Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

2

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

3

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

4

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

5

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

6

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

7

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

8

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

9

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

10

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

11

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

12

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

13

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

14

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

15

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

16

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

17

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

18

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

19

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

20

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

22

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

23

Category:Kansas City, MO | Open Energy Information  

Open Energy Info (EERE)

MO MO Jump to: navigation, search Go Back to PV Economics By Location Media in category "Kansas City, MO" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Kansas City MO Union Electric Co.png SVFullServiceRestauran... 74 KB SVHospital Kansas City MO Union Electric Co.png SVHospital Kansas City... 66 KB SVLargeHotel Kansas City MO Union Electric Co.png SVLargeHotel Kansas Ci... 66 KB SVLargeOffice Kansas City MO Union Electric Co.png SVLargeOffice Kansas C... 65 KB SVMediumOffice Kansas City MO Union Electric Co.png SVMediumOffice Kansas ... 65 KB SVMidriseApartment Kansas City MO Union Electric Co.png SVMidriseApartment Kan... 74 KB SVOutPatient Kansas City MO Union Electric Co.png SVOutPatient Kansas Ci... 66 KB SVPrimarySchool Kansas City MO Union Electric Co.png

24

MoWitt  

NLE Websites -- All DOE Office Websites (Extended Search)

MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed...

25

Thermodynamic Assessment of Ce-Mo, Mo-La, Mo-Y, Ce-V, La-V ...  

Science Conference Proceedings (OSTI)

In this work, six binary systems, Ce-Mo, Mo-La, Mo-Y, Ce-V, La-V and V-Y were thermodynamically assessed based on available experimental data in the†...

26

9 Cr-- 1 Mo steel material for high temperature application  

DOE Patents (OSTI)

One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

2012-11-27T23:59:59.000Z

27

US WNC MO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WNC MO WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less than the national average, primarily due to historically lower residential electricity prices in the state. * Missouri homes are typically larger than homes in other states and are more likely to be attached or detached single-family housing units.

28

MoS2  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Myriam Perez De la Rosa1, Gilles Berhault2, Apurva Mehta3, and Russell R. Chianelli1 1University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS2 layered structure. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises. The rising price of fuel has another consequence: refiners tend to purchase cheaper fuels of poorer quality. These poor quality fuels contain increasing amounts of sulfur and other pollutants leading to a decline in air quality worldwide. A recent New York Times article described the major impact a growing Chinese economy

29

TABLE15.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

5. 5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast No. 1 Total Ind., Ill., Ky. N. Dak., S. Dak. Mo. Total Net Production Net Production Stocks Stocks Districts, (Thousand Barrels) PAD District III PAD Dist. PAD Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids .................................................. 140 689 829 599 322 7,842 8,763 Pentanes Plus ......................................................... 11 68 79 109 81 956 1,146 Liquefied Petroleum Gases .................................... 129 621 750 490 241 6,886 7,617 Ethane ................................................................ 51 211 262 144 0 2,765 2,909

30

Experimental activities supporting commercial U.S. accelerator production of 99-Mo  

Science Conference Proceedings (OSTI)

{sup 99m}Tc, the daughter product of {sup 99}Mo, is the most commonly used radioisotope for nuclear medicine in the U.S. Experiments are being performed at Los Alamos National Laboratory and Argonne National Laboratory to demonstrate production of {sup 99}Mo using accelerators. The {sup 100}Mo({gamma},n){sup 99}Mo reaction in an enriched {sup 100}Mo target is currently under investigation. Three scaled low-power production experiments using a 20-MeV electron linac at Argonne have been performed to date. Two of these experiments used natural Mo targets and produced a total of 613 {mu}C of {sup 99}Mo. The third experiment used an enriched {sup 100}Mo target and produced 10.5 mCi of {sup 99}Mo. Following irradiation the targets were dissolved and the low specific activity solution was processed through an ARSII generator from NorthStar Medical Radioisotopes. Yields of {sup 99m}Tc >95% have been observed.

Dale, Gregory E [Los Alamos National Laboratory; Chemerisov, Sergey D [ANL; Vandegrift, George F [ANL

2010-01-01T23:59:59.000Z

31

Total Environment Assessment Model  

E-Print Network (OSTI)

that factors other than molyb- denum concentrations in the macroenvironment may be im- portant in determining in the macroenvironment (4, 36). As such, we were able to isolate strains with Mo-independent nitroge- nases using in macroenvironments that have suf- ficient Mo concentrations for Mo-dependent nitrogen fixation. The fact

Vellend, Mark

32

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

33

Compaction and Sintering of Mo Powders  

SciTech Connect

To support the development of Mo-99 production by NorthStar Medical Technologies, LLC, Mo metal powders were evaluated for compaction and sintering characteristics as they relate to Mo-100 accelerator target disk fabrication. Powders having a natural isotope distribution and enriched Mo-100 powder were examined. Various powder characteristics are shown to have an effect on both the compaction and sintering behavior. Natural Mo powders could be cold pressed directly to >90% density. All of the powders, including the Mo-100 samples, could be sintered after cold pressing to >90% density. As an example, a compacted Mo-100 disk reached 89.7% density (9.52 g/cm3) after sintering at 1000 C for 1 hr. in flowing Ar/4%H2. Higher sintering temperatures were required for other powder samples. The relationships between processing conditions and the resulting densities of consolidated Mo disks will be presented.

Nunn, Stephen D [ORNL; Kiggans, Jim [ORNL; Bryan, Chris [ORNL

2013-01-01T23:59:59.000Z

34

DOE - Office of Legacy Management -- St Louis Airport - MO 01  

Office of Legacy Management (LM)

Airport - MO 01 Airport - MO 01 FUSRAP Considered Sites St. Louis Airport, MO Alternate Name(s): Airport Site St. Louis Airport Storage Site (SLAPS) Former Robertson Storage Area Robertson Airport MO.01-1 MO.01-2 Location: Brown Road, Robertson, Missouri MO.01-2 Historical Operations: Stored uranium process residues containing uranium, radium, and thorium for the MED and AEC. MO.01-2 MO.01-3 MO.01-4 Eligibility Determination: Eligible MO.01-1 MO.01-7 Radiological Survey(s): Assessment Surveys MO.01-4 MO.01-5 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MO.01-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to St. Louis Airport, MO MO.01-1 - DOE Memorandum; Coffman to LaGrone; Subject: Authorization

35

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

36

DOE - Office of Legacy Management -- Latty Avenue Site - MO 04  

NLE Websites -- All DOE Office Websites (Extended Search)

Latty Avenue Site - MO 04 Latty Avenue Site - MO 04 FUSRAP Considered Sites Latty Avenue Site, MO Alternate Name(s): Futura Coatings Futura Chemical Company Facility Hazelwood Interim Storage Site (HISS) Former Cotter Site, Latty Avenue Properties Contemporary Metals Corp. Continental Mining and Milling MO.04-1 MO.04-2 MO.04-5 MO.04-6 MO.06-8 MO.06-11 Location: 9200 Latty Avenue, Hazelwood, Missouri MO.04-1 Historical Operations: Received, stored, and processed uranium residues for the AEC. Storage and processing were licensed by the AEC and NRC and resulted in contamination of uranium and thorium. MO.04-5 MO.04-6 Eligibility Determination: Eligible MO.04-3 MO.04-4 Radiological Survey(s): Assessment Surveys MO.04-2 MO.04-7 MO.04-8 MO.04-9 MO.04-10 MO.04-11 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MO.04-12

37

Thermophysical Properties of U-10MO Alloy  

Science Conference Proceedings (OSTI)

This report provides an overview of thermophysical properties of unirradiated uranium alloyed with ten weight percent molybdenum (U 10Mo), with particular focus on those material properties needed for modeling of new fuels for HPRRs (High Performance Research Reactors). The report contains both historical data available in the literature on U-10Mo, as well as more recent results conducted by the Global Threat Reduction Initiative fuel development program. The main use of the report is intended as a standard U-10Mo alloy properties reference for reactor models and simulations.

A. M. Phillips; G. S. Mickum; D. E. Burkes

2010-11-01T23:59:59.000Z

38

What is MoWiTT  

NLE Websites -- All DOE Office Websites (Extended Search)

the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and...

39

DOE - Office of Legacy Management -- Petrolite Corp - MO 08  

Office of Legacy Management (LM)

Petrolite Corp - MO 08 Petrolite Corp - MO 08 FUSRAP Considered Sites Site: PETROLITE CORP (MO.08) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.08-1 Evaluation Year: 1987 MO.08-4 Site Operations: Research involving test quantities of radioactive materials. MO.08-2 Site Disposition: Eliminated - Licensed - Potential for contamination remote MO.08-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Flouride & Thorium Oxide MO.08-2 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to PETROLITE CORP MO.08-1 - Summary Paper; Title: License History for Petrolite Corporation, St. Louis (MO.8); dated 07/16/93; with three attachments (3

40

ON THE COMPETITION BETWEEN FERROMAGNETIC AND ANTIFERROMAGNETIC STATES IN Sr2MnMoO6  

E-Print Network (OSTI)

It is argued that the magnetic behavior of Sr2MnMoO6 is determined by the existence of two total energy minima corresponding to the metallic ferromagnetic and insulating antiferromagnetic states, which may be nearly degenerate depending on the magnitude of the breathing distortion. PACS: 71.20.Be; 71.70.Gm; 72.25.Ba; 75.30.Et

I. V. Solovyev

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Accelerator Production Options for 99MO  

SciTech Connect

Shortages of {sup 99}Mo, the most commonly used diagnostic medical isotope, have caused great concern and have prompted numerous suggestions for alternate production methods. A wide variety of accelerator-based approaches have been suggested. In this paper we survey and compare the various accelerator-based approaches.

Bertsche, Kirk; /SLAC

2010-08-25T23:59:59.000Z

42

Mo Type Phase in Long-Term Aged INCONEL Alloy  

Science Conference Proceedings (OSTI)

FORMATION OF A PtzMo TYPE PHASE IN LONG-TERM AGED lNCONEL@ ALLOY 686. Michael G. ... formation of a low-temperature iutermetallic Pt*Mo type .

43

MoWiTT: The Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Airflow schematic MoWiTT: The Mobile Window Thermal Test Facility In the MoWiTT facility, efficient window-and-frame systems are measured to understand the flow of energy through...

44

Role of SrMoO{sub 4} in Sr{sub 2}MgMoO{sub 6} synthesis  

Science Conference Proceedings (OSTI)

Here we investigate the elemental and phase compositions during the solid-state synthesis of the promising SOFC-anode material, Sr{sub 2}MgMoO{sub 6}, and demonstrate that molybdenum does not notably evaporate under the normal synthesis conditions with temperatures up to 1200 {sup o}C due to the formation of SrMoO{sub 4} as an intermediate product at low temperatures, below 600 {sup o}C. However, partial decomposition of the Sr{sub 2}MgMoO{sub 6} phase becomes evident at the higher temperatures ({approx}1500 {sup o}C). The effect of SrMoO{sub 4} on the electrical conductivity of Sr{sub 2}MgMoO{sub 6} is evaluated by preparing a series of Sr{sub 2}MgMoO{sub 6} samples with different amounts of additional SrMoO{sub 4}. Under the reducing operation conditions of an SOFC anode the insulating SrMoO{sub 4} phase is apparently reduced to the highly conductive SrMoO{sub 3} phase. Percolation takes place with 20-30 wt% of SrMoO{sub 4} in a Sr{sub 2}MgMoO{sub 6} matrix, with a notable increase in electrical conductivity after reduction. Conductivity values of 14, 60 and 160 S/cm are determined at 800 {sup o}C in 5% H{sub 2}/Ar for the Sr{sub 2}MgMoO{sub 6} samples with 30, 40 and 50 wt% of added SrMoO{sub 4}, respectively. -- Graphical abstract: SrMoO{sub 4} is formed at low temperatures during the synthesis of Sr{sub 2}MgMoO{sub 6}, which prevents the volatilization of Mo from typical precursor mixtures of this promising SOFC anode material. SrMoO{sub 4} is insulating and it is often found as an impurity in Sr{sub 2}MgMoO{sub 6} samples. It is however readily reduced to highly conducting SrMoO{sub 3}. Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show increased electrical conductivities compared to pure Sr{sub 2}MgMoO{sub 6} under the reductive operation conditions of an SOFC anode. Display Omitted Highlights: {yields} Sr{sub 2}MgMoO{sub 6} is a promising SOFC anode material. {yields} During the Sr{sub 2}MgMoO{sub 6} synthesis SrMoO{sub 4} is formed at low temperatures. {yields} Formation of SrMoO{sub 4} effectively prevents volatilization of Mo at high temperatures. {yields} Insulating SrMoO{sub 4} reduces to highly conductive SrMoO{sub 3} under SOFC-anode conditions. {yields} Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show high electrical conductivities.

Vasala, S.; Yamauchi, H. [Laboratory of Inorganic Chemistry, Department of Chemistry, School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076 Aalto (Finland); Karppinen, M., E-mail: maarit.karppinen@aalto.f [Laboratory of Inorganic Chemistry, Department of Chemistry, School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076 Aalto (Finland)

2011-05-15T23:59:59.000Z

45

Missouri Department of National Resources Energy Center Mo DNR | Open  

Open Energy Info (EERE)

Department of National Resources Energy Center Mo DNR Department of National Resources Energy Center Mo DNR Jump to: navigation, search Name Missouri Department of National Resources Energy Center (Mo DNR) Place Jefferson City, Missouri Zip 65102 Product Mo DNR manages the Energy Revolving Fund which assists public organisations in Missouri in financing energy efficient projects for their facilities. References Missouri Department of National Resources Energy Center (Mo DNR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Department of National Resources Energy Center (Mo DNR) is a company located in Jefferson City, Missouri . References ‚ÜĎ "Missouri Department of National Resources Energy Center (Mo

46

DOE - Office of Legacy Management -- United Nuclear Corp - MO 0-03  

Office of Legacy Management (LM)

United Nuclear Corp - MO 0-03 United Nuclear Corp - MO 0-03 FUSRAP Considered Sites Site: UNITED NUCLEAR CORP. (MO.0-03) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Mallinckrodt Chemical Works Mallinckrodt Nuclear Corporation MO.0-03-1 MO.0-03-2 Location: Hematite , Missouri MO.0-03-1 Evaluation Year: Circa 1987 MO.0-03-3 Site Operations: Commercial fuel fabrication operation. Licensed to reclaim unirradiated enriched uranium from scrap generated in fuel fabrication and fuel material preparation. MO.0-03-1 MO.0-03-2 MO.0-03-3 MO.0-03-4 Site Disposition: Eliminated - NRC licensed - Commercial operations MO.0-03-3 MO.0-03-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MO.0-03-3 Radiological Survey(s): None Indicated

47

MoNDian Dark Matter, Entropic Gravity, and Infinite Statistics  

E-Print Network (OSTI)

We propose the concept of MoNDian dark matter which behaves like cold dark matter at cluster and cosmic scales but emulates modified Newtonian dynamics at the galactic scale. The connection between global physics and local galactic dynamics is implemented via entropic gravity. We also give an alternative formulation of MoNDian dark matter by using an effective gravitational Born-Infeld theory. In the latter approach, we show that the quanta of MoNDian dark matter obey infinite statistics.

Y. Jack Ng

2012-12-27T23:59:59.000Z

48

Microstructure Characterization and Processing of U-Mo Alloy Fuels ...  

Science Conference Proceedings (OSTI)

molybdenum (Mo) fuels have been identified as a potential replacement for highly enriched uranium (HEU) dispersion fuels in high performance research†...

49

Interdiffusion between Zr Diffusion Barrier and U-Mo Alloy  

Science Conference Proceedings (OSTI)

U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant reactions have been observed between U-Mo fuels and Al or Al alloy matrix. Refractory metal Zr has been proposed as barrier material to reduce the interactions. In order to investigate the compatibility and barrier effects between U-Mo alloy and Zr, solid-to-solid U-10wt.%Mo vs. Zr diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 įC for various times. The microstructures and concentration profiles due to interdiffusion and reactions were examined via scanning electron microscopy and electron probe microanalysis, respectively. Intermetallic phase Mo2Zr was found at the interface and its population increased when annealing temperature decreased. Diffusion paths were also plotted on the U-Mo-Zr ternary phase diagrams with good consistency. The growth rate of interdiffusion zone between U-10wt.%Mo and Zr was also calculated under the assumption of parabolic diffusion, and was determined to be about 103 times lower than the growth rate of diffusional interaction layer found in diffusion couples U-10wt.%Mo vs. Al or Al-Si alloy. Other desirable physical properties of Zr as barrier material, such as neutron adsorption rate, melting point and thermal conductivity are presented as supplementary information to demonstrate the great potential of Zr as the diffusion barrier for U-Mo fuel systems in RERTR.

K. Huang; Y. Park; Y. H. Sohn

2012-12-01T23:59:59.000Z

50

Balancing the Properties of Structural Mo-Borosilicide Alloys for ...  

Science Conference Proceedings (OSTI)

Symposium, Advanced Protective Coatings for Refractory Metals and Alloys. Presentation Title, Balancing the Properties of Structural Mo-Borosilicide Alloys for†...

51

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

52

Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Cooling Maximum Rebate Geothermal Heat Pumps: 10 ton maximum for Residential, 50 ton maximum for Commercial Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Room AC: $50 Water Heater: $50 Air Source Heat Pumps: $150 per ton Dual Fuel Air Source Heat Pumps: $300 per ton Geothermal Heat Pumps (Closed Loop): up to $850 per ton Geothermal Heat Pumps (Open Loop or Replacement): $150 per ton Provider Co-Mo Electric Cooperative Co-Mo Electric Cooperative provides rebates to residential and commercial

53

Microsoft Word - Poster Abstract_2010_MO-SCI.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

* * Presenter High-Temperature Viscous Sealing Glasses for Solid Oxide Fuel Cells Cheol-Woon Kim * , Cindy L. Schwartz, Joe Szabo, Kevin S. Barr, and Ted E. Day MO-SCI Corporation, Rolla, MO 65401 * ckim@mo-sci.com; (573) 364-2338 Richard K. Brow ** and Zhongzhi Tang Department of Materials Science and Engineering and the Graduate Center for Materials Research, Missouri University of Science and Technology, Rolla, MO 65409-1170 ** brow@mst.edu; (573) 341-6812 MO-SCI Corporation and the Missouri University of Science and Technology successfully identified and tested several glass compositions that could be used as viscous seals for Solid Oxide Fuel Cells (SOFCs) through a SBIR Phase I project (DE-SC0002491). The glasses possess desirable viscosity characteristics- that is, they have softening points in the temperature range

54

DOE - Office of Legacy Management -- Rogers Iron Works Co - MO 10  

Office of Legacy Management (LM)

Rogers Iron Works Co - MO 10 Rogers Iron Works Co - MO 10 FUSRAP Considered Sites Site: ROGERS IRON WORKS CO. (MO.10 ) Elimination from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Rogers Iron Co. MO.10-1 Location: Joplin , Missouri MO.10-1 Evaluation Year: 1990 MO.10-2 MO.10-3 Site Operations: Tested C-liner crushing methods. MO.10-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantities of material handled MO.10-3 MO.10-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium (Trace Amounts) MO.10-2 Radiological Survey(s): None Indicated Site Status: Elimination from consideration under FUSRAP Also see Documents Related to ROGERS IRON WORKS CO. MO.10-1 - National Lead Company of Ohio Analytical Data Sheet 9908;

55

Mo Year Report Period: EIA ID NUMBER:  

U.S. Energy Information Administration (EIA) Indexed Site

Version No: 2013.01 Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 PADD 4 Type of Report (Check One ): (Thousands of dollars) (Thousands of barrels) PADD 2 PADD 3 PAD DISTRICT (a) Revision to Report:

56

MattssonMoVacPrague2009.ppt  

National Nuclear Security Administration (NNSA)

Thomas R Mattsson Thomas R Mattsson Sandia National Laboratories Albuquerque, NM, USA Nils Sandberg -- KTH, Stockholm Richard Armiento -- Univ. Bayreuth, Germany Ann Mattsson -- Sandia National Laboratories Self-diffusion in Mo using the AM05 density functional Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Joint U.S. Russia Conference on Advances in Materials Science Prague, Czech Republic Aug 31-Sept 3, 2009 SAND 2009-2197 C, 2009-3883 C, 2009-4713 C, and 2002-1323 P Vacancy mediated diffusion is the main mechanism for mass transport in solids *Vacancies are important for *Self-diffusion *Defect migration *Radiation damage/ swelling

57

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

58

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

59

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

60

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE - Office of Legacy Management -- Tyson Valley Powder Farm - MO 11  

Office of Legacy Management (LM)

Tyson Valley Powder Farm - MO 11 Tyson Valley Powder Farm - MO 11 FUSRAP Considered Sites Site: TYSON VALLEY POWDER FARM (MO.11) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: St. Louis County , Missouri MO.11-1 Evaluation Year: 1987 MO.11-2 Site Operations: Storage of C-Special material (residue from production of uranium metal). MO.11-1 MO.11-2 MO.11-3 Site Disposition: Eliminated - Referred to Army Corps of Engineers MO.11-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MO.11-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to TYSON VALLEY POWDER FARM MO.11-1 - Letter; Dickenson to Duff; Subject: Granted continued use

62

DOE - Office of Legacy Management -- Spencer Chemical Co - MO 0-01  

Office of Legacy Management (LM)

MO 0-01 MO 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (MO.0-01) Eliminated from further consideration under FUSRAP - an AEC licensed operation Designated Name: Not Designated Alternate Name: Jayhawk Works MO.0-01-1 Location: Joplin , Missouri MO.0-01-1 Evaluation Year: 1985 MO.0-01-2 Site Operations: Processed enriched uranium (UF-6) and scrap to produce primarily uranium dioxide (UO-2) under AEC licenses. MO.0-01-3 MO.0-01-4 Site Disposition: Eliminated - No Authority MO.0-01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Normal and Enriched Uranium, Thorium MO.0-01-6 Radiological Survey(s): Yes MO.0-01-5 Site Status: Eliminated from further consideration under FUSRAP - an AEC licensed operation Also see Documents Related to SPENCER CHEMICAL CO.

63

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

64

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

65

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

66

(Mo,Cr) in HASTELLOY C-22HS Alloy, a  

Science Conference Proceedings (OSTI)

debate (with question marks in the phase diagrams) such as ?CrMo4Ni5, ? ... diagram at 500, 620 and 700ļC show the existence of P phase and. OP6 phase[5

67

Future design mindful of the MoRAS  

Science Conference Proceedings (OSTI)

As human-computer interaction (HCI) expands its scope, the proper context for the design of information technology (IT) is increasingly an interconnected mosaic of responsive adaptive systems (MoRAS) including people's heads, organizations, communities, ...

George W. Furnas

2000-09-01T23:59:59.000Z

68

Developments in realistic design for aperiodic Mo/Si multilayermirrors  

Science Conference Proceedings (OSTI)

Aperiodic multilayers have been designed for various applications, using numeric algorithms and analytical solutions, for many years with varying levels of success. This work developed a more realistic model for simulating aperiodic Mo/Si multilayers to be used in these algorithms by including the formation of MoSi{sub 2}. Using a genetic computer code we were able to optimize a 45{sup o} multilayer for a large bandpass reflection multilayer that gave good agreement with the model.

Aquila, A.L.; Salmassi, F.; Dollar, F.; Liu, Y.; Gullikson, E.M.

2006-04-05T23:59:59.000Z

69

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

70

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

71

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

72

The comparison of sulfide CoMo/?-Al2O3 and NiMo/?-Al2O3 catalysts in methyl palmitate and methyl heptanoate hydrodeoxygenation  

Science Conference Proceedings (OSTI)

The hydrodeoxygenation of methyl palmitate and methyl heptanoate as the model compounds of bio-oil in the presence of sulfided CoMo/?-Al2O3 and NiMo/?-Al2O3 catalysts was studied at the temperature ... Keywords: CoMoS/?-Al2O3, NiMoS/?-Al2O3, biofuels, hydrodeoxygenation, methyl heptanoate, methyl palmitate

Irina V. Deliy; Evgenia N. Vlasova; Alexey L. Nuzhdin; Galina A. Bukhtiyarova

2011-12-01T23:59:59.000Z

73

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

74

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

75

MoWiTT:Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

76

Co-Mo Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Mo Electric Coop Inc Mo Electric Coop Inc Jump to: navigation, search Name Co-Mo Electric Coop Inc Place Missouri Utility Id 4063 Utility Location Yes Ownership C NERC Location SERC NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Multi-Phase Commercial Commercial Single-Phase Over 200 Amps Commercial Commercial Single-Phase Up To 200 Amps Commercial Industrial Industrial Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 150 W Lighting Outdoor Lighting HPS 400 W Lighting Residential Multi-Phase Residential Residential Single-Phase Over 200 Amps Residential

77

DOE - Office of Legacy Management -- Medart Co - MO 09  

Office of Legacy Management (LM)

Medart Co - MO 09 Medart Co - MO 09 FUSRAP Considered Sites Site: MEDART CO. (MO.09 ) Eliminated from consideration under FUSRAP - Facility believed to be torn down and the original site built over Designated Name: Not Designated Alternate Name: None Location: 180 Potomoc Street , St. Louis , Missouri MA.09-4 Evaluation Year: Circa 1990 MA.09-3 Site Operations: Conducted test machining operations on uranium bar stock during the early 1950s. MA.09-2 Site Disposition: Eliminated - Potential for contamination considered remote due limited duration of operations and to site reconstruction MA.09-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal (test quantities) MA.09-3 Radiological Survey(s): Health and safety monitoring during operations MA.09-3

78

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

79

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. † † †...

80

U-Mo Plate Blister Anneal Interim Report  

SciTech Connect

Blister thresholds in fuel elements have been a longstanding performance parameter for fuel elements of all types. This behavior has yet to be fully defined for the RERTR U-Mo fuel types. Blister anneal studies that began in 2007 have been expanded to include plates from more recent RERTR experiments. Preliminary data presented in this report encompasses the early generations of the U-Mo fuel systems and the most recent but still developing fuel system. Included is an overview of relevant dispersion fuel systems for the purposes of comparison.

Francine J. Rice; Daniel M. Wachs; Adam B. Robinson; Dennis D. Keiser Jr.; Jan-Fong Jue; Danielle M. Perez; Ross Finlay

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

82

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

83

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

84

¬ŅC√≥mo funcionan los H√≠bridos?  

NLE Websites -- All DOE Office Websites (Extended Search)

¬ŅC√≥mo funcionan los H√≠bridos? ¬ŅC√≥mo funcionan los H√≠bridos? Diagrama de los componentes de un h√≠brido completo, incluyen (1) un motor de combusti√≥n interna (2) un motor el√©ctrico, (3) un generador, (4) una aparato de cambio de motor, and (5) una bater√≠a de gran capacidad. en ingl√©s Flash Animation: ¬ŅC√≥mo funcionan los H√≠bridos? (Requiere versi√≥n Flash 6.0 o superior) HTML Version: ¬ŅC√≥mo funcionan los H√≠bridos? Los veh√≠culos H√≠bridos-el√©ctricos (VHEs) combinan las ventajas de los motores de gasolina con los motores el√©ctricos y se pueden configurar para diferentes objetivos, como mejorar el ahorro de combustible, aumentar su fuerza, o proveer fuerza adicional para el uso del sistema el√©ctrico o los componentes electr√≥nicos. Algunas de las tecnolog√≠as avanzadas que usan los h√≠bridos t√≠picamente

85

ProMoVer: modular verification of temporal safety properties  

Science Conference Proceedings (OSTI)

This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level ...

Siavash Soleimanifard; Dilian Gurov; Marieke Huisman

2011-11-01T23:59:59.000Z

86

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99...

87

Large-Scale Synthesis of MoS2/ Polymer Derived Ceramic ...  

Science Conference Proceedings (OSTI)

Applications of MoS2 as lithium ion battery anode material are also being explored. Here, we demonstrate exfoliation of MoS2 into single and few layers.

88

Elevated Temperature Compression Testing of the U-10 wt% Mo Alloy  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to satisfy non-proliferation treaties the metallic U-10 wt% Mo (U-10Mo) alloy in low enrichments is under development to replace highly†...

89

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

90

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

91

On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110)  

Science Conference Proceedings (OSTI)

The strong Mo-O bond strength provides promising reactivity of Mo-based catalysts for the deoxygenation of biomass-derived oxygenates. Combining the novel dimer saddle point searching method with periodic spin-polarized density functional theory calculations, we investigated the reaction pathways of a acetaldehyde decomposition on the clean Mo(110) surface. Two reaction pathways were identified, a selective deoxygenation and a nonselective fragmentation pathways. We found that acetaldehyde preferentially adsorbs at the pseudo 3-fold hollow site in the ?2(C,O) configuration on Mo(110). Among four possible bond (?-C-H, ?-C-H, C-O and C-C) cleavages, the initial decomposition of the adsorbed acetaldehyde produces either ethylidene via the C-O bond scission or acetyl via the ?-C-H bond scission while the C-C and the ?-C-H bond cleavages of acetaldehyde leading to the formation of methyl (and formyl) and formylmethyl are unlikely. Further dehydrogenations of ethylidene into either ethylidyne or vinyl are competing and very facile with low activation barriers of 0.24 and 0.31 eV, respectively. Concurrently, the formed acetyl would deoxygenate into ethylidyne via the C-O cleavage rather than breaking the C-C or the C-H bonds. The selective deoxygenation of acetaldehyde forming ethylene is inhibited by relatively weaker hydrogenation capability of the Mo(110) surface. Instead, the nonselective pathway via vinyl and vinylidene dehydrogenations to ethynyl as the final hydrocarbon fragment is kinetically favorable. On the other hand, the strong interaction between ethylene and the Mo(110) surface also leads to ethylene decomposition instead of desorption into the gas phase. This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and supported by the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Mei, Donghai; Karim, Ayman M.; Wang, Yong

2012-02-16T23:59:59.000Z

92

Development of an energy-use estimation methodology for the revised Navy Manual MO-303  

SciTech Connect

The U.S. Navy commissioned Pacific Northwest Laboratory (PNL) to revise and/or update the Navy Utilities Targets Manual, NAVFAC MO-303 (U.S. Navy 1972b). The purpose of the project was to produce a current, applicable, and easy-to-use version of the manual for use by energy and facility engineers and staff at all Navy Public Works Centers (PWCs), Public Works Departments (PWDs), Engineering Field Divisions (EFDs), and other related organizations. The revision of the MO-303 manual involved developing a methodology for estimating energy consumption in buildings and ships. This methodology can account for, and equitably allocate, energy consumption within Navy installations. The analyses used to develop this methodology included developing end-use intensities (EUIs) from a vast collection of Navy base metering and billing data. A statistical analysis of the metering data, weather data, and building energy-use characteristics was used to develop appropriate EUI values for use at all Navy bases. A complete Navy base energy reconciliation process was also created for use in allocating all known energy consumption. Initial attempts to use total Navy base consumption values did not produce usable results. A parallel effort using individual building consumption data provided an estimating method that incorporated weather effects. This method produced a set of building EUI values and weather adjustments for use in estimating building energy use. A method of reconciling total site energy consumption was developed based on a {open_quotes}zero-sum{close_quotes} principle. This method provides a way to account for all energy use and apportion part or all of it to buildings and other energy uses when actual consumption is not known. The entire text of the manual was also revised to present a more easily read understood and usable document.

Richman, E.E.; Keller, J.M.; Wood, A.G.; Dittmer, A.L.

1995-01-01T23:59:59.000Z

93

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

94

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

95

Graphitization in C and C-Mo Steels  

Science Conference Proceedings (OSTI)

Following the recent carbon (C) and carbon-molybdenum (C-Mo) steel graphitization experience reported by several Electric Power Research Institute (EPRI) members, it became apparent that the industry could benefit from better predictive guidance to prioritize component inspections and examinations for graphitization. This research effort collected and analyzed the additional experience gained since the last EPRI project on the subject and focused on developing suitably conservative time-temperature predi...

2010-12-23T23:59:59.000Z

96

Accurate structure analysis of Mo[subscript 6]S[subscript y]I[subscript z] nanowires from atomic pair distribution function (PDF) analysis  

SciTech Connect

The structure of the recently discovered systematically reproducible Mo{sub 6}S{sub y}I{sub z} nanowires has been determined from the atomic pair distribution function (PDF) analysis of powder X-ray diffraction data. This total scattering approach was required because the nanowires are not perfectly crystalline and, therefore, the structure cannot be obtained crystallographically. Several nanotube and nanowire models were fit to the PDF data. The resulting best-fit model structure consists of nanowires of Mo{sub 6} octahedra that are bridged by sulfur and terminated on the outside by iodine. This demonstrates the power of total scattering methods in accurately resolving structural issues in nanostructured materials where traditional crystallographic methods fail.

Paglia, G.; Bozin, E.S.; Vengust, D.; Mihailovic, D.; Billinge, S.J.L. (Joseph Stefan Inst.); (MSU)

2010-12-03T23:59:59.000Z

97

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

98

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

99

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

100

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

102

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

103

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

104

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

105

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

106

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

107

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

108

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

109

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

110

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

111

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

112

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

113

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

114

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

115

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

116

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

117

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

118

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

119

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

120

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

122

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

123

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

124

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

125

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

126

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

127

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

128

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

129

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

130

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

131

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

132

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

133

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

134

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

135

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

136

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

137

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

138

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

139

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

140

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

142

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

143

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

144

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

145

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

146

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

147

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

148

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

149

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

150

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

151

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

152

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

153

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

154

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

155

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

156

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

157

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

158

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

159

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

160

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

162

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

163

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

164

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

165

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

166

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

167

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

168

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

169

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

170

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

171

Single Phase Melt Processed Powellite (Ba,Ca) MoO{sub 4} For The Immobilization Of Mo-Rich Nuclear Waste  

SciTech Connect

Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO{sub 4} crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO{sub 4} and CaMoO{sub 4} were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In-situ electron irradiation studies indicated that both CaMoO{sub 4} and BaMoO{sub 4} powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 X 10{sup 13} Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m{sup 2}).

Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States); Marra, James [Savannah River Site (SRS), Aiken, SC (United States); Fox, Kevin [Savannah River Site (SRS), Aiken, SC (United States); Reppert, Jason [Savannah River Site (SRS), Aiken, SC (United States); Crum, Jarrod [Paci fic Northwest National Laboratory , Richland, WA (United States); Tang, Ming [Los Alamos National Laboratory , Los Alamos, NM (United States)

2012-09-17T23:59:59.000Z

172

Fracture and fatigue properties of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} refractory intermetallic alloys at ambient to elevated temperatures (25-1300 degrees Centigrade)  

Science Conference Proceedings (OSTI)

The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above {approx} 1000 degrees C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12-17 at. percentSi, 8.5 at. percentB, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (''pesting''), fracture toughness and fatigue-crack propagation resistance of four such alloys, which consisted of {approx}21 to 38 vol. percent a-Mo phase in an intermetallic matrix of Mo3Si and Mo5SiB2 (T2), were characterized at temperatures between 25 degrees and 1300 degrees C. The boron additions were found to confer superior ''pest'' resistance (at 400 degrees to 900 degrees C) as compared to unmodified molybdenum silicides, such as Mo5Si3. Moreover , although the fracture and fatigue properties of the finer-scale P/M alloys were only marginally better than those of MoSi2, for the I/M processed microstructures with coarse distributions of the a-Mo phase, fracture toughness properties were far superior, rising from values above 7 MPa sqrt m at ambient temperatures to almost 12 MPa sqrt m at 1300 degrees C.

Choe, Heeman; Schneibel, J.H.; Ritchie, R.O.

2002-08-01T23:59:59.000Z

173

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

174

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

175

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

176

Statistical pairing fluctuation and phase transition in $^{94}Mo$  

E-Print Network (OSTI)

In the framework of BCS model, we have applied the isothermal probability distribution to take into account the statistical fluctuations in calculation of thermodynamical properties of nuclei. The energy and the heat capacity are calculated in $^{94}Mo$ nucleus using the mean gap parameter. The results are compared with the values obtained based on the most probable values, experimental data as well as some other theoretical models. We have shown that heat capacity versus temperature behaves smoothly instead of singular behaviour predicted by the standard BCS model. Also a smooth peak in heat capacity is observed which is a signature of transition from normal to super fluid phase.

Z. Kargar; V. Dehghani

2013-07-16T23:59:59.000Z

177

Statistical pairing fluctuation and phase transition in $^{94}Mo$  

E-Print Network (OSTI)

In the framework of BCS model, we have applied the isothermal probability distribution to take into account the statistical fluctuations in calculation of thermodynamical properties of nuclei. The energy and the heat capacity are calculated in $^{94}Mo$ nucleus using the mean gap parameter. The results are compared with the values obtained based on the most probable values, experimental data as well as some other theoretical models. We have shown that heat capacity versus temperature behaves smoothly instead of singular behaviour predicted by the standard BCS model. Also a smooth peak in heat capacity is observed which is a signature of transition from normal to super fluid phase.

Kargar, Z

2013-01-01T23:59:59.000Z

178

Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility  

Science Conference Proceedings (OSTI)

This report provides the initial ďfirst lookĒ of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

Washington Division of URS

2008-07-01T23:59:59.000Z

179

Upper critical field of Mo-Ni heterostructures  

SciTech Connect

Upper critical field and its anisotropy have been measured on two very short wavelength Mo-Ni heterostructures of different degrees of perfection, lambda = 13.8A (disordered structure) and lambda = 16.6A (layered structure). In both cases the parallel critical field has an unexpected temperature dependence, a large and temperature dependent anisotropy, and over 60% enhancement over the Clogston-Chandrasekhar limit. Data are fit to the Werthamer-Helfand-Hohenberg theory and the spin-orbit scattering times are found to be 1.79 x 10 T s and 2 x 10 T s, respectively.

Uher, C.; Watson, W.J.; Cohn, J.L.; Schuller, I.K.

1985-12-01T23:59:59.000Z

180

Studying the Effect of Carbon on DU-Mo Foil Fabrication for the ...  

Science Conference Proceedings (OSTI)

In support of this program, efforts are ongoing to develop and validate a monolithic depleted uranium molybdenum (DU-Mo) foil fabrication process adaptable for†...

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations  

E-Print Network (OSTI)

of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Montefuel cells, new electrode catalysts that have less preciousto designing Pt bimetallic catalysts is knowledge of the

Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

2005-01-01T23:59:59.000Z

182

Pressure Water Leaching Molybdenum and Nickel from Mo-Ni ore of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Pressure Water Leaching Molybdenum and Nickel from Mo-Ni ore of Black Shale without Reagent. Author(s), Zhigan Deng. On-Site Speaker†...

183

Disorder effects in half-metallic Sr 2 FeMoO 6 single crystals  

Science Conference Proceedings (OSTI)

Double perovskites such as Sr 2 FeMoO 6 (SFMO) have been predicted to be half-metallic (100% spin polarized). However

Raghava P. Panguluri; Sheng Xu; Yutaka Moritomo; I. V. Solovyev; B. Nadgorny

2009-01-01T23:59:59.000Z

184

Synthesis of molybdenum disulfide (MoS{sub 2}) for lithium ion battery applications  

Science Conference Proceedings (OSTI)

This paper reports the use of a rheological phase reaction method for preparing MoS{sub 2} nanoflakes. The characterization by powder X-ray diffraction indicated that MoS{sub 2} had been formed. High resolution electron microscopy observation revealed that the as-prepared MoS{sub 2} nanoflakes had started to curve and partly form MoS{sub 2} nanotubes. The lithium intercalation/de-intercalation behavior of as-prepared MoS{sub 2} nanoflake electrode was also investigated. It was found that the MoS{sub 2} nanoflake electrode exhibited higher specific capacity, with very high cycling stability, compared to MoS{sub 2} nanoparticle electrode. The possible reasons for the high electrochemical performance of the nanoflakes electrodes are also discussed. The outstanding electrochemical properties of MoS{sub 2} nanoflakes obtained by this method make it possible for MoS{sub 2} to be used as a promising anode material.

Feng Chuanqi [Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Ma Jun; Li Hua [Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Zeng Rong [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Guo Zaiping, E-mail: zguo@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW 2522 (Australia); Liu Huakun [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW 2522 (Australia)

2009-09-15T23:59:59.000Z

185

Ageing and Toughness of a Mn-Ni-Mo PWR Steel  

Science Conference Proceedings (OSTI)

Abstract Scope, Mn-Ni-Mo steels are widely used in the fabrication of pressurisers, steam generators and pressure vessels of pressurised water reactors (PWR).

186

Utilization of Recycled MoO3 and Mill Scale for Synthesis of High ...  

Science Conference Proceedings (OSTI)

... by ammonia gas neutralization method and reduced by hydrogen to produce a high ... Molybdenum and Nickel from Mo-Ni ore of Black Shale without Reagent.

187

New limit on the neutrinoless double beta decay of /sup 100/Mo  

SciTech Connect

A search for the neutrinoless double beta decay of /sup 100/Mo was conducted using thin Mo films and solid state Si detectors. The experiment has collected 3500 hours of data operating underground in a deep silver mine (3290 M.W.E.). Only one event was found to be consistent with neutrinoless double beta decay. Using this one event, a limit of greater than or equal to 1 x 10/sup 22/ years (1 sigma) is set on the /sup 100/Mo half-life. This is approximately five times larger than the best previous /sup 100/Mo limit.

Krivicich, J.M.

1988-03-01T23:59:59.000Z

188

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

189

C√≥mo funcionan las C√©lulas de Combustible  

NLE Websites -- All DOE Office Websites (Extended Search)

Cómo funcionan las Células de Combustible Cómo funcionan las Células de Combustible Diagrama: Como funciona un MPE de combustible de célula. 1. El combustible de hidrógeno es canalizado a través de un campo de placas de flujo para el ánodo al otro lado de la pila de combustible, mientras que el oxígeno del aire se canaliza hacia el cátodo del otro lado de la celda. 2. En el ánodo, un catalizador de platino hace que el hidrógeno se divida en iones positivos de hidrógeno (protones) y electrones de carga negativa. 3. La Membrana de Electrolito Polimérico (MPE) sólo permite que los iones de carga positiva pasen a través de ella hacia el cátodo. Los electrones de carga negativa deben viajar a lo largo de un circuito externo hacia el cátodo, creando una corriente eléctrica. 4. En el cátodo, los electrones y los iones positivos de hidrógeno se combinan con el oxígeno para formar agua, que fluye fuera de la célula.

190

Characterization of U-Mo Foils for AFIP-7  

SciTech Connect

Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

2012-11-07T23:59:59.000Z

191

Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors  

Science Conference Proceedings (OSTI)

Metglas{sup TM} 2826MB foils of 25-30 {mu}m thickness with the composition of Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of {approx}3 {mu}m thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum (Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magnetic properties of FeNi is also observed as the Mo dopant level increases. The coercivity of FeNi films doped with Mo decreases to a value less than one third of the value without dopant. Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropy properties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The film material that is fabricated using an optimized process is magnetically as soft as amorphous Metglas{sup TM} 2826MB with a coercivity of less than 40 Am{sup -1}. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin film materials on their magnetic properties.

Liang Cai; Gooneratne, Chinthaka; Cha, Dongkyu; Chen Long; Kosel, Jurgen [Computer Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955 (Saudi Arabia); Gianchandani, Yogesh [Department of Electrical Engineering and Computer Science, 1301 Beal Ave., University of Michigan, Ann Arbor, Michigan 48109 (United States)

2012-12-01T23:59:59.000Z

192

Electrodeposition and characterization of nanocrystalline Ni-Mo catalysts for hydrogen production  

Science Conference Proceedings (OSTI)

Ni-Mo nanocrystalline deposits (7-43 nm) with a nodular morphology were prepared by electrodeposition using direct current from citrate-ammonia solutions. They exhibited a single Ni-Mo solid solution phase. The size of the nodules increased as electroplating ...

J. Halim; R. Abdel-Karim; S. El-Raghy; M. Nabil; A. Waheed

2012-01-01T23:59:59.000Z

193

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery. May 13, 2013 From left, Los Alamos scientists Roy Copping, Sean Reilly, and Daniel Rios. Copping examines the Buchi Multivapor P-12 Evaporator, and Reilly and Rios are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. From left, Los Alamos scientists Sean Reilly, Roy Copping, and Daniel Rios. Sean is looking at the Buchi Multivapor P-12 Evaporator, and Roy and Daniel are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. Contact Nancy Ambrosiano Communications Office (505) 667-0471

194

Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Nanocomposites of molybdenum disulfide (MoS2) and poly(ethylene oxide) (PEO) were prepared by the exfoliation/absorption method that involved the hydrolysis of lithiated MoS2 in an aqueous solution of PEO. The absorption and subsequent interaction of PEO on the colloidal MoS2 formed a nanocomposite which restacked into layered secondary particles. X-ray diffraction and high resolution TEM indicated that highly disordered nanocomposites were produced when the Lix(PEO)yMoS2 stoichiometry was limited to y < 1. An improvement of greater than 5x in capacity accompanied by high cycle stability and efficiency was observed for the disordered nanocomposites providing a novel approach to utilize low-cost MoS2 and similar materials for a high capacity energy storage system.

Xiao, Jie; Choi, Daiwon; Cosimbescu, Lelia; Koech, Phillip K.; Liu, Jun; Lemmon, John P.

2010-05-04T23:59:59.000Z

195

Development of LEU targets for {sup 99}Mo production and their chemical processing status 1993  

SciTech Connect

Most of the world`s supply of {sup 99m}{Tc} for medical purposes is currently produced from {sup 99}Mo derived from the fastening of high enriched uranium (HEU). Substitution of low enriched uranium (LEU) silicide fuel for the HEU alloy and aluminide fuels used in current target designs will allow equivalent {sup 99}Mo yields with little change in target geometries. Substitution of uranium metal for uranium oxide films in other target designs will also allow the substitution of LEU for HEU. In 1993, DOE renewed funding that was terminated in 1990 for development of LEU targets for {sup 99}Mo production. During the past year, our efforts were to (1) renew contact with {sup 99}Mo producers, (2) define the means to test our process for recovering {sup 99}Mo from irradiated LEU-silicide targets, and (3) begin to test our process on spent LEU-silicide miniplates stored at ANL from past fuel development studies.

Vandegrift, G.F.; Hutter, J.C.; Srinivasan, B.; Matos, J.E.; Snelgrove, J.L.

1993-10-01T23:59:59.000Z

196

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

197

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

198

Structural evolution in crystalline MoO{sub 3} nanoparticles with tunable size  

SciTech Connect

In this study MoO{sub 3} nanoparticles were prepared in porous Vycor glass by impregnation-decomposition cycles (IDC) with molybdenum(VI) 2-ethylhexanoate. X-ray diffraction data show that the nanoparticles are crystalline and are in the orthorhombic {alpha}-MoO{sub 3} phase. Raman spectroscopy data also indicate the formation of this phase. The profiles in the Raman spectra changed with the number of IDC, indicating a structural evolution of the MoO{sub 3} nanoparticles. The IDC methodology promoted a linear mass increase and allowed tuning the nanoparticle size. Analysis of HRTEM images revealed that for 3, 5 and 7 IDC, the MoO{sub 3} nanoparticle average diameters are 3.2, 3.6 and 4.2 nm. Diffuse reflectance spectroscopy indicates a consistent red shift in the band gap from 3.35 to 3.29 eV as the size increases from 3.2 to 4.2 nm. This observed red shift in the band gap of the MoO{sub 3} nanoparticles is presumably due to quantum confinement effects. - Graphical abstract: Modification of profile Raman spectra for crystalline MoO{sub 3} nanoparticles in function of the particle size. Highlights: Black-Right-Pointing-Pointer Structural evolution of the MoO{sub 3} nanoparticles as a function of the crystallite size. Black-Right-Pointing-Pointer Tunable optical properties by controlling the MoO{sub 3} nanoparticle size. Black-Right-Pointing-Pointer The impregnation-decomposition methodology allowed tuning the nanoparticle size. Black-Right-Pointing-Pointer The red shift in the band gap of the MoO{sub 3} nanoparticles is due to quantum size effect. Black-Right-Pointing-Pointer The short-distance order in MoO{sub 3} nanoparticle is function to area/volume ratio.

Barros Santos, Elias de; Aparecido Sigoli, Fernando [Functional Materials Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, PO Box 6154, Zip Code 13083-970 Campinas, SP (Brazil); Odone Mazali, Italo, E-mail: mazali@iqm.unicamp.br [Functional Materials Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, PO Box 6154, Zip Code 13083-970 Campinas, SP (Brazil)

2012-06-15T23:59:59.000Z

199

Mo-99/Tc-99m Separation: An Assessment of Technical Options  

Science Conference Proceedings (OSTI)

Several strategies for the effective separation of 99mTc from 99Mo have been developed and validated. Due to the success of column chromatographic separation using acidic alumina coupled with high specific activity fission 99Mo (F 99Mo) for production of 99Mo/99mTc generators, however, most technologies until recently have generated little interest. The reduced availability of F 99Mo and consequently the shortage of 99Mo/99mTc column generators in the recent past have resurrected interest in the production of 99Mo as well as 99mTc by alternate routes. Most of these alternative production processes require separation techniques capable of providing clinical grade 99mTc from low specific activity 99Mo or irradiated Mo targets. For this reason there has been renewed interest in alternate separation routes. This paper reviews the reported separation technologies which include column chromatography, solvent extraction, sublimation and gel systems that have been traditionally used for the fabrication of 99Mo/99mTc generator systems. The comparative advantage, disadvantage, and technical challenges toward adapting the emerging requirements are discussed. New developments such as solid-phase column extraction, electrochemical separation, extraction chromatography, supported liquid membrane (SLM) and thermochromatographic techniques are also being evaluated for their potential application in the changed scenario of providing 99mTc from alternate routes. Based on the analysis provided in this review, it appears that some proven separation technologies can be quickly resurrected for the separation of clinical grade 99mTc from macroscopic levels of reactor or cyclotron irradiated molybdenum targets. Furthermore, emerging technologies can be developed further to respond to the expected changing modes of 99mTc production.

Dash, A [Bhabha Atomic Research Centre, Mumbai, India; Pillai, M R A [Bhabha Atomic Research Centre, Mumbai, India; Knapp Jr, Russ F [ORNL

2013-01-01T23:59:59.000Z

200

Mo-containing tetrahedral amorphous carbon deposited by dual filtered cathodic vacuum arc with selective pulsed bias voltage  

E-Print Network (OSTI)

only. Fig.2 (a) Electrical resistivity of ta-C:Mo films as aC plasma pulses; (b) Electrical resistivity of the ta-C:MoIt found that the electrical resistivity decreases with an

Pasaja, Nitisak; Sansongsiri, Sakon; Anders, Andre; Vilaithong, Thiraphat; Intasiri, Sawate

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The oxidation of Ba dosed Mo(100) surfaces with O/sub 2/ at moderately high temperatures  

DOE Green Energy (OSTI)

The oxidation of Mo(100) and Ba-covered Mo(100) by O/sub 2/ have been examined at moderately high temperature (700 to 1400/sup 0/K) using x-ray photoelectron spectroscopy. Results indicate that the Ba or BaO overlayer retards but does not prevent oxidation of the underlying Mo surface. The high temperature surface chemistry of the O/Ba/Mo surface is described. 11 refs., 3 figs.

Rogers, J.W. Jr.; Blair, D.S.; Paffett, M.T.

1987-01-01T23:59:59.000Z

202

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

203

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

204

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

205

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

206

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

207

U.S. Refinery Stocks  

Gasoline and Diesel Fuel Update (EIA)

Area: U.S. PADD 1 East Coast Appalachian No. 1 PADD 2 Ind., Ill. and Ky. Minn., Wis., N. Dak., S. Dak. Okla., Kans., Mo. PADD 3 Texas Inland Texas Gulf Coast La. Gulf Coast N. La., Ark New Mexico PADD 4 PADD 5 Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Area: U.S. PADD 1 East Coast Appalachian No. 1 PADD 2 Ind., Ill. and Ky. Minn., Wis., N. Dak., S. Dak. Okla., Kans., Mo. PADD 3 Texas Inland Texas Gulf Coast La. Gulf Coast N. La., Ark New Mexico PADD 4 PADD 5 Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Crude Oil and Petroleum Products 353,802 345,413 343,062 345,025 342,763 342,727 1993-2013 Crude Oil 97,563 90,880 93,075 97,586 90,778 91,946 1981-2013 Petroleum Products 256,239 254,533 249,987 247,439 251,985 250,781 1993-2013

208

Electrochemically Induced High Capacity Displacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium  

SciTech Connect

MoS2/PEO/graphene composite is successfully prepared and the discharge mechanism of MoS2 as an anode material for Li-ion batteries has been investigated systematically in this work. The simultaneous formation of Li2S and Mo at deep discharge depth has been shown for the first time. The deposition of Mo metal with Li residing on the defects after the first discharge increases the intrinsic electronic conductivity of the electrode leading to a superior cycling stability for over 185 cycles. After the first discharge the amorphous Mo matrix allows a large amount of Li+ ions to repeatedly deposit and being oxidized during cycling while the transition between Li2S and S contribute to the capacity above 2.0 V. The interactions between as-formed Mo and S prevents the dissolution of the intermediate polysulfide thus providing clues to immobilize the soluble species in a Li-S battery. Excellent rate performances are achieved in this MoS2/PEO/graphene composite indicating a fast diffusion path of Li+ ions existing not only in the bulk material but also in the interface between the electrode and the electrolyte.

Xiao, Jie; Wang, Xaojian; Yang, Xiao-Qing; Xun, Shidi; Liu, Gao; Koech, Phillip K.; Liu, Jun; Lemmon, John P.

2011-08-09T23:59:59.000Z

209

Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations  

DOE Green Energy (OSTI)

The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

2005-03-31T23:59:59.000Z

210

Systematics of magnetic dipole strength in the stable even-mass Mo isotopes  

SciTech Connect

The nuclides {sup 92}Mo, {sup 98}Mo, and {sup 100}Mo have been studied in photon-scattering experiments by using bremsstrahlung produced at an electron energy of 6 MeV at the ELBE accelerator of the Forschungszentrum Rossendorf and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator at the University of Stuttgart. Six dipole transitions in {sup 98}Mo and 19 in {sup 100}Mo were observed for the first time in the energy range from 2 to 4 MeV. The experimental results are compared with predictions of the shell model and with predictions of the quasiparticle random-phase approximation (QRPA) in a deformed basis. The latter show significant contributions of isovector-orbital and isovector-spin vibrations. The change of the magnetic dipole strength in the isotopic chain of the even-mass isotopes from {sup 92}Mo to {sup 100}Mo is discussed. The calculations within the QRPA are extrapolated to the particle-separation energies to estimate the possible influence of M1 strength on the stability of the nuclides against photodissociation in cosmic scenarios.

Rusev, G. [Institut fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-01314 Dresden (Germany); Institute for Nuclear Research and Nuclear Energy, BAS, BG-1784 Sofia (Bulgaria); Schwengner, R.; Doenau, F.; Erhard, M.; Grosse, E.; Junghans, A.R.; Kaeubler, L.; Kosev, K.; Mallion, S.; Schilling, K.D.; Wagner, A. [Institut fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-01314 Dresden (Germany); Frauendorf, S. [Institut fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-01314 Dresden (Germany); Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Kostov, L.K. [Institute for Nuclear Research and Nuclear Energy, BAS, BG-1784 Sofia (Bulgaria); Garrel, H. von; Kneissl, U.; Kohstall, C.; Kreutz, M.; Pitz, H.H.; Scheck, M.; Stedile, F. [Institut fuer Strahlenphysik, Universitaet Stuttgart, D-70569 Stuttgart (Germany)] (and others)

2006-04-15T23:59:59.000Z

211

Reactor physics calculations for {sup 99}Mo production at the Annular Core Research Reactor  

SciTech Connect

The isotope {sup 99}Mo would be produced at Sandia using ACRR and the collocated Hot Cell Facility. {sup 99}Mo would be produced by irradiating targets coated with {sup 235}U in the form of highly enriched U{sub 3}O{sub 8}; after 7 days, the target would be removed and the isotope extracted using the Cintichem process. The Monte Carlo neutronics computer code MCNP was used to determine the optimum configuration for production, using various fractions of the US demand. Although ACRR operates at a low power level, the US demand for {sup 99}Mo can be easily met using a reasonable number of targets.

Parma, E.J.

1995-07-01T23:59:59.000Z

212

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

213

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

214

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

215

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

216

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

217

Forming 6061 Al HIP-Clad DU10Mo Monolithic Fuel Plates  

Science Conference Proceedings (OSTI)

Small scale trials with multi-layer 6061 Al HIP-clad DU10Mo (depleted uranium), co-rolled with Zr, have been performed. Important results include springback†...

218

NTT DoCoMo's competition strategy (before and) after the introduction of the flat rate  

E-Print Network (OSTI)

NTT DoCoMo, which was spun off from NTT in 1992, grew rapidly by increasing the number of subscribers and successfully implementing a new data communication, i-mode. However, when a competitor introduced a flat rate for ...

Yajima, Masaaki

2008-01-01T23:59:59.000Z

219

Solution-reactor-produced Mo-99 using activated carbon to remore I-131  

SciTech Connect

The production of {sup 99}Mo in a solution reactor was explored. Activated charcoal was used to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba; the carbon trapped a diminutive amount of {sup 99}Mo. The results promote the idea of solution-reactor-produced {sup 99}Mo. Solution reactors are favorable both energetically and environmentally. A solution reactor could provide enough {sup 99}Mo/{sup 99m}Te to support both the current and future radiopharmaceutical needs of the U.S.

Kitten, S.; Cappiello, C.

1998-06-01T23:59:59.000Z

220

The Thermodynamics of Titanium Formation in 95CrMo Steel  

Science Conference Proceedings (OSTI)

... on the fatigue life of 95CrMo steel which was applied in producing drilling rod. ... Analysis of Residence Time Distribution (RTD) of Fluid Flows in a Four Strand †...

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst  

Science Conference Proceedings (OSTI)

A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas

Song-bai Qiu; Wei-wei Huang; Yong Xu; Lu Liu; Quan-xin Li

2011-01-01T23:59:59.000Z

222

Electrochemical properties of sputter-deposited MoO{sub 3} films in lithium microbatteries  

Science Conference Proceedings (OSTI)

Molybdenum oxide (MoO{sub 3}) films were prepared by magnetron sputtering using an Mo target. The films were sputtered in the reactive atmosphere of an argon-oxygen gas mixture under various substrate temperatures, T{sub s}, and oxygen partial pressures, p(O{sub 2}). The effects of the growth conditions on the microstructure were examined using reflection high-energy electron diffraction and x-ray photoelectron spectroscopy. The analyses indicate that stoichiometric and polycrystalline MoO{sub 3} films were obtained at T{sub s} = 445 Degree-Sign C and p(O{sub 2}) = 61%. The applicability of the sputtered MoO{sub 3} films for lithium microbattery application has been demonstrated. The discharge-charge profiles, the kinetics of lithium intercalation process in the film, and the cycling behavior have been investigated in detail to understand the effect of microstructure on the electrochemical performance.

Ramana, C. V.; Atuchin, V. V.; Groult, H.; Julien, C. M. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090 (Russian Federation); Physicochimie des Electrolytes, Colloiedes et Systemes Analytiques (PECSA), Universite Pierre et Marie Curie-Paris 6, UMR 7195, 4 place Jussieu, 75005 Paris (France)

2012-07-15T23:59:59.000Z

223

U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION  

DOE Patents (OSTI)

An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

Clark, H.M.; Duffey, D.

1958-06-10T23:59:59.000Z

224

Photoluminescent BaMoO{sub 4} nanopowders prepared by complex polymerization method (CPM)  

SciTech Connect

The BaMoO{sub 4} nanopowders were prepared by the Complex Polymerization Method (CPM). The structure properties of the BaMoO{sub 4} powders were characterized by FTIR transmittance spectra, X-ray diffraction (XRD), Raman spectra, photoluminescence spectra (PL) and high-resolution scanning electron microscopy (HR-SEM). The XRD, FTIR and Raman data showed that BaMoO{sub 4} at 300 deg. C was disordered. At 400 deg. C and higher temperature, BaMoO{sub 4} crystalline scheelite-type phases could be identified, without the presence of additional phases, according to the XRD, FTIR and Raman data. The calculated average crystallite sizes, calculated by XRD, around 40 nm, showed the tendency to increase with the temperature. The crystallite sizes, obtained by HR-SEM, were around of 40-50 nm. The sample that presented the highest intensity of the red emission band was the one heat treated at 400 deg. C for 2 h, and the sample that displayed the highest intensity of the green emission band was the one heat treated at 700 deg. C for 2 h. The CPM was shown to be a low cost route for the production of BaMoO{sub 4} nanopowders, with the advantages of lower temperature, smaller time and reduced cost. The optical properties observed for BaMoO{sub 4} nanopowders suggested that this material is a highly promising candidate for photoluminescent applications.

Azevedo Marques, Ana Paula de [Laboratorio de Analise Termica e Materiais, Departamento de Quimica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)]. E-mail: apamarques@liec.ufscar.br; Melo, Dulce M.A. de [Laboratorio de Analise Termica e Materiais, Departamento de Quimica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Paskocimas, Carlos A. [Departamento de Engenharia Mecanica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Pizani, Paulo S. [Laboratorio de Semicondutores, Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Joya, Miryam R. [Laboratorio de Semicondutores, Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Leite, Edson R. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, CMDMC, Departamento de Quimica, Universidade Federal de Sao Carlos 13565-905, Sao Carlos, SP (Brazil); Longo, Elson [CMDMC, LIEC, Instituto de Quimica, Universidade Estadual Paulista, 14801-907 Araraquara, SP (Brazil)

2006-03-15T23:59:59.000Z

225

Solution-reactor-produced-{sup 99}Mo using activated carbon to remove {sup 131}I  

SciTech Connect

This research explores the idea of producing {sup 99}Mo in a solution reactor. The Solution High Energy Burst Assembly (SHEBA), located at the Los Alamos Critical Assembly Facility, was used to facilitate this study. The goal of this study was to build on work previously completed and to investigate a possible mode of radioactive contaminant removal prior to a {sup 99}Mo extraction process. Prior experiments, performed using SHEBA and a single-step sorption process, showed a significant amount of {sup 131}I present along with the {sup 99}Mo on the alumina that was used to isolate the {sup 99}Mo. A high concentration of {sup 131}I and/or other contaminants present in a sample prohibits the Food and Drug Administration from approving an extraction of that nature for radiopharmaceutical use. However, if it were possible to remove the {sup 131}I and other contaminants prior to a {sup 99}Mo extraction, a simple column extraction process might be feasible. Activated charcoal was used to try to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of the {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba. Most importantly, the carbon traps a diminutive amount of {sup 99}Mo.

Kitten, S.; Cappiello, C. [Los Alamos National Lab., NM (United States)

1998-09-01T23:59:59.000Z

226

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

227

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

228

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

229

Substrate recovery of Mo-Si multilayer coated optics  

Science Conference Proceedings (OSTI)

Imaging optics in a soft x-ray projection lithography (SXPL) system must meet stringent requirements to achieve high throughput and diffraction limited performance. Errors in the surface figure must be kept to less than {approximately}1 nm and the rms surface roughness must be less than 0.1 nm. The ML coatings must provide high reflectivity (> 60%) at wavelengths in the vicinity of 13 nm. The reflectivity bandpasses of the optics must be aligned within 0.05 nm. Each coating must be uniform across the surface of the optic to within 0.5%. These specifications challenge the limits of the current capabilities in optics fabrication and ML deposition. Consequently a set of qualified SXPL imaging optics is expected to be expensive, costing in the range of 100--250 k$. If the lifetime of the imaging optics is short, the replacement cost could significantly impact the economic competitiveness of the technology. The most likely failure modes for the imaging optics are mechanisms that degrade the ML coatings, but which leave the substrates intact. A potentially low cost solution for salvaging the imaging optics could be to strip the damaged ML coating to recover the substrate and then deposit a new coating. In this paper the authors report on the use of reactive ion etching (RIE) to remove Mo-Si ML coatings from precision optical substrates. The goal of this work was to characterize the etching process both in the ML film and at the substrate, and to determine the effects of the etching on the surface figure and finish of the substrate.

Stearns, D.G.; Baker, S.L.

1993-06-01T23:59:59.000Z

230

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

231

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

232

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

233

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

234

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

235

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

236

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

237

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

238

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

239

MCNPX-CINDER'90 Simulation of Photonuclear Mo-99 Production Experiments  

SciTech Connect

The MCNPX and CINDER'90 codes were used to support design of experiments investigating Mo-99 production with a 20-MeV electron beam. Bremsstrahlung photons produced by the electron beam interacting with the target drive the desired Mo-100({gamma},n)Mo-99 reaction, as well as many undesired reactions important to accurate prediction of radiation hazards. MCNPX is a radiation transport code and CINDER'90 is a transmutation code. They are routinely used together for accelerator activation calculations. Low energy neutron fluxes and production rates for nonneutron and high energy neutron induced reactions computed using MCNPX are inputs to CINDER'90. CINDER'90 presently has only a neutron reaction cross section library up to 25 MeV and normally the other reaction rates come from MCNPX physics models. For this work MCNPX photon flux tallies modified by energy response functions prepared from evaluated photonuclear cross section data were used to tally the reaction rates for CINDER'90 input. The cross section evaluations do not provide isomer to ground state yield ratios so a spin based approximation was used. Post irradiation dose rates were calculated using MCNPX with CINDER'90 produced decay photon spectra. The sensitivity of radionuclide activities and dose rates to beam parameters including energy, position, and profile, as well as underlying isomer assumptions, was investigated. Three experimental production targets were irradiated, two natural Mo and one Mo-100 enriched. Natural Mo foils upstream of the targets were used to analyze beam position and profile by exposing Gafchromic film to the foils after each irradiation. Activation and dose rate calculations were rerun after the experiments using measured beam parameters for comparison with measured Mo-99 activities and dose rates.

Kelsey, Charles T. IV [Los Alamos National Laboratory; Chemerizov, Sergey D. [Argonne National Laboratory; Dale, Gregory E. [Los Alamos National Laboratory; Harvey, James T. [NorthStar Medical Radioisotopes; Tkac, Peter [Argonne National Laboratory; Vandegrift, George R III [Argonne National Laboratory

2011-01-01T23:59:59.000Z

240

Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation  

SciTech Connect

Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

Medford, Andrew

2012-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FeAl and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying  

SciTech Connect

FeAl and Mo-Si-B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe-24Al (wt.%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 m/s to 700 m/s. Mo-13.4Si-2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo-Si-B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity, again due to an increased peening effect. For Mo-Si-B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and {alpha}-Mo. The T1 phase was retained after spraying at 350 m/s.

Totemeier, T.C.; Wright, R.N.; Swank, W.D.

2003-04-22T23:59:59.000Z

242

van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates  

SciTech Connect

We present a method for synthesizing MoS{sub 2}/Graphene hybrid heterostructures with a growth template of graphene-covered Cu foil. Compared to other recent reports, a much lower growth temperature of 400 C is required for this procedure. The chemical vapor deposition of MoS{sub 2} on the graphene surface gives rise to single crystalline hexagonal flakes with a typical lateral size ranging from several hundred nanometers to several micrometers. The precursor (ammonium thiomolybdate) together with solvent was transported to graphene surface by a carrier gas at room temperature, which was then followed by post annealing. At an elevated temperature, the precursor self-assembles to form MoS{sub 2} flakes epitaxially on the graphene surface via thermal decomposition. With higher amount of precursor delivered onto the graphene surface, a continuous MoS{sub 2} film on graphene can be obtained. This simple chemical vapor deposition method provides a unique approach for the synthesis of graphene heterostructures and surface functionalization of graphene. The synthesized two-dimensional MoS{sub 2}/Graphene hybrids possess great potential toward the development of new optical and electronic devices as well as a wide variety of newly synthesizable compounds for catalysts.

Shi, Yumeng [Massachusetts Institute of Technology (MIT); Zhou, Wu [Vanderbilt University; Lu, Ang-Yu [Academia Sinica, Hefei, China; Fang, Wenjing [Massachusetts Institute of Technology (MIT); Lee, Yi-Hsien [Massachusetts Institute of Technology (MIT); Hsu, Allen Long [Massachusetts Institute of Technology (MIT); Kim, Soo Min [Massachusetts Institute of Technology (MIT); Kim, Ki Kang [Massachusetts Institute of Technology (MIT); Yang, Hui Ying [Singapore University of Technology and Design; Liang, Lain-Jong [Academia Sinica, Hefei, China; Idrobo Tapia, Juan C [ORNL; Kong, Jing [Massachusetts Institute of Technology (MIT)

2012-01-01T23:59:59.000Z

243

Method for the production of {sup 99m}Tc compositions from {sup 99}Mo-containing materials  

DOE Patents (OSTI)

An improved method is described for producing {sup 99m}Tc compositions from {sup 99}Mo compounds. {sup 100}Mo metal or {sup 100}MoO{sub 3} is irradiated with photons in a particle (electron) accelerator to ultimately produce {sup 99}MoO{sub 3}. This composition is then heated in a reaction chamber to form a pool of molten {sup 99}MoO{sub 3} with an optimum depth of 0.5--5 mm. A gaseous mixture thereafter evolves from the molten {sup 99}MoO{sub 3} which contains vaporized {sup 99}MoO{sub 3}, vaporized {sup 99m}TcO{sub 3}, and vaporized {sup 99m}TcO{sub 2}. This mixture is then combined with an oxidizing gas (O{sub 2(g)}) to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7} and vaporized {sup 99}MoO{sub 3}. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized {sup 99}MoO{sub 3}. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency. The gaseous stream is then cooled in a sequential secondary condensation stage to convert vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing reaction product which is collected. 1 fig.

Bennett, R.G.; Christian, J.D.; Grover, S.B.; Petti, D.A.; Terry, W.K.; Yoon, W.Y.

1998-09-01T23:59:59.000Z

244

EA-1947: Transfer of the Kansas City Plant, Kansas City, MO | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1947: Transfer of the Kansas City Plant, Kansas City, MO EA-1947: Transfer of the Kansas City Plant, Kansas City, MO EA-1947: Transfer of the Kansas City Plant, Kansas City, MO SUMMARY This EA evaluates potential environmental impacts of a proposal to transfer the NNSA's KCP property either in whole or in part. This includes considering the No Action Alternative, where NNSA relocates operations from the KCP and maintains ownership of its property; and the Proposed Action Alternative, where NNSA transfers the KCP property for mixed use (industrial, warehouse, commercial, office). Under the proposed action, the EA addresses the potential direct, indirect, and cumulative impacts of using the KCP property for uses consistent with current zoning. NNSA also analyzes the potential environmental impacts of partial and/or complete

245

EA-1947: Transfer of the Kansas City Plant, Kansas City, MO | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1947: Transfer of the Kansas City Plant, Kansas City, MO EA-1947: Transfer of the Kansas City Plant, Kansas City, MO EA-1947: Transfer of the Kansas City Plant, Kansas City, MO SUMMARY This EA evaluates potential environmental impacts of a proposal to transfer the NNSA's KCP property either in whole or in part. This includes considering the No Action Alternative, where NNSA relocates operations from the KCP and maintains ownership of its property; and the Proposed Action Alternative, where NNSA transfers the KCP property for mixed use (industrial, warehouse, commercial, office). Under the proposed action, the EA addresses the potential direct, indirect, and cumulative impacts of using the KCP property for uses consistent with current zoning. NNSA also analyzes the potential environmental impacts of partial and/or complete

246

EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0475: Disposition of the Bannister Federal Complex, Kansas EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO Summary NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location. NOTE: On November 30, 2012, DOE announced the cancellation of this EIS and its intent to prepare an Environmental Assessment (EA-1947). Public Comment Opportunities None available at this time. Documents Available for Download November 30, 2012 EA-1947: Notice of Intent to Prepare an Environmental Assessment and

247

DOE - Office of Legacy Management -- Weldon Spring Chemical Co - MO 03  

NLE Websites -- All DOE Office Websites (Extended Search)

Weldon Spring Chemical Co - MO 03 Weldon Spring Chemical Co - MO 03 FUSRAP Considered Sites Site: Weldon Spring Chemical Co. (MO.03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Weldon Spring, Missouri, Site Documents Related to Weldon Spring Chemical Co. Summary of Work Session - Focus Area: Monitoring and Maintenance. Summary of Weldon Spring Long-Term Stewardship Plan Public Workshop. Summary of Work Session - Focus Area: Communication and Public Involvement. Land Use and Institutional Controls and Homeland SecurityFocus Area Work SessionWeldon Spring SiteInterpretive CenterDecember 5, 20022 Agenda7:00 p.m.Welcome, Pam Thompson, Manager, Weldon SpringObjective of

248

The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target  

E-Print Network (OSTI)

MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

Kim, C K; Park, H D

2002-01-01T23:59:59.000Z

249

Progress in chemical processing of LEU targets for {sup 99}Mo production -- 1997  

SciTech Connect

Presented here are recent experimental results of the continuing development activities associated with converting current processes for producing fission-product {sup 99}Mo from targets using high-enriched uranium (HEU) to low-enriched uranium (LEU). Studies were focused in four areas: (1) measuring the chemical behavior of iodine, rhodium, and silver in the LEU-modified Cintichem process, (2) performing experiments and calculations to assess the suitability of zinc fission barriers for LEU metal foil targets, (3) developing an actinide separations method for measuring alpha contamination of the purified {sup 99}Mo product, and (4) developing a cooperation with Sandia National Laboratories and Los Alamos National Laboratory that will lead to approval by the US Federal Drug Administration for production of {sup 99}Mo from LEU targets. Experimental results continue to show the technical feasibility of converting current HEU processes to LEU.

Vandegrift, G.F.; Conner, C.; Sedlet, J.; Wygmans, D.G. [Argonne National Lab., IL (United States); Wu, D. [Univ. of Illinois, Urbana, IL (United States); Iskander, F.; Landsberger, S. [Univ. of Texas, Austin, TX (United States)

1997-10-01T23:59:59.000Z

250

An experimental investigation of double beta decay of /sup 100/Mo  

SciTech Connect

New limits on half-lives for several double beta decay modes of /sup 100/Mo were obtained with a novel experimental system which included thin source films interleaved with a coaxial array of windowless silicon detectors. Segmentation and timing information allowed backgrounds originating in the films to be studied in some detail. Dummy films containing /sup 96/Mo were used to assess remaining backgrounds. With 0.1 mole years of /sup 100/Mo data collected, the lower half-life limits at 90% confidence were 2.7 /times/ 10/sup 18/ years for decay via the two-neutrino mode, 5.2 /times/10/sup 19/ years for decay with the emission of a Majoron, and 1.6 /times/ 10/sup 20/ years and 2.2 /times/ 10/sup 21/ years for neutrinoless 0/sup +/ ..-->.. 2/sup +/ and 0/sup +/ ..-->.. 0/sup +/ transitions, respectively. 50 refs., 38 figs., 11 tabs.

Dougherty, B.L.

1988-11-17T23:59:59.000Z

251

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

252

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

253

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

254

Fractionally total colouring Gn,p  

Science Conference Proceedings (OSTI)

We study the fractional total chromatic number of G"n","p as p varies from 0 to 1. We also present an algorithm that computes the fractional total chromatic number of a random graph in polynomial expected time. Keywords: Fractional total colouring, Graph colouring, Random graphs

Conor Meagher; Bruce Reed

2008-04-01T23:59:59.000Z

255

Substitution of modified 9 Cr-1 Mo steel for austentic stainless steels  

SciTech Connect

This report describes the current program to develop a high-strength ferritic-martensitic steel. The alloy is essentially Fe-9% Cr-1% Mo with small additions of V and Nb and is known as modifed 9 Cr-1 Mo steel. Its elevated-temperature properties and design allowable stresses match those of type 304 stainless steel for temperatures up to 600/sup 0/C and exceed those of other ferritic steels by factors of 2 to 3. The improved strength of this alloy permits its use in place of stainless steels for many applications.

Sikka, V. K.

1982-04-01T23:59:59.000Z

256

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

257

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

258

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

259

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

260

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

262

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

263

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

264

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

265

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

266

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

267

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

268

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

269

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

270

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

271

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

272

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

273

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

274

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

275

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

276

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

277

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

278

Effect of Mo Back Contact on Na Out-Diffusion and Device Performance of Mo/Cu(In,Ga)Se2/CdS/ZnO Solar Cells: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the molybdenum thin films that were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering, with a sputtering power density of 1.2 W/cm2. The working gas (Ar) pressure was varied from 0.6 to 16 mtorr to induce changes in the Mo films' morphology and microstructure. Thin films of Cu(In,Ga)Se2 (CIGS) were deposited on the Mo-coated glass using the 3-stage co-evaporation process. The morphology of both the Mo-coated SLG and the CIGS thin films grown on it was examined using high-resolution scanning electron microscopy. Na was depth profiled in the Mo and CIGS films by secondary ion mass spectrometry. The device performance was evaluated under standard conditions of 1000 W/m2 and 25 C. Optimum device performance is found for an intermediate Mo sputtering pressure.

Al-Thani, H. A.; Hasoon, F. S.; Young, M.; Asher, S.; Alleman, J. L.; Al-Jassim, M. M.; Williamson, D. L.

2002-05-01T23:59:59.000Z

279

Soft X-ray Spectroscopy of C60/Copper Phthalocyanine/MoO3 Interfaces: Role of Reduced MoO3 on Energetic Band Alignment and Improved Performance  

Science Conference Proceedings (OSTI)

The interfacial electronic structure of C{sub 60}/copper phthalocyanine (CuPc)/molybdenum trioxide (MoO{sub 3}) thin films grown in situ on indium tin oxide (ITO) substrates has been studied using synchrotron radiation-excited photoelectron spectroscopy in an attempt to understand the influence of oxide interlayers on the performance of small molecule organic photovoltaic devices. The MoO{sub 3} layer on ITO is found to significantly increase the work function of the substrate and induces large interface dipoles and band bending at the CuPc/MoO{sub 3} interface. The large band bending confirms the formation of an internal potential that assists hole extraction from the CuPc layer to the electrode. The electronic structure of the MoO{sub 3} layer on ITO was also examined using various soft X-ray spectroscopies to probe the conductive nature of the MoO{sub 3} thin film.

S Cho; L Piper; A DeMasi; A Preston; K Smith; K Chauhan; R Hatton; T Jones

2011-12-31T23:59:59.000Z

280

TotalView Parallel Debugger at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

282

Semesterplan WS 2012/13 Chemie (VL) fr Zahnmediziner (1. FS) Stand. 02.10.2012 Mo 22. Okt.  

E-Print Network (OSTI)

Semesterplan WS 2012/13 Chemie (VL) f√ľr Zahnmediziner (1. FS) Stand. 02.10.2012 Mo 22. Okt;Semesterplan WS 2012/13 Chemie (VL) f√ľr Zahnmediziner (1. FS) Stand. 02.10.2012 Mo 17. Dez. 10.15 11

Gollisch, Tim

283

Small non-polar complexes exhibiting significant piezoelectric properties: Solvothermal synthesis and crystal structures of MO{sub 5}V(tren){center_dot}H{sub 2}O (M=Mo and W; tren=tris(2-aminoethyl)amine)  

SciTech Connect

The two isostructural complexes MO{sub 5}V(tren){center_dot}H{sub 2}O (M=Mo (1) and W (2)) were synthesized under solvothermal conditions at pH Almost-Equal-To 12 crystallizing in the non-centrosymmetric space group P2{sub 1}2{sub 1}2{sub 1}. The structures are constructed by a distorted tetrahedral [MO{sub 4}]{sup 2-} anion bound via one shared oxygen atom to a severely distorted [V{sup IV}N{sub 4}O]{sup 2+} complex completing the octahedral coordination around the V centre. The two O atoms in the VN{sub 4}O{sub 2} octahedron are in cis position. The two compounds represent rare examples where the [MO{sub 4}]{sup 2-} anion is acting as a ligand. Both compounds exhibit a piezoelectric effect which is more pronounced for M=Mo. The samples are further characterized with IR and UV/Vis spectroscopy and thermal analysis. - Graphical abstract: The complexes [(V(tren)O)(MO4)]{center_dot}H2O (M = Mo, W; tren = tris(2-aminoethyl)amine)) composed of vertex-linked [MO4]{sup 2-} tetrahedron and [VN4O6]{sup 2+}octahedron. Highlights: Black-Right-Pointing-Pointer [MO{sub 4}]{sup 2-} tetrahedron (M=Mo, W) acting as ligand. Black-Right-Pointing-Pointer Jahn-Teller and steric distortion of the [VN{sub 4}O{sub 2}]{sup 2+} octahedron. Black-Right-Pointing-Pointer Non-centrosymmetric complexes exhibiting pronounced piezoelectric effect.

Rasmussen, M.; Naether, C. [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet Kiel, Max-Eyth-Str. 2, D-24118 Kiel (Germany)] [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet Kiel, Max-Eyth-Str. 2, D-24118 Kiel (Germany); Bismayer, U. [Mineralogisch-Petrographisches Institut, Universitaet Hamburg, Grindelallee 48 20146 Hamburg (Germany)] [Mineralogisch-Petrographisches Institut, Universitaet Hamburg, Grindelallee 48 20146 Hamburg (Germany); Bensch, W., E-mail: wbensch@ac.uni-kiel.de [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet Kiel, Max-Eyth-Str. 2, D-24118 Kiel (Germany)

2012-11-15T23:59:59.000Z

284

MoSi2 and Other Silicides as High Temperature Structural Materials  

Science Conference Proceedings (OSTI)

... R.W. Stusrud, R.A. MacKay,. D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstmm ..... 'I. 3 10-S d. 5. Q. H. 3 10= g. 5. E a. E m-7. 'E 5, .- z. 10-8 '. 5 c:3si MoSi2. //II.

285

MoCha-pi, an exogenous coordination calculus based on mobile channels  

Science Conference Proceedings (OSTI)

In this paper we present MoCha-?, an exogenous coordination calculus that is based on mobile channels. A mobile channel is a coordination primitive that allows anonymous point-to-point communication between processes. Our calculus is an extension ... Keywords: calculus, coordination, distributed mobile channels

Juan Guillen-Scholten; Farhad Arbab; Frank de Boer; Marcello Bonsangue

2005-03-01T23:59:59.000Z

286

The MoLE project: an international experiment about mobile learning environment  

Science Conference Proceedings (OSTI)

This paper aims to present an international project, called the MoLE Project, which provided learning resources and tools for personnel in disaster or emergency situations. Thus, it illustrates the interpenetration of e-Learning and field workers with ... Keywords: education, mobile technologies, system evaluation

Marie-HťlŤne Ferrer, Jacob Hodges, Nathalie Bonnardel

2013-08-01T23:59:59.000Z

287

High-field superconductivity in some bcc Ti-Mo and Nb-Zr alloys  

Science Conference Proceedings (OSTI)

Zero electrical resistance at unusually high magnetic field strengths has been observed in the bcc alloys Ti-16 a/o (atomic percent) Mo, Nb-12 a/o Zr, and Nb-25 a/o Zr. The maximum highfield zero-resistance current density, Jc, in these ...

R. R. Hake; T. G. Berlincourt; D. H. Leslie

1962-01-01T23:59:59.000Z

288

Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos-  

E-Print Network (OSTI)

Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos- R. Hazamaa , P Be solar 's. The present status of MOON for the low energy solar experiment is briefly discussed the pp solar flux with good accuracy. 1. INTRODUCTION Realtime studies of the high-energy component of 8

Washington at Seattle, University of

289

To appear in the ACM SIGGRAPH conference proceedings Jeong-Mo Hong  

E-Print Network (OSTI)

To appear in the ACM SIGGRAPH conference proceedings √? √?√?√? √?√?√?√?√? √ź√? √? Jeong-Mo Hong¬£ Korea of viscosity influences the shape of air bubbles in water. In this paper, we extend previous fluid simulation

Frey, Pascal

290

Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization  

Science Conference Proceedings (OSTI)

A carbon supported PtMo aqueous phase reforming catalyst for producing hydrogen from glycerol was characterized by analysis of the reaction products and pathway, TEM, XPS and XAS spectroscopy. Operando X-ray absorption spectroscopy (XAS) indicates the catalyst consists of bimetallic nano-particles with a Pt rich core and a Mo rich surface. XAS of adsorbed CO indicates that approximately 25% of the surface atoms are Pt. X-ray photoelectron spectroscopy indicates that there is unreduced and partially reduced Mo oxide (MoO{sub 3} and MoO{sub 2}), and Pt-rich PtMo bimetallic nano-particles. The average size measured by transmission electron microscopy of the fresh PtMo nano-particles is about 2 nm, which increases in size to 5 nm after 30 days of glycerol reforming at 31 bar and 503 K. The catalyst structure differs from the most energetically stable structure predicted by density functional theory (DFT) calculations for metallic Pt and Mo atoms. However, DFT indicates that for nano-particles composed of metallic Pt and Mo oxide, the Mo oxide is at the particle surface. Subsequent reduction would lead to the experimentally observed structure. The aqueous phase reforming reaction products and intermediates are consistent with both C-C and C-OH bond cleavage to generate H{sub 2}/CO{sub 2} or the side product CH{sub 4}. While the H{sub 2} selectivity at low conversion is about 75%, cleavage of C-OH bonds leads to liquid products with saturated carbon atoms. At high conversions (to gas), these will produced additional CH{sub 4} reducing the H{sub 2} yield and selectivity.

Stach E. A.; Dietrich, P.J.; Lobo-Lapidus, R.J.; Wu, T.; Sumer, A.; Akatay, M.C.; Fingland, B.R.; Guo, N.; Dumesic, J.A.; Marshall, C.L.; Jellinek, J.; Delgass, W.N.; Ribeiro, F.H.; Miller, J.T.

2012-03-01T23:59:59.000Z

291

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

292

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

293

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

294

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

295

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

296

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

297

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

298

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

299

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

300

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

302

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

303

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

304

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

305

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

306

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

307

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

308

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

309

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

310

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

311

Total Adjusted Sales of Residual Fuel Oil  

Annual Energy Outlook 2012 (EIA)

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions,...

312

Total Adjusted Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

313

Total Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

314

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

315

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

316

,"New Mexico Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

317

Microstructural Analysis of Irradiated U-Mo Fuel Plates: Recent Results  

Science Conference Proceedings (OSTI)

Microstructural characterization of irradiated dispersion and monolithic RERTR fuel plates using scanning electron microscopy (SEM) is being performed in the Electron Microscopy Laboratory at the Idaho National Laboratory. The SEM analysis of samples from U-Mo dispersion fuel plates focuses primarily on the behavior of the Si that has been added to the Al matrix to improve the irradiation performance of the fuel plate and on the overall behavior of fission gases (e.g., Xe and Kr) that develop as bubbles in the fuel microstructure. For monolithic fuel plates, microstructural features of interest, include those found in the U-Mo foil and at the U-Mo/Zr and Zr/6061 Al cladding interfaces. For both dispersion and monolithic fuel plates, samples have been produced using an SEM equipped with a Focused Ion Beam (FIB). These samples are of very high quality and can be used to uncover some very unique microstructural features that are typically not observed when characterizing samples produced using more conventional techniques. Overall, for the dispersion fuel plates with matrices that contained Si, narrower fuel/matrix interaction layers are typically observed compared to the fuel plates with pure Al matrix, and for the monolithic fuel plates microstructural features have been observed in the U-10Mo foil that are similar to what have been observed in the fuel particles found in U-Mo dispersion fuels. Most recently, more prototypic monolithic fuel samples have been characterized and this paper describes the microstructures that have been observed in these samples.

D. D. Keiser, Jr.; J. Jue; B. D. Miller; J. Gan; A. B. Robinson; P. V. Medvedev

2012-03-01T23:59:59.000Z

318

Unprecedented {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates  

Science Conference Proceedings (OSTI)

Abstrct: Four novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [{beta}-Mo{sub 8}O{sub 26}] [NH{sub 4}]{sub 2} (1), [BMIM] [{beta}-Mo{sub 8}O{sub 26}]{sub 0.5}{center_dot}H{sub 2}O (2), [BMIM] [1D-Mo{sub 8}O{sub 26}]{sub 0.5} (3) and {l_brace}3D-[Cu(DIE){sub 2}] [1D-Mo{sub 8}O{sub 26}]{sub 0.5}{r_brace}{sub {infinity}} (4) [DEB= 1,1 Prime -diethyl-4,4 Prime -bipyridinium, BMIM=1,1 Prime -bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and [DEB]{sup 2+} or [BMIM]{sup 2+} organic cations. Compound 3 is the first external template example of Mo-POMs-based supramolecular network incorporated with novel {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H{sub 2}O{sub 2}. - Graphical abstract: Four novel organic templated polyoxometalates comprising of 0D, 1D and 3D supramolecular frameworks together with the catalytic activities on the acetaldehyde oxidation to acetic acid were reported. Highlights: Using cation templated self-assembly four novel polyoxometalates were prepared. Compounds 1 and 2 consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and organic cations. Compound 3 is the first external template-assisted POMs with {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} chain. Compound 4 is a rare 3D net containing {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} 1D chain and DIE ligands. These compounds had definite catalytic activities on the acetaldehyde oxidation.

Du Haijuan; Zunzhe Shu [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Niu Yunyin, E-mail: niuyy@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Song Lisha; Zhu Yu [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

2012-06-15T23:59:59.000Z

319

Microstructural Characterization of U-7Mo/Al-Si Alloy Matrix Dispersion Fuel Plates Fabricated at 500įC  

Science Conference Proceedings (OSTI)

The starting microstructure of a dispersion fuel plate will impact the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of UĖMo dispersion fuel plates, particularly the interaction layers that can form between the fuel particles and the matrix, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses have been performed on samples from depleted UĖ7Mo (UĖ7Mo) dispersion fuel plates with either AlĖ2 wt.% Si(AlĖ2Si) or AA4043 alloy matrix. It was observed that in the thick interaction layers, U(Al, Si)3 and U6Mo4Al43 were present, and in the thin interaction layers, (U, Mo) (Al, Si)3, U(Al, Si)4, U3Si3Al2, U3Si5, and possibly USi-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this investigation, the time that a dispersion fuel plate is exposed to a relatively high temperature during fabrication will impact the nature of the interaction layers around the fuel particles. Uniformly thin, Si-rich layers will develop around the UĖ7Mo particles for shorter exposure times, and thicker, Si-depleted layers will develop for the longer exposure times.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Bo Yao; Emmanuel Perez; Yongho Sohn; Curtis R. Clark

2011-05-01T23:59:59.000Z

320

Investigation and Evaluation of Geopressured-Geothermal Wells; Detailed Reentry Prognosis for Geopressure-Geothermal Testing of Dr. M.O. Miller No. 1 Well  

DOE Green Energy (OSTI)

This Gruy Federal Type I-A prospect was drilled as the Union Oil Company of California, Dr. M.O. Miller No. 1 and is located in Section 34, T15S, R5W, Cameron Parish, Louisiana. The land belongs to the heirs of Dr. Miller and is unleased. The well site is approximately 350 feet southwest of the northwest corner of Section 34 and approximately 4,000 feet south-southeast of Prospect L-3, Buttes Gas and Oil Co. et al., Gladys McCall No. 1. The former well site is accessible by approximately 2.8 miles of canal levee on which a board road would have to be constructed. In addition, there are two wooden bridges in fair condition to be crossed which will require minor repairs. The well was drilled to a total depth of 18,158 feet and plugged and abandoned as a dry hole mid 1965.

None

1978-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Evaluating and adjusting {sup 239}Pu, {sup 56}Fe, {sup 28}Si and {sup 95}Mo nuclear data with a Monte Carlo technique  

Science Conference Proceedings (OSTI)

In this paper, Monte Carlo optimization and nuclear data evaluation are combined to produce optimal adjusted nuclear data files. The methodology is based on the so-called 'Total Monte Carlo' and the TALYS system. Not only a single nuclear data file is produced for a given isotope, but virtually an infinite number, defining probability distributions for each nuclear quantity. Then each of these random nuclear data libraries is used in a series of benchmark calculations. With a goodness-of-fit estimator, best {sup 239}Pu, {sup 56}Fe, {sup 28}Si and {sup 95}Mo evaluations for that benchmark set can be selected. A few thousands of random files are used and each of them is tested with a large number of fast, thermal and intermediate energy criticality benchmarks. From this, the best performing random file is chosen and proposed as the optimum choice among the studied random set. (authors)

Rochman, D.; Koning, A. J. [Nuclear Research and Consultancy Group, Petten (Netherlands)

2012-07-01T23:59:59.000Z

322

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

323

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

324

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

325

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

326

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

327

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

328

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

329

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

330

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

331

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

332

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

333

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

334

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

335

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

336

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

337

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

338

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

339

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

340

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

342

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

343

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

344

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

345

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

346

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

347

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

348

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

349

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

350

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

351

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

352

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

353

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

354

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

355

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

356

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

357

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

358

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

359

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

360

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

362

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

363

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

364

Total synthesis and study of myrmicarin alkaloids  

E-Print Network (OSTI)

I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

Ondrus, Alison Evelynn, 1981-

2009-01-01T23:59:59.000Z

365

Total synthesis of cyclotryptamine and diketopiperazine alkaloids  

E-Print Network (OSTI)

I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

Kim, Justin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

366

" Level: National Data and Regional Totals...  

U.S. Energy Information Administration (EIA) Indexed Site

"," ",,"Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal",...

367

Activation, Heating and Exposure Rates for Mo?99 Experiments with 25?Disk Targets  

Science Conference Proceedings (OSTI)

An MCNPX model of the 25-disk target assembly inside the vacuum cube inside the shielded box was prepared. This was used to calculate heating and photon and neutron fluxes throughout the model. Production rates for photonuclear reaction products were calculated using the photon fluxes and ENDF/B-VII cross sections. Measured isomer to ground state yield ratios were used where available. Where not available the new correlation between spin deficit and isomer to ground state yield ratios presented at AccApp'11 was used. The photonuclear production rates and neutron fluxes were input to CINDER2008 for transmutation calculations. A cross section update file was used to supply (n,n') reactions missing from CINDER2008 libraries. Decay photon spectra produced by CINDER2008 were then used to calculate exposure rates using the MCNPX model. Two electron beam irradiations were evaluated. The first was for a thermal test at 15 MeV with 1300 {micro}A incident on one target end and the second was for a production test at 35 MeV with 350 {micro}A incident on both target ends (700 {micro}A total current on target). For the thermal test 1, 2, 3, 4, 5 and 6 h irradiation times were simulated, each followed by decay time steps out to 42 days. For the production test 6, 12, 18, 24, 30 and 36 h irradiation times were simulated followed by the same decay periods. For all simulations beam FWHMs in x and y were both assumed to be 6 mm. Simulations were run for Mo-100 enriched and natural Mo targets for both tests. It is planned that thermal test will be run for 4 h with natural target disks and production test will be run for 24 h with enriched target disks. Results for these two simulations only are presented in this report. Other results can be made available upon request. Post irradiation exposure rates were calculated at 30 cm distances from left, right, front and back of the following configurations: (1) Shielded box with everything in it (beam pipes, cooling pipes, vacuum cube, target housing weldment and target assembly), (2) Shielded box with everything in it except the target assembly, (3) Shielded box with nothing in it, (4) Target assembly taken outside of shielded box, (5) Target disks in cradle (target assembly with thermocouple weldment and flange removed), (6) Empty cradle, and (7) Target disks alone. Decay photon spectra from the CINDER2008 calculations were used as sources for the exposure rate calculations in the same model used for the flux calculations with beam on. As components were removed to simulate the seven cases considered the material compositions were changed to air and their respective sources were turned off. The MCNPX model geometry is plotted in Figure 1. The left and right detector locations for cases 1, 2 and 3 were 30 cm from the shielded box walls and 30 cm from the beam pipe openings in the left and right sides of the model (they are not in the beam line). A zoomed in plot of the target assembly alone is in Figure 2. Exposure rates for the seven cases are plotted as a function of time after irradiation in Figures 3, 4 and 5. To aid in comparison between the cases, all of these figures have been plotted using the same scale. Figures 3 and 4 are respectively the thermal and production test results for cases 1 through 6. Figure 5 includes case 7 results for both. Differences between cases 1 and 2 for both tests are not statistically significant showing that activation of components other than the target assembly, many of which are also shielding the target assembly, dominates exposure rates outside the shielded box. Case 3 shows the contribution from activation of the shield box itself. In front where shielded box wall is thickest box activation accounts for essentially all of the exposure rate outside. Differences between cases 4 and 5 are also minimal, showing that the contribution to target assembly exposure rates from the thermocouple flange and weldment are small compared to the target disks and cradle. From the numerical results the contribution is about 1%. Results for case 6, the cradle itself, are ini

Kelsey, Charles T. IV [Los Alamos National Laboratory

2012-05-09T23:59:59.000Z

368

File:USDA-CE-Production-GIFmaps-MO.pdf | Open Energy Information  

Open Energy Info (EERE)

MO.pdf MO.pdf Jump to: navigation, search File File history File usage Missouri Ethanol Plant Locations Size of this preview: 776 √ó 600 pixels. Full resolution ‚Äé(1,650 √ó 1,275 pixels, file size: 377 KB, MIME type: application/pdf) Description Missouri Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Missouri External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:16, 27 December 2010 Thumbnail for version as of 16:16, 27 December 2010 1,650 √ó 1,275 (377 KB) MapBot (Talk | contribs) Automated bot upload

369

Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel [Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Welding of Metals > Laser Welding of Metals > Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Zhiyue Xu Nuclear Engineering Division of Argonne National Laboratory

370

Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.  

SciTech Connect

The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

Kim, Y S; Hofman, G L [Nuclear Engineering Division

2011-06-01T23:59:59.000Z

371

Mo-6%Nb single crystal alloy creep strength demonstration for long life thermionic power systems  

DOE Green Energy (OSTI)

Experimental results of one- and two-dimensional creep testing for single crystal Mo-6%Nb alloy are presented. Three 1-D specimens were creep-tested for up to 3000 hours at 1873 to 1973 K and 5 to 15 MPa. One 2-D specimen tube was creep-tested for 2000 hours at 1873 K/15MPa. Results confirm the high creep strength of Mo-6%Nb for long life (10 to 15 year) TFE emitter application in thermionic space nuclear power systems. After the initial transition stage (about 1000 hours), quasi-steady state 1-D and 2-D creep rates were within 20% of each other suggesting little significant effect of anisotropy. More data points will be needed to define the Sherby-Dom parameters with statistical accuracy. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Rhee, H.S.; Zheng, C.; Kent Koester, J. [Space Power, Inc., 621 River Oaks Parkway, San Jose, California 95134 (United States); Yastrebkov, A.; Nikolaev, Y.; Gontar, A. [Scientific Industrial Association Lutch, Podolsk, Moscow Region (Russian Federation)

1995-01-20T23:59:59.000Z

372

Continuing investigations for technology assessment of /sup 99/Mo production from LEU (low enriched Uranium) targets  

SciTech Connect

Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from /sup 99/Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of /sup 99/Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product /sup 99/Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent /sup 99/Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved.

Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

1987-01-01T23:59:59.000Z

373

Production and Characterization of Atomized U-Mo Powder by the Rotating Electrode Process  

SciTech Connect

In order to produce feedstock fuel powder for irradiation testing, the Idaho National Laboratory has produced a rotating electrode type atomizer to fabricate uranium-molybdenum alloy fuel. Operating with the appropriate parameters, this laboratory-scale atomizer produces fuel in the desired size range for the RERTR dispersion experiments. Analysis of the powder shows a homogenous, rapidly solidified microstructure with fine equiaxed grains. This powder has been used to produce irradiation experiments to further test adjusted matrix U-Mo dispersion fuel.

C.R. Clark; B.R. Muntifering; J.F. Jue

2007-09-01T23:59:59.000Z

374

High strength Sn-Mo-Nb-Zr alloy tubes and method of making same  

DOE Patents (OSTI)

Tubes for use in nuclear reactors fabricated from a quaternary alloy comprising 2.5-4.0 wt% Sn, 0.5-1.5 wt% Mo, 0.5-1.5 wt% Nb, balance essentially Zr. The tubes are fabricated by a process of hot extrusion, heat treatment, cold working to size and age hardening, so as to produce a microstructure comprising elongated .alpha. grains with an acicular transformed .beta. grain boundary phase.

Cheadle, Brian A. (Deep River, CA)

1977-01-01T23:59:59.000Z

375

Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2  

SciTech Connect

Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time-reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken1. In certain two-dimensional electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field2,3. In principle, this offers the possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control4,5. Here we investigate this possibility using polarization-resolved photoluminescence of bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible spectrum6,7 allowing direct optical probing5,8 12. We find that in bilayer MoS2 the circularly polarized photoluminescence can be continuously tuned from 15% to 15% as a function of gate voltage, whereas in structurally non-centrosymmetric monolayer MoS2 the photoluminescence polarization is gate independent. The observations are well explained as resulting from the continuous variation of orbital magnetic moments between positive and negative values through symmetry control.

Wu, Sanfeng [University of Washington, Seattle; Ross, Jason [University of Washington, Seattle; Liu, G. B. [University of Hong Kong, The; Aivazian, Grant [University of Washington, Seattle; Jones, Aaron [University of Washington, Seattle; Fei, Zaiyao [University of Washington, Dept Phys, Seattle, WA; Zhu, Wenguang [University of Tennessee, Knoxville (UTK); Xiao, Di [ORNL; Yao, Wang [University of Hong Kong, The; Cobden, David [University of Washington, Dept Phys, Seattle, WA; Xu, Xiaodong [University of Washington

2013-01-01T23:59:59.000Z

376

Ni6Cr5MoO18: A compensated half metal predicted from first-principles  

Science Conference Proceedings (OSTI)

NiCrO3 is semiconducting. It contains six molecular units in the conventional cell. By substituting one of the six Cr atoms with Mo in the conventional cell

Jing Wang; Ningning Zu; Zhijian Wu

2013-01-01T23:59:59.000Z

377

Electrical properties of a-C:Mo films produced by dual-cathode filtered cathodic arc plasma deposition  

SciTech Connect

Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 nm. Film resistivity varied from 3.55x10-4 Omega m to 2.27x10-6 Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59x10-2 and 4.05 Omega m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80x10-2 to 3.36x10-4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (sigma 0) which included charge carrier density and density of states.

Sansongsiri, Sakon; Anders, Andre; Yodsombat, Banchob

2008-01-20T23:59:59.000Z

378

TEM Characterization of U-7Mo/Al-2Si Dispersion Fuel Irradiated to Intermediate and High Fission Densities  

SciTech Connect

This paper will discuss the results of TEM analysis that was performed on two samples taken from the low flux and high flux sides of the fuel plate with U-7Mo fuel particles dispersed in U-2Si matrix. The corresponding local fission density of the fuel particles and the peak fuel plate centerline temperature between the low flux and high flux samples are 3.32 x 10{sup 27} f/m{sup 3} and 90 C, and 6.31 x 10{sup 27} f/m{sup 3} and 120 C, respectively. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behavior during irradiation. The Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation. The change in bubble distribution at the high fission density suggests that the bubble superlattice is stable as the U-7Mo matrix remains crystalline. It appears that there is a threshold Si content in the fuel particle above which the U-Mo turns to amorphous under irradiation. The threshold Si content is approximately 8 at.% and 4 at.% for low flux and high flux condition, respectively.

J. Gan; D.D. Keiser, Jr.; B.D. Miller; A.B. Robinson; J-F. Jue; P.G. Medvedev; D.M. Wachs

2012-05-01T23:59:59.000Z

379

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary ‚Äļ FAQS ‚Äļ Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

380

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM - Measurement - Net broadband total irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

382

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112¬į, 5.89881¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Mkha' 'gro dbang mo'i rnam that, the biography of the gter ston ma bde chen chos kyi dbang mo (1868-1927?)  

E-Print Network (OSTI)

, for example, A 'dzom 'Brug pa 'Gro 'dul dPa' bo rDo rje (1842-1924), a famous rdzogs chen master and treasure revealer (see Namkhai 1986, p. 153), who bestowed upon her a long life empowerment when she was 26 (1893); see dBang mo'i rnam thar, p. 824, passim... , Kvśrne and Nagano eds., 2003, p. 323), gCod, A khrid (see Kvśrne and Rikey, 1996), Phur pa (see Bon Kanjur, op.cit., pp. 295-297), rDzogs chen Yang rtse Klong chen (Sherab Wangyal, TBMC, New Delhi, 1973), Khro bo rGyud drug gSang ba bSen thub (see Bon...

Rossi, Donatella

2008-01-01T23:59:59.000Z

384

A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane  

Science Conference Proceedings (OSTI)

A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

Chen Miao, E-mail: chenmiao@sinochem.com [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); Wu Jialing; Liu Yongmei [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Cao Yong, E-mail: yongcao@fudan.edu.cn [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Guo Li [Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); He Heyong; Fan Kangnian [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China)

2011-12-15T23:59:59.000Z

385

Starting From Total Shutdown Initial Position  

E-Print Network (OSTI)

) and exposed to atmospheric pressure will destroy pump oil. #12;#12;Starting From Total Shutdown Initial Position: · Roughing pump: OFF · Forepump: OFF · Diff. pump-Vent to CENTER position. 5. Open Accumulator Valve 6. Turn on diffusion pump. Repeller light should go on

McCombe, Bruce D.

386

Total knee arthroplasty and evaluation of rehabilitation  

Science Conference Proceedings (OSTI)

As surgical techniques and biocompatibility of the biomaterials develop, total knee arthroplasty (TKA) has already been a mature medical technology. However, there are still a considerable number of adverse incidents for knee arthroplasty surgeries every ... Keywords: TKA, knee joint score, postoperative rehabilitation, preoperative rehabilitation

Xianqiang Mi; Fuqing Zhong; Zhaodan Lu

2010-07-01T23:59:59.000Z

387

Total pressing Indonesian gas development, exports  

Science Conference Proceedings (OSTI)

Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

Not Available

1994-01-24T23:59:59.000Z

388

Total Building Air Management: When Dehumidification Counts  

E-Print Network (OSTI)

Industry trends toward stringent indoor air quality codes, spearheaded by ASHRAE 62-89: Ventilation for Acceptable Indoor Air Quality, present four challenges to the building industry in hot and humid climates: 1. Infusion of large quantities of make-up air to code based on zone requirements 2. Maintenance of tight wet bulb and dry bulb temperature tolerances within zones based on use 3. Energy management and cost containment 4. Control of mold and mildew and the damage they cause Historically, total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform specific, independent functions in the total control of the indoor air environment. Composite systems have a high up-front cost, are difficult to maintain and are costly to operate. Today, emerging technologies allow the implementation of fully integrated system for total building air management. These systems provide a single-vendor solution that is cost effective to purchase, maintain and operate. Operating saving of 23% and ROIs of 2.3 years have been shown. Equipment specification is no longer based primarily on total building load. Maximum benefits of these dynamic systems are realized when systems are designed with a total operating strategy in mind. This strategy takes into consideration every factor of building air management including: 1. Control of sensible heat 2. Balance management of heat rejection 3. Latent heat management 4. Control of process hot water 5. Indoor air quality management 6. Containment of energy consumption 7. Load shedding

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

389

Mo Zhou  

NLE Websites -- All DOE Office Websites (Extended Search)

and regional government on appliance standard achievement; evaluate the social impact of appliance labeling program; and analysis of appliance price trend and learning rate to...

390

MO: ZL  

Office of Legacy Management (LM)

Tonawanda, New York," May 1978 (DOEEV-00056). 2. "Radiological Survey of the Ashland Oil Co. (Former Waist Property), Tonewanda, Kew York," May 1978 (DOEEV-00054). 3....

391

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

392

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

393

ARM - Measurement - Shortwave broadband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

394

Total atmospheric emissivities for a tropical climate  

SciTech Connect

The total atmospheric flux emissivities as a function of water vapor optical depth are reported for meteorological condtions in Thailand. The water vapor optical depth was first calculated as a function of height up to 12 km from the annual average upper air pressures, temperature, and dew points at Bangkok. The flux emissivity was then computed using tabulated data for the flux emissivities of water vapor, carbon dioxide, and ozone at 20/sup 0/C. (SPH)

Exell, R.H.B.

1978-01-01T23:59:59.000Z

395

Cogeneration Plant is Designed for Total Energy  

E-Print Network (OSTI)

This paper describes application considerations, design criteria, design features, operating characteristics and performance of a 200 MW combined cycle cogeneration plant located at Occidental Chemical Corporation's Battleground chlorine-caustic plant at La Porte, Texas. This successful application of a total energy management concept utilizing combined cycle cogeneration in an energy intensive electrochemical manufacturing process has resulted in an efficient reliable energy supply that has significantly reduced energy cost and therefore manufacturing cost.

Howell, H. D.; Vera, R. L.

1987-09-01T23:59:59.000Z

396

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045¬į, -95.369784¬į Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

OGJ300; Smaller list, bigger financial totals  

SciTech Connect

This paper reports on Oil and Gas Journal's list of the largest, publicly traded oil and gas producing companies in the U.S. which is both smaller and larger this year than it was in 1990. It's smaller because it covers fewer companies. Industry consolidation has slashed the number of public companies. As a result, the former OGJ400 has become the OGJ300, which includes the 30 largest limited partnerships. But the assets-ranked list is larger because important financial totals - representing 1990 results - are significantly higher than those of a year ago, despite the lower number of companies. Consolidation of the U.S. producing industry gained momentum throughout the 1980s. Unable to sustain profitability in a period of sluggish energy prices and, for many, rising costs, companies sought relief through mergers or liquidation of producing properties. As this year's list shows, however, surviving companies have managed to grow. Assets for the OGJ300 group totaled $499.3 billion in 1990 - up 6.3% from the 1989 total of last year's OGJ400. Stockholders' equity moved up 5.3% to $170.7 billion. Stockholders' equity was as high as $233.8 billion in 1983.

Beck, R.J.; Biggs, J.B.

1991-09-30T23:59:59.000Z

398

Stability and Lifetime of K-CoMoSx Mixed Alcohol Catalysts  

SciTech Connect

Researchers have studied sulfide-type catalysts for the production of mixed alcohols from synthesis gas for several decades. Despite many advances in the art, these processes are not yet commercial, due in large part to mediocre economics and the added risk associated with uncertainty in catalyst lifetime. This talk will outline some recent studies in the lifetime and stability of K-CoMoSx-type mixed alcohol catalysts. Specifically, studies of long term operation (> 3000h), sulfiding agents, simulated methanol recycle, and morphology (probed via XRD and XPS) will be discussed, with the conclusion that these materials are likely to exhibit acceptable lifetimes in continuous operation.

Hensley, J. E.; Ruddy, D.; Schaidle, J.; Ferrell, J.; Thibodeaux, J.

2013-01-01T23:59:59.000Z

399

FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT  

Science Conference Proceedings (OSTI)

Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

2010-03-01T23:59:59.000Z

400

Beta-decay properties of Zr and Mo neutron-rich isotopes  

E-Print Network (OSTI)

Gamow-Teller strength distributions, beta-decay half-lives, and beta-delayed neutron emission are investigated in neutron-rich Zr and Mo isotopes within a deformed quasiparticle random-phase approximation. The approach is based on a self-consistent Skyrme Hartree-Fock mean field with pairing correlations and residual separable particle-hole and particle-particle forces. Comparison with recent measurements of half-lives stresses the important role that nuclear deformation plays in the description of beta-decay properties in this mass region.

Sarriguren, P

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table 6a. Total Electricity Consumption per Effective Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

402

Table 5. Refiners' Total Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

LYONDELL CHEMICAL CO b Houston Refining LP..... Houston, Texas...270,200 TOTAL SA Total Petrochemicals Inc ...

403

Notices Total Estimated Number of Annual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

404

Properties of DU-10wt%Mo Alloys Subjected to Various Post-Rolling Heat Treatments  

Science Conference Proceedings (OSTI)

Mechanical properties of depleted uranium-molybdenum (U-Mo) alloys subjected to different post-processing treatments have been obtained using microhardness, quasi-static tensile tests, and scanning electron microscopy failure analysis. U-Mo alloy foils are currently under investigation for potential fuel conversion of high power research reactors to low enriched uranium fuel. Although mechanical properties take on a secondary effect during irradiation, an understanding of the alloy behavior during fabrication and the effects of irradiation on the integrity of the fuel is essential. In general, the microhardness was insensitive to annealing temperature but decreased with annealing duration. Yield strength, Youngís modulus and ultimate tensile strength improved with both increasing annealing temperature and duration. The failure mode was also insensitive to annealing conditions, but was significantly controlled by the impurity concentration of the alloy, especially carbon. Values obtained from literature are also provided with reasonable agreement based on extrapolation of annealing duration, even though processing conditions and applications were quite different in some instances.

Douglas E. Burkes; Ramprashad Prabhakaran; Thomas Hartmann; Jan-Fong Jue; Francine J. Rice

2010-06-01T23:59:59.000Z

405

Development and processing of LEU targets for {sup 99}Mo production  

SciTech Connect

Most of the world`s supply of {sup 99m}Tc for medical purposes is currently produced from the decay of {sup 99}Mo derived from the fissioning of high-enriched uranium (HEU). Substantial progress has been made in developing targets and chemical processes for producing {sup 99}Mo using low-enriched uranium (LEU). Target development has been focused on a uranium-metal foil target as a replacement for the coated-UO{sub 2} Cintichem-type target. Although the first designs were not successful because of ion mixing-induced bonding of the uranium foil to the target tubes, recent irradiations of modified targets have proven successful. Only minor modifications of the Cintichem chemical process are required for the uranium-metal foil targets. A demonstration using prototypically irradiated targets is anticipated in February 1997. Progress has also been made in basic dissolution of both uranium-metal foil and aluminum-clad U{sub 3}Si{sub 2} dispersion fuel targets.

Snelgrove, J.L.; Vandegrift, G.F.; Hofman, G.L.

1997-04-01T23:59:59.000Z

406

Thermal shock behavior of alumina/MoSi2 plasma sprayed laminated composites  

Science Conference Proceedings (OSTI)

Alumina (Al{sub 2}O{sub 3}) is very susceptible to thermal shock, which leads to strength degradation. By reinforcing Al{sub 2}O{sub 3} with molybdenum disilicide (MoSi{sub 2}) layers, the tolerance to damage caused by thermal shock can be improved. The thermal shock resistance of plasma sprayed Al{sub 2}O{sub 3}/MoSi{sub 2} laminated composites were investigated. Three laminate microstructures having different layer thickness were fabricated by atmospheric plasma spraying while maintaining a 50/50-volume fraction. Quenching experiments done on 4-point bend bars showed a gradual decrease in the strength as the change in temperature ({Delta}T) increased. Thermal shock resistant parameters (R{prime} and R-quadruple prime) provided a representative numerical value of the thermal shock resistance for the laminated composites. The corresponding material properties for the different microstructures were determined experimentally in order to calculate the R{prime} and R quadruple prime values. The intermediate layered composite showed the highest R-quadruple prime va1ue at 1061 {micro}m, while the thin layered composite had the highest R{prime} value at 474 W/m.

Castro, R. G. (Richard G.); Petrovic, J. J.; Vaidya, R. U. (Rajendra U.); Mendoza, D. (Daniel)

2001-01-01T23:59:59.000Z

407

Experimental study of the electric dipole strength in the even Mo nuclei and its deformation dependence  

E-Print Network (OSTI)

Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scattering was used up to the neutron separation energies Sn and data up to the maximum of the isovector giant resonance(GDR) were obtained by photo-activation. After a proper correction for multi-step processes the observed quasi-continuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photo effect data obtained previously by neutron detection and corrected in absolute scale using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N = 50 neutron shell, i.e. with the impact of quadrupole deformation and triaxiality. The wide energy coverage of the data allows for a stringent assessment of the dipole sum-rule, and a test of a novel parameterization developed previously which is based upon. This parameterization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in the cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.

M. Erhard; A. R. Junghans; C. Nair; R. Schwengner; R. Beyer; J. Klug; K. Kosev; A. Wagner; E. Grosse

2010-01-21T23:59:59.000Z

408

Relationships between processing, microstructure, and properties of a Co-Cr-Mo alloy  

SciTech Connect

STELLITE alloy No. 21 was produced via rapid solidification processing (RSP) in a variety of particulate morphologies (coarse and fine powder, flakes, fibers, and ribbons). The various RSP forms showed similar, fine microstructures with only a slight difference in the scale of the microstructural features. These RSP particulates were consolidated by extrusion, dynamic compaction, and rapid omnidirectional compaction (ROC) at two processing temperatures (1077/sup 0/C and 1121/sup 0/C). Dynamic compaction proved to be unacceptable for this alloy because of non-uniform porosity and the inability to develop a metallurgical bond between particulates. A plot of elongation versus yield strength depicted two yield strength/ductility relationships for the Co-Cr-Mo type alloys. As-ROC'd samples had a low yield strength/ductility relationship. Atomized powder size also affected the strength/ductility relationships of the extruded products. Decreasing powder size increased ductility without effecting yield strength. Processing temperature did not affect the yield strength/ductility relationship. Electrochemical polarization tests were not successful in delineating fine differences between the various types of Co-Cr-Mo alloy while immersion-pitting temperature tests were capable of distinguishing between samples processed from fine and coarse powders. These materials proved susceptible to stress corrosion cracking (SCC) in boiling 30% MgCl/sub 2/.

Anand, V.; Hickl, A.J.; Kumar, P.; Boeck, B.A.; Sanders, T.H. Jr.

1984-01-01T23:59:59.000Z

409

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

410

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

411

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

412

Solar Total Energy Project final test report  

DOE Green Energy (OSTI)

The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

1990-09-01T23:59:59.000Z

413

/sup 238/PuO/sub 2//Mo-50 wt% Re compatibility at 800 and 1000/sup 0/C  

DOE Green Energy (OSTI)

The compatibility of Mo-50 wt % Re with /sup 238/PuO/sub 2/ was investigated after heat treatments of up to 720 days at 800/sup 0/C and 180 days at 1000/sup 0/C. At 800/sup 0/C, a 1-..mu..m thick, continuous layer of molybdenum oxide resulted. At 1000/sup 0/C, the oxide reaction product contained some plutonium and did not appear continuous. At 1000/sup 0/C, a layer of intermetallic formed at the Mo-Re edge, beneath the oxide layer, creating a barrier between the Mo-50 wt % Re and the /sup 238/PuO/sub 2/. The intermetallic layer was promoted by the iron impurity in the /sup 238/PuO/sub 2/.

Schaeffer, D.R.; Teaney, P.E.

1980-07-18T23:59:59.000Z

414

MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes  

SciTech Connect

Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

2011-09-01T23:59:59.000Z

415

Low-spin structure of {sup 96}Mo studied with the (n,n{sup '}{gamma}) reaction  

Science Conference Proceedings (OSTI)

Extensive studies of the low-spin excited states in {sub 42}{sup 96}Mo{sub 54} with the (n,n{sup '}{gamma}) reaction have clarified the level scheme below 3.7 MeV excitation energy and determined detailed information about {sup 96}Mo, including lifetimes from the Doppler-shift attenuation method, branching ratios, and multipole mixing ratios. Also, B(E2) and B(M1) values were determined for many transitions, multiphonon states were identified, and several low-spin states were characterized in terms of collective, mixed-symmetry states.

Lesher, S. R.; Yates, S. W. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Department of Physics, University of Richmond, Richmond, Virginia 23173 (United States); McKay, C. J.; Bandyopadhyay, D.; Boukharouba, N.; Fransen, C.; Orce, J. N.; McEllistrem, M. T. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Mynk, M. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States)

2007-03-15T23:59:59.000Z

416

ARM - Measurement - Shortwave narrowband total upwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

417

ARM - Measurement - Shortwave narrowband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFRSR : Multifilter Rotating Shadowband Radiometer NFOV : Narrow Field of View Zenith Radiometer

418

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

419

The eects of CO2, CO and H2 co-reactants on methane reactions catalyzed by Mo/H-ZSM-5  

E-Print Network (OSTI)

partial oxidation and autothermal or steam reforming is currently practiced [1¬Ī4]. Catalytic pyrolysisThe eects of CO2, CO and H2 co-reactants on methane reactions catalyzed by Mo/H-ZSM-5 Zheng Liu-reactants; methane reactions; Mo/H-ZSM-5 catalyst. 1. Introduction The direct conversion of natural gas

Iglesia, Enrique

420

Effects of Cr-Mo Infiltration Source Structure on the Thickness of Alloy Layer by Double Glow Plasma Surface Metallurgy Technology  

Science Conference Proceedings (OSTI)

To strengthen the growth characteristics of layer on Q235 steel, a new source structure of Cr-Mo infiltration was proposed by plasma surface metallurgy technology. Comparative experiments were carried out on source polar of scrubbing brush structure ... Keywords: Surface alloying, Cr-Mo infiltrated, Plasma surface metallurgy technology, Thickness of layer

Jinyong Xu; Jingchun Zhang; Yajuan Liu; Cheng Gao

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Preparation and structural study from neutron diffraction data of Pr{sub 5}Mo{sub 3}O{sub 16}  

SciTech Connect

The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr{sub 6}O{sub 11} and MoO{sub 2} in air. In the literature, an oxide with a composition Pr{sub 2}MoO{sub 6} has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm{sub 4}Mo{sub 3}O{sub 16} (space group Pn-3n, Z=8), with a=11.0897(1) A. The structure contains MoO{sub 4} tetrahedral units, with Mo-O distances of 1.788(2) A, fully long-range ordered with PrO{sub 8} polyhedra; in fact it can be considered as a superstructure of fluorite (M{sub 8}O{sub 16}), containing 32 MO{sub 2} fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (a{sub f}=5.5 A) as a{approx}2a{sub f}. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr{sup 3+}-Pr{sup 4+} oxidation state. The similarity of the XRD pattern with that published for Ce{sub 2}MoO{sub 6} suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce{sub 5}Mo{sub 3}O{sub 16}. -- Graphical Abstract: Formerly formulated as Pr{sub 2}MoO{sub 6}, the title compound is a cubic superstructure of fluorite (a=11.0897(1) A, space group Pn-3n) due to the long-range ordering of PrO{sub 8} scalenohedra and MoO{sub 4} tetrahedral units, showing noticeable shifts of the oxygen positions in order to provide a tetrahedral coordination for Mo ions. A mixed valence Mo{sup 5+}-Mo{sup 6+} is identified, which could account for the excellent catalytic properties of this material. Display Omitted

Martinez-Lope, M.J. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid, Spain. (Spain); Alonso, J.A., E-mail: ja.alonso@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid, Spain. (Spain); Sheptyakov, D.; Pomjakushin, V. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

2010-12-15T23:59:59.000Z

422

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State Click on a state for more information. Addthis Browse By Topic...

423

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

424

Performance Period Total Fee Paid FY2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

425

Toluene 4-Monooxygenase and its Complex with Effector Protein T4moD  

Science Conference Proceedings (OSTI)

Toluene 4-monooxygenase (T4MO) is a multiprotein diiron enzyme complex that catalyzes the regiospecific oxidation of toluene to p-cresol. Catalytic function requires the presence of a small protein, called the effector protein. Effector protein exerts substantial control on the diiron hydroxylase catalytic cycle through protein-protein interactions. High-resolution crystal structures of the stoichometric hydroxylase and effector protein complex described here reveal how protein-protein interactions and reduction of the diiron center produce an active site configuration poised for reaction with O{sub 2}. Further information from crystal structures of mutated isoforms of the hydroxylase and a peroxo adduct is combined with catalytic results to give a fuller picture of the geometry of the enzyme-substrate complex used for the high fidelity oxidation of hydrocarbon substrates.

Bailey, Lucas J.; Fox, Brian G. (UW)

2012-10-16T23:59:59.000Z

426

Structure and composition of clean and hydrogen covered MoRe surfaces  

DOE Green Energy (OSTI)

The clean and hydrogen covered (100) and (110) faces of Mo{sub 0.75}Re{sub 0.23} alloy single crystals show 1x1 structures. By means of LEED structure analyses we have determined the interlayer distances as well as the layer concentrations down to the sixth layer. While the clean (110) surface turns out to be nearly bulklike terminated, the clean (100) face is found to exhibit both an extended oscillatory layer relaxation and composition profile. Hydrogen adsorption at low temperatures does not alter the composition profile and removes the small remaining relaxation for the (110) surface. In case of the (100) face a substancial reduction of the relaxation is observed for the outermost layer distances as well, while deeper layer relaxations are preserved indicating a strong coupling off relaxation and composition profiles. Hydrogen is found to adsorb in quasi-threefold coordinated sites for the (110) and bridge sites for the (100) face.

Hammer, L.; Meyer, S.; Rath, C. [and others

1995-04-01T23:59:59.000Z

427

Small-scale Specimen Testing of Monolithic U-Mo Fuel Foils  

SciTech Connect

The objective of this investigation is to develop a shear punch testing (SPT) procedure and standardize it to evaluate the mechanical properties of irradiated fuels in a hot-cell so that the tensile behavior can be predicted using small volumes of material and at greatly reduced irradiation costs. This is highly important in the development of low-enriched uranium fuels for nuclear research and test reactors. The load-displacement data obtained using SPT can be interpreted in terms of and correlated with uniaxial mechanical properties. In order to establish a correlation between SPT and tensile data, sub-size tensile and microhardness testing were performed on U-Mo alloys. In addition, efforts are ongoing to understand the effect of test parameters (such as specimen thickness, surface finish, punch-die clearance, crosshead velocity and carbon content) on the measured mechanical properties, in order to rationalize the technique, prior to employing it on a material of unknown strength.

Ramprashad Prabhakaran; Douglas E. Burkes; James I. Cole; Indrajit Charit; Daniel M. Wachs

2008-10-01T23:59:59.000Z

428

Synthesis and optical properties of MoS{sub 2} nanoclusters  

DOE Green Energy (OSTI)

Highly crystalline nanoclusters of MoS{sub 2} were synthesized and their optical absorption and photoluminescence spectra were investigated. Key results include: (1) strong quantum confinement effects with decreasing size; (2) preservation of the quasiparticle (or excitonic) nature of the optical response for clusters down to {approximately} 2.5 nm in size which are only two unit cells thick; (3) demonstration that 3-D confinement produces energy shifts which are over an order of magnitude larger than those due to 1-D confinement; (4) observation of large increases in the spin-orbit splittings at the top of the valence band at the K and M points of the Brillouin zone with decreasing cluster size; and (5) observation of photoluminescence due to both direct and surface recombination. Application is to photocatalysts for solar fuel production and detoxification of chemical waste.

Wilcoxon, J.P.; Newcomer, P.P.; Samara, G.A.

1996-12-01T23:59:59.000Z

429

Nuclear Sturcture Along the Neutron Dripline: MoNa-LISA and the dinueutron system  

Science Conference Proceedings (OSTI)

Nuclei with extreme neutron-to-proton ratios were found to present different structures from what was known for the stable ones. With the current facilities we can now study nuclei that lie even beyond the neutron drip line. At the National Superconducting Cyclotron Laboratory at Michigan State University we use the MoNA/Sweeper setup to perform such studies of neutron unbound nuclei. In a typical experiment, a radioactive beam is employed to produce the nucleus of interest. This unbound nucleus immediately decays into a neutron and a remaining charged fragment, both of which are detected and used to reconstruct the original nucleus and study its properties. In this Colloquium, new exciting findings from recent experiments will be presented. These include the first observation of a dineutron decay from 16Be, the exploration of the ďsouth shoreĒ of the Island of Inversion and the first evidence of the decay of the troubling nucleus 26O.

Spyou, Artemis [Michigan State Univeristy

2012-09-05T23:59:59.000Z

430

Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system  

SciTech Connect

NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model in the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.

Teng, Zhenke [ORNL; Zhang, F [CompuTherm LLC, Madison, WI; Miller, Michael K [ORNL; Liu, Chain T [Hong Kong Polytechnic University; Huang, Shenyan [ORNL; Chou, Y.T. [Multi-Phase Services Inc., Knoxville; Tien, R [Multi-Phase Services Inc., Knoxville; Chang, Y A [ORNL; Liaw, Peter K [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

431

Development and processing of LEU targets for {sup 99}Mo production  

SciTech Connect

Substituting LEU for HEU in targets for producing fission-product {sup 99}Mo requires changes in target design and chemical processing. We have made significant progress in developing targets and chemical processes for this purpose. Target development was concentrated on a U- metal foil target as a replacement for the coated-UO{sub 2} Cintichem- type target. Although the first designs were not successful because of ion mixing-induced bonding of the U foil to the target tubes, recent irradiations of modified targets have proven successful. It was shown that only minor modifications of the Cintichem chemical process are required for the U-metal foil targets. A demonstration using prototypically irradiated targets is anticipated by the end of 1996. Progress was also made in basic dissolution of both U-metal foil and Al-clad U{sub 3}Si{sub 2} dispersion fuel targets, and work in this area is also continuing.

Snelgrove, J.L.; Vandergrift, G.F.; Hofman, G.L.

1997-02-01T23:59:59.000Z

432

Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples  

DOE Patents (OSTI)

Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

1985-01-01T23:59:59.000Z

433

Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys  

SciTech Connect

The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by the investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. This work focuses on the resulting microstructures arising from samples poured under industrial environment conditions, of three different Co-Cr-Mo alloys. For this purpose, we used: 1) an alloy built up from commercial purity constituents, 2) a remelted alloy and 3) a certified alloy for comparison. The characterization of the samples was achieved by using optical microscopy (OM) with a colorant etchant to identify the present phases and scanning electron microscopy (SE-SEM) and energy dispersion spectrometry (EDS) techniques for a better identification. In general the as-cast microstructure is a Co-fcc dendritic matrix with the presence of a secondary phase, such as the M{sub 23}C{sub 6} carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloys. Other minority phases were also reported and their presence could be linked to the cooling rate and the manufacturing process variables and environment. - Research Highlights: {yields}The solidification microstructure of an ASTM-F75 type alloy were studied. {yields}The alloys were poured under an industrial environment. {yields}Carbides and sigma phase identified by color metallography and scanning microscopy (SEM and EDS). {yields}Two carbide morphologies were detected 'blocky type' and 'pearlite type'. {yields}Minority phases were also detected.

Giacchi, J.V., E-mail: jgiacchi@exa.unicen.edu.ar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Fisica de Materiales Tandil (IFIMAT-FCE-CICPBA) Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399 B7000GHG Tandil (Argentina); Morando, C.N.; Fornaro, O. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Fisica de Materiales Tandil (IFIMAT-FCE-CICPBA) Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399 B7000GHG Tandil (Argentina); Palacio, H.A. [Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CICPBA), Calle 526 e/10 y 11 B1096APP La Plata (Argentina); Instituto de Fisica de Materiales Tandil (IFIMAT-FCE-CICPBA) Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399 B7000GHG Tandil (Argentina)

2011-01-15T23:59:59.000Z

434

NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS  

Science Conference Proceedings (OSTI)

This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

Hakan Ozaltun & Herman Shen

2011-11-01T23:59:59.000Z

435

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial...

436

Percentage of Total Natural Gas Residential Deliveries included...  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices...

437

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2012 (EIA)

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

438

Total synthesis of Class II and Class III Galbulimima Alkaloids  

E-Print Network (OSTI)

I. Total Synthesis of All Class III Galbulimima Alkaloids We describe the total synthesis of (+)- and (-)-galbulimima alkaloid 13, (-)-himgaline anad (-)-himbadine. The absolute stereochemistry of natural (-)-galbulimima ...

Tjandra, Meiliana

2010-01-01T23:59:59.000Z

439

Texas Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas % of Total Residential - Sales (Percent) Texas Natural Gas % of Total Residential - Sales (Percent) Decade...

440

Price of Lake Charles, LA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Everett, MA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Decade Year-0...

442

Price of Elba Island, GA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet)...

443

Enantioselective total syntheses of acylfulvene, irofulven, and the agelastatins  

E-Print Network (OSTI)

I. Enantioselective Total Synthesis of (-)-Acylfulvene, and (-)-Irofulven We report the enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven, which features metathesis reactions for the rapid assembly of ...

Siegel, Dustin S. (Dustin Scott), 1980-

2010-01-01T23:59:59.000Z

444

The Total Cost and Measured Performance of Utility-Sponsored...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency Programs Title The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency...

445

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu.† Figures in this table...

446

South Dakota Natural Gas % of Total Residential - Sales (Percent...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas % of Total Residential - Sales (Percent) South Dakota Natural Gas % of Total Residential - Sales...

447

South Dakota Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries...

448

South Dakota Natural Gas Total Consumption (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Total Consumption (Million Cubic Feet) South Dakota Natural Gas Total Consumption (Million Cubic Feet)...

449

Hawaii Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hawaii Natural Gas % of Total Residential - Sales (Percent) Hawaii Natural Gas % of Total Residential - Sales (Percent)...

450

North Dakota Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Dakota Natural Gas % of Total Residential - Sales (Percent) North Dakota Natural Gas % of Total Residential - Sales...

451

Missouri Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Missouri Natural Gas % of Total Residential - Sales (Percent) Missouri Natural Gas % of Total Residential - Sales (Percent)...

452

Alaska Natural Gas % of Total Residential - Sales (Percent)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Alaska Natural Gas % of Total Residential - Sales (Percent) Alaska Natural Gas % of Total Residential - Sales (Percent)...

453

Arizona Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Arizona Natural Gas % of Total Residential - Sales (Percent) Arizona Natural Gas % of Total Residential - Sales (Percent)...

454

Iowa Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Iowa Natural Gas % of Total Residential - Sales (Percent) Iowa Natural Gas % of Total Residential - Sales (Percent) Decade...

455

Alabama Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alabama Natural Gas % of Total Residential - Sales (Percent) Alabama Natural Gas % of Total Residential - Sales (Percent)...

456

Florida Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Florida Natural Gas % of Total Residential - Sales (Percent) Florida Natural Gas % of Total Residential - Sales (Percent)...

457

Wyoming Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Wyoming Natural Gas % of Total Residential - Sales (Percent) Wyoming Natural Gas % of Total Residential - Sales (Percent)...

458

New Jersey Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) New Jersey Natural Gas % of Total Residential - Sales (Percent) New Jersey Natural Gas % of Total Residential - Sales...

459

Kentucky Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Kentucky Natural Gas % of Total Residential - Sales (Percent) Kentucky Natural Gas % of Total Residential - Sales (Percent)...

460

Illinois Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Illinois Natural Gas % of Total Residential - Sales (Percent) Illinois Natural Gas % of Total Residential - Sales (Percent)...

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

North Carolina Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Carolina Natural Gas % of Total Residential - Sales (Percent) North Carolina Natural Gas % of Total Residential - Sales...

462

District of Columbia Natural Gas % of Total Residential - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) District of Columbia Natural Gas % of Total Residential - Sales (Percent) District of Columbia Natural Gas % of Total...

463

Nevada Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Nevada Natural Gas % of Total Residential - Sales (Percent) Nevada Natural Gas % of Total Residential - Sales (Percent)...

464

West Virginia Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) West Virginia Natural Gas % of Total Residential - Sales (Percent) West Virginia Natural Gas % of Total Residential - Sales...

465

Massachusetts Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Massachusetts Natural Gas % of Total Residential - Sales (Percent) Massachusetts Natural Gas % of Total Residential - Sales...

466

Oregon Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Oregon Natural Gas % of Total Residential - Sales (Percent) Oregon Natural Gas % of Total Residential - Sales (Percent)...

467

Kansas Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Kansas Natural Gas % of Total Residential - Sales (Percent) Kansas Natural Gas % of Total Residential - Sales (Percent)...

468

Tennessee Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Tennessee Natural Gas % of Total Residential - Sales (Percent) Tennessee Natural Gas % of Total Residential - Sales (Percent)...

469

Maine Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Maine Natural Gas % of Total Residential - Sales (Percent) Maine Natural Gas % of Total Residential - Sales (Percent) Decade...

470

Characterization of the Microstructure of Irradiated U-Mo Dispersion Fuel with a Matrix that Contains Si  

SciTech Connect

RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with Al-2Si matrix after irradiation to around 50% LEU burnup. Si-rich layers were observed in many areas around the various U-7Mo fuel particles. In one local area of one of the samples, where the Si-rich layer had developed into a layer devoid of Si, relatively large fission gas bubbles were observed in the interaction phase. There may be a connection between the growth of these bubbles and the amount of Si present in the interaction layer. Overall, it was found that having Si-rich layers around the fuel particles after fuel plate fabrication positively impacted the overall performance of the fuel plate.

D. D. Keiser, Jr.; A. B. Robinson; J. F. Jue; P. Medvedev; M. R. Finlay

2009-03-01T23:59:59.000Z

471

Characterization and Hydrodesulfurization Activity of CoMo Catalysts Supported on Boron-Doped Sol-Gel Alumina  

E-Print Network (OSTI)

desulfurization character of the CoMo catalysts supported on the B- Al2O3 supports, because high hydrogenation, the catalysts were kept in a closed vessel during two hours for aging, and then dried overnight in an oven.29 in the HDS of Kuwait gas oil [14], heavy Kuwait residue oil [15], and Kuwait crude oil [25]. They correlated

Paris-Sud XI, Université de

472

Determining the Specificity of Terms based on Information Theoretic Pum-Mo Ryu and Key-Sun Choi  

E-Print Network (OSTI)

Determining the Specificity of Terms based on Information Theoretic Measures Pum-Mo Ryu and Key@world.kaist.ac.kr, kschoi@world.kaist.ac.kr Abstract This paper introduces new specificity determining methods for terms based on information theoretic measures. The specificity of terms represents the quantity of domain

473

Gd/sub 2/ (MoO/sub 4/)/sub 3/ longitudinal electrooptic modulator at 6328 A  

SciTech Connect

A Gd/sub 2/(MoO/sub 4/)/sub 3/ light modulator operating at low frequencies, from 100 Hz up to 1 MHz, is examined. Experimental results concerning the thermal behavior and stability, frequency response, and linearity performance characteristics of the system are presented. Advantages and disadvