 12, 2013 CX-010802: Categorical Exclusion Determination Building 19 Mezzanine Demolition Project CX(s) Applied: B1.23 Date: 08/12/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory August 12, 2013

392

CX-007154: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7154: Categorical Exclusion Determination 7154: Categorical Exclusion Determination CX-007154: Categorical Exclusion Determination Liberty-Coolidge Structure Maintenance CX(s) Applied: B1.3 Date: 12/16/2010 Location(s): Maricopa County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western proposes to conduct vegetation removal and maintenance at structures 2/1, 3/3, 3/5, 10/2, 13/5, 17/5, 18/5, 20/2, 20/3, 22/4, 22/8, 23/2,23/3,24/1,24/3,33/6,51/2,5413 & 56/3 of the existing Liberty-Coolidge 230- kilovolt transmission line. This work will consist of replacing bad structure poles, ground wires and anchors, crossarms & cross braces, insulators, conductors and hardware. Western will access structures using crew trucks and pickup trucks along existing access roads. This work is

393

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 26, 2011 May 26, 2011 CX-006716: Categorical Exclusion Determination New B-1-3 Pit and Box Construction CX(s) Applied: B1.3, B6.1 Date: 05/26/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 17, 2011 CX-006719: Categorical Exclusion Determination Casing Drilling Test CX(s) Applied: B1.3, B3.7, B5.12 Date: 05/17/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 5, 2011 CX-005852: Categorical Exclusion Determination Stegall-Wayside 230 Kilovolt Access Road Extension CX(s) Applied: B1.13 Date: 05/05/2011 Location(s): Dawes County, Wyoming Office(s): Western Area Power Administration-Rocky Mountain Region April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6

394

CX-007160: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

60: Categorical Exclusion Determination 60: Categorical Exclusion Determination CX-007160: Categorical Exclusion Determination Pinnacle Peak Substation Coupling Capacitor Voltage Transformer Installation CX(s) Applied: B4.6 Date: 05/10/2010 Location(s): Maricopa County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western proposes on installing a new 230-kilovolt coupling capacitor voltage transformer within the fenced area of the Pinnacle Peak Substation. This will also consist of, modifying the existing foundation structure & installing conduit & control cable in a trench to the control building. We will use existing access roads and vehicles such as pickup trucks, crew trucks, backhoes and bucket trucks to bring personnel and equipment to the work area. This work is necessary to maintain the safety and reliability of

395

EIS-0183: Record of Decision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EIS-0183: Record of Decision EIS-0183: Record of Decision EIS-0183: Record of Decision Electrical Interconnection of the Shepherds Flat Wind Energy Project The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 846 megawatts (MW) of power to be generated by the proposed Shepherds Flat Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Caithness Shepherds Flat, LLC (CSF) proposes to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's existing Slatt Substation in Gilliam County, Oregon. To provide the interconnection, BPA will expand BPA's existing Slatt Substation to accommodate a 230-kilovolt (kV) yard

396

EIS-0433-S1: Draft Supplemental Environmental Impact Statement | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Draft Supplemental Environmental Impact Statement Draft Supplemental Environmental Impact Statement EIS-0433-S1: Draft Supplemental Environmental Impact Statement Keystone XL Project This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new

397

CX-007143: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7143: Categorical Exclusion Determination 7143: Categorical Exclusion Determination CX-007143: Categorical Exclusion Determination Empire-Electrical District 5 Double Circuit Upgrade CX(s) Applied: B1.3 Date: 03/08/2011 Location(s): Pinal County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western proposes to replace structures and upgrade to a double circuit 230-kilovolt (kV) transmission line on its Empire-Electrical District #5 115-kV transmission line, within Western's existing right-of-way. This will include the rebuild of 9.2 miles of transmission line, replacing the H-frame structures with steel monopole structures with foundations, hardware and insulator replacement and adding a overhead ground-wire over the entire length of the project. Western will access the structure using

398

CX-007131: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7131: Categorical Exclusion Determination 7131: Categorical Exclusion Determination CX-007131: Categorical Exclusion Determination Casa Grande-Empire Double Circuit Upgrade and Structure Replacement CX(s) Applied: B1.3 Date: 03/08/2011 Location(s): Pinal County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western proposes to replace structures and upgrade to a double circuit 230- kilovolt (kV) transmission line on its Casa Grande-Empire 115-kV transmission line, from Thornton Road to its Empire Substation, within Western's existing right-of-way. This will include the rebuild of 13.2 miles of transmission line, replacing the H-frame structures with steel monopole structures with foundations, hardware and insulator replacement and adding a overhead ground-wire over the entire length of the project.

