Sample records for dakota az arizona

  1. ARIZONA STATE UNIVERSITY STETSON UNIVERSITY Phoenix, AZ Deland, FL

    E-Print Network [OSTI]

    Wu, Shin-Tson

    English Literature English BOWLING GREEN STATE UNIVERSITY Bowling Green, OH SYRACUSE UNIVERSITY IndustrialARIZONA STATE UNIVERSITY STETSON UNIVERSITY Phoenix, AZ Deland, FL Interdisciplinary Studies Leadership FLORIDA STATE UNIVERSITY Instructional Systems Design Tallahassee, FL Interdisciplinary Studies

  2. Dakota :

    SciTech Connect (OSTI)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S; Jakeman, John Davis; Swiler, Laura Painton; Stephens, John Adam; Vigil, Dena M.; Wildey, Timothy Michael; Bohnhoff, William J.; Eddy, John P.; Hu, Kenneth T.; Dalbey, Keith R.; Bauman, Lara E; Hough, Patricia Diane

    2014-05-01T23:59:59.000Z

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.

  3. In Proceedings of the International Conference on Modeling and Analysis of Semiconductor Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000.

    E-Print Network [OSTI]

    Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000. HIGH-FIDELITY RAPID PROTOTYPING OF THE REAL manufacturing in- dustry has been driven by continuous technological advancement of the underlying production results in Dis- crete Event Systems theory. Furthermore, in addition to the development of the formal

  4. X-Ray Fluorescence (XRF) Analysis of Obsidian Artifacts from AZ T:16:85, AK Chin Project, Central Arizona

    E-Print Network [OSTI]

    Shackley, M. Steven

    1987-01-01T23:59:59.000Z

    62:426-437. SOUTHWEST XRF PAPER ..J c;:- Table 1.XRF Net intensity ratios for obsidian artifacts from AZ T:01 U Figure 1. Ternary plot of XRF net intensity ratios for

  5. Comparison of Trace Metal Deposition in northern and central ArizonaKen G. Sweat1, Thomas H. Nash III1, Panjai Prapaipong2, Paul T. Gremillion3 1 Arizona State University School of Life Sciences, P.O. Box 874601, Tempe, Az 85287

    E-Print Network [OSTI]

    Hall, Sharon J.

    .O. Box 874601, Tempe, Az 85287 2 Arizona State University School of Earth and Space Exploration, PO Box the region to explore temporal trends, with an emphasis on decreases in Pb and Cu from the phase out), Terbium (Tb), Thallium (Tl) Thorium (Th), Thulium (Tm), Tin (Sn), Titanium (Ti), Tungsten (W), Uranium (U

  6. E-Print Network 3.0 - arizona source phenomenology Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Access Details... in Applied Mathematics, University of Arizona, Tucson, AZ, USA Online Publication Date: 01 January 1998... , formulae and drug doses should be...

  7. DAKOTA 5.0

    Energy Science and Technology Software Center (OSTI)

    001217MLTPL02 DAKOTA Design Analysis Kit for Optimization and Terascale  https://www.cs.sandia.gov/dakota/documentation.html 

  8. North Dakota`s forest resources, 1994

    SciTech Connect (OSTI)

    Haugen, D.E.; Piva, R.J.; Kingsley, N.P.; Harsel, R.A.

    1999-09-01T23:59:59.000Z

    The third inventory of North Dakota`s forests reports 44.1 million acres of land, of which 673 thousand acres are forested. This paper contains detailed tables related to area, volume, growth, removals, mortality, and ownership of North Dakota`s forests.

  9. DOE - Office of Legacy Management -- University of Arizona Southwest...

    Office of Legacy Management (LM)

    of the University of Arizona under FUSRAP; October 13, 1987 AZ.01-4 - DOE Letter; Bauer to Liverman; Past Operations and a Survey by Messrs, Jascewsky, and Smith; February 7, 1978...

  10. Sustainable Roofscapes: Developing a green roof implementation model for Tucson, AZ

    E-Print Network [OSTI]

    Fay, Noah

    Sustainable Roofscapes: Developing a green roof implementation model for Tucson, AZ BRENT JACOBSEN Advisor: Dr. Margaret Livingston School of Landscape Architecture and Planning College of Architecture and Landscape Architecture Special Acknowledgements: The University of Arizona, Technology and Research

  11. Forestry Policies (North Dakota)

    Broader source: Energy.gov [DOE]

    North Dakota forests are managed by the North Dakota State Forest Service. In 2010 the State issued its "Statewide Assessment of Forest Resources and Forest Resource Strategy", which includes...

  12. Energy Policy Commission (North Dakota)

    Broader source: Energy.gov [DOE]

    Created in 2007 by the North Dakota Legislative Assembly, the EmPower North Dakota Commission designed a comprehensive energy policy for the state of North Dakota. Since 2007 the Commission has...

  13. DOE - Office of Legacy Management -- Arizona

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_map Monument Valley Processing

  14. Dakota CDC Intermediary Relending Program (North Dakota)

    Broader source: Energy.gov [DOE]

    The Dakota CDC Intermediary Relending Program makes IRP loans up to $250,000 available to qualified applicants for a variety of business purposes, including financing a new or existing business,...

  15. Renaissance Zones (North Dakota)

    Broader source: Energy.gov [DOE]

    Renaissance Zones allow qualifying businesses and individuals to claim one or more tax incentives for purchasing, leasing, or making improvements to real property located in a North Dakota...

  16. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  17. Forestry Policies (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's forests are managed by the Department of Agriculture, Conservation and Forestry Division. Forests comprise around 1.7 million acres of land in the State. In the 2010 Forest...

  18. Dams (South Dakota)

    Broader source: Energy.gov [DOE]

    Dam construction in South Dakota requires a Location Notice or a Water Right Permit. A Location Notice is a form that must be filed with the County Register of Deeds, and is the only paperwork...

  19. City of Williams - AZ, Arizona (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach,Stuart, IowaWaynoka,Wilber, Nebraska

  20. SAND 2009-0463P DAKOTA 101DAKOTA 101

    E-Print Network [OSTI]

    SAND 2009-0463P DAKOTA 101DAKOTA 101 C lib tiCalibration http://www.cs.sandia.gov/dakota Learning: osborne1 analytic test problem, with i = 1,...,33: i ii dxsdxsdxsxrxrxf 1 )( 2 )()( 2 )()( 2 (more coming soon) 4 #12;Example Data Set (osborne1)Example Data Set (osborne1) 1 2 1 1.2 0.8 0 4 0

  1. Thermal Springs of Arizona

    SciTech Connect (OSTI)

    Witcher, J.C.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    An updated list of Arizona springs judged to be carrying anomalous heat. Possible heat sources are briefly outlined. (MHR)

  2. Ground Water Protection (North Dakota)

    Broader source: Energy.gov [DOE]

    North Dakota has a degradation prevention program for groundwater protection, with standards established by the Department of Health. This section addresses groundwater standards, quality...

  3. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  4. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31T23:59:59.000Z

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  5. Common Pipeline Carriers (North Dakota)

    Broader source: Energy.gov [DOE]

    Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

  6. Water Pollution Control (South Dakota)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state of South Dakota to conserve the waters of the state and to protect, maintain, and improve their quality for water supplies, for the propagation of wildlife,...

  7. Water Resource Districts (North Dakota)

    Broader source: Energy.gov [DOE]

    Water Resource Districts are created throughout the state of North Dakota to manage, conserve, protect, develop, and control water resources. Each District will be governed by a Water Resource...

  8. Yellowstone River Compact (North Dakota)

    Broader source: Energy.gov [DOE]

    The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

  9. Asbestos Emission Control Plan Dakota County, Minnesota

    E-Print Network [OSTI]

    Netoff, Theoden

    Asbestos Emission Control Plan UMore Park Dakota County, Minnesota Prepared for University of Minnesota Revised: July 22, 2009 UMP005460 #12;Asbestos Emission Control Plan UMore Park Dakota County.0.doc iii Asbestos Emission Control Plan UMore Park Dakota County, Minnesota Revised: July 22, 2009

  10. AZ Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASN Power Projects Ltd JumpAZ Biodiesel

  11. Stratabound geothermal resources in North Dakota and South Dakota

    SciTech Connect (OSTI)

    Gosnold, W.D. Jr.

    1991-08-01T23:59:59.000Z

    Analysis of all geothermal aquifers in North Dakota and South Dakota indicates an accessible resource base of approximately 21.25 exajoules (10{sup 18} J = 1 exajoule, 10{sup 18} J{approximately}10{sup 15} Btu=1 quad) in North Dakota and approximately 12.25 exajoules in South Dakota. Resource temperatures range from 40{degree}C at depths of about 700 m to 150{degree}C at 4500 m. This resource assessment increases the identified accessible resource base by 31% over the previous assessments. These results imply that the total stratabound geothermal resource in conduction-dominated systems in the United States is two-to-three times greater than some current estimates. The large increase in the identified accessible resource base is primarily due to inclusion of all potential geothermal aquifers in the resource assessment and secondarily due to the expanded data base compiled in this study. These factors were interdependent in that the extensive data base provided the means for inclusion of all potential geothermal aquifers in the analysis. Previous assessments included only well-known aquifer systems and were limited by the amount of available data. 40 refs., 16 figs., 8 tabs.

  12. Waste Toolkit A-Z Plastic Grundon

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Plastic ­ Grundon Also see `Swap Shop' and `Office Recycling ­ Grundon' in the Waste Toolkit A-Z How can I recycle plastic? There are lots of different types of plastic. Typically, waste contractors can only recycle PETE plastic and HDPE plastic. The University's preferred waste

  13. South Dakota North Platte R.

    E-Print Network [OSTI]

    South Dakota Nebraska Index map North Platte R. South Platte R. Dismal R. Platte R. Study area 0 0 1 KILOMETER 1 MILE Scotts Bluff County Tri-St ate Canal Mitchell Canal North Platte River Enterprise 2002 Prepared in cooperation with the NORTH PLATTE NATURAL RESOURCES DISTRICT SIGNIFICANT FINDINGS

  14. Graduate Programs University of Arizona

    E-Print Network [OSTI]

    GIS Graduate Programs University of Arizona Tucson, Arizona Program: Renewable Natural://www.srnr.arizona.edu/ucgis/gradprogram.html Ball State University Muncie, IN 473060470 Program: Geography http://www.bsu.edu/geog/ Boston University Boston, MA 02215 Program: Remote Sensing and Geographic Information Systems http

  15. The North Dakota Hydroscopic Seeding Research Project (El Proyecto de Investigacin de Siembra Higroscpica en Dakota del Norte)

    E-Print Network [OSTI]

    Delene, David J.

    Higroscópica en Dakota del Norte) David Delene Archie Ruiz (Translation) Department of Atmospheric Sciences University of North Dakota (Departamento de Ciencias de la Atmósfera Universidad de Dakota del Norte) #12

  16. Energy Department and South Dakota Tribal Leaders Explore Ways...

    Energy Savers [EERE]

    Energy Department and South Dakota Tribal Leaders Explore Ways to Lower Energy Costs Energy Department and South Dakota Tribal Leaders Explore Ways to Lower Energy Costs June 10,...

  17. Air Pollution Control Program (South Dakota) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Provider South Dakota Department of Environment and Natural Resources South Dakota's Air Pollution Control Program is intended to maintain air quality standards through...

  18. Secretary Moniz Announces Travel to Chicago, North Dakota, New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago, North Dakota, New Mexico for Quadrennial Energy Review Secretary Moniz Announces Travel to Chicago, North Dakota, New Mexico for Quadrennial Energy Review August 5, 2014 -...

  19. QER- Comment of Dakota Resource Council

    Broader source: Energy.gov [DOE]

    Attached are comments from the Dakota Resource Council, a membership-based organization of North Dakotans. Thank you for the opportunity to comment on the Infrastructure Constraints.

  20. Solid Waste Management Program (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

  1. South Dakota Geothermal Energy Handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  2. Montana-Dakota Utilities Co (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModularMontana-Dakota Utilities Co (South

  3. Climate Change Action in Arizona

    E-Print Network [OSTI]

    Owens, Steve

    2009-01-01T23:59:59.000Z

    could have drastic effects on the state's water supply.evaporation in Arizona's reservoirs and water bodiesmeans less water for consumption, irrigation, hy- dropower

  4. Recovery Act State Memos Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the city is reviewing a facility's solarization study draft report from Arizona State University (ASU) conducted this summer by ASU on behalf of the city. * City of Tucson -...

  5. Geothermal energy in Arizona. Final report

    SciTech Connect (OSTI)

    Stone, C.; Witcher, J.C.

    1982-09-01T23:59:59.000Z

    Current knowledge and basic data on geothermal resources in Arizona are compiled. The following are covered: specific area investigations, thermal aspects of Arizona, and exploration methods. (MHR)

  6. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNA Jump to:DadeDaiDakota

  7. Alternative Fuels Data Center: South Dakota Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    facilities in South Dakota, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  8. Water Rights and Appropriation (South Dakota)

    Broader source: Energy.gov [DOE]

    All uses of water in South Dakota, with the exception of domestic water uses, require a Water Right Permit. The Board of Water and Natural Resources has the authority to regulate and control the...

  9. Wild, Scenic, and Recreational Rivers (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Department of Environment and Natural Resources is responsible for maintaining a state water plan, intended to implement state policies for water management. A portion of the plan...

  10. Recovery Act State Memos South Dakota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar-wind generates savings for S.D. city ... 6 Clean energy tax credits and grants: 1 For total Recovery Act jobs numbers in South Dakota go to...

  11. Qualifying RPS State Export Markets (North Dakota)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in North Dakota as eligible sources towards their RPS targets or goals. For specific...

  12. Hazardous Waste Management Act (South Dakota)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

  13. Oil and Gas Conservation (South Dakota)

    Broader source: Energy.gov [DOE]

    The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and...

  14. Belle Fourche River Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    The Belle Fourche River Compact, agreed to by South Dakota and Wyoming, seeks to provide for the most efficient use of the waters of the Belle Fourche River Basin for multiple purposes, and to...

  15. Waste Toolkit A-Z Battery recycling

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

  16. Waste Toolkit A-Z Plastic bags

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Plastic bags Can I recycle plastic bags? No. At the moment you can't recycle plastic bags in the University recycling. Instead, choose alternatives to plastic bags when shopping have to use a cotton bag 131 times to ensure it has lower global warming potential than a plastic

  17. February 2014AZ1617 What is diabetes?

    E-Print Network [OSTI]

    Sanderson, Mike

    February 2014AZ1617 What is diabetes? Diabetes is a disease that your blood glucose, also called get into the cells of your body for energy. People with diabetes don't make enough insulin or the body cells do not respond to insulin, causing glucose to build up in the blood. (See Figure: Diabetes

  18. Waste Toolkit A-Z Mobile phones

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Mobile phones How to recycle your mobile phone Recycling your mobile phone makes the deep forests in the Congo in central Africa. The Congo's mining business has in recent years led and recycling can help to reduce the demand for new raw materials. Do not put mobile phones in the recycling

  19. Waste Toolkit A-Z Light bulbs

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Light bulbs Can I recycle light bulbs? It depends what type of bulbs you have of in the normal University waste bins (landfill waste). Energy saving bulbs and fluorescent tubes are classified light bulbs? Standard filament bulbs Put in the waste bin (landfill waste) as these are not classified

  20. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05T23:59:59.000Z

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  1. Wind Energy Center Edgeley/Kulm Project, North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment Wind Energy Center EdgeleyKulm Project North Dakota North Dakota Wind, LLC FPL Energy DOEEA-1465 April 2003 Summary S - 1 Final EA SUMMARY The proposed...

  2. South Dakota Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    characteristics, along with water age and temperature, are primary factors affecting disinfectant residual decaySouth Dakota Water Research Institute Annual Technical Report FY 2005 Introduction South Dakotas Water Resources Research Institutes program is administered through the College of Agricultural

  3. South Dakota Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    in South Dakota and wise use of irrigation water is important if other water needs like ethanol production

  4. A TURKEY NESTING STUDY IN GREGORY COUNTY, SOUTH DAKOTA

    E-Print Network [OSTI]

    A TURKEY NESTING STUDY IN GREGORY COUNTY, SOUTH DAKOTA by Tara L. Wertz A thesis submitted Sciences (Wildlife Option) South Dakota State University 1986 #12;A TURKEY NESTING STUDY IN GREGORY COUNTY. of Wildlife and Fisheries Sciences 11 Date Date #12;A TURKEY NESTING STUDY IN GREGORY COUNTY, SOUTH DAKOTA

  5. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana , Hettinger, North Dakota , and New Underwood , South Dakota , in Custer and Fallon Counties in Montana, Adams , Bowman , and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  6. az raveshe monte: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mike 134 Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ Physics Websites Summary: Structural characterization of terrestrial microbial Mn...

  7. Eindhoven University of Technology Den Dolech 2, 5612 AZ Eindhoven

    E-Print Network [OSTI]

    Franssen, Michael

    Eindhoven University of Technology Den Dolech 2, 5612 AZ Eindhoven P.O. Box 513, 5600 MB Eindhoven COMPETENCIES.............................................. 16 #12;Technische Universiteit Eindhoven University

  8. of Mining & www.mge.arizona.edu

    E-Print Network [OSTI]

    Holliday, Vance T.

    .621.8330 mgedept@email.arizona.edu ONLINE GRADUATE CERTIFICATE PROGRAM 15 UNITS YOUR CAREER GEOMECHANICS #12;GEOMECHANICS Department of Mining & Geological Engineering www.mge.arizona.edu Contact: John Kemeny Kemeny@email.arizona.edu REQUIRED COURSES (12 units) MNE 527 Geomechanics (3 units) MNE 580 Rock Fracture Mechanics (3 units) MNE

  9. THE CONTRIBUTION OF ARIZONA STATE UNIVERSITY

    E-Print Network [OSTI]

    Zhang, Junshan

    THE CONTRIBUTION OF ARIZONA STATE UNIVERSITY TO THE ARIZONA ECONOMY FY 2009 A Report from Tempe, Arizona 85287-4011 #12;1 Executive Summary One approach to measuring the contribution goods and services. Another round of economic impacts arises from the consumer spending of faculty

  10. DAKOTA JAGUAR 3.0 user's manual.

    SciTech Connect (OSTI)

    Adams, Brian M. [Sandia National Laboratories, Albuquerque, NM; Bauman, Lara E; Chan, Ethan; Lefantzi, Sophia; Ruthruff, Joseph R.

    2013-05-01T23:59:59.000Z

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.

  11. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  12. DAKOTA JAGUAR 2.1 user's Manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Lefantzi, Sophia; Chan, Ethan; Ruthruff, Joseph R.

    2011-06-01T23:59:59.000Z

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary for a user to use JAGUAR.

  13. North Dakota State University Postoc Biobased Polymers

    E-Print Network [OSTI]

    Alpay, S. Pamir

    North Dakota State University Postoc ­ Biobased Polymers A postdoctoral position is available in the area of synthesis and characterization of novel biobased thermosetting polymer systems for coatings will include the synthesis of monomers and polymers, preparation of coatings, thermosets, etc., preparation

  14. North Dakota SHOPP final performance report

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    During the last four heating seasons, implementing SHOPP within the state of North Dakota, telephone surveys were conducted covering samples of between 26 and 30 residential propane dealers. In conducting the SHOPP survey in North Dakota, data collection was limited to residential propane prices. The survey commenced the first Monday in October and ended in March. The surveys were normally conducted on the first and third Monday of each month. However, in the 1991/93 and 1993/94 heating seasons, the collection of data was increased briefly to weekly survey at the direction of EIA. In conducting the survey, the data was inputted into the PEDRO computerized data system for processing and transmittal to EIA. Detailed printouts of the price data from the 1995/96 SHOPP propane survey are contained in the attached tables. The survey data, as analyzed by EIA, resulted in estimated average residential propane prices for the state of North Dakota during the heating season. Attached are line charts which plot this average price for propane within the state against the calculated average for PADD II, of which North Dakota is a part.

  15. AZ Automotive: Presentation | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT: OAS-L-03-03 DecemberWind ResourceAZ

  16. Category:Tucson, AZ | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocationSmart JumpAZ" The

  17. ANALYSIS RESULTS FOR BUILDING 241 702-AZ A TRAIN

    SciTech Connect (OSTI)

    DUNCAN JB; FRYE JM; COOKE CA; LI SW; BROCKMAN FJ

    2006-12-13T23:59:59.000Z

    This report presents the analyses results for three samples obtained under RPP-PLAN-28509, Sampling and Analysis Plan for Building 241 702-AZ A Train. The sampling and analysis was done in response to problem evaluation request number PER-2004-6139, 702-AZ Filter Rooms Need Radiological Cleanup Efforts.

  18. FUPWG Spring 2010 Meeting South Dakota: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers an update on Washington given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  19. South Dakota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  20. North Dakota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture and storage. Through these investments, North Dakota's...

  1. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  2. Montana-Dakota Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a...

  3. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  4. Dakota Electric Association- Commercial and Industrial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Dakota Electric provides low-interest loans to help its commercial and industrial customers finance projects which will improve the energy efficiency of participating facilities. The minimum loan...

  5. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

  6. EIS-0401: NextGen Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's proposed action for the construction and operation of the proposed NextGen Energy Facility (Project) in South Dakota.

  7. Arizona Department of Environmental Quality's Application Forms...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Application Forms and Guidance Website Abstract This site contains forms...

  8. Phoenix, Arizona Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. bbnpbban0003563pmcdashboardy13-q3.xls More Documents & Publications Austin...

  9. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment...

  10. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Energy Savers [EERE]

    Energy in Southwest States WASHINGTON - Today, the Department of Energy's Western Area Power Administration (Western) and a group of Arizona utilities celebrated the energizing of...

  11. Arizona Indian Gaming Association (AIGA) Expo

    Office of Energy Efficiency and Renewable Energy (EERE)

    This year’s EXPO will take place November 5-7, 2014 at the Radisson Fort McDowell Resort & Casino located in Scottsdale, Arizona.

  12. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and transmission system expansion. [Copied from http://sdwind.com/about/

  13. EA-1955: Campbell County Wind Project, Pollock, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  14. EA-1955: Campbell County Wind Farm, Campbell County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  15. South Dakota Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    . This is expected to lead to better management to improve environmental quality. A project to evaluate a non resulting from construction of animal waste management systems on feedlots located in eastern South Dakota of interest to South Dakota are expected to produce reports that will assist policymakers in managing South

  16. Technische Universteit Eindhoven Den Dolech 2, 5612 AZ Eindhoven

    E-Print Network [OSTI]

    Franssen, Michael

    Technische Universteit Eindhoven Den Dolech 2, 5612 AZ Eindhoven P.O. Box 513, 5600 MB Eindhoven;Technische Universiteit Eindhoven University of Technology 3 Handleiding BKO-portfolio 1. Wat is de BKO? De

  17. Communicatie Expertise Centrum Den Dolech 2, 5612 AZ Eindhoven

    E-Print Network [OSTI]

    Franssen, Michael

    Communicatie Expertise Centrum Den Dolech 2, 5612 AZ Eindhoven Postbus 513, 5600 MB Eindhoven www Universiteit Eindhoven University of Technology 3 Gebruikershandleiding correspondentiesysteem / Versie 2.0 1 scherm verschijnt. Kies ,,Run. #12;Technische Universiteit Eindhoven University of Technology 4

  18. az91 alloy produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 wt.% Mn Gubicza, Jen 2 Studies on the inuence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy Engineering Websites Summary:...

  19. az91 magnesium alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 Studies on the inuence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy Engineering Websites Summary:...

  20. area tucson arizona: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction to grasses Sanderson, Mike 73 ARIZONA COOPERATIVE ARIZONA AND THE NORTH AMERICAN Environmental Sciences and Ecology Websites Summary: , but from convective...

  1. 1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state's total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state's total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

  2. Geothermal development plan: northern Arizona

    SciTech Connect (OSTI)

    White, D.H.; Goldstone, L.A.

    1981-01-01T23:59:59.000Z

    Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

  3. Fermilab Today | University of Arizona

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruaryInThe,Michigan0 Dec. 13,TechThe4Arizona

  4. Arizona Geological Society Digest 22

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg 1KANSASVisit2 |Arizona

  5. Bisfuel links - Arizona State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site Map Printable VersiondiironArizona State

  6. of Mining & www.mge.arizona.edu

    E-Print Network [OSTI]

    Holliday, Vance T.

    Department of Mining & Geological www.mge.arizona.edu EXPAND Tel: 520.621.6063 Fax: 520.621.8330 mgedept@email.arizona.edu YOUR CAREER ONLINE GRADUATE CERTIFICATE PROGRAM 15 UNITS MINE PRODUCTION & TECHNOLOGY #12;Department of Mining & Geological Engineering Contact: Sean Dessureault dessure

  7. THE ARIZONA REPUBLIC April 11, 2009

    E-Print Network [OSTI]

    Fay, Noah

    particular area: science. Arizona is already a global leader, but it needs to build on that strength are explored, Arizona's geography will make it a focal point for solar- energy initiatives, and its expertise to its rightful place." The federal economic- stimulus package includes $21.5 billion for research

  8. 241-AZ-101 pump removal trough analysis

    SciTech Connect (OSTI)

    Coverdell, B.L.

    1995-10-17T23:59:59.000Z

    As part of the current Hanford mission of environmental cleanup, various long length equipment must be removed from highly radioactive waste tanks. The removal of equipment will utilize portions of the Equipment Removal System for Project W320 (ERS-W320), specifically the 50 ton hydraulic trailer system. Because the ERS-W320 system was designed to accommodate much heavier equipment it is adequate to support the dead weight of the trough, carriage and related equipment for 241AZ101 pump removal project. However, the ERS-W320 components when combined with the trough and its` related components must also be analyzed for overturning due to wind loads. Two troughs were designed, one for the 20 in. diameter carriage and one for the 36 in. diameter carriage. A proposed 52 in. trough was not designed and, therefore is not included in this document. In order to fit in the ERS-W320 strongback the troughs were design with the same widths. Structurally, the only difference between the two troughs is that more material was removed from the stiffener plates on the 36 in trough. The reduction in stiffener plate material reduces the allowable load. Therefore, only the 36 in. trough was analyzed.

  9. Government of North Dakota | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear,GouldDakota Jump to:

  10. North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New Pages RecentINorth Dakota:

  11. Dakota Electric Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNA Jump to:DadeDaiDakota Electric

  12. South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouth Dakota Wind EnergySouth

  13. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump1-EA Jump to:Crosse, WisconsinDakota

  14. Arizona

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department ofU.S. Offshore U.S. StateOil and< backC

  15. Climate Change in Arizona: Current Knowledge and Future

    E-Print Network [OSTI]

    Zhang, Junshan

    's premier climate scientists discuss the impacts of climate change on Arizona's water, energy, healthClimate Change in Arizona: Current Knowledge and Future Collaborations Among the State Universities 230 Arizona State University, Tempe Campus Join us for a cross-university climate forum, as Arizona

  16. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    E-Print Network [OSTI]

    Bargar, John

    2009-01-01T23:59:59.000Z

    Contami- nated Stream, Pinal Creek, Arizona. Masters Thesis,contaminated stream, Pinal Creek, Arizona. Environ. Sci.forming sediment in Pinal Creek, Globe Mining District,

  17. Paleoenvironment of Fort Union Formation, South Dakota

    SciTech Connect (OSTI)

    Goodrum, C.

    1983-08-01T23:59:59.000Z

    Rocks of Paleocene age are represented in the Cave Hills of northwestern South Dakota by the Ludlow, Cannonball, and Tongue River members of the Fort Union Formation. The Cave Hills are situated within the southern margin of the Williston basin, 80 mi (130 km) north of the Black Hills, South Dakota. Numerous fine-grained, fining-upward sedimentary sequences comprise the Ludlow Member and are attributed to meandering streams occupying a low-gradient lower alluvial to upper deltaic plain. The Cannonball Member is 130 ft (40 m) thick in the North Cave Hills and is represented by two fine-grained, coarsening-upward sandstone mudstone sequences. A distinct vertical succession of sedimentary facies occur within each sequence representing offshore/lower shoreface through upper shoreface/foreshore depositional environment. A north to northeast depositional strike for the Cannonball shoreline is inferred from ripple crest and cross-bed orientations. The basal part of the Tongue River consists of approximately 40 to 50 ft (12 to 15 m) of lenticular sandstone, siltstone, mudstone, thin-bedded lignite, and kaolinite beds representing thin broad channels, point-bar, levee, overbank, and nearshore swamp depositional environments. Massive fluvial channel sandstones measuring several tens of ft in thickness overlie the fine-grained basal Tongue River lithologies. These channel sandstones represent the continued progradation of continental/fluvial/coastal plain depositional environments eastward over the marine sandstones of the Cannonball Member.

  18. Coal Conversion Facility Privilege Tax Exemptions (North Dakota)

    Broader source: Energy.gov [DOE]

    Coal Conversion Facility Privilege Tax Exemptions are granted under a variety of conditions through the North Dakota Tax Department. Privilege tax, which is in lieu of property taxes on the...

  19. Mining and Gas and Oil Production (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

  20. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  1. FUPWG Meeting Agenda - Rapid City, South Dakota | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the South Dakota School of Mines & Technology 10:00 am Networking Break 10:20 am BioGas Project Applications for Federal Agencies and Utilities Wolfgang Driftmeier, President...

  2. Solid Waste Management and Land Protection (North Dakota)

    Broader source: Energy.gov [DOE]

    The policy of the State of North Dakota is to encourage and provide for environmentally acceptable and economical solid waste management practices, and the Department of Health may promulgate...

  3. Oil and Gas Gross Production Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from...

  4. Radiation and Uranium Resources Exposure Control (South Dakota)

    Broader source: Energy.gov [DOE]

    The public policy of South Dakota is to encourage the constructive uses of radiation, the proper development of uranium resources, and the control of any associated harmful effects. The disposal of...

  5. Water Distribution and Wastewater Systems Operators (North Dakota)

    Broader source: Energy.gov [DOE]

    All public water supply and wastewater disposal systems are subject to classification and regulation by the State of North Dakota, and must obtain certification from the State Department of Health.

  6. EIS-0440: Quartzsite Solar Energy Project, La Paz County, AZ

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of interconnecting a proposed 100-megawatt concentrating solar power plant to Western’s Bouse-Kofa 161-kilovolt transmission line. The proposal includes amending the Bureau of Land Management Resource Management Plan. Cooperating agencies in the preparation of this EIS are Bureau of Land Management (Yuma Field Office ), U.S. Army Corps of Engineers, U.S. Army Garrison (Yuma Proving Grounds), Arizona Game and Fish Department, and the Arizona Department of Environmental Quality.

  7. IMPACT-GENERATED TSUNAMIS: AN OVER-RATED HAZARD. H. J. Melosh, Lunar and Planetary Lab, University of Arizona, Tucson AZ 85721 (jmelosh@lpl.arizona.edu).

    E-Print Network [OSTI]

    Melosh, H. Jay

    propagation theory is applicable and the evolution of the impact tsunami can be analyzed by well- establishedIMPACT-GENERATED TSUNAMIS: AN OVER-RATED HAZARD. H. J. Melosh, Lunar and Planetary Lab, University suggested that oceanic waves (tsunami) created by the impact of relatively small asteroids into the Earth

  8. Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota

    E-Print Network [OSTI]

    Spicer, James Frank

    1994-01-01T23:59:59.000Z

    The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North Dakota. The stratigraphy and geologic history of this basin are well understood...

  9. Az SZTE Informatikai Tanszkcsoportjn oktatott trgyak 2001-2005

    E-Print Network [OSTI]

    Németh, Zoltán L.

    Az SZTE Informatikai Tanszékcsoportján oktatott tárgyak 2001-2005 Németh L. Zoltán · Eladások Bonyolultságelmélet (Nap. 2001/02/I, Nap. 2002/03/I, Lev. 2002/03/I, Lev. 2003/04/I, Lev. 2004/05/I.) Formális nyelvek és szintaktikus elemzésük (Lev. 2004/05/II.) Kiszámíthatóságelmélet (Nap. 2001/02/II, Nap. 2004/05/I

  10. Waste Toolkit A-Z Cartridges Reclaim-IT

    E-Print Network [OSTI]

    Melham, Tom

    -pack in suitable protective packaging before placing in recycling box Mobile phones ­ include the battery and placeWaste Toolkit A-Z Cartridges ­ Reclaim-IT How can I recycle cartridges? You can recycle cartridges via Reclaim-IT, one of the largest companies in the UK dedicated to reusing and recycling empty laser

  11. Waste Toolkit A-Z Can I recycle stationery?

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Stationery Can I recycle stationery? Yes! You can recycle paper and paper based products such as used note pads, paper and cardboard files in the University Grundon recycling boxes. You can't recycle mixed materials that are made of non- recyclable plastic, such as plastic files

  12. Waste Toolkit A-Z Can I recycle paper cups?

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Paper cups Can I recycle paper cups? Yes. Paper cups can be recycled in the Grundon recycling boxes. Do not leave dregs of drink in them, as this will contaminate the recycling box. Although it is good to recycle paper cups, it is more sustainable to use china cups that can be washed

  13. Waste Toolkit A-Z How can I recycle computers?

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Computers How can I recycle computers? The University policy for computer disposal is outlined in detail, here: www.ict.ox.ac.uk/oxford/disposal/index.xml Recycle/reuse 1. Before If the computer can't be reused, it should be recycled by an authorised contractor who will guarantee that all

  14. Tucson, Arizona: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  15. X-Ray Fluorescence (XRF) Analysis of Obsidian Artifacts from AZ AA:8:20 (ASM), Southeastern Arizona

    E-Print Network [OSTI]

    Shackley, M. Steven

    1986-01-01T23:59:59.000Z

    Minerologist 62:426-437. SOUTHWEST XRF PAPER Tabl;o:. X-:'~vX-RAY FLUORESCENCE (XRF) ANALYSIS OF OBSIDIAN ARTIFACTS FROM

  16. UPRE Method for Total Variation Parameter Selection School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ

    E-Print Network [OSTI]

    Wohlberg, Brendt

    National Laboratory, Los Alamos, NM 87545, USA. Hongbin Guo School of Mathematical and Statistical Sciences: youzuo.lin@asu.edu (Youzuo Lin), brendt@lanl.gov (Brendt Wohlberg), hguo1@asu.edu (Hongbin Guo) 1

  17. A STATEWIDE SUMMARY OF SMALLMOUTH BASS SAMPLING DATA FROM SOUTH DAKOTA WATERS

    E-Print Network [OSTI]

    r SOUTH c·~ o -0 . ~ o ] A STATEWIDE SUMMARY OF SMALLMOUTH BASS SAMPLING DATA FROM SOUTH DAKOTA WATERS Department Of Game, Fish & Parks Wildlife Division Anderson Building -- Pierre. South Dakota 57501 Progress Report No. 90-9 #12;A STATEWIDE SUMMARY OF SMALLMOUTH BASS SAMPLING DATA FROM SOUTH DAKOTA WATERS

  18. Evaluation of Largemouth Bass Slot Length Limits in South Dakota Waters

    E-Print Network [OSTI]

    IY5~p: SOUTH DAKOTA ----.--) o o ~o Evaluation of Largemouth Bass Slot Length Limits in South Dakota Waters Department of Game, Fish and Parks Wildlife Division Foss Building Pierre. South Dakota 67601.3182 Completion Report No. 93-13 #12;Evaluation of Largemouth Bass Slot Length Limits in South

  19. Smallmouth Bass Seasonal Dynamics in Northeastern South Dakota Glacial Lakes Thomas D. Bacula

    E-Print Network [OSTI]

    Department of Game, Fish and Parks, and South Dakota State University. #12;iv ABSTRACT Smallmouth BassSmallmouth Bass Seasonal Dynamics in Northeastern South Dakota Glacial Lakes BY Thomas D. Bacula and Fisheries Science (Fisheries Option) South Dakota State University 2009 #12;11 Smallmouth Bass Seasonal

  20. South Dakota Natural Gas Processed in North Dakota (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic7.Cubic Foot)in North Dakota (Million

  1. SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA

    SciTech Connect (OSTI)

    Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning (David) Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz

    2005-09-30T23:59:59.000Z

    The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.

  2. City of Phoenix- Energize Phoenix Commercial Incentives (Arizona)

    Broader source: Energy.gov [DOE]

    Through a partnership with Arizona State University and Arizona Public Service (APS), the City of Phoenix is providing incentives for businesses located along a 10-mile stretch of the Metro light...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company Ak-Chin Electric Utility Authority (Arizona) Place Arizona Start Date 2008-01-01...

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company Ak-Chin Electric Utility Authority (Arizona) Place Arizona Start Date 2008-12-01...

  5. area northeastern arizona: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona's Riparian Areas Environmental Sciences and Ecology Websites Summary: management, riparian ecology, riparian restoration, soils and soil ecology. Recent and...

  6. Interdisciplinary Undergraduate Internship Opportunities Arizona PIRG Student Capters Interships

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Interdisciplinary Undergraduate Internship Opportunities ARIZONA Arizona PIRG Student Capters of the internship program is to provide the opportunity to take education out of the classroom, to do hands-on work campuses, Arizona PIRG organizers work closely with university faculty to offer course credit internships

  7. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona:Ohio:Maribel,Arizona:

  8. Energy Integrated Dairy Farm System in North Dakota

    SciTech Connect (OSTI)

    Pratt, G.; Lindley, J.; Hirning, H.; Giles, J.

    1986-11-01T23:59:59.000Z

    The EIFS project at North Dakota State University, located at Fargo, North Dakota, is an effort to show how a Northern Great Plains EIFS might be operated. This farm used a combination of energy conservation, energy capture, and energy production. Energy conservation was demonstrated using reduced tillage in a typical cropping system and by using heat reclamation equipment on the ventilation system and the milk cooler in the dairy barn. Energy capture was demonstrated with a solar collector used to preheat ventilation air. Energy production was demonstrated with the construction of an anaerobic digester to produce methane from manure. This manual describes the design, construction, operation, and performance of the EIFS developed at North Dakota State University.

  9. GRED III Final Report Clifton Hot Springs Geothermal Greenlee County, AZ

    SciTech Connect (OSTI)

    Brown, David E.

    2006-06-15T23:59:59.000Z

    Black & Veatch Corporation has prepared this report for Arizona Public Service Company, Salt River Project, and Tucson Electric Power Company (APS/SRP/TEP). The purpose of this report is to assess the prospects for significant renewable energy development in Arizona. The scope of the study is limited to Arizona projects that would export power to the grid (that is, not distributed energy projects). This study includes a review of the current status of renewable energy in Arizona, characterization of renewable power generation technologies, assessment of Arizona''s renewable resources, and an assessment of key risk factors. This section summarizes the key findings in these areas.

  10. Montana-Dakota Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities CoMontana-Dakota

  11. EIS-0395: San Luis Rio Colorado Project, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate a proposed transmission line originating at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona Public Service Company’s (APS) North Gila Substation

  12. 2010Employee's Arizona Withholding Percentage Election

    E-Print Network [OSTI]

    Rhoads, James

    withholding percentage of zero, and I certify that I meet BOTH of the following qualifying conditions at the end of the calendar year (i.e. gross wages net of pretax deductions, such as your portion of health a Withholding Percentage of Zero You may elect an Arizona withholding percentage of zero if you meet BOTH

  13. Ecology of Montezuma Quail in Southeast Arizona

    E-Print Network [OSTI]

    Chavarria, Pedro Mazier

    2013-04-26T23:59:59.000Z

    and habitat use have remained as knowledge gaps until now. My study overcame these difficulties and I was able to trap and monitor 88 individuals from 2008–2010 at 3 study sites in southeast Arizona. Techniques for trapping and monitoring included the use...

  14. ARIZONA COOPERATIVE Climate Change and Wildfire

    E-Print Network [OSTI]

    Crimmins, Michael A.

    and Woodlands Summary of Issue Wildfire requires three things to burn: heat, fuel and oxygen. If one 1998) and warming temperatures coupled with recent drought conditions. In many cases, high force managers to consider new management #12;2 The University of Arizona Cooperative Extension

  15. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30T23:59:59.000Z

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  16. EIS-0418: PrairieWinds Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

  17. COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA

    E-Print Network [OSTI]

    Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  18. EA-1979: Summit Wind Farm, Summit, South Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Summit Wind Farm, a 99-MW wind farm south of Summit, South Dakota. The proposed wind farm would interconnect to Western’s existing transmission line within the footprint of the wind farm.

  19. Calibration of the University of North Dakota's Citation

    E-Print Network [OSTI]

    Delene, David J.

    Calibration of the University of North Dakota's Citation Aircraft Wind System David J. Delene;Calibration Procedure Heading Angle Offset (hoffset_cal) Alpha Angle Calibration (alpha_cal) Beta Angle Calibration (beta_cal) Pitot Pressure Calbiration (wind_cal) The wind calibration procedure involves first

  20. Calibration of the University of North Dakota's Citation

    E-Print Network [OSTI]

    Delene, David J.

    Calibration of the University of North Dakota's Citation Aircraft Wind System David J. Delene't be a problem. Just redo the calibration. #12;Why Measure Winds During Flight Basic Atmospheric Parameter Measurement Unit #12;#12;Calibration Procedure Heading Angle Offset Alpha Angle Calibration Beta Angle

  1. Research Article Survival of Pronghorns in Western South Dakota

    E-Print Network [OSTI]

    , cause-specific mortality, predation, pronghorn, South Dakota, survival, Wind Cave National Park, SD 57007, USA DANIEL E. RODDY, Wind Cave National Park, 26611 United States Highway 385, Hot Springs of Wyoming, Laramie, WY 82071, USA ABSTRACT Survival and cause-specific mortality of pronghorns (Antilocapra

  2. EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

  3. University of North Dakota Department of Computer Science

    E-Print Network [OSTI]

    Delene, David J.

    University of North Dakota Department of Computer Science Graduate Qualifying Examination (GQE examinations offered in the fall and in the spring semesters by the Department of Computer Science. The GQE of approximately equal length, corresponding to the four fundamental area of computer Science, namely, Theoretical

  4. FISH OF THO IHPOUND;[ENTS IN NORTHEASTERN SOUTH DAKOTA

    E-Print Network [OSTI]

    9 Calculated total length (em) of white crappies at end of each year of life in Blue Cloud Abbey Thirteen and large standing crops of fish were found in Blue Cloud Abbey Pond and Labolt Pond, South Dakota of the differed. Black crappies were most numerous in Abbey Pond; white crappies, in Labolt Pond. Total standing

  5. South Dakota Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    in the state, it becomes more important to design and build more efficient wastewater treatment plants. A study Institutes (SDWRI) program is administered through the College of Agricultural and Biological Sciences treatments areas (VTAs) from two concentrated animal feeding operations (CAPOs) in South Dakota. A third

  6. RAPID/Roadmap/8-AZ-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-aHI-aUT-a-AZ-c <

  7. RAPID/Roadmap/6-AZ-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-ba <CO-aAZ-b <

  8. American Solar Energy Society Proc. ASES Annual Conference, Phoenix, AZ, May 2010 IMPROVING THE PERFORMANCE OF SATELLITE-TO-IRRADIANCE MODELS USING

    E-Print Network [OSTI]

    Perez, Richard R.

    © American Solar Energy Society ­ Proc. ASES Annual Conference, Phoenix, AZ, May 2010 IMPROVING;© American Solar Energy Society ­ Proc. ASES Annual Conference, Phoenix, AZ, May 2010 between the snow

  9. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    SciTech Connect (OSTI)

    Rutherfoord, John P. [University of Arizona] [University of Arizona; Johns, Kenneth A. [University of Arizona] [University of Arizona; Shupe, Michael A. [University of Arizona] [University of Arizona; Cheu, Elliott C. [University of Arizona] [University of Arizona; Varnes, Erich W. [University of Arizona] [University of Arizona; Dienes, Keith [University of Arizona] [University of Arizona; Su, Shufang [University of Arizona] [University of Arizona; Toussaint, William Doug [University of Arizona] [University of Arizona; Sarcevic, Ina [University of Arizona] [University of Arizona

    2013-07-29T23:59:59.000Z

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  10. Diagenesis of the Dakota sandstone, West Lindrith Field, Rio Arriba County, New Mexico 

    E-Print Network [OSTI]

    Franklin, Stanley Powell

    1987-01-01T23:59:59.000Z

    , illite, mixed-layer clay, and vermiculite. The composition and texture of the Dakota sandstone has been pervasively altered by the diagenetic processes of compaction, authigenesis, and dissolution. Authigenic cements include quartz overgrowths, calcite... Texture and Mineralogy of Clay Minerals Types and Distribution of Porosity 26 26 35 44 58 PROVENANCE OF THE DAKOTA SANDSTONE DIAGENESIS OF THE DAKOTA SANDSTONE 69 Compaction Authigenesis Cementation Clay Authigenesis Dissolution and Secondary...

  11. Intern experience at Arizona Public Service Company: an internship report

    E-Print Network [OSTI]

    Land, Ronald Jay, 1957-

    2013-03-13T23:59:59.000Z

    ?s experience as an intern with the Arizona Nuclear Power Project. For the duration of the internship period, the author worked as an Engineer I in the Technical Projects Section of the Nuclear Fuel Management Department. During the internship period... for which the Technical Projects Section is responsible. iv TABLE OF CONTENTS PAGE INTRODUCTION 1 Internship Objectives 1 Internship Organization 3 Arizona Nuclear Power Project 3 Palo Verde Nuclear Generating Station 3 Arizona Public Service...

  12. arizona state university: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ye, Jieping 231 ARIZONA STATE UNIVERSITY POWER SYSTEMS ENGINEERING RESEARCH CENTER Power Transmission, Distribution and Plants Websites Summary: and alternating current (AC)...

  13. The Future of Electric Vehicles and Arizona State University...

    Broader source: Energy.gov (indexed) [DOE]

    State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? EV batteries will...

  14. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is...

  15. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Energy Savers [EERE]

    Energy Program project results in annual estimated cost savings of 313,000 for reduced consumption of gasoline, diesel, propane, and electricity. Location Arizona Partners State...

  16. Southwest Gas Corporation- Residential and Builder Efficiency Rebate Program (Arizona)

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to residential customers in Arizona who purchase and install energy efficient natural gas tankless water heaters, clothes dryers, windows, attic...

  17. DAKOTA reliability methods applied to RAVEN/RELAP-7.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Mandelli, Diego [Idaho National Laboratory, Idaho Falls, ID; Rabiti, Cristian [Idaho National Laboratory, Idaho Falls, ID; Alfonsi, Andrea [Idaho National Laboratory, Idaho Falls, ID

    2013-09-01T23:59:59.000Z

    This report summarizes the result of a NEAMS project focused on the use of reliability methods within the RAVEN and RELAP-7 software framework for assessing failure probabilities as part of probabilistic risk assessment for nuclear power plants. RAVEN is a software tool under development at the Idaho National Laboratory that acts as the control logic driver and post-processing tool for the newly developed Thermal-Hydraulic code RELAP-7. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. Reliability methods are algorithms which transform the uncertainty problem to an optimization problem to solve for the failure probability, given uncertainty on problem inputs and a failure threshold on an output response. The goal of this work is to demonstrate the use of reliability methods in Dakota with RAVEN/RELAP-7. These capabilities are demonstrated on a demonstration of a Station Blackout analysis of a simplified Pressurized Water Reactor (PWR).

  18. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    SciTech Connect (OSTI)

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01T23:59:59.000Z

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  19. arizona cloud-seeding experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extension exterior 1. Roof Ziurys, Lucy M. 13 ARIZONA COOPERATIVE ARIZONA AND THE NORTH AMERICAN Environmental Sciences and Ecology Websites Summary: , but from convective...

  20. Storage opportunities in Arizona bedded evaporites

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

    1996-10-01T23:59:59.000Z

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  1. Energy Incentive Programs, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact Sheet EnergyEnergyArizona Energy

  2. Categorical Exclusion Determinations: Arizona | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshuaThisAgency-EnergyArizona.

  3. Lechee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLands inLechee, Arizona: Energy

  4. Leupp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:NewLeupp, Arizona: Energy Resources

  5. Goodyear, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear, Arizona: Energy

  6. Whetstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,WetzelTechnologiesWhetstone, Arizona: Energy

  7. Wilhoit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, New Jersey: EnergyWilhoit, Arizona:

  8. Williams, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, NewKansas:Williams, Arizona: Energy

  9. Chuichu, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu, Arizona: Energy Resources Jump

  10. Wellton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002)Wellington MiddleWellton, Arizona:

  11. Prescott, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPower andPoyryArizona: Energy Resources

  12. Jerome, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa:Jerome County, Idaho: EnergyArizona:

  13. Kaibito, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii:Kaibito, Arizona:

  14. Kearny, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,Kaolin ADKaw(CTI PFAN)Arizona:

  15. Summit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) |Park,Arizona:

  16. Supai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place: Wuxi, JiangsuSunwattSupai, Arizona:

  17. Dudleyville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:Jump to:Dudleyville, Arizona: Energy

  18. Eloy, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn HotGrove,Elmore,Eloy, Arizona:

  19. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric PwrArizona State

  20. Arizona/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsource History View New

  1. Arizona/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsource History View

  2. Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsource History

  3. Marana, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona: Energy Resources Jump

  4. Surprise, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods Inc JumpSurprise, Arizona: Energy Resources

  5. Tempe, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVCEt Al.,(Biasi,Tempe, Arizona:

  6. Florence, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and WildlifeFlashFlintFlixArizona: Energy

  7. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates, Arizona: Energy

  8. Tusayan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to: navigation, searchTusayan, Arizona:

  9. Vail, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump to: navigation, searchArizona:

  10. Congress, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress, Arizona: Energy Resources Jump to:

  11. EIS-0474: Southline Transmission Line Project; Arizona and New Mexico

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EIS to evaluate the environmental impacts of the proposed Southline Transmission Project, which would consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing transmission lines between the Apache and Saguaro, Arizona substations.

  12. A Design Model for Subsurface Drip Irrigation in Arizona

    E-Print Network [OSTI]

    Fay, Noah

    and useful tool when applied to the design of subsurface irrigation systems #12;Acknowledgements This projectA Design Model for Subsurface Drip Irrigation in Arizona Michael Liga Advisor: Dr. Don Slack Biosystems Engineering University of Arizona #12;Water Issue Subsurface Drip Irrigation · Benefits ·Increased

  13. IN THE COURT OF APPEALS STATE OF ARIZONA

    E-Print Network [OSTI]

    Shamos, Michael I.

    1 IN THE COURT OF APPEALS STATE OF ARIZONA DIVISION ONE RODNEY L. JOFFE, Plaintiff-Appellee, v. ACACIA MORTGAGE CORPORATION, an Arizona corporation, f/k/a ACACIA NATIONAL MORTGAGE CORPORATION the superior court's order granting what was in effect partial summary judgment in favor of Rodney Joffe

  14. FEEDING ECOLOGY OF FISHES IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR

    E-Print Network [OSTI]

    FEEDING ECOLOGY OF FISHES IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR BY ROBERT J. KRSKA, JR OF FISHES IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR This thesis is approved as a creditable and Fisheries Sciences Department #12;ACKNOWLEDGMENTS I would like to thank the following people for making

  15. 4-H School Enrichment A Guide for South Dakota Extension Educators

    E-Print Network [OSTI]

    1 4-H School Enrichment A Guide for South Dakota Extension Educators I. What is 4-H School Enrichment? School Enrichment is a partnership between South Dakota State University Cooperative Extension Service (CES) and a school district to provide educational content in various subject areas. CES values

  16. EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the environmental impacts of interconnecting the proposed 150 megawatt Hyde County Wind Energy Center Project, in Hyde County, South Dakota, with DOE’s Western Area Power Administration’s existing Fort Thompson Substation in Buffalo County, South Dakota.

  17. Advanced Largemouth Bass Production and Stock Contribution to Small South Dakota Impoundment Fisheries

    E-Print Network [OSTI]

    thanks to Blue Dog State Fish Hatchery for providing the largemouth bass fingerlings usedAdvanced Largemouth Bass Production and Stock Contribution to Small South Dakota Impoundment with me on the bioenergetics portion of this project. I thank the many South Dakota Game, Fish

  18. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota

    E-Print Network [OSTI]

    Rudnick, Roberta L.

    Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang pegmatite and possible metasedimentary source rocks in the Black Hills, South Dakota, USA. The Harney Peak.5 and overlap with post- Archean shales and the Harney Peak Granite. For the granite suite

  19. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect (OSTI)

    Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

    2012-06-28T23:59:59.000Z

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  20. User guidelines and best practices for CASL VUQ analysis using Dakota.

    SciTech Connect (OSTI)

    Adams, Brian M.; Swiler, Laura Painton; Hooper, Russell; Lewis, Allison; McMahan, Jerry A.,; Smith, Ralph C.; Williams, Brian J.

    2014-03-01T23:59:59.000Z

    Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to enhance understanding of risk, improve products, and assess simulation credibility. This manual offers Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) partners a guide to conducting Dakota-based VUQ studies for CASL problems. It motivates various classes of Dakota methods and includes examples of their use on representative application problems. On reading, a CASL analyst should understand why and how to apply Dakota to a simulation problem. This SAND report constitutes the product of CASL milestone L3:VUQ.V&V.P8.01 and is also being released as a CASL unlimited release report with number CASL-U-2014-0038-000.

  1. EA-1797: Agua Caliente Solar Project in Yuma County, AZ | Department...

    Broader source: Energy.gov (indexed) [DOE]

    November 1, 2010 EA-1797: Final Environmental Assessment Loan Guarantee for the Agua Caliente Solar Project in Yuma County, Arizona November 24, 2010 EA-1797: Finding of No...

  2. 1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota. Preliminary final report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state`s total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state`s total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

  3. Engineering task plan for the 241-AZ-101 waste tank color video camera system

    SciTech Connect (OSTI)

    Robinson, R.S., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    This Engineering Task Plan (ETP) is to be distributed to communicate the design basis of the 241-AZ-101 camera system and to define system requirements and associated responsibilities.

  4. az91d magnesium alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 Studies on the inuence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy Engineering Websites Summary:...

  5. az91d magnesium alloys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 Studies on the inuence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy Engineering Websites Summary:...

  6. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-08-23T23:59:59.000Z

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking.

  7. EA-1966: Sunflower Wind Project, Hebron, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

  8. Categorical Exclusion Determinations: North Dakota | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergy BushCalifornia9Hampshire CategoricalDakota Categorical

  9. Categorical Exclusion Determinations: South Dakota | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergy BushCalifornia9HampshirePennsylvaniaDepartment ofDakota

  10. Energy Incentive Programs, North Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFactIowaMontanaYork EnergyDakota Energy

  11. Leonard, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:New York: EnergyNorth Dakota:

  12. Lidgerwood, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia:Lidgerwood, North Dakota:

  13. Lincoln, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming: EnergyCalifornia:Hampshire:Dakota:

  14. Luverne, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: Energy Resources Jump to: navigation,North Dakota:

  15. Brown County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont, Maryland:BroomeSouth Dakota: Energy

  16. Burke County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County, Georgia: Energy Resources JumpDakota:

  17. Butte County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy ResourcesSouth Dakota: Energy

  18. Wing, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPoleWisconsin:Wing, North Dakota:

  19. Christine, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International NewOklahoma:Christine, North Dakota:

  20. Burleigh County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County, North Dakota: Energy

  1. Jackson County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas: EnergySouth Dakota: Energy

  2. Hunter, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy Resources Jump to:Hunter, North Dakota:

  3. City of White, South Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity ofInformation City ofWhite, South Dakota

  4. Pennington County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle BiscuitsPemery CorporationPeninsula,South Dakota:

  5. North Dakota - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High824 2.839NYMEXWith DataDakota - Seds

  6. City of Hope, North Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity of Hope, North Dakota (Utility

  7. Grant County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska: Energy Resources JumpSouth Dakota:

  8. Hamlin County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersvilleHallandaleHamlin County, South Dakota: Energy

  9. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModularMontana-Dakota Utilities Co

  10. North Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources JumpOklahoma:NorthCastle, NewNorth Dakota/Wind

  11. Custer County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine: EnergySouth Dakota: Energy

  12. Deuel County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:Detroit Beach,South Dakota: Energy

  13. South Dakota Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouth Dakota Wind Energy

  14. Arthur, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County,Minnesota:Arthur, North Dakota: Energy

  15. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities Co (Wyoming)

  16. Montana-Dakota Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:NortheastMontana-Dakota Utilities Co

  17. Beadle County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro, Massachusetts Zip:Dakota:

  18. Redfield, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,OpenCounty,Redfield, South Dakota:

  19. Regan, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) | OpenRegan, North Dakota:

  20. Renville County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making the Path for FutureRenton,North Dakota:

  1. Frontier, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier, North Dakota:

  2. Towner County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:TownTowner County, North Dakota:

  3. Union County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle AirshipsUnalakleet4888°, -77.0564464° ShowDakota:

  4. City of Onida, South Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, Florida (UtilityOnida, South Dakota (Utility

  5. Dakota uncertainty quantification methods applied to the NEK-5000 SAHEX model.

    SciTech Connect (OSTI)

    Weirs, V. Gregory

    2014-03-01T23:59:59.000Z

    This report summarizes the results of a NEAMS project focused on the use of uncertainty and sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under development at Argonne National Laboratory to perform computational fluid dynamics calculations for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty quantification methods in Dakota with NEK-5000.

  6. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect (OSTI)

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber [Brigham Young University, Provo, UT (United States). Department of Chemistry and Biochemistry

    2006-12-15T23:59:59.000Z

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  7. West Short Pine Hills field, Harding County, South Dakota

    SciTech Connect (OSTI)

    Strothman, B.

    1988-07-01T23:59:59.000Z

    The West Short Pine Hills field is a shallow gas field that produces from the Shannon Sandstone Member, on the Camp Crook anticline in southwestern Harding County, South Dakota. The Alma McCutchin 1-17 Heikkila discovery was drilled in the NW1/4, Sec. 17, T16N, R2E, to a depth of 1600 ft and completed in October 1977 for 600 MCFGD from perforations at 1405-1411 ft. To date, 40 gas wells have been completed with total estimated reserves of more than 20 bcf. The field encompasses 12,000 ac, with a current drill-site spacing unit of 160 ac. The field boundaries are fairly well defined, except on the south edge of the field. The wells range in depth from 1250 to 2200 ft, and cost $60,000-$85,000 to drill and complete. Core and log analyses indicate that the field has 70 ft of net pay, with average porosity of 30% and average permeability of 114 md. Most wells have been completed with nitrogen-sand frac. Williston Basin Interstate Pipeline Company of Bismarck, North Dakota, operates a compressor station and 2.5 mi of 4-in. line that connects the field to their 160 in. north-south transmission line to the Rapid City area. Currently, producers are netting $1.10-$1.25/million Btu. The late Mathew T. Biggs of Casper, Wyoming, was the geologist responsible for mapping and finding this gas deposit.

  8. Arizona EV Infrastructure Plans Revealed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    as one of the top Recovery Act projects Out in the desert, a revolution in automotive technology is happening. Some Arizona drivers are taking part in an innovative new...

  9. Water infrastructure : hybridized architecture along the Arizona canal

    E-Print Network [OSTI]

    Atwood, Alex (Wayne Alex)

    2012-01-01T23:59:59.000Z

    Due to budget issues, the Central Arizona Project (CAP) canal has been left exposed to the arid desert environment since its construction in the 1970s. As a result, 5% of the amount of water diverted from the Colorado River ...

  10. Argonne and Arizona State University sign five-year agreement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne and Arizona State University sign five-year agreement By Greg Cunningham * May 28, 2015 Tweet EmailPrint MOU clears way for expanded research opportunities The Department...

  11. Iman E. Mallakpour iman@email.arizona.edu

    E-Print Network [OSTI]

    Scott, Christopher

    2009- Present M. Sc. in Hydrology Department of Hydrology and Water resources The University of Arizona Valdes) ·A review paper on Effects of stream disconnection on local flow patterns (2009, Dr. Thomas

  12. Financial analysis of watermelon production in Central Arizona

    E-Print Network [OSTI]

    Ellsworth, Steven Jon

    1986-01-01T23:59:59.000Z

    Record of Study Financial Analysis of Watermelon Production in Central Arizona A Professional Paper by Steven Jon E11sworth Submitted to the College of Agriculture of Texas A II N University in partial fulfillment of the requirements... for the degree of WASTER OF AGRICULTURE January 1986 Department of Agricultural Economics Agricultural Finance Financial Analysis of watermelon Production in Central Arizona A Professional Paper by Steven Jon E11sworth Approved as . to tyle and content...

  13. DOE-University of Arizona Faculty Development Project. Final report

    SciTech Connect (OSTI)

    None

    1980-09-08T23:59:59.000Z

    The DOE-University of Arizona Faculty Development Project on Energy successfully completed a faculty development program. There were three phases of the program consisting of: a three week energy workshop for teachers, participation and cooperation with Students for Safe Energy in presentation of an Alternative Energy Festival at the University of Arizona, and workshops for teachers conducted at Flowing Wells School District. Each of these is described. Attendees are listed and a director's evaluation of the workshop is given.

  14. College of Agriculture and Life Sciences Map of Arizona. Source: Arizona Water Map Poster, 2002, Water Resources Research

    E-Print Network [OSTI]

    Cushing, Jim. M.

    of common minerals and contaminants found in Arizona water sources. · A description of drinking water of Water...............................................15 2. Properties of Water 2.1 Minerals in Water...............................................23 2.2 Contaminants in Water ......................................27 3. Water Quality

  15. South Dakota School of Mines, Keystone, South Dakota solar-energy-system performanceevaluation, June 1980-April 1981

    SciTech Connect (OSTI)

    Eck, T.F.

    1981-01-01T23:59:59.000Z

    The South Dakota School of Mines site is the Mount Rushmore National Memorial Visitor's Center in Keystone, South Dakota. The active solar energy system is a retrofit designed to supply 45% of the heating load and 53% of the observation room cooling load. The system is equipped with 2000 square feet of flat-plate collector panels double-glazed with a black chrome absorber surface; 3000 gallons of water in an insulated tank for sensible heat storage; a two-stage fuel oil furnace for auxiliary heating; and direct expansion electric air conditioning units for auxiliary cooling. The actual heating and cooling provided are 42% and 12% respectively. The solar fraction, solar savings ratio, conventional fueld savings, electrical energy expense, system performance factor, and solar system coefficient of performance are among the performance data listed. A control problem is reported that kept the collector pump running 24 hours a day for 18 days. Performance data are given for each subsystem as well as for the overall system. Typical system operation and the system operating sequence for a day are given. The system's use of solar energy and the percentage of losses are given. Also included are a system description, performance evaluation techniques and equations, long-term weather data, chemical analysis of the antifreeze solutions, sensor technology, and typical weather and performance data for a month. (LEW)

  16. Control, Prevention, and Abatement of Pollution of Surface Waters (North Dakota)

    Broader source: Energy.gov [DOE]

    It is the policy of North Dakota to protect, maintain, and improve the quality of the waters in the state, and to require necessary and reasonable treatment of sewage, industrial, or other wastes....

  17. More Dakota texts: collections of Alanson Buck Skinner and Amos Oneroad

    E-Print Network [OSTI]

    Anderson, Laura Lee

    1993-01-01T23:59:59.000Z

    The Alanson Buck Skinner Collection of the Braun Research Library at Southwest Museum in Los Angeles contains the ethnology and folktales of Skinner's unpublished monograph on the Eastern Dakota. Skinner and his Wahpeton informant, Amos Oneroad...

  18. North Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  19. Tobacco Control in North Dakota, 2004-2012: Reaching for Higher Ground

    E-Print Network [OSTI]

    Rosenbaum, Daniel J.; Barnes, Richard L.; Glantz, Stanton A.

    2012-01-01T23:59:59.000Z

    Characteristics: 2010. Napoleon, North Dakota. http://Oct 04, 2011). 402. Donovan L. Napoleon considers smoke-free14, 2010. 403. Donovan L. Napoleon smoke-free, others settle

  20. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01T23:59:59.000Z

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  1. Montana-Dakota Utilities (Gas)- Commercial Natural Gas Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300,...

  2. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  3. Assessment of Impacts from Updating North Dakota’s Residential Energy Code to Comply with the 2000 International Energy Conservation Code

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2004-05-01T23:59:59.000Z

    The current North Dakota state energy code is the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) (CABO 1993). Local jurisdictions can choose to adopt this code. CABO has been transformed into the International Code Council (ICC) and the MEC has been renamed the International Energy Conservation Code (IECC). The most recent edition of the code is the 2003 IECC (ICC 2003). North Dakota's Department of Community Services requested that the U.S. Department of Energy (DOE) compare the 1993 MEC with the 2000 IECC to estimate impacts from updating North Dakota's residential energy code to comply with the new code. Under DOE's direction, Pacific Northwest National Laboratory (PNNL) completed an assessment of the impacts from this potential code upgrade, including impacts on construction and energy consumption costs.

  4. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  7. 1301 So. 3rd Avenue Yuma, AZ 85364 ph: 928 / 782-5113 fax: 928 / 783-0866

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    DESCRIPTIONJOB DESCRIPTIONJOB DESCRIPTION Location: KSWT-TV Yuma, AZ Serving Yuma, AZ and El Centro, CA Job Title, develop proposals for clients to aid them in maximizing the utility of their TV dollars, breakout, insurance & have a dependable vehicle, ability to lift at least 35 lbs. when necessary & maintain a home

  8. EIS-0336: Presidential Permit Application, Tucson Electric Power Company, Sahuarita, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a Presidential Permit application to construct a double-circuit 345,000 volt (345-kV) electric transmission line to transmit 500 MW of electricity. The transmission line would begin south of Tucson, Arizona, in the vicinity of Sahuarita, cross the U.S.-Mexico border near Nogales, Arizona, and continue into Mexico. The proponent anticipates using 400 MW of capability for transport of energy between the United States and Mexico.

  9. EIS-0307: Presidential Permit Application, Public Service Company of New Mexico, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the Public Service Company of New Mexico (PNM) for a Presidential permit to construct two transmission lines originating at the switchyard of the Palo Verde Nuclear Generating Station (PVNGS) near Phoenix, Arizona, and extending approximately 160 miles to the south along one of three alternative routes, where they would cross the United States (U.S.) border with Mexico in the vicinity of Nogales, Arizona.

  10. Billings County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark, Arizona:

  11. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

    SciTech Connect (OSTI)

    Nick A. Altic

    2011-11-11T23:59:59.000Z

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  12. Frequency Modes of Monsoon Precipitation in Arizona and New Mexico ANNE W. NOLIN

    E-Print Network [OSTI]

    Kurapov, Alexander

    Frequency Modes of Monsoon Precipitation in Arizona and New Mexico ANNE W. NOLIN Department proportion of the annual precipitation for Arizona and New Mexico arrives during the summer monsoon. Forty-one years of daily monsoon season precipitation data for Arizona and New Mexico were studied using wavelet

  13. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect (OSTI)

    DUNCAN JB; HUBER HJ

    2011-04-21T23:59:59.000Z

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.

  14. Structural evaluation of thermocouple probes for 241-AZ-101 waste tank

    SciTech Connect (OSTI)

    Kanjilal, S.K.

    1994-12-06T23:59:59.000Z

    This document reports on the structural analysis of the thermocouple probe to be installed in 241-AZ-101 waste tank. The thermocouple probe is analyzed for normal pump mixing operation and potential earthquake induced loads required by the Hanford Site Design Criteria SDC-4.1.

  15. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D

    E-Print Network [OSTI]

    Zhou, Wei

    Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D W. Zhou*, T. Z. Long and C. K of the plates were produced using tungsten inert gas (TIG) welding method. The TIG arc was also used to deposit welding beads on some of the thin plates. No cracking was found in the butt joints. However, hot cracking

  16. Water Environment Federation. National TMDL Science and Policy Conference. Phoenix, AZ. November 13 16, 2002.

    E-Print Network [OSTI]

    Pitt, Robert E.

    Water Environment Federation. National TMDL Science and Policy Conference. Phoenix, AZ. November 13 ­ 16, 2002. AVAILABILITY OF ATMOSPHERICALLY DEPOSITED MERCURY TO RUNOFF AND RECEIVING WATERS Mark C to receiving waters; such estimates are overly conservative, and do not reflect the complex nature of mercury

  17. ASES Proc. Solar 2010, Phoenix, AZ HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL

    E-Print Network [OSTI]

    Perez, Richard R.

    ENERGY APPLICATIONS Tomás Cebecauer GeoModel, s.r.o. Pionierska 15 841 07 Bratislava, Slovakia tomas terrain affects exploitation of solar energy. In this article we present innovative features of MSG© ASES ­ Proc. Solar 2010, Phoenix, AZ HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL SOLAR

  18. Waste Toolkit A-Z How can I reduce waste envelopes?

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Envelopes How can I reduce waste envelopes? Departments and colleges can reduce waste envelopes by using internal envelopes; reusing envelopes and where appropriate, switching from paper communication to electronic communication. Internal envelopes Internal `ladder' envelopes can save

  19. Space Suited Crew Engineering Evaluation of the Proposed Array A-Z PSE Decoupled

    E-Print Network [OSTI]

    Rathbun, Julie A.

    for thermal skirt deployment was utilized. C. TEST FACILITIES Crew Engineering Laboratory, Plt 2. D. TEST: : I Pt ·::., p.~ Space Suited Crew Engineering Evaluation of the Proposed Array A-Z PSE Decoupled Shroud (Crew Engineering Mockup) NO. REV. NO. ATM-973 PAGE 1 OF 8 rtems Division DATE Z/9/71 A. INTRCDUC

  20. Waste Toolkit A-Z Food waste (recycling on-site)

    E-Print Network [OSTI]

    Melham, Tom

    into compost in 14 days, when mixed with wood chippings (from your grounds/gardens). The waste is heated usingWaste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling food waste on-site is a new concept as the University typically has its waste collected and taken away

  1. Evaluation of microstructural eects on corrosion behaviour of AZ91D magnesium

    E-Print Network [OSTI]

    Zhou, Wei

    . Magnesium and its alloys, with one quarter of the density of steel and only two thirds that of aluminium of the prerequisites for all these applications. The corrosion behaviour of cast magnesium±aluminium alloys couldEvaluation of microstructural eects on corrosion behaviour of AZ91D magnesium alloy Rajan Ambat

  2. RELAP5-3D Thermal Hydraulics Computer Program Analysis Coupled with DAKOTA and STAR-CCM+ Codes 

    E-Print Network [OSTI]

    Rodriguez, Oscar

    2012-12-06T23:59:59.000Z

    RELAP5-3D has been coupled with both DAKOTA and STAR-CCM+ in order to expand the capability of the thermal-hydraulic code and facilitate complex studies of desired systems. In the first study, RELAP5-3D was coupled with DAKOTA to perform a...

  3. RELAP5-3D Thermal Hydraulics Computer Program Analysis Coupled with DAKOTA and STAR-CCM+ Codes

    E-Print Network [OSTI]

    Rodriguez, Oscar

    2012-12-06T23:59:59.000Z

    RELAP5-3D has been coupled with both DAKOTA and STAR-CCM+ in order to expand the capability of the thermal-hydraulic code and facilitate complex studies of desired systems. In the first study, RELAP5-3D was coupled with DAKOTA to perform a...

  4. VEGETATIVE CHARACTERISTICS OF PRONGHORN BED SITES IN WIND CAVE NATIONAL PARK, SOUTH DAKOTA --Much of the previous

    E-Print Network [OSTI]

    49 NOTES VEGETATIVE CHARACTERISTICS OF PRONGHORN BED SITES IN WIND CAVE NATIONAL PARK, SOUTH DAKOTA mortality (Beale 1978, Barrett 1984, Gregg et al. 2001) and social behavior (Kitchen 1974, Autenrieth. The pronghorn was reintroduced into Wind Cave National Park, South Dakota, in 1914 and thus, has been maintained

  5. Proceedings of the South Dakota Academy of Science,Vol. 89 (2010) 181 CULTURE OF ADVAnCED-SIZED

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    populations have become established, bass have become a popular sport fish among South Dakota anglers. Stone has been documented in other preda- tory fishes. Longer smallmouth bass (Micropterus dolomieu) hadCED-SIZED LARGEMOUTH BASS FOR STOCKInG InTO SOUTH DAKOTA IMPOUnDMEnTS Matthew J. Ward1 *, Michael L. Brown2 and Isak J

  6. POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY

    E-Print Network [OSTI]

    POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY MODEL my masters in elk research. It has been a wonderful learning and growing experience for which I am

  7. AzTEC Millimetre Survey of the COSMOS Field: I. Data Reduction and Source Catalogue

    E-Print Network [OSTI]

    K. S. Scott; J. E. Austermann; T. A. Perera; G. W. Wilson; I. Aretxaga; J. J. Bock; D. H. Hughes; Y. Kang; S. Kim; P. D. Mauskopf; D. B. Sanders; N. Scoville; M. S. Yun

    2008-01-17T23:59:59.000Z

    We present a 1.1 mm wavelength imaging survey covering 0.3 sq. deg. in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope (JCMT), were centred on a prominent large-scale structure over-density which includes a rich X-ray cluster at z = 0.73. A total of 50 millimetre galaxy candidates, with a significance ranging from 3.5-8.5 sigma, are extracted from the central 0.15 sq. deg. area which has a uniform sensitivity of 1.3 mJy/beam. Sixteen sources are detected with S/N > 4.5, where the expected false-detection rate is zero, of which a surprisingly large number (9) have intrinsic (de-boosted) fluxes > 5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically-obscured stars, then these bright AzTEC sources have FIR luminosities > 6 x 10^12 L(sun) and star formation-rates > 1100 M(sun)/yr. Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray cluster, whilst the remainder are distributed across the larger-scale over-density. We describe the AzTEC data reduction pipeline, the source-extraction algorithm, and the characterisation of the source catalogue, including the completeness, flux de-boosting correction, false-detection rate and the source positional uncertainty, through an extensive set of Monte-Carlo simulations. We conclude with a preliminary comparison, via a stacked analysis, of the overlapping MIPS 24 micron data and radio data with this AzTEC map of the COSMOS field.

  8. ARIZONA COOPERATIVE College of Agriculture and Life Sciences

    E-Print Network [OSTI]

    Crimmins, Michael A.

    Electrical Energy production, water resources depletion and global warming are interconnected. In the past has heard of, and many have experienced the impact of climate change due to global warming as average Part to Help Conserve Arizona's Water Resources and Reduce Global Warming by Saving Energy at Home

  9. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  10. Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom

    E-Print Network [OSTI]

    Fay, Noah

    Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom Advisor: Dr. Scott Whiteford Center, the world is looking to alternative fuels to eradicate its reliance upon petroleum. While biofuels may represent a fundamental component in the panacea to this global dilemma, their production and application

  11. First Record of a Mangrove Yellow Warbler in Arizona

    E-Print Network [OSTI]

    ... corresponded to the schedule of the North American monsoon system, on the northern fringe of which Arizona is located. During the monsoon, ... The North American monsoon system. Proceedings of the Third International Workshop on Monsoons (IWM-III), Hangzhou, China, 2–6 Nov. 2004. ...

  12. MS in Water, Society, and Policy University of Arizona

    E-Print Network [OSTI]

    Fay, Noah

    MS in Water, Society, and Policy University of Arizona Biological Sciences East, Room 325 Phone of scholarship. The Water, Society and Policy Program draws on the expertise of scientists, social scientists and the Environment School of Geography and Development Water Resources Research Center Institute

  13. February 3 Kimberly Ogden "Cultivation Strategies for Microalgae to Produce 1:15 pm University of Arizona Biofuels"

    E-Print Network [OSTI]

    Reisslein, Martin

    of Arizona Biofuels" SCOB 228 Department of Chemical and Environmental Engineering February 17 Daven Henze

  14. COFIRING OF BIOMASS AT THE UNIVERSITY OF NORTH DAKOTA

    SciTech Connect (OSTI)

    Phillip N. Hutton

    2002-01-01T23:59:59.000Z

    A project funded by the U.S. Department of Energy's National Energy Technology Laboratory was completed by the Energy & Environmental Research Center to explore the potential for cofiring biomass at the University of North Dakota (UND). The results demonstrate how 25% sunflower hulls can be cofired with subbituminous coal and provide a 20% return on investment or 5-year payback for the modifications required to enable firing biomass. Significant outcomes of the study are as follows. A complete resource assessment presented all biomass options to UND within a 100-mile radius. Among the most promising options in order of preference were sunflower hulls, wood residues, and turkey manure. The firing of up to 28% sunflower hulls by weight was completed at the university's steam plant to identify plant modifications that would be necessary to enable cofiring sunflower hulls. The results indicated investments in a new equipment could be less than $408,711. Data collected from test burns, which were not optimized for biomass firing, resulted in a 15% reduction in sulfur and NO{sub x} emissions, no increase in opacity, and slightly better boiler efficiency. Fouling and clinkering potential were not evaluated; however, no noticeable detrimental effects occurred during testing. As a result of this study, UND has the potential to achieve a cost savings of approximately $100,000 per year from a $1,500,000 annual fossil fuel budget by implementing the cofiring of 25% sunflower hulls.

  15. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    SciTech Connect (OSTI)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01T23:59:59.000Z

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  16. ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water

    E-Print Network [OSTI]

    Keller, Arturo A.

    Groundwater Management ActAct ·· Assured Water Supply ProgramAssured Water Supply Program #12;Arizona water ­­ 20002000 Residential & Business 16% Self-supplied 4% Irrigation 80% #12;Year 2006 Water UseYear 2006 Water/crystallizer systems Dry cooling plantsDry cooling plants Hybrid cooling systemsHybrid cooling systems Renewable

  17. Project W-314 sn-630 transfer line az-02a to an-b acceptance for beneficial use

    SciTech Connect (OSTI)

    Warnick, T. L.

    1997-09-29T23:59:59.000Z

    Program/Project Title: Project W-314, Tank Farm Restoration and Safe Operation, Phase I Component/System: SN-630 Transfer Line (AZ-02A to AN-B) September 15, 1997.

  18. Thermal stress analysis of fused-cast AZS refractories during production; Part 1: Industrial study

    SciTech Connect (OSTI)

    Cockcroft, S.L.; Brimacombe, J.K. (Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. (Carborundum Co., Falconer, NY (United States). Monofrax-S Plant)

    1994-06-01T23:59:59.000Z

    A study has been conducted to understand and prevent the formation of cracks in alumina-zirconia-silica (AZS) refractory blocks during solidification processing. A fundamental approach has been taken, centered on the development of a three-dimensional mathematical model to predict heat flow and stress generation in fused-cast AZS refractory blocks. In the first part of a two-part study, the voidless'' casting process has been carefully examined in an industrial setting. From a survey of the distribution, frequency of occurrence, and fracture surface morphology of cracks, an attempt was made to link the crack types found in the study to process variables. In-mold temperature data collected for a single casting throughout the normal cooling period have been used to validate the heat-flow model which is described in Part 2. The stress analysis, cause of the different cracks, and remedial action are also presented in Part 2.

  19. Test plan: Laboratory-scale testing of the first core sample from Tank 102-AZ

    SciTech Connect (OSTI)

    Morrey, E.V.

    1996-03-01T23:59:59.000Z

    The overall objectives of the Radioactive Process/Product Laboratory Testing (RPPLT), WBS 1.2.2.05.05, are to confirm that simulated HWVP feed and glass are representative of actual radioactive HWVP feed and glass and to provide radioactive leaching and glass composition data to WFQ. This study will provide data from one additional NCAW core sample (102-AZ Core 1) for these purposes.

  20. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect (OSTI)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01T23:59:59.000Z

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  1. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect (OSTI)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01T23:59:59.000Z

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  2. AzTEC Millimetre Survey of the COSMOS Field: I. Data Reduction and Source Catalogue

    E-Print Network [OSTI]

    Scott, K S; Perera, T A; Wilson, G W; Aretxaga, I; Bock, J J; Hughes, D H; Kang, Y; Kim, S; Mauskopf, P D; Sanders, D B; Scoville, N; Yun, M S

    2008-01-01T23:59:59.000Z

    We present a 1.1 mm wavelength imaging survey covering 0.3 sq. deg. in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope (JCMT), were centred on a prominent large-scale structure over-density which includes a rich X-ray cluster at z = 0.73. A total of 50 millimetre galaxy candidates, with a significance ranging from 3.5-8.5 sigma, are extracted from the central 0.15 sq. deg. area which has a uniform sensitivity of 1.3 mJy/beam. Sixteen sources are detected with S/N > 4.5, where the expected false-detection rate is zero, of which a surprisingly large number (9) have intrinsic (de-boosted) fluxes > 5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically-obscured stars, then these bright AzTEC sources have FIR luminosities > 6 x 10^12 L(sun) and star formation-rates > 1100 M(sun)/yr. Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray clu...

  3. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01T23:59:59.000Z

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  4. Survey of the Fishes and Habitat of Western South Dakota Streams

    E-Print Network [OSTI]

    Survey of the Fishes and Habitat of Western South Dakota Streams By Brandon C. Harland A thesis in the duck blind as well as in the field with my labs. Last but not least, I owe more than thanks to my wife. This thesis is dedicated to hunting companions, the abundance of game, and the opportunity to pursue them

  5. EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts.

  6. FORAGE FISH POPULATIONS AND GROWTH OF MUSKELLUNGE IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR

    E-Print Network [OSTI]

    FORAGE FISH POPULATIONS AND GROWTH OF MUSKELLUNGE IN A SOUTH DAKOTA POWER PLANT COOLING RESERVOIR;ACKNOWLEBGEMENTS I would like to thank the following people for making this study possible: Dr. R. L. Applegate. Scaletfor reviewing the manuscript; R. G. Johnson and N. N. Thomas, Otter Tail Power Co., provided access

  7. Analysis and evaluation of round hay bale breakwaters at Lake Sharpe, South Dakota 

    E-Print Network [OSTI]

    Grundy, Thomas Paxson

    1993-01-01T23:59:59.000Z

    Lake Sharpe in central South Dakota is one of three reservoirs constructed along the Missouri River by the U.S. Army Corps of Engineers in the 50's and 60's. The Lake is underlain by Cretaceous Pierre shale and various Quaternary glacial deposits...

  8. EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

  9. PROC. S. D. ACAD. SCI.. YOLo 59 (1980) 147 PHEASANT USE OF SOUTH DAKOTA WETLANDS

    E-Print Network [OSTI]

    (Green, 1938; Kimball, 1948; Klonglan, 1971). Winter weather may cause mortality or reduce to faU mortality (Gates, 1971). Pheasants move Into traditional wintering areas in late fall supporting emergent hydrophytes (N =40) in Wind- sor Township, Brookings County, South Dakota were measured

  10. EA-2007: Groton-Ordway 115-kV Transmission Line, Groton, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Upper Great Plains Region) is preparing an EA that assesses the potential environmental impacts of a proposal to construct a new 115-kV transmission line that would connect Western’s existing Groton and Ordway Substations near Groton, South Dakota.

  11. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  12. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [South Dakota State University

    E-Print Network [OSTI]

    chrysops) is an important sport fish species in the upper Midwest. As such, understanding white bass://www.informaworld.com/smpp/title~content=t925992003 White bass population demographics in a northwestern South Dakota reservoir Quinton E. Phelpsab this Article Phelps, Quinton E. , Ward, Matthew J. and Willis, David W.(2011) 'White bass population

  13. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-08-15T23:59:59.000Z

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  14. HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA

    E-Print Network [OSTI]

    HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA Teresa J status, and species. Key words: Black Hills, elements, fire, liver, mule deer, Odocoileus hemionus and laboratory animals (Robbins, 1983). Liver concentrations of some trace elements have been measured in elk

  15. SUBSURFACE DRIP IRRIGATION SYSTEMS FOR SPECIALTY CROP PRODUCTION IN NORTH DAKOTA

    E-Print Network [OSTI]

    Steele, Dean D.

    SUBSURFACE DRIP IRRIGATION SYSTEMS FOR SPECIALTY CROP PRODUCTION IN NORTH DAKOTA D.D.Steele, R.G.Greenland, B. L. Gregor ABSTRACT. Subsurface drip irrigation (SDI) systems offer advantages over other types of irrigation systems for specialty crop production, including water savings, improved trafficability

  16. Influence of Gizzard Shad on Fish Community Ecology in Northeastern South Dakota Glacial Lakes

    E-Print Network [OSTI]

    South Dakota Glacial Lakes By Justin A. VanDeHey and David W. Willis Department of Wildlife Administrator Wildlife Division Director Geno Adams Tony Leif Grants Coordinator Tanna Zabel #12;ii- Chutz, Landon Peirce, Luke Schultz and Breanna VanDeHey. Funding for this project was provided

  17. A magnetotelluric investigation of crustal structure in southeastern Arizona

    E-Print Network [OSTI]

    Parizek, Daniel Joseph

    1983-01-01T23:59:59.000Z

    . The consistent deep electrical strike may also suggest that the NN-trend of surface structures in the region was controlled by pre-existing, deep seated, NW-trending structures. Correlation between heat flow and depth to the crustal conductive zone... cross-section wi th the apparent resistivity model Conductive temperature profiles for major heat flow provinces in the United States (from Shankland and Ander, in press) 51 52 56 Page Figure 15. Heat flow sites in southeastern Arizona...

  18. www.engineering.arizona.edu Accredited by the Engineering Accreditation Commission of ABET,

    E-Print Network [OSTI]

    Wong, Pak Kin

    Container Controls 1 1 Aker Kvaerner 1 1 Aklapo 1 1 APS/Raytheon 1 1 ARAMCO Oil Company 1 1 Arizona Youth

  19. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  20. E-Print Network 3.0 - arizona installation restoration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surrounding a hydropower decommissioning in Fossil Creek, Arizona... consequences of stream restoration on an exotic crayfish population. Master's ... Source: Marks, Jane -...

  1. From Barbies to Boycotts: How Immigration Raids in Arizona Created a Ten-Year Old Activist

    E-Print Network [OSTI]

    Rodriguez Vega, Silvia

    2015-01-01T23:59:59.000Z

    Policy Perspective. O'Leary, A. O. (2014). UndocumentedArizona on a daily basis (O'Leary, 2014). The state is also

  2. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Vigil, Dena M.; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Lefantzi, Sophia (Sandia National Laboratories, Livermore, CA); Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Eddy, John P.

    2011-12-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.

  3. Academic Genealogy of Malgorzata Peszynska The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    Academic Genealogy of Malgorzata Peszynska The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society http://www.genealogy

  4. Arizona Geological Society Digest 22 e-mail: Dorsey: rdorsey@uoregon.edu; LaMaskin: tlamaski@uoregon.edu

    E-Print Network [OSTI]

    Dorsey, Becky

    Arizona Geological Society Digest 22 2008 325 e-mail: Dorsey: rdorsey@uoregon.edu; La evolution, and ore deposits: Arizona Geological Society Digest 22, p. 325-332. Mesozoic collision

  5. Lake Montezuma, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida:Montezuma, Arizona: Energy

  6. Winslow West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne,Winslow West, Arizona: Energy

  7. Casa Grande, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizoCarteretGrande, Arizona: Energy

  8. Casas Adobes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizoCarteretGrande, Arizona:Casas Adobes,

  9. San Manuel, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin EC Jump to:Lorenzo,Manuel, Arizona:

  10. Santa Cruz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky,SanpeteSantaArizona: Energy

  11. PP-107 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash Arizona

  12. PP-108 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash Arizona-18

  13. Lake Havasu City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995°,ILEDSGP/joinHavasu City, Arizona:

  14. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View NewNorthern Arizona University Wind

  15. PP-107 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment56703 Federal PowerPP-107 Arizona

  16. Huachuca City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming:Iowa:Huachuca City, Arizona:

  17. Litchfield Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other AlternativePark, Arizona: Energy Resources

  18. City of Mesa, Arizona (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville, VirginiaMeade,Mesa, Arizona

  19. Geothermal-Exploration In Arizona | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)EnergyAmatitlan GeothermalEnergyArizona Jump to:

  20. Graham County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:Graham County, Arizona: Energy

  1. Green Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabitsArizona: Energy Resources

  2. Spring Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: EnergyIndiana: EnergyMills,Park,Arizona:

  3. Sunshine Arizona Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,SunElectraSunnyside,SunrepsSunsetArizona Wind

  4. El Mirage, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage, Arizona: Energy Resources

  5. Northern Arizona University SHRM Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby,Plains,Northampton,St.Northern Arizona

  6. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby,Plains,Northampton,St.Northern ArizonaNorthern

  7. Oro Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: EnergyOrlovista,Oro Valley, Arizona:

  8. Arizona Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,the Caribbean12321°,Arizona

  9. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,AnzaArcade,theElectric PwrArizona

  10. Arizona's 6th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6th congressional district

  11. Arizona's 7th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6th congressional

  12. Arizona's 8th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6th

  13. Maricopa County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona:Ohio:Maribel,

  14. McNary, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show MapMcMinnMcNary, Arizona: Energy

  15. Sun City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside Wind FarmSummit, NewArizona:

  16. Cordes Lakes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| ExplorationCooperstown,Terrace,Lakes, Arizona: Energy

  17. Dewey-Humboldt, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona: Energy Resources Jump to:

  18. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » HighAbstractsAprilArgonne NationalArizona

  19. Sierra Vista, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirkeSichuan MiyiSichuanVista, Arizona: Energy

  20. Colorado City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity, Arizona: Energy

  1. Avra Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga EnergyAuxinWisconsin:Avra Valley, Arizona:

  2. Big Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark, Arizona: Energy Resources Jump to:

  3. Queen Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuailValley, Arizona: Energy

  4. Round Rock, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan:Rotokawa Geothermal Power PlantArizona:

  5. Tucson Estates, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-StateTucson Estates, Arizona: Energy Resources

  6. Valencia West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump to:Vale HotWest, Arizona:

  7. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    SciTech Connect (OSTI)

    CARLSON, A.B.

    1998-11-19T23:59:59.000Z

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  8. File:USDA-CE-Production-GIFmaps-AZ.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdf Jump to:AZ.pdf Jump to:

  9. Fellowships in Comparative Genomics Graduate education at the University of Arizona

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Fellowships in Comparative Genomics Graduate education at the University of Arizona Supported Traineeships (IGERT) The NSF-IGERT Program in Comparative Genomics is an interdisciplinary program designed genomics More information, application instructions, and deadlines at: www.genomics.arizona.edu Biosciences

  10. Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being con-

    E-Print Network [OSTI]

    Fay, Noah

    Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being for RO Treatment of CAP Water PROJECT TEAM This Arizona Water Institute PROJECT FACT SHEET is part to treat CAP water and to minimize the amount of concentrate produced. More research and significant

  11. Pressures on Arizona Water and Energy Policy: Case Study of the Navajo Generating Station

    E-Print Network [OSTI]

    Fay, Noah

    largest user of energy in the state of Arizona. It is powered by a coal plant in Northern Arizona, the Navajo Generating Station (NGS), that is among the dirtiest coal power plants in the country. The future of this power plant is currently being debated by the U.S. Environmental Protection Agency (EPA

  12. Sustainability Scientists and Scholars at Arizona State University: A Community of Scholars

    E-Print Network [OSTI]

    Hall, Sharon J.

    Sustainability Scientists and Scholars at Arizona State University: A Community of Scholars of sustainability is a new and growing area of university responsibility and scholarly research called "sustainability science." This new field is a vital element of Arizona State University's research portfolio

  13. Changes in Snag Populations in Northern Arizona Mixed-Conifer and Ponderosa Pine Forests, 19972002

    E-Print Network [OSTI]

    Changes in Snag Populations in Northern Arizona Mixed-Conifer and Ponderosa Pine Forests, 1997 (Pinus ponderosa, n 60 plots) forests in north-central Arizona from 1997 to 2002. Of 2,240 snags marked in 1997, at least 76% remained standing in 2002, 17% had fallen and were relocated as logs, 0.5% were cut

  14. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.; Anderson, S.B.

    1982-08-01T23:59:59.000Z

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.

  15. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    SciTech Connect (OSTI)

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04T23:59:59.000Z

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  16. Study of the geothermal production potential in the Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Chu, Min H.

    1991-09-10T23:59:59.000Z

    Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because of their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.

  17. Processes and rates of shoreline bluff recession at Lake Sharpe, South Dakota 

    E-Print Network [OSTI]

    Harwood, David Grosart

    1993-01-01T23:59:59.000Z

    : Geology ABSTRACT Processes and Rates of Shoreline Bluff Recession at Lake Sharpe, South Dakota. (December 1993) David Grosart Harwood, B. S, , St. Lawrence University Chair of Advisory Committee: Dr. Christopher C. Mathewson Lake Sharpe is the center.... Historical survey profile, station ?20: Ft. George. 71 Figure 41. Shoreline retreat over time, station ?1: Rousseau. Lithology: shale, gravel, loess. 73 Figure 42. Shoreline retreat over time, station ?2: Shields. Lithology: gravel. 74 Figure 43...

  18. EIS-0469: Proposed Wilton IV Wind Energy Center Project, Burleigh County, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

  19. Diagenesis of the Dakota sandstone, West Lindrith Field, Rio Arriba County, New Mexico

    E-Print Network [OSTI]

    Franklin, Stanley Powell

    1987-01-01T23:59:59.000Z

    Christian University Chairman of Advisory Commiuee: Dr, Thomas T. Tieh The Cretaceous Dakota sandstone at West Lindrith Field, Rio Arriba County, New Mexico consists of lenticular sand bodies interstratified with marine shales. The sandstones... rocks which were deposited under diverse marine and non-marine conditions near the southwestern margin of an epicontinental sea that covered much of the western interior (Owen, 1969) (Fig. 3). Local subsidence and major uplifts in the Cordillera...

  20. Analysis and evaluation of round hay bale breakwaters at Lake Sharpe, South Dakota

    E-Print Network [OSTI]

    Grundy, Thomas Paxson

    1993-01-01T23:59:59.000Z

    in central South Dakota between the capital of Pierre and Fort Thompson (Figure 2). The middle of three reservoirs constructed along the Missouri river by the U. S. Army Corps of Engineers in the 1950's and 60's, it was created by the construction... Western section of bales at DeGrey site Vl. . . . . . . . . . . . . . . 32 Page 45 46 Figure 24 Aerial photograph of the shore west of North Bend in 1988 showing suspended sediment being transported into deeper Figure 17 Gravel transported...

  1. Processes and rates of shoreline bluff recession at Lake Sharpe, South Dakota

    E-Print Network [OSTI]

    Harwood, David Grosart

    1993-01-01T23:59:59.000Z

    : Geology ABSTRACT Processes and Rates of Shoreline Bluff Recession at Lake Sharpe, South Dakota. (December 1993) David Grosart Harwood, B. S, , St. Lawrence University Chair of Advisory Committee: Dr. Christopher C. Mathewson Lake Sharpe is the center.... Historical survey profile, station ?20: Ft. George. 71 Figure 41. Shoreline retreat over time, station ?1: Rousseau. Lithology: shale, gravel, loess. 73 Figure 42. Shoreline retreat over time, station ?2: Shields. Lithology: gravel. 74 Figure 43...

  2. Studies on the inuence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy

    E-Print Network [OSTI]

    Zhou, Wei

    alloys weigh $35% lower than their aluminium counterparts at equal stiness [1]. In addition, these alloys of cast AZ91 magnesium alloy. In AZ91, magnesium and the principal alloying element aluminium, have91D magnesium alloy R. AMBAT, N.N. AUNG and W. ZHOU School of Mechanical and Production Engineering

  3. Dakota sandstone and associated rocks adjacent to San Juan sag near Gunnison, Colorado

    SciTech Connect (OSTI)

    Bartleson, B. (Western State College of Colorado, Gunnison (USA))

    1989-09-01T23:59:59.000Z

    The stratigraphy and depositional systems of the Dakota Sandstone and associated rocks were studied in outcrop at the northeastern margin of the San Juan volcanic field in southern Gunnison and northern Saguache Counties, Colorado. This study fills in a major gap in regional Mesozoic stratigraphy and provides a last view of these rocks before they are concealed to the south by the volcanic cover of the San Juan sag, a frontier hydrocarbon basin. Locally, the Burro Canyon Formation is interpreted as a dominantly meandering fluvial system formed under oxidizing conditions similar to the underlying Morrison Formation. The Burro Canyon Formation pinches out along a roughly east-west line just south of US Highway 50 and is missing for about 15 mi south to the edge of the continuous volcanics. The Dakota Sandstone consists of a lower, low-sinuosity fluvial system abruptly overlain by an upper, mostly nearshore marine sequence which grades upward into the offshore Mancos Shale. While the total Dakota thickness is relatively constant, the fluvial system thickens markedly to the south where marine rocks are quite thin. To the north, marine rocks thicken irregularly and fluvial rocks are thin. In this area, the Mancos Shale can be readily subdivided into Graneros, Greenhorn, Carlile, Juana Lopez, and upper Niobrara formations, although the Fort Hays limestone is locally missing. The upper Mancos Shale and Mesaverde Group are also missing, presumably due to late Eocene prevolcanic erosion.

  4. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect (OSTI)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09T23:59:59.000Z

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  5. 1301 So. 3rd Avenue Yuma, AZ 85364 ph: 928 / 782-5113 fax: 928 / 783-0866

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    DESCRIPTIONJOB DESCRIPTIONJOB DESCRIPTION Location: KSWT-TV El Centro, CA Serving Yuma, AZ and El Centro, CA Job proper schedules, develop proposals for clients to aid them in maximizing the utility of their TV dollars's license, insurance & have a dependable vehicle, ability to lift at least 35 lbs. when necessary & maintain

  6. Summer cooling efficiency of landscapes in Phoenix, AZ Ariane Middel , Anthony J. Brazel , Shai Kaplan , Soe W. Myint

    E-Print Network [OSTI]

    Hall, Sharon J.

    Summer cooling efficiency of landscapes in Phoenix, AZ 1 2 2 2 Ariane Middel , Anthony J. Brazel urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia, Journal of Applied Meteorology and Climatology 46(4):477-493. Grimmond, C. S. B., Oke

  7. In Proceedings of the 1999 Winter Simulation Conference, Phoenix, AZ. BPR AND LOGISTICS: THE ROLE OF COMPUTATIONAL MODELS

    E-Print Network [OSTI]

    In Proceedings of the 1999 Winter Simulation Conference, Phoenix, AZ. BPR AND LOGISTICS: THE ROLE- gistics, and the cost of logistics is roughly 10% of GDP in the US. Designing, managing, and improving indus- trial logistics systems has never been more challenging, or more critical to competitive success

  8. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  9. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    SciTech Connect (OSTI)

    White, D L; Foster, M

    1982-05-01T23:59:59.000Z

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint.

  10. Software configuration management plan, 241-AY and 241-AZ tank farm MICON automation system

    SciTech Connect (OSTI)

    Hill, L.F.

    1997-10-30T23:59:59.000Z

    This document establishes a Computer Software Configuration Management Plan (CSCM) for controlling software for the MICON Distributed Control System (DCS) located at the 241-AY and 241-AZ Aging Waste Tank Farm facilities in the 200 East Area. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes. A CSCM identifies and defines the configuration items in a system (section 3.1), controls the release and change of these items throughout the system life cycle (section 3.2), records and reports the status of configuration items and change requests (section 3.3), and verifies the completeness and correctness of the items (section 3.4). All software development before initial release, or before software is baselined, is considered developmental. This plan does not apply to developmental software. This plan applies to software that has been baselined and released. The MICON software will monitor and control the related instrumentation and equipment of the 241-AY and 241-AZ Tank Farm ventilation systems. Eventually, this software may also assume the monitoring and control of the tank sludge washing equipment and other systems as they are brought on line. This plan applies to the System Cognizant Manager and MICON Cognizant Engineer (who is also referred to herein as the system administrator) responsible for the software/hardware and administration of the MICON system. This document also applies to any other organizations within Tank Farms which are currently active on the system including system cognizant engineers, nuclear operators, technicians, and control room supervisors.

  11. Archaeological studies at Drill Hole U20az Pahute Mesa, Nye county, Nevada. [Contains bibliography

    SciTech Connect (OSTI)

    Simmons, A.H.; Hemphill, M.L.; Henton, G.H.; Lockett, C.L.; Nials, F.L.; Pippin, L.C.; Walsh, L.

    1991-07-01T23:59:59.000Z

    During the summer of 1987, the Quaternary Sciences Center (formerly Social Science Center) of the Desert Research Institute (DRI), University of Nevada System, conducted data recovery investigations at five archaeological sites located near Drill Hole U20az on the Nevada Test Site in southern Nevada. These sites were among 12 recorded earlier during an archaeological survey of the drill hole conducted as part of the environmental compliance activities of the Department of Energy (DOE). The five sites discussed in this report were considered eligible for the National Register of Historic Places and were in danger of being adversely impacted by construction activities or by effects of the proposed underground nuclear test. Avoidance of these sites was not a feasible alternative; thus DRI undertook a data recovery program to mitigate expected adverse impacts. DRI's research plan included controlled surface collections and excavation of the five sites in question, and had the concurrence of the Nevada Division of Historic Preservation and Archaeology and the Advisory Council of Historic Preservation. Of the five sites investigated, the largest and most complex, 26Ny5207, consists of at least three discrete artifact concentrations. Sites 26Ny5211 and 26Ny5215, both yielded considerable assemblages. Site 26Ny5206 is very small and probably is linked to 26Ny5207. Site 26Ny5205 contained a limited artifact assemblage. All of the sites were open-air occurrences, and, with one exception contained no or limited subsurface cultural deposits. Only two radiocarbon dates were obtained, both from 26Ny5207 and both relatively recent. While the investigations reported in the volume mitigate most of the adverse impacts from DOE activities at Drill Hole U20az, significant archaeological sites may still exist in the general vicinity. Should the DOE conduct further activities in the region, additional cultural resource investigations may be required. 132 refs., 71 figs., 44 tabs.

  12. Hydrodynamic potential of upper cretaceous Mesaverde group and Dakota formation, San Juan Basin, northwestern New Mexico and southwestern Colorado

    E-Print Network [OSTI]

    Dougless, Thomas Clay

    1984-01-01T23:59:59.000Z

    wells near the present site of the New Mexico Public Service power plants in 1912-13; (6) Mesa Verde Oil Company drilled two wells near Flora Vista in 1918-19; and the T. E. Williams Syndicate drilled the the deepest test to date (3, 900 ft) 5 miles... sandstones (Deischl, 1973). The central basin Dakota discovery well was drilled in 1947 in the Angel Peak area south of Bloomfield, New Mexico (Matheny, 1964). Development of the Dakota reserves within the basin was initially very slow due to a lack...

  13. Engaging With Industry Capitalizing on the Integrated Tech Launch Arizona Structure

    E-Print Network [OSTI]

    Wong, Pak Kin

    / Mineral Resources 4. Biomedical Innova5on 5. Clinical & Transla5onal Sciences to the global marketplace David Allen Vice President, Tech Launch Arizona About Build strategic, high impact relaEonships between the UA and global companies

  14. FIA-12-0059- In the Matter of California Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 31, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  15. FIA-12-0053- In the Matter of Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 11, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  16. FIA-12-0054- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    On September 14, 2012, California-Arizona-Nevada District Organization Contract Compliance (CANDO) filed an appeal from a final determination issued by the Loan Guarantee Program Office (LGPO) of...

  17. Geothermal heating project at St. Mary's Hospital, Pierre, South Dakota. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    St. Mary's Hospital, Pierre, South Dakota, with the assistance of the US Department of Energy, drilled a 2176 ft well into the Madison Aquifer ot secure 108/sup 0/F artesian flow water at 385 gpm (475 psig shut-in pressure). The objective was to provide heat for domestic hot water and to space heat 163,768 sq. ft. Cost savings for the first three years were significant and, with the exception of a shutdown to replace some corroded pipe, the system has operated reliably and continuously for the last four years.

  18. McHenry County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMaviMcCullochMcGregor, Minnesota:North Dakota:

  19. McPherson County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show MapMcMinnMcNary,South Dakota:

  20. South Dakota/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource History View NewChestnutDakota/Wind

  1. Influence of Drought Conditions on Brown Trout Biomass and Size Structure in the Black Hills, South Dakota

    E-Print Network [OSTI]

    in the Black Hills of western South Dakota. Stream discharge, mean summer water temperature, the biomass: early (2000­2002) and late drought (2005­ 2007). Mean summer water temperatures were similar between to drought conditions, factors such as angler harvest, fish movements, and the nuisance algal species

  2. Compilation of the Dakota Aquifer Project isotope data and publications: The Isotope Hydrology Program of the Isotope Sciences Division

    SciTech Connect (OSTI)

    Davisson, M.L.; Smith, D.K.; Hudson, G.B.; Niemeyer, S. [Lawrence Livermore National Lab., CA (United States); Macfarlane, P.A.; Whittemore, D.O. [Kansas Geological Survey, Lawrence, KS (United States)

    1995-01-01T23:59:59.000Z

    In FY92 the then Nuclear Chemistry Division embarked on a scientific collaboration with the Kansas Geological Survey (KGS) to characterize with isotope techniques groundwater of the Dakota Formation of Kansas. The Dakota Formation is a Cretaceous-aged marine sandstone hosting potable groundwater in most regions of Kansas whose use will serve to partially offset the severe overdraft problems in the overlying Ogallala Formation. The isotope characterization of the Dakota groundwater has generated data that delineates sources, ages, and subsurface controls on the water quality. Initial interpretations of the data have been published in abstract volumes of (1) the 1993 Geological Society of America National Meeting, (2) the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology, and (3) the 1994 Dakota Aquifer Workshop and Clinic. Copies of all abstracts are included in this brief review. One report will focus on the sources and ages of the groundwater, and the other will focus on the subsurface controls on the natural water quality.

  3. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    SciTech Connect (OSTI)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.; Jakeman, John Davis; Swiler, Laura Painton; Stephens, John Adam; Vigil, Dena M.; Wildey, Timothy Michael; Bohnhoff, William J.; Eddy, John P.; Hu, Kenneth T.; Dalbey, Keith R.; Bauman, Lara E; Hough, Patricia Diane

    2014-05-01T23:59:59.000Z

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  4. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect (OSTI)

    Varney, Peter J.

    2002-04-23T23:59:59.000Z

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  5. Bed agglomerates formed by atmospheric fluidized bed combustion of a North Dakota lignite

    SciTech Connect (OSTI)

    Benson, S.A.; (Dept. of Energy, Grand Forks, ND); Karner, F.R.; Goblirsch, G.M.; Brekke, D.W.

    1982-01-01T23:59:59.000Z

    This paper discusses the performance of quartz or limestone as a bed material during the combustion of high sodium North Dakota lignite. The lignite is from the Beulah mine of Mercer County, North Dakota. The composite coal and coal ash analysis is summarized in Table 1. The lignite was partially dried before this series of tests; its as-mined moisture content was 36%, and its heating valve 15,000 J/g. Other important considerations are the operation of the combustor and how operational parameters affect the performance of the bed material, sulfur retention on coal ash and bed material, and heat transfer. The most important operational parameters of the AFBC for the tests are listed. The tendency for the bed to agglomerate has been shown through extensive testing to depend on the following parameters: (1) bed temperature (higher temperature increases tendency); (2) coal sodium content (increased coal sodium content shows increased severity of agglomeration); (3) bed material composition (high calcium content tends to delay, and decrease the severity of agglomerates formed; (4) ash recycle (increased recycle of ash tends to increase agglomeration tendency); (5) there appears to be a bed design parameter such as position of coal feed points, and distributor plate performance which affect bed material agglomeration. X-ray fluorescence analysis was performed on bed material sampled continually throughout the run to determine the changes in composition of major ash constituents.

  6. JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-11-01T23:59:59.000Z

    Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

  7. Thermal stress analysis of fused-cast AZS refractories during production; Part 2: Development of thermo-elastic stress model

    SciTech Connect (OSTI)

    Cockcroft, S.L.; Brimacombe, J.K. (Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. (Carborundum Co., Falconer, NY (United States). Monofrax-S Plant)

    1994-06-01T23:59:59.000Z

    Mathematical models of heat flow and thermo-elastic stress, based on the finite-element method, have been developed and utilized to analyze the voidless,'' fused-cast, AZS, solidification process. The results of the mathematical analysis, in conjunction with information obtained in a comprehensive industrial study, presented in Part 1 of this paper, describe the mechanisms for the formation of the various crack types found in the fused-cast product. Thermal stresses are generated early in the solidification process by rapid cooling of the refractory surface as it contacts the initially cool mold and later in conjunction with the tetragonal-to-monoclinic phase transformation which occurs in the zirconia component of the AZS refractory. Applying this model, castings were made using a revised mold design. Preliminary results indicate these castings to be free of objectionable transverse cracks.

  8. PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)

    SciTech Connect (OSTI)

    Hansen, E

    2005-03-31T23:59:59.000Z

    The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

  9. Tucson, Arizona: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Socioeconomic impact of photovoltaic power at Schuchulik, Arizona. Final report

    SciTech Connect (OSTI)

    Bahr, D.; Garrett, B.G.; Chrisman, C.

    1980-10-01T23:59:59.000Z

    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. In some respects, Schuchuli resembles many of the rural villages in other parts of the world. For example, it's relatively small in size (about 60 residents), composed of a number of extended family groupings, and remotely situated relative to major population centers (190 km, or 120 miles, from Tucson). Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes ad other village buildings, family refrigerators and a communal washing machine and sewing machine. The project, managed for the US Department of Energy by the NASA Lewis Research Center, provided for a one-year socio-economic study to assess the impact of a relatively small amount of electricity on the basic living environment of the villagers. The results of that study are presented, including village history, group life, energy use in general and the use of the photovoltaic-powered appliances. No significant impacts due to the photovoltaic power system were observed.

  11. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  12. Weatherization Assistance Program: Final monitoring report for: Arizona, California, Nevada

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. The first year of the contract began on October 1, 1985, and expired on September 30, 1986. The final report for that first year was submitted to DOE-SAN in August, 1986. The second year of the contract began on October 1, 1986, and expired on September 30, 1987. The final report for that second year was submitted to DOE-SAN in August, 1987. This report covers the monitoring of grantees and subgrantees for the second option year, or what is the third year of the contract. The first two (2) weeks of the third year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on November 16, 1987, and was completed on August 19, 1988. During this nine-month period, twenty-nine (29) agencies, both grantees and subgrantees, were visited and evaluated under this contract.

  13. The Arizona Health Sciences Center at the University of Arizona is a network of health-related organizations that had its beginnings on the UA campus in Tucson

    E-Print Network [OSTI]

    Arizona, University of

    Hospital (UPH Hospital). Known today as The University of Arizona Medical Center ­ South Campus, the hospital is a secondary teaching hospital for the UA College of Medicine. · In July 2010, the integration work to eradicate health disparities in Native American and Hispanic communities, particularly

  14. Rank One Chaos: Theory and Applications

    E-Print Network [OSTI]

    Wang, Quidong

    , University of Arizona, Tucson, AZ 85721 USA dwang@math.arizona.edu ALI OKSASOGLU + Honeywell Corporation, 11100 N. Oracle Rd., Tucson, AZ 85737 USA ali.oksasoglu@honeywell.com Abstract The main purpose

  15. Rank One Chaos: Theory and Applications

    E-Print Network [OSTI]

    Wang, Quidong

    , University of Arizona, Tucson, AZ 85721 USA dwang@math.arizona.edu ALI OKSASOGLU Honeywell Corporation, 11100 N. Oracle Rd., Tucson, AZ 85737 USA ali.oksasoglu@honeywell.com Abstract The main purpose

  16. Depositional and diagenetic characteristics of Waulsortian-type buildups in the Lodgepole formation: Big Snowy Mountains, Montana, and Dickinson Field, North Dakota

    E-Print Network [OSTI]

    Adams, Andrea Suzanne

    1999-01-01T23:59:59.000Z

    - most notably the pore-filling blocky calcite cements are saddle dolomite cements- are seen in the Montana and North Dakota mounds. Early rim cements and replacement chalcedony are also present. Cathodoluminescence and isotope analysis also show...

  17. Academic Genealogy of Peh Hoon Ng The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society

    E-Print Network [OSTI]

    Ng, Peh H.

    Academic Genealogy of Peh Hoon Ng The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society http://www.genealogy.math.ndsu.nodak.edu Peh Hoon

  18. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandai National Labs, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandai National Labs, Livermore, CA); Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandai National Labs, Livermore, CA); Hough, Patricia Diane (Sandai National Labs, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  19. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  20. Risk-Averse Two-Stage Stochastic Program with Distributional ...

    E-Print Network [OSTI]

    2015-05-15T23:59:59.000Z

    Department of Systems and Industrial Engineering. University of Arizona, Tucson, AZ 85721. ‡. Department of Industrial and Systems Engineering. University of ...

  1. Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI-01-15486 Flow Dynamics and Inclusion Transport in Continuous Casting of Steel

    E-Print Network [OSTI]

    Thomas, Brian G.

    Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI- 01-15486 Flow;Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI- 01-15486 inclusion removal

  2. A laboratory study comparing the effectiveness of three dust palliatives on unpaved roads

    E-Print Network [OSTI]

    Ehsan, Mehbuba

    1999-01-01T23:59:59.000Z

    5. 2 Wind Erosion Test Results Considering Two Aggregate Types. . . . . . . . . . . . . . 65 5. 3 Traffic Erosion Test Results for Arizona (AZ) Aggregate . . . . . . . . . . . . . . . . . . . . . . . 72 5. 4 Traffic Erosion Test Results for Wyoming... Chloride Sample . . . . . . . . 3 I . . . . . . 3 3 12 Eroded Material from Calcium Chloride Sample. . . . . . . . . . . . . 34 13 Arizona (AZ) Aggregate Samples Treated with Water (After Curing for Two Days) . . 39 14 Arizona (AZ) Aggregate Samples...

  3. Proceedings of ASME 2010 4th International Conference on Energy Sustainability May 17-22, 2010 Phoenix, Arizona, USA

    E-Print Network [OSTI]

    Agogino, Alice M.

    1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17 International Conference on Energy Sustainability ES2010 May 17-22, 2010, Phoenix, Arizona, USA ES2010- 0 #12-22, 2010 Phoenix, Arizona, USA ES2010-90190 CO-DESIGN OF ENERGY-EFFICIENT HOUSING WITH THE PINOLEVILLE

  4. Eco-Loco Arizona Renewable Energy Conference Friday, September 7th, 2012 9 AM to 4 PM

    E-Print Network [OSTI]

    Hall, Sharon J.

    Eco-Loco Arizona Renewable Energy Conference Friday, September 7th, 2012 9 AM to 4 PM Keynote Speaker Ms. Leisa Brug director of the Governor's office of Energy Policy Renewable Energy projects projects that would benefit them. The Arizona Renewable Energy Conference provides an opportunity for all

  5. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    E-Print Network [OSTI]

    Jan Harms; Fausto Acernese; Fabrizio Barone; Imre Bartos; Mark Beker; J. F. J. van den Brand; Nelson Christensen; Michael Coughlin; Riccardo DeSalvo; Steven Dorsher; Jaret Heise; Shivaraj Kandhasamy; Vuk Mandic; Szabolcs Márka; Guido Müller; Luca Naticchioni; Thomas O'Keefe; David S. Rabeling; Angelo Sajeva; Tom Trancynger; Vinzenz Wand

    2010-06-03T23:59:59.000Z

    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms, and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100-ft level as a world-class low seismic-noise environment.

  6. THE SOUTHWEST ECOLOGICAL RESTORATION INSTITUTES In 2004, the Southwest Forest Health and Wildfire Prevention Act established institutes in Arizona, Colorado, and New Mexico for

    E-Print Network [OSTI]

    Prevention Act established institutes in Arizona, Colorado, and New Mexico for the purpose of ensuring Institute (ERI) at Northern Arizona University in Flagstaff, Arizona New Mexico Forest & Watershed Restoration Institute (NMFWRI) at New Mexico Highlands University in Las Vegas, New Mexico. The SWERI

  7. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service’s construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  8. Population ecology of rodents in a mixed coniferous forest ecosystem, North Rim, Arizona

    E-Print Network [OSTI]

    Ruffner, George Andrew

    1975-01-01T23:59:59.000Z

    in northern Arizona. These data are compared with similar data, available from the literature, on desert shrub ecosystems in the southwest. METHODS AND MATERIALS This study was conducted on Point Sublime, Grand Canyon National Park, Arizona. This area... 100 100 100 100 100 100 300 300 300 a) Raw data on SC were collected using the quadrat method (U. S. Forest Service, 1963) b) Raw data on SD were collected using the Point-quarter method (Cottam and Curtis, 1956) Table 4. Parameters of vegetation...

  9. Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ

    SciTech Connect (OSTI)

    Borden, A. K.; Brusseau, M. L.; Carroll, Kenneth C.; McMillan, Andrew; Akyol, N. H.; Berkompas, J.; Miao, Z.; Jordan, F.; Tick, Geoff; Waugh, W. J.; Glenn, E. P.

    2012-01-01T23:59:59.000Z

    Uranium mining and processing near Monument Valley, Arizona resulted in the formation of a large nitrate plume in a shallow alluvial aquifer. The results of prior field characterization studies indicate that the nitrate plume is undergoing a slow rate of attenuation via denitrification, and the results of bench-scale studies suggest that denitrification rates can potentially be increased by an order of magnitude with the addition of ethanol as a carbon substrate. The objective of the study was to investigate the potential of ethanol amendment for enhancing the natural denitrification occurring in the alluvial aquifer. Pilot tests were conducted using the single well, push-pull method and a natural-gradient test. The results showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicate the ethanol amendment effected a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrogen indicated that the nitrate concentration reductions were biologically mediated. Continued monitoring after completion of the pilot tests has shown that nitrate concentrations in the injection zone have remained at levels three orders of magnitude lower than the initial values, indicating that the impacts of the pilot tests have been sustained for several months.

  10. Atmospheric deposition: sample handling, storage, and analytical procedures for chemical characterization of event-based samples in North Dakota

    SciTech Connect (OSTI)

    Houghton, R.L.; Berger, M.; Zander, N.; Dutchek, S.K.

    1983-01-01T23:59:59.000Z

    The North Dakota atmospheric-deposition network uses HASL-type collectors to sample wet and dry deposition on an event basis for analysis of 8 principal mineral, 3 nutrient, and 15 trace constituents. Comparison of the compositions of wet deposition collected in adjacent collectors sampled on weekly and event bases indicates that nonevent sampling leads to significant contamination of wet-deposition samples with dry deposition. Elevation of the collectors 10 feet above ground surface may decrease wind-blown soil contamination significantly. This manual presents a summary of the research procedures adopted by the North Dakota District of the US Geological Survey to investigate the consequences of increased fossil-fuel combustion on the quality of atmospheric deposition. The manual has been tested by field operatives for 3 years and shown to be an effective field guide and management tool. 44 references, 3 figures, 13 tables.

  11. DAKOTA 101DAKOTA 101 DAKOTA OverviewDAKOTA Overview

    E-Print Network [OSTI]

    -prone · Strategies to combine methods for advanced studies or improveg p efficiency with surrogates (meta-models? (quantification of margins and uncertainty: QMU, UQ) · What is the best performing design or control parameters (design, UC, state) Black box: any code: mechanics, circuits, high energy physics, biology

  12. North Dakota

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2AprilBigto

  13. Environmental Assessment and Finding of No Significant Impact: Wind Energy Center Edgeley/Kulm Project, North Dakota

    SciTech Connect (OSTI)

    N /A

    2003-04-15T23:59:59.000Z

    The proposed Edgeley/Kulm Project is a 21-megawatt (MW) wind generation project proposed by Florida Power and Light (FPL) Energy North Dakota Wind LLC (Dakota Wind) and Basin Electric Power Cooperative (Basin). The proposed windfarm would be located in La Moure County, south central North Dakota, near the rural farming communities of Kulm and Edgeley. The proposed windfarm is scheduled to be operational by the end of 2003. Dakota Wind and other project proponents are seeking to develop the proposed Edgeley/Kulm Project to provide utilities and, ultimately, electric energy consumers with electricity from a renewable energy source at the lowest possible cost. A new 115-kilovolt (kV) transmission line would be built to transmit power generated by the proposed windfarm to an existing US Department of Energy Western Area Power Administration (Western) substation located near Edgeley. The proposed interconnection would require modifying Western's Edgeley Substation. Modifying the Edgeley Substation is a Federal proposed action that requires Western to review the substation modification and the proposed windfarm project for compliance with Section 102(2) of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4332, and Department of Energy NEPA Implementing Procedures (10 CFR Part 1021). Western is the lead Federal agency for preparation of this Environmental Assessment (EA). The US Fish and Wildlife Service (USFWS) is a cooperating agency with Western in preparing the EA. This document follows regulation issued by the Council on Environmental Quality (CEQ) for implementing procedural provisions of NEPA (40 CFR 1500-1508), and is intended to disclose potential impacts on the quality of the human environment resulting from the proposed project. If potential impacts are determined to be significant, preparation of an Environmental Impact Statement would be required. If impacts are determined to be insignificant, Western would complete a Finding of No Significant Impact (FONSI). Environmental protection measures that would be included in the design of the proposed project are included.

  14. Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

  15. Tectonic Setting and Characteristics of Natural Fractures in MesaVerde and Dakota Reservoirs of the San Juan Basin

    SciTech Connect (OSTI)

    LORENZ,JOHN C.; COOPER,SCOTT P.

    2000-12-20T23:59:59.000Z

    The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear may have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.

  16. EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild, Pinal County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration issued a Draft EA that assesses the potential environmental impacts of the proposed rebuild of a 35.6-mile transmission line that Western operates and maintains under an agreement with the Central Arizona Project. Additional information is available on the project website, http://www.wapa.gov/dsw/environment/ED2DOEEA1972.htm.

  17. The Arizona Poison and Drug Information Center's toll-free line

    E-Print Network [OSTI]

    Arizona, University of

    The Arizona Poison and Drug Information Center's toll-free line is always open. Call us if: · You think someone has been poisoned. · You have questions about any type of poison. · You want information about poison prevention. Storing Safely · Lock up poisonous products and medicines out of reach and out

  18. The Arizona Poison and Drug Information Center's toll free line is

    E-Print Network [OSTI]

    Arizona, University of

    The Arizona Poison and Drug Information Center's toll free line is always open. Call us if: · You think someone has been poisoned. · You have questions about any type of poison. · You want information about poison prevention. Storing Safely · Lock up poisonous products and medicines out of reach and out

  19. The University of Arizona College of Agriculture and Life Sciences12 Trace Minerals for Cattle

    E-Print Network [OSTI]

    Guerriero, Vince

    The University of Arizona College of Agriculture and Life Sciences12 Trace Minerals for Cattle deficiency of range forage as a potential culprit, zeroing in on its lack of the trace minerals selenium lacks these critical minerals, but also figured out a more efficient way to get cattle to consume them

  20. Topography affected landscape fire history patterns in southern Arizona, USA Jose M. Iniguez a,

    E-Print Network [OSTI]

    Topography affected landscape fire history patterns in southern Arizona, USA Jose M. Iniguez a frequent surface fires burned in forests of the western United States prior to Euro-American settlement influenced by stand (0.1­1 km2 ) and landscape (1­10 km2 ) scale topography. Such knowledge would inform

  1. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    E-Print Network [OSTI]

    Received 6 May 2005 Availble online 7 February 2006 Abstract The failure of a lava dam 165,000 yr ago dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. FailurePeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

  2. GeoDaze 2008 The University of Arizona Department of Geosciences

    E-Print Network [OSTI]

    Holliday, Vance T.

    contributions. Organizations Applied Geoscience LLC Arizona Geological Society BP Chevron ConocoPhillips Errol C. Melton Megan Anderson Miles Shaw Nancy Naeser Patrick Gisler Paul Martin Peter Kresan Richard Pfirman Terrence Gerlach Vance Haynes William, Jr. Jenny i #12;GeoDaze 2008 Committee Co-Chairs Treasurer Field

  3. Central ArizonaPhoenix Long-Term Ecological Research: Phase 2

    E-Print Network [OSTI]

    Hall, Sharon J.

    -Cover Change Climate-Ecosystem Interactions Water Policy, Use, and Supply Material Fluxes and Socioecosystem-Use and Land-Cover Change Climate-Ecosystem Interactions Water Policy, Use, and Supply Material FluxesCentral Arizona­Phoenix Long-Term Ecological Research: Phase 2 Nancy B. Grimm, Principal

  4. THE UNIVERSITY OF ARIZONA TECHNICAL REPORT 1 The Resilience of WDM Networks to

    E-Print Network [OSTI]

    Efrat, Alon

    , are vulnerable to large-scale failures of their physical infrastructure, resulting from physical attacks (such as optical fibers, amplifiers, routers, and switches), making them vulnerable to physical attacksTHE UNIVERSITY OF ARIZONA TECHNICAL REPORT 1 The Resilience of WDM Networks to Probabilistic

  5. Strategies for Developing Water-Conscious Communities: An Analysis of Water Conservation in Tucson, Arizona

    E-Print Network [OSTI]

    Fay, Noah

    conservation. Water conservation practices, such as rainwater harvesting, recycling gray-water and installation1 Strategies for Developing Water-Conscious Communities: An Analysis of Water Conservation was made possible by the University of Arizona, Technology and Research Initiative Fund 2009/2010, Water

  6. FIA-12-0020- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals granted a Motion for Reconsideration of part of a Decision we issued on March 23, 2012, relating to appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) under the Freedom of Information Act (FOIA).

  7. Pressures on Arizona Water and Energy Policy: Case Study of the

    E-Print Network [OSTI]

    Fay, Noah

    in Arizona. NGS provides 95% of the power for CAP. #12;Coal and Water #12;Climate and Water #12;Why should I Components #12;Water Related NGS Documents · EPA Regulation: "BART" alternative · TWG Agreement: CA and NV or transform plant into solar plant · Commitments from DOI to affected tribes #12;EPA on Water and NGS · EPA

  8. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that will assess the potential environmental impacts of a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California.

  9. Ground Covers for northern ArizonA Above 6,000 foot elevAtions

    E-Print Network [OSTI]

    Sanderson, Mike

    or the use of fabric or plastic mulch may be required. Most Northern Arizona soils are limited in the amount to turf, bare ground, and rock mulches. Ground covers fill a number of important design needs. They can or even highway embankments. They can soften and add a touch of greenery to the large rock-mulched areas

  10. Arizona Radio Observatory (ARO) The SMT is the most accurate submillimeter astronomical

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    Arizona Radio Observatory (ARO) The SMT is the most accurate submillimeter astronomical telescope-183 GHz range (2 and 3 mm windows), and the SMT supports 200-490 GHz receivers. Future instrumentation.I.T. Haystack. SMT Structure Geometry Main reflector: paraboloid D=10 m F/D=0.35. Subreflector: hyperboloid d=0

  11. Microbial Quality Analysis of Water Runoff For Biosolid-Applied Fields in Southern Arizona

    E-Print Network [OSTI]

    Fay, Noah

    Microbial Quality Analysis of Water Runoff For Biosolid-Applied Fields in Southern Arizona Nicholas Undergraduate Fellowship Program #12;Abstract Biosolids, solid waste byproducts resulting from wastewater of biosolid application on a farm's water quality. Using indicator organisms such as E. coli and total

  12. The Use of Biosensors in Detecting Pathogens in Arizona's Water Distribution System

    E-Print Network [OSTI]

    Fay, Noah

    University of Arizona, Technology and Research Initiative Fund 2007/2008, Water Sustainability Undergraduate the masses can save people valuable time and money. Additionally, many of the components of the lab-on-a-chip--such as the optical fibers, the spectrometer, and the syringe pump--are reusable, while the lab-on-a-chip itself can

  13. Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation

    E-Print Network [OSTI]

    Fouch, Matthew J.

    E Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation, and Lepolt Linkimer Online Material: Plot of viable focal mechanisms and table of regional seismic velocity model. INTRODUCTION Rate and distribution of seismic activity are important indica- tors of the overall

  14. FIA-12-0004- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  15. FIA-12-0005- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  16. Logo Sheet for Arizona State University All logo configurations are available in the

    E-Print Network [OSTI]

    Hall, Sharon J.

    Logo Sheet for Arizona State University All logo configurations are available in the following (includes entire logo suite) Zip Archive (includes entire logo suite) The caption below each logo refers to the digital file name. Logo download page: http://www.asu.edu/gsm/downloads_logo.html Email gsm

  17. Unintended Consequences of Regulatory Takings Reform on the SDCP and Arizona Water Management

    E-Print Network [OSTI]

    Fay, Noah

    a property owners to just compensation if the value of a person's property is reduced by the enactmentUnintended Consequences of Regulatory Takings Reform on the SDCP and Arizona Water Management Fellowship Program #12;Introduction: Regulatory laws are often passed with the best intentions

  18. arizona-mexico border communities1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arizona-mexico border communities1 First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Border Bases border...

  19. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    SciTech Connect (OSTI)

    Bargar, John; Fuller, Christopher; Marcus, Matthew A.; Brearley, Adrian J.; Perez De la Rosa, M.; Webb, Samuel M.; Caldwell, Wendel A.

    2008-03-19T23:59:59.000Z

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick x 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-A basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mnoxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments.

  20. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09T23:59:59.000Z

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  1. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, developers manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  2. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual.

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandia National lababoratory, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandia National lababoratory, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandia National lababoratory, Livermore, CA); Giunta, Anthony Andrew; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandia National lababoratory, Livermore, CA); Hough, Patricia Diane (Sandia National lababoratory, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  3. Effect of oil and gas well drilling fluids on shallow groundwater in western North Dakota

    SciTech Connect (OSTI)

    Murphy, E.C.; Kehew, A.E.

    1984-01-01T23:59:59.000Z

    Upon completion of an oil and gas well in North Dakota, the drilling fluid is buried in the reserve pit at the site. Reclamation of the drill site is expedited by digging a series of trenches which radiate out from the reserve pit. The majority of buried drilling fluid is ultimately contained within these 5-7-metre deep trenches. These fluids are commonly salt-based, i.e., they contain a concentration of 300,000 +- 20,000 ppM NaCl. In addition, these drilling fluids also contain additives including toxic trace-metal compounds. Four reclaimed oil and gas well sites were chosen for study in western North Dakota. The ages of these sites ranged from 2 to 23 years. A total of 31 piezometers and 22 soil water samplers were installed in and around the drill sites, and quarterly groundwater samples were obtained from these instruments. The local groundwater flow conditions were also determined at these sites. Results of both the water analyses and earth resistivity surveys indicate that leachate is being generated at all of the study sites. Water obtained from the unsaturated zone beneath the buried drilling fluid at all of the four study sites exceeds some of the recommended concentration limits and maximum permissible concentration limits for trace elements and major ions (As, Cl/sup -/, Pb, Se, and NO/sub 3//sup -/). These values are greatly reduced in the unsaturated zone as the depth from the buried drilling fluid increases. This reduction is assumed to be the result of attenuation of these ions by cation exchange on Na montmorillonitic clays. Two of these study sites represent the typical geohydrologic setting for the majority of oil and gas well sites in this area. At these sites the saturated zone was not monitored. The reduction in ion concentration in the unsaturated zone suggests that there would be very little impact on the groundwater from this buried drilling fluid at these two sites. 46 references, 58 figures, 3 tables.

  4. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maung, Thein A.; Gustafson, Cole R.

    2013-01-01T23:59:59.000Z

    This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass) harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combinemore »harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass) harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.« less

  5. Community Energy Systems and the Law of Public Utilities. Volume Thirty-six. North Dakota

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01T23:59:59.000Z

    A detailed description is presented of the laws and programs of the State of North Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Forty-three. South Dakota

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01T23:59:59.000Z

    A detailed description is presented of the laws and programs of the State of South Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Wabek and Plaza fields: Carbonate shoreline traps in the Williston basin of North Dakota

    SciTech Connect (OSTI)

    Sperr, T. (Presidio Oil Co., Denver, CO (United States)); Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (United States)); Stancel, S.G.

    1991-06-01T23:59:59.000Z

    Wabek and Plaza fields in Mountrail and Ware counties, North Dakota, will ultimately produce 8 million and 3 million bbl of oil, respectively, from reservoirs in the Sherwood and Bluell intervals of the Mississippian Mission Canyon Formation. Both fields produce from porous, oolitic, and pisolitic lime packstones and grainstones deposited as shoals along a low-energy shoreline. A facies change to impermeable dolomitic and salina/sabkha environments to the east provides the updip trap. The Sherwood at Wabek has more than 100 ft of oil column driven by solution gas and water influx. Effective porosity consists of interparticle, vuggy, and minor dolomitic intercrystalline porosity. Log porosities range from 6 to 26%, averaging about 10%, and net pay averages about 26 ft. One mile west of Wabek, Plaza field produces from the Bluell, stratigraphically overlying the Sherwood. Log porosities range from 6 to 16%, averaging about 9%. Net pay averages about 6 ft. An oil-water contact is not yet defined, but at least 120 ft of oil column are present. Regional depositional slope and local depositional topography were major controls on Mission Canyon shoreline trends and the development of reservoir facies. In the Wabek-Plaza complex, the position and trend of the Sherwood and Bluell shorelines can be related to structural trends indentified in the crystalline basement from aeromagnetic data. Locally, thickness variations in the underlying Mohall interval amplified relief on the Wabek-Plaza structure and influenced the deposition of shoreline reservoirs.

  8. The Mount Perkins block, northwestern Arizona: An exposed cross section of an evolving, preextensional to synextensional magmatic system

    E-Print Network [OSTI]

    Faulds, James E.; Feuerbach, Daniel L.; Reagan, Mark K.; Metcalf, Rodney V.; Gans, Phil; Walker, J. Douglas

    1995-08-10T23:59:59.000Z

    The steeply tilted Mount Perkins block, northwestern Arizona, exposes a cross section of a magmatic system that evolved through the onset of regional extension. New 40Ar/39Ar ages of variably tilted (0–90°) volcanic strata ...

  9. United States Regional Administrator Region 9, Arizona, California Environmental Protection 75 Haw thorne Street Haw aii, Nevada, Guam

    E-Print Network [OSTI]

    Hall, Sharon J.

    United States Regional Administrator Region 9, Arizona, California Environmental Protection 75 Haw Cities Network ASU Receives Environmental Award for Collaborative Sustainability Efforts SAN FRANCISCO - The U.S. Environmental Protection Agency's Regional Administrator Jared Blumenfeld today recognized

  10. AzTEC/ASTE 1.1-mm survey of SSA22: Counterpart identification and photometric redshift survey of submillimetre galaxies

    E-Print Network [OSTI]

    Umehata, H.; Tamura, Y.; Kohno, K.; Hatsukade, B.; Scott, K. S.; Kubo, M.; Yamada, T.; Ivison, R. J.; Cybulski, R.; Aretxaga, I.; Austermann, J.; Hughes, D. H.; Ezawa, H.; Hayashino, T.; Ikarashi, S.; Iono, D.; Kawabe, R.; Matsuda, Y.; Matsuo, H.; Nakanishi, K.; Oshima, T.; Perera, Thushara A.; Takata, T.; Wilson, Graham Wallace; Yun, M. S.

    2014-06-01T23:59:59.000Z

    We present the results from a 1.1-mm imaging survey of the SSA22 field, known for having an overdensity of z = 3.1 Lyman ? emitting galaxies (LAEs), taken with the astronomical thermal emission camera (AzTEC) on the Atacama Submillimeter Telescope...

  11. Stratigraphic and diagenetic controls on the occurrence of porosity in the Mississippian Mission Canyon Formation in the Billings Nose Area, North Dakota

    E-Print Network [OSTI]

    Beaber, Daniel Edward

    1989-01-01T23:59:59.000Z

    AND INTERPRETATION. CONCLUSIONS REFERENCES CITED APPENDICES. 70 72 74 77 VITA 86 Figure 1 LIST OF FIGURES Index map of the Williston Basin showing structure on top of the Mission Canyon Formation. Also shown are the major oil fields and structures... DAKOTA I SOUTH DAKOTA A l I I I I I I I I Figure 1. Index map of the Williston Basin showing structure on top of the Mission Canyon Formation. Also shown are the major oil fields and structures in the basin. Contour interval is 500 feet (152 m...

  12. EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

  13. Dimensions of service quality of the University of Arizona Sponsored Projects Services Office internal customers

    E-Print Network [OSTI]

    Baca, David Ray

    2007-04-25T23:59:59.000Z

    DIMENSIONS OF SERVICE QUALITY OF THE UNIVERSITY OF ARIZONA SPONSORED PROJECTS SERVICES OFFICE INTERNAL CUSTOMERS A Dissertation by DAVID RAY BACA Submitted to the Office of Graduate Studies of Texas A&M University in partial... CUSTOMERS A Dissertation by DAVID RAY BACA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of the Committee...

  14. The use of binding arbitration for Arizona's public works disputes as viewed from the contractor's perspective

    E-Print Network [OSTI]

    Bluff, Michael Robert

    1989-01-01T23:59:59.000Z

    works projects are derived from several sources. The purpose of this section is to review these sources and explain how they are used to deal with contract claims. The basic source of statutory procedures for filing claims against a public body... wastewater treatment plant for a county in Southern Arizona. During the course of the project, certain disputes arose between the contractor and county over amounts owed under the contract. The prime contract contained a binding arbitration clause...

  15. Soft-sediment and hard-rock deformation in the Chinle Formation, Northeastern Arizona

    E-Print Network [OSTI]

    Scheevel, Jay Roger

    1983-01-01T23:59:59.000Z

    as to deformation-type are: (1) chevron-folds (1 to 300 m wavelengths), (2) decollement or truncated surfaces, (3) plunging folds, (4) slickensided shear- surfaces in claystones. Microscopic observation of the deformed sandstones reveals that the order.... Microscopic Study. Model Study. 1 1 2 3 10 10 11 11 13 13 14 16 17 17 17 18 FIELD OBSERVATIONS 19 Introduction Soft-sediment Deformation St. Johns, Arizona General description Folds and Decollement Soft-sediment Small-faults Subsidiary...

  16. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    SciTech Connect (OSTI)

    Shen Jun [College of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: shenjun2626@163.com; You Guoqiang; Long Siyuan [College of Mechanical Engineering, Chongqing University, Chongqing 400044 (China); Pan Fusheng [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2008-08-15T23:59:59.000Z

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in the initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.

  17. Adoption, implementation and enforcement of commercial building energy codes in New Mexico and Arizona

    SciTech Connect (OSTI)

    Callaway, J W; Thurman, A G; Shankle, D L

    1991-07-01T23:59:59.000Z

    The US Department of Energy (DOE) is considering ways to encourage states to adopt energy efficiency standards for residential and commercial buildings in the private sector. Such standards are now mandatory for federal buildings, and for private buildings in 34 states; in the remaining 16 states, the standards serve as guidelines for voluntary compliance. In this study for DOE, Pacific Northwest Laboratory (PNL) assessed the process by which energy codes for commercial buildings were adopted and implemented in Arizona and New Mexico. Information was gathered primarily through a series of interviews with state officials, city building officials, architects and engineers, builders, and staff from utilities in the two states. Until other state processes are studied, the extent of the similarities and dissimilarities to the situation in New Mexico and Arizona are unknown. A more extensive study may show that at least some elements of the two state's experience have been paralleled in other parts of the country. General strategies to encourage the adoption of energy codes, assist implementation, and support enforcement were developed based on the research from Arizona and New Mexico and are presented in this report. 6 refs., 4 figs.

  18. Depositional facies, textural characteristics, and reservoir properties of dolomites in Frobisher-Alida interval in southwest North Dakota

    SciTech Connect (OSTI)

    Petty, D.M.

    1988-10-01T23:59:59.000Z

    The Mississippian Frobisher-Alida interval is an upward-shoaling cycle that began with open-marine sedimentation and culminated with the deposition of a widespread sabkha-salina evaporite. This cycle is the most prolific oil-producing interval in the North Dakota portion of the Williston basin. Most Frobisher-Alida production in the southern Williston basin is from dolomite reservoirs. The six major facies defined in this paper are lithologic suites that represent sediments and precipitates deposited in similar environments. 20 figures, 5 tables.

  19. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment Project (LBNF/DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  20. HONORABLE MENTION String Cutting Device South Dakota School of Mines C Setera and team HONORABLE MENTION Catering Counter Cal Poly K Okarski and team

    E-Print Network [OSTI]

    Wobbrock, Jacob O.

    HONORABLE MENTION String Cutting Device ­ South Dakota School of Mines ­ C Setera and team HONORABLE MENTION Catering Counter ­ Cal Poly ­ K Okarski and team HONORABLE MENTION Slide Rule ­ University of Washington ­ S Kane and team HONORABLE MENTION IWAS ­ Utah State University ­ J Nelson and team HONORABLE