399

CX-007156: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7156: Categorical Exclusion Determination 7156: Categorical Exclusion Determination CX-007156: Categorical Exclusion Determination New Waddell-Raceway-Westwing Structure Replacement CX(s) Applied: B4.6, B4.13 Date: 03/11/2010 Location(s): Maricopa County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western plans to remove an existing three-pole turning structure (3/1 B) on the existing Raceway-Westwing 230-kilovolt (kV) Transmission Line, add a new replacement three-pole turning structure (also 3/1 B), and move equipment to a bay constructed by Arizona Public Service (APS) within the existing Raceway Substation in order to accommodate APS's new transmission line and substation equipment. APS intends to use the bay currently occupied by the Raceway-Westwing 230-kV Transmission Line for their new

400

EIS-0374: EPA Notice of Availability of the Final Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

74: EPA Notice of Availability of the Final Environmental 74: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0374: EPA Notice of Availability of the Final Environmental Impact Statement Klondike III / Biglow Canyon Wind Integration Project, Sherman County, Oregon Final EIS, BPA, OR, Klondike III Wind Project (300 megawatts {MW}) and Biglow Canyon Wind Farm (400 megawatts {MW}) Integration Project, Construction and Operation of a Double-Circuit 230- Kilovolt (kV) Transmission, Sherman County, OR. DOE/EIS-0374, Environmental Protection Agency, Notice of Availability of the Final Environmental Impact Statement for Department of Energy, Bonneville Power Administration, Klondike III / Biglow Canyon Wind Integration Project, Sherman County, Oregon, 71 FR 55463 (September 2006) More Documents & Publications

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Categorical Exclusion Determinations: Washington | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 21, 2012 May 21, 2012 CX-008716: Categorical Exclusion Determination Bonneville Power Administration (BPA) Tacoma Power Chehalis- Covington 230-Kilovolt (kV) Line/Convert Microwave Signals From Analog To Digital CX(s) Applied: B1.7 Date: 05/21/2012 Location(s): Washington, Washington, Washington Offices(s): Bonneville Power Administration May 18, 2012 CX-009096: Categorical Exclusion Determination U.S. Customs and Border Protection Non-Intrusive Inspection Tests CX(s) Applied: B3.10, B3.11 Date: 05/18/2012 Location(s): Washington Offices(s): Pacific Northwest Site Office May 17, 2012 CX-008717: Categorical Exclusion Determination Relocation of Wood Poles on Centralia B Street No. 1 for Proposed Centralia City Light May Street Substation CX(s) Applied: B4.6 Date: 05/17/2012

402

Microsoft Word - Horse_Butte_G0374_Env_ Clearance_Doc.doc  

Broader source: Energy.gov (indexed) [DOE]

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Amy Freel Project Manager - TEP-TPP-1 Proposed Action: Cattle Creek Substation (formerly known as Horse Butte Substation) Budget Information: Work Order # 00283812 (TC AUO) and 00283765 (TC) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.11 "Construction or electric power substations (including switching stations and support facilities) with power delivery at 230-kilovolt (kV) or below, or modification (other than voltage increases) of existing substations and support facilities, ..." Location: Bonneville County, ID near Idaho Falls. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: In response to Utah Associated Municipal Power

403

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

71 - 24180 of 26,764 results. 71 - 24180 of 26,764 results. Download CX-010685: Categorical Exclusion Determination Hayden Substation 230-kilovolt Tie Line CX(s) Applied: B4.6 Date: 07/09/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region http://energy.gov/nepa/downloads/cx-010685-categorical-exclusion-determination Page Careers Come Join the BestThe Office of Inspector General (OIG) identifies opportunities to improve the performance of the Department of Energy's (Department) programs and operations. Given the Department... http://energy.gov/ig/about-us/careers Page Electricity 101 http://energy.gov/oe/information-center/educational-resources/electricity-101 Article 10 Questions for a Signature Scientist: Nathan Baker Find out how he's working to advance the innovative application of data

404

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

091 - 5100 of 26,777 results. 091 - 5100 of 26,777 results. Download IPI_Trademark.pdf http://energy.gov/gc/downloads/ipitrademarkpdf Download Application to export electric energy OE Docket No. EA-314-A BP Energy: Federal Register Notice Volume 76, No. 217- Nov. 9, 2011 Application from BP Energy to export electric energy to Mexico. Federal Register Notice. http://energy.gov/oe/downloads/application-export-electric-energy-oe-docket-no-ea-314-bp-energy-federal-register Page Calendar Year 1999 Documents marked with the * are published in Adobe PDF format. http://energy.gov/ig/calendar-year-reports/calendar-year-1999 Download EIS-0308: Record of Decision and Floodplain Statement Interconnection of the Southpoint Power Plant with the Wester Area Power Administration's Parker-Davis No. 1 and No. 2, 230-kilovolt Transmission

405

CX-005380: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

80: Categorical Exclusion Determination 80: Categorical Exclusion Determination CX-005380: Categorical Exclusion Determination Pearl Substation Fiber Project CX(s) Applied: B1.7, B4.7 Date: 02/25/2011 Location(s): Clackamas County, Oregon Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) is proposing to allow Portland General Electric (PGE) to install fiber optic cable that connects PGE?s distribution network to the BPA-owned Pearl Substation located within Clackamas County, Oregon. This project would allow the use of line differential relaying on PGE?s McLoughlin-Sherwood-Pearl 230-kilovolt (kV) line. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-005380.pdf More Documents & Publications CX-006313: Categorical Exclusion Determination CX-006262: Categorical Exclusion Determination

406

CX-005848: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

848: Categorical Exclusion Determination 848: Categorical Exclusion Determination CX-005848: Categorical Exclusion Determination Midway Area Fiber Project CX(s) Applied: B4.7 Date: 05/02/2011 Location(s): Grant County, Washington Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to install about 1.5 miles of aerial fiber optic cable on the existing Midway-Rocky Ford No.1 230-kilovolt (kV) transmission line. The new fiber optic cable would replace the overhead groundwire (OHGW) on the Midway-Rocky Ford No.1 transmission towers. The fiber would span from a tower in the Midway Substation yard to tower 1/1 (first mile/first tower) on the Midway-Rocky Ford line, where a new fiber splice enclosure box would be installed on the tower. The fiber would then continue to replace the existing OHGW and span

407

DOE/EA-1596: Finding of No Significant Impact for Belfield to Rhame Transmission Line Project Stark, Slope, and Bowman Counties, North Dakota (02/18/09)  

Broader source: Energy.gov (indexed) [DOE]

WESTERN AREA POWER ADMINISTRATION WESTERN AREA POWER ADMINISTRATION UPPER GREAT PLAINS CUSTOMER SERVICE REGION FINDING OF NO SIGNIFICANT IMPACT Belfield to Rhame Transmission Line Project Stark, Slope, and Bowman Counties, North Dakota DOEIEA-1596 AGENCY: U.S. Department of Energy (DOE), Western Area Power Administration (Western) ACTION: Finding of No Significant Impact SUMMARY: Basin Electric Power Cooperative (Basin) has requested to interconnect their proposed new Belfield to Rhame 230-kilovolt (kV) transmission line and new Rhame Substation (Project) to the Western Area Power Administration's (Western) transmission system at Western's existing Belfield Substation. Under its Open Access Transmission Service Tariff (Tariff), Western is required to respond to Basin's interconnection requests. Western's Tariff

408

Categorical Exclusion (CX) Determination  

Broader source: Energy.gov (indexed) [DOE]

Pronghorn Gas Plant 115 kV transmission line. Pronghorn Gas Plant 115 kV transmission line. Description of Proposed Action: Western received an interconnection request from Upper Missouri G & T Electric Cooperative Inc's (Upper Missouri) member Roughrider Electric Cooperative, Inc. (Roughrider) to interconnect at Western's Belfield Substation in November of2010. The request for interconnection is for a line bay addition to the existing 230-kilovolt (kV) ring bus at Western's Belfield substation; as well as the installation of a revenue meter at a proposed new substation, South Heart substation, owned and operated by Upper Missouri. In order to bring the power into Western's substation, Upper Missouri and Roughrider must interconnect their Pronghorn substation, located in SEC 17 T140N R99W, to the proposed South Heart substation, located in

409

CX-006583: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3: Categorical Exclusion Determination 3: Categorical Exclusion Determination CX-006583: Categorical Exclusion Determination Wood Pole Replacement Along Portions of the Grand Coulee-Chief Joseph #1 and #2 230-Kilovolt Transmission Line CX(s) Applied: B1.3, B1.13 Date: 08/22/2011 Location(s): Douglas County, Washington Office(s): Bonneville Power Administration Maintenance activities will take place within the existing transmission line right-of-way easement and include upgrading existing access roads, relocating or constructing short spur roads to structures, constructing equipment landings and performing maintenance on structures. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006583.pdf More Documents & Publications CX-006580: Categorical Exclusion Determination CX-010424: Categorical Exclusion Determination

410

Washington | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

16, 2010 16, 2010 CX-003457: Categorical Exclusion Determination Sidewall Coring of Single-Shell Tank 241-A-106 CX(s) Applied: A9, B3.1, B3.11 Date: 08/16/2010 Location(s): Richland, Washington Office(s): Environmental Management, Office of River Protection-Richland Office August 13, 2010 CX-004960: Categorical Exclusion Determination Boeing Research and Technology -Low-Cost, High-Energy Density Flywheel Storage Grid CX(s) Applied: B3.6 Date: 08/13/2010 Location(s): Kent, Washington Office(s): Advanced Research Projects Agency - Energy August 12, 2010 CX-003624: Categorical Exclusion Determination Replacement of Twenty 22-L Structures on the Satsop-Aberdeen Number 2 230-kilovolt Transmission Line CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Gray's Harbor County, Washington

411

CX-006304: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

04: Categorical Exclusion Determination 04: Categorical Exclusion Determination CX-006304: Categorical Exclusion Determination Grand Coulee-Bell #3/Grand Coulee-Westside #1 Insulator Replacement and Access Road Maintenance CX(s) Applied: B1.3 Date: 07/21/2011 Location(s): Grant County, Washington Office(s): Bonneville Power Administration Bonneville Power Administration (BPA) is proposing to replace worn insulators along the 83-mile Grand Coulee-Bell No. 3 230 kilovolt (kV) double circuit transmission line. Work would be conducted on energized lines using live-line and bare-hand techniques as well as standard techniques requiring an outage. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006304.pdf More Documents & Publications CX-005379: Categorical Exclusion Determination CX-008704: Categorical Exclusion Determination

412

Microsoft Word - CX Tacoma Power Chehalis-Covington analog-digital conversion Final.docx  

Broader source: Energy.gov (indexed) [DOE]

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum John Brank Project Manager - TPC-OL Proposed Action: Bonneville Power Administration (BPA) Tacoma Power Chehalis- Covington 230-kilovolt (kV) line/convert microwave signals from analog to digital Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic Equipment Location: The BPA Chehalis-Covington project would take place at the Chehalis Substation, in Lewis County, WA, at the Covington Substation, in King County, WA and at Tacoma Power's (TPWR) South Tacoma Substation in Pierce County, WA. Proposed by: BPA Description of the Proposed Action: The BPA and TPWR have developed a joint plan to convert the microwave transfer trip signals

413

CX-007366: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7366: Categorical Exclusion Determination 7366: Categorical Exclusion Determination CX-007366: Categorical Exclusion Determination Inland Power & Light 230-kilovolt Substation Project CX(s) Applied: B4.6 Date: 11/17/2011 Location(s): Washington Offices(s): Bonneville Power Administration To provide a tap point for IP&L, Bonneville Power Administration (BPA) would do the following: 1. Install two new 35-foot tall disconnect switch structures under the BPA Bell-Boundary line located about 50 feet south of tower 5/2 and 50 feet north of tower 5/5. Construction of each lattice-steel, disconnect switch structure would require four holes 6-8 feet deep in a rectangular pattern 34 feet wide (to match the lines above) by 10 feet, and would be located on BPA Right-of-Way (ROW) underneath the existing transmission line. 2. BPA may need to construct a new wood pole

414

EIS-0414: Draft Environmental Impact Statement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0414: Draft Environmental Impact Statement Energia Sierra Juarez Transmission Project Energia Sierra Juarez U.S. Transmission, LLC (ESJ-U.S.), a subsidiary of Sempra Generation, has applied to the U.S. Department of Energy (DOE) for a Presidential permit to construct, operate, maintain, and connect a 1.7-mile transmission line (0.65 miles in the U.S.) across the international border between the U.S. and Mexico, near the town of Jacumba, California. The EIS addresses the environmental impacts of the proposed transmission line and the range of reasonable alternatives. Five alternatives were identified in this EIS, three of which were carried forward for detailed analysis (the No Action Alternative, a Double-Circuit 230-kilovolt (kV) Transmission Line

415

CX-000599: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9: Categorical Exclusion Determination 9: Categorical Exclusion Determination CX-000599: Categorical Exclusion Determination Flathead Substation Bay Addition - L0307 CX(s) Applied: B4.6 Date: 01/13/2010 Location(s): Flathead County, Montana Office(s): Bonneville Power Administration Flathead Electric Cooperative (FEC) has requested a new 230-kilovolt (kV) point of delivery at Bonneville Power Administration's (BPA's) Flathead Substation to serve FEC's new 230/69-kV transformer and 69-kV system upgrades. FEC is upgrading their 34.5-kV sub-transmission system to 69-kV operation to serve continued load growth in the greater Kalispell, Montana area. In order to accomodate this request, BPA proposes to expand the Flathead Substation yard to convert and existing bay (BAY #15) to connect FEC's new transformer and relocate the equipment from the converted bay to

416

San Luis Transmission Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Luis Transmission Project EIS/EIR Luis Transmission Project EIS/EIR San Luis Transmission Project EIS/EIR Western proposes to construct, own, operate, and maintain a new 230-kilovolt transmission line about 62 miles in length between Western's Tracy Substation and Western's San Luis Substation and a new 70-kV transmission line about 5 miles in length between the San Luis and O'Neill Substations. Western also will consider other transmission construction options including: A new 500-kV transmission line about 62 miles in length operated at 230-kV between Western's Tracy and San Luis Substations; A new 500-kV transmission line operated at 500-kV about 62 miles in length between the Tracy Substation and Pacific Gas and Electric's Los Banos Substation; and A new 230-kV transmission line about 18 miles in length between San Luis Substation and Dos Amigos Substation.

417

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

91 - 7600 of 26,764 results. 91 - 7600 of 26,764 results. Download TBZ-0047- In the Matter of Battelle Energy Alliance, LLC This decision concerns a Motion for Summary Judgment filed by Battelle Energy Alliance, LLC ("BEA," "the contractor," or "Respondent") on September 6, 2007. The motion relates to five pending... http://energy.gov/oha/downloads/tbz-0047-matter-battelle-energy-alliance-llc Download Site Visit Report, Lawrence Livermore National Laboratory- February 2011 Lawrence Livermore National Laboratory Safety Basis Assessment http://energy.gov/hss/downloads/site-visit-report-lawrence-livermore-national-laboratory-february-2011 Download CX-008685: Categorical Exclusion Determination Big Eddy - Troutdale No. 1 230 Kilovolt Transmission Line Upgrade

418

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7, 2010 7, 2010 EIS-0414: EPA Notice of Availability of the Draft Environmental Impact Statement Energia Sierra Juarez U.S. Transmission Line Project, Construction, Operation, Maintenance, and Connection of either 230-kilovolt or a 500-kilovolt Electric Transmission Line Crossing U.S.-Mexico Border September 17, 2010 CX-004009: Categorical Exclusion Determination Field Demonstration of Carbon Dioxide Capture from Coal-Derived Syngas CX(s) Applied: B3.6, B5.1 Date: 09/17/2010 Location(s): Menlo Park, California Office(s): Energy Efficiency and Renewable Energy September 17, 2010 CX-003797: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project - Alternative Fueling Station in Rancho Cucamonga, California CX(s) Applied: B5.1

419

EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and  

Broader source: Energy.gov (indexed) [DOE]

33-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and 33-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska) EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska) SUMMARY This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new

420

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 5650 of 28,560 results. 41 - 5650 of 28,560 results. Download EIS-0265-SA-72: Supplement Analysis Watershed Management Program - Yakima Basin Side Channels Project, Scatter Creek/Plum Creek Land Acquisition Phase II http://energy.gov/nepa/downloads/eis-0265-sa-72-supplement-analysis Download CX-008704: Categorical Exclusion Determination Grand Coulee-Bell No. 3 Double Circuit 230 Kilovolt Transmission Line Reconductoring Project CX(s) Applied: B1.3 Date: 05/31/2012 Location(s): Washington, Washington, Washington Offices(s): Bonneville Power Administration http://energy.gov/nepa/downloads/cx-008704-categorical-exclusion-determination Download EA-1441: Environmental Assessment Construction and Operation of the Molecular Foundry at Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microsoft Word - CX-Hat_Rock_Switch_14June2013  

Broader source: Energy.gov (indexed) [DOE]

7, 2013 7, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Glenn Russell Project Manager -TPCV-TPP-4 Proposed Action: Hat Rock Switching Station Replacement Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Umatilla County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund PacifiCorp's rebuild of BPA's Hat Rock Tap Switching Station, which is located within PacifiCorp's McNary-Wallula 230-kilovolt (kV) transmission line right-of-way (ROW). Rebuilding the switching station would include the replacement of sectionalizing switches, the grounding grid, and all signage. The approximately 0.5-acre yard would

422

Categorical Exclusion Determinations: Bonneville Power Administration |  

Broader source: Energy.gov (indexed) [DOE]

September 19, 2011 September 19, 2011 CX-006818: Categorical Exclusion Determination Grant New Cingular Wireless? Request for Use of Right-Of-Way at the Salem Substation CX(s) Applied: B4.9 Date: 09/19/2011 Location(s): Salem, Polk County, Oregon Office(s): Bonneville Power Administration September 16, 2011 CX-006820: Categorical Exclusion Determination Prosser Hatchery Storage Shed CX(s) Applied: B1.15 Date: 09/16/2011 Location(s): Prosser, Benton County, Washington Office(s): Bonneville Power Administration, Natural Gas Regulation September 16, 2011 CX-006819: Categorical Exclusion Determination Replace Aging Wood Poles on Trans Alta?s Centralia Tap to Chehalis-Covington No. 1 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 09/16/2011 Location(s): Lewis County, Washington

423

Microsoft Word - CX-Monroe-Snohomish-ExpandedConductorReplacement_FY13_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

June 13, 2013 June 13, 2013 REPLY TO ATTN OF: KEPR-Covington SUBJECT: Environmental Clearance Memorandum Frank Weintraub Mechanical Engineer - TEP-TPP-1 Proposed Action: Replacement of expanded conductor from Bonneville Power Administration's (BPA) Monroe Substation to structure 2/1 on the Monroe-Snohomish transmission line PP&A Project No.: 2682 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions/ modifications to transmission facilities Location: Snohomish County, Washingto.n, in BPA's Snohomish District Proposed by: BPA Description of the Proposed Action: BPA proposes to replace 2.5 inch expanded conductor from Monroe Substation to structure 2/1 on the Monroe-Snohomish 230-kilovolt transmission

424

Federal Draft Environmental Impact Statement and State of Montana Supplemental Draft Environmental Impact Statement for the Montana Alberta Tie Ltd. (MATL) 230-kV Transmission Line  

Broader source: Energy.gov (indexed) [DOE]

S-1 S.1 Introduction This document is both a State of Montana Supplemental Draft Environmental Impact Statement (EIS) and a U.S. Department of Energy (DOE) Federal Draft EIS (referred to herein as the Draft EIS for both state and federal purposes) prepared for the United States portion of the proposed Montana Alberta Tie Ltd. (MATL) 230-kilovolt (kV) transmission line. MATL has proposed to construct an international 230-kV alternating current merchant (private) transmission line that would originate at an existing NorthWestern Energy (NWE) 230-kV switch yard at Great Falls, Montana, and extend north to a new substation to be constructed northeast of Lethbridge, Alberta, crossing the U.S.-Canada international border north of Cut Bank, Montana (proposed Project). Approximately

425

EIS-0183: Record of Decision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Goodnoe Hills and White Creek Wind Energy Goodnoe Hills and White Creek Wind Energy Projects The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 350 megawatts (MW) of power to be generated by the proposed Goodnoe Hills (150 MW) and White Creek (200 MW) Wind Energy Projects (Wind Projects) into the Federal Columbia River Transmission System (FCRTS). The Wind Projects will be interconnected at the proposed BPA Rock Creek substation. This substation will be constructed as a 500/230-kilovolt (kV) substation along BPA's Wautoma - John Day No.1 500-kV transmission line. These proposed facilities will be located in Klickitat County, Washington. DOE/EIS-0183, Record of Decision for the Electrical Interconnection of the Goodnoe Hills and White Creek Wind Energy Projects (October 2005)

426

EA-1366: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

66: Finding of No Significant Impact 66: Finding of No Significant Impact EA-1366: Finding of No Significant Impact Santiam-Bethel Tap Transmission Line Project, Oregon Bonneville Power Administration (BPA) proposes to rebuild the first 17 miles of the Santiam-Chemawa transmission line from Santiam Substation to the line's connection (tap) to Portland General Electric's (PGE) Bethel Substation to improve transmission system reliability in the Salem area of northwestern Oregon. BPA would replace the existing single-circuit 230-kilovolt (kV) line with towers that could support two circuits (double-circuit) in the existing right-of-way. The existing line supplies both Bethel Substation and BPA's Chemawa Substation. The new lines would eliminate overloading of the existing line from Santiam Substation to the

427

EA-1683: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

83: Final Environmental Assessment 83: Final Environmental Assessment EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona The U.S. Department of Energy (DOE) is considering whether to issue Abengoa Solar, Inc. a loan guarantee for construction of a 280 megawatt gross output (250 megawatt nominal output) concentrating solar power (CSP) plant (Solana Generating Plant) and associated 230 kilovolt transmission line (Solana Gen-Tie) near Gila Bend, Arizona. Final Environmental Assessment for Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona, DOE/EA-1683 (May 2010) More Documents & Publications EA-1683: Finding of No Significant Impact

428

Microsoft Word - Flathead-Sub-L0307-CX.doc  

Broader source: Energy.gov (indexed) [DOE]

13, 2010 13, 2010 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Charla Burke Electrical Engineer - TESD-CSB-2 Proposed Action: Flathead Substation Bay Addition - L0307 Budget Information: Work Order # 00004866, Task 04 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Flathead County, Montana (T29N, R21W, Section 30) Proposed by: Bonneville Power Administration (BPA) and Flathead Electric Cooperative (FEC) Description of the Proposed Action: FEC has requested a new 230-kilovolt (kV) point of delivery at

429

DOE/EA-1683: Finding of No Significant Impact Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Concentrating Solar Power Facility Near Gila Bend, Arizona (05/06/10)  

Broader source: Energy.gov (indexed) [DOE]

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA CONCENTRATING SOLAR POWER FACILITY NEAR GILA BEND, ARIZONA AGENCY: U.S. Department of Energy, Loan Guarantee Program Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with a 280 Megawatt (MW) concentrating solar power (CSP) plant (Solana Generating Plant) and associated 230 kilovolt transmission line (Solana Gen-Tie) proposed by Abengoa Solar Inc. (Abengoa) near Gila Bend, Arizona (Solana Project). DOE, through its Loan Guarantee Program Office (LGPO), proposes to provide a Federal loan guarantee pursuant to Title XVII of the

430

Microsoft Word - CX-Midway-Vantage-Fiber.doc  

Broader source: Energy.gov (indexed) [DOE]

2, 2011 2, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Chad Hamel Project Manager - TEP-TPP-1 Proposed Action: Midway Area Fiber Project Budget Information: Work Order 00224734, Task 3 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 Adding fiber optic cable to transmission structures or burying fiber optic cable in existing transmission line rights-of-way. Location: Grant and Benton Counties, Washington Township 13 North, Range 24 East, Sections 2, 11, and 14 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install about 1.5 miles of aerial fiber optic cable on the existing Midway-Rocky Ford No.1 230-kilovolt (kV) transmission line. The new fiber

431

EIS-0496: San Luis Transmission Project, Alameda, Merced, San Joaquin and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

96: San Luis Transmission Project, Alameda, Merced, San 96: San Luis Transmission Project, Alameda, Merced, San Joaquin and Stanislaus Counties, California EIS-0496: San Luis Transmission Project, Alameda, Merced, San Joaquin and Stanislaus Counties, California Summary DOE's Western Area Power Administration, with the Bureau of Reclamation as a cooperating agency, is preparing a joint EIS and environmental impact report (under the California Environmental Quality Act) to evaluate the potential environmental impacts of the proposed interconnection of certain San Luis Unit facilities to Western's Central Valley Project Transmission System. Western proposes at a minimum to construct, own, operate, and maintain a new 230-kilovolt (kV) transmission line about 62 miles in length between Western's Tracy Substation and Western's San Luis Substation and a

432

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 25850 of 28,904 results. 41 - 25850 of 28,904 results. Download Inspection Report: INS-RA-L-12-01 Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation http://energy.gov/ig/downloads/inspection-report-ins-ra-l-12-01 Page Renewable Energy Technologies Below are resources for Tribes on renewable energy technologies. http://energy.gov/indianenergy/resources/energy-resource-library/renewable-energy-technologies Download EIS-0457: Mitigation Action Plan Albany-Eugene Rebuild Project, Lane and Linn Counties, OR http://energy.gov/nepa/downloads/eis-0457-mitigation-action-plan Download CX-008778: Categorical Exclusion Determination Combined Crew Vegetation Management on the Curecanti-Poncha 230 Kilovolt Transmission Line Gunnison County, Colorado CX(s) Applied: B1.3 Date: 06/05/2012

433

CX-003019: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

019: Categorical Exclusion Determination 019: Categorical Exclusion Determination CX-003019: Categorical Exclusion Determination Sectionalize Spence-Dave-Johnston 230-Kilovolt Line Near Casper CX(s) Applied: B4.13 Date: 05/31/2010 Location(s): Casper, Wyoming Office(s): Western Area Power Administration-Rocky Mountain Region The Western Area Power Administration, Loveland, Colorado, is responding to a request by PacifiCorp Energy to reroute a small section of Western's Dave Johnston to Spence transmission line onto 0.8 miles of new right-of-way in the vicinity of PacifiCorp's Casper substation. Western would own the new right-of-way acquired by PacifiCorp. The reroute would accommodate activities that PacifiCorp needs to accomplish at their substation. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003019.pdf

434

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2012 9, 2012 CX-008380: Categorical Exclusion Determination Archer to Ault 230 Kilovolt Transmission Line Structure Replacement, Weld County, Colorado CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region May 9, 2012 CX-008791: Categorical Exclusion Determination Western Area Power Administration and Tri-State Generation and Transmission Association, Inc. Fiber Optic Installation Project From Beaver Creek to Big Sandy Substations Morgan, Washington, and Lincoln Counties, Colorado CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Washington, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region May 9, 2012 CX-008759: Categorical Exclusion Determination Information Operations & Research Center (IORC) Room E-6 Air Conditioner

435

Washington | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

22, 2011 22, 2011 CX-006583: Categorical Exclusion Determination Wood Pole Replacement Along Portions of the Grand Coulee-Chief Joseph #1 and #2 230-Kilovolt Transmission Line CX(s) Applied: B1.3, B1.13 Date: 08/22/2011 Location(s): Douglas County, Washington Office(s): Bonneville Power Administration August 22, 2011 CX-006580: Categorical Exclusion Determination Wood Pole Replacement Along the Grand Coulee-Okanogan #2 115-Kilovolt Transmission Line CX(s) Applied: B1.3, B1.13 Date: 08/22/2011 Location(s): Grant County, Washington Office(s): Bonneville Power Administration August 18, 2011 EA-1728: Draft Environmental Assessment Integrated Vegetation Management on the Hanford Site, Richland, Washington August 15, 2011 EIS-0245-SA-03: Supplement Analysis Management of Spent Nuclear Fuel from the K Basins at the Hanford Site,

436

CX-007143: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

43: Categorical Exclusion Determination 43: Categorical Exclusion Determination CX-007143: Categorical Exclusion Determination Empire-Electrical District 5 Double Circuit Upgrade CX(s) Applied: B1.3 Date: 03/08/2011 Location(s): Pinal County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western proposes to replace structures and upgrade to a double circuit 230-kilovolt (kV) transmission line on its Empire-Electrical District #5 115-kV transmission line, within Western's existing right-of-way. This will include the rebuild of 9.2 miles of transmission line, replacing the H-frame structures with steel monopole structures with foundations, hardware and insulator replacement and adding a overhead ground-wire over the entire length of the project. Western will access the structure using

437

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

01 - 9110 of 31,917 results. 01 - 9110 of 31,917 results. Download CX-008161: Categorical Exclusion Determination Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration http://energy.gov/nepa/downloads/cx-008161-categorical-exclusion-determination Download CX-008716: Categorical Exclusion Determination Bonneville Power Administration (BPA) Tacoma Power Chehalis- Covington 230-Kilovolt (kV) Line/Convert Microwave Signals From Analog To Digital CX(s) Applied: B1.7 Date: 05/21/2012 Location(s): Washington, Washington, Washington Offices(s): Bonneville Power Administration http://energy.gov/nepa/downloads/cx-008716-categorical-exclusion-determination Download EERE Program Management Guide- Chapter 2

438

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

91 - 22400 of 26,764 results. 91 - 22400 of 26,764 results. Page The Situation in Japan (Updated 1/25/13) http://energy.gov/situation-japan-updated-12513 Download EA-1797: Final Environmental Assessment Loan Guarantee for the Agua Caliente Solar Project in Yuma County, Arizona http://energy.gov/nepa/downloads/ea-1797-final-environmental-assessment Download CX-008778: Categorical Exclusion Determination Combined Crew Vegetation Management on the Curecanti-Poncha 230 Kilovolt Transmission Line Gunnison County, Colorado CX(s) Applied: B1.3 Date: 06/05/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region http://energy.gov/nepa/downloads/cx-008778-categorical-exclusion-determination Download Lesson 3- Atoms and Isotopes You've probably heard people refer to nuclear energy as "atomic

439

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81 - 8990 of 26,764 results. 81 - 8990 of 26,764 results. Download CX-001048: Categorical Exclusion Determination Lower Mid-Columbia/Midway - Vantage 230-Kilovolt Transmission Line Upgrade Project CX(s) Applied: B4.6, B4.7, B4.13 Date: 02/23/2010 Location(s): Grant County, Washington Office(s): Bonneville Power Administration http://energy.gov/nepa/downloads/cx-001048-categorical-exclusion-determination Download Development of the Nuclear Safety Information Dashboard- September 2012 A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria. http://energy.gov/hss/downloads/development-nuclear-safety-information-dashboard-september-2012

440

EIS-0374: EPA Notice of Availability of the Final Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

EPA Notice of Availability of the Final Environmental EPA Notice of Availability of the Final Environmental Impact Statement EIS-0374: EPA Notice of Availability of the Final Environmental Impact Statement Klondike III / Biglow Canyon Wind Integration Project, Sherman County, Oregon Final EIS, BPA, OR, Klondike III Wind Project (300 megawatts {MW}) and Biglow Canyon Wind Farm (400 megawatts {MW}) Integration Project, Construction and Operation of a Double-Circuit 230- Kilovolt (kV) Transmission, Sherman County, OR. DOE/EIS-0374, Environmental Protection Agency, Notice of Availability of the Final Environmental Impact Statement for Department of Energy, Bonneville Power Administration, Klondike III / Biglow Canyon Wind Integration Project, Sherman County, Oregon, 71 FR 55463 (September 2006) More Documents & Publications

Note: This page contains sample records for the topic "dam 230-kilovolt switchyards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microsoft Word - CX-PilotButte-LaPine-WoodPoles-FY13_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

3, 2013 3, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacements on Bonneville Power Administration's (BPA) Pilot Butte-La Pine No. 1 transmission line PP&A Project No.: 2484 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine Maintenance Location: Deschutes County, Oregon, at the following structures: Mile Structure 3 1 3 2 7 3 7 5 9 2 11 3 13 5 13 8 14 1 15 1 16 3 16 5 21 7 21 9 22 2 22 4 22 5 23 5 27 2 Proposed by: BPA Description of the Proposed Action: BPA is proposing to replace 19 deteriorating wood pole structures along its Pilot Butte-La Pine No. 1, 230-kilovolt transmission line located in Deschutes County, Oregon. The 19 structures

442

CX-007165: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-007165: Categorical Exclusion Determination Prescott-Pinnacle Peak Bird Diversion Equipment Addition CX(s) Applied: B1.20 Date: 12/15/2010 Location(s): Yavapai County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western proposes installing Firefly type bird diversion equipment onto static wires (overhead ground wires) of the Prescott-Pinnacle Peak 230-kilovolt transmission line between structures 144/3 and 145/2. The diverters will be spaced approximately 15 feet apart alternating between the two static lines. The diverters will be installed using a hot stick from a helicopter or by accessing the line using existing access roads and rubber-tired vehicles such as cherry pickers, pickup trucks, crew trucks.

443

CX-010098: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

8: Categorical Exclusion Determination 8: Categorical Exclusion Determination CX-010098: Categorical Exclusion Determination Phoenix to Lone Butte 230 Kilovolt Transmission Line, Bird Diverter Installation CX(s) Applied: B1.3 Date: 04/08/2013 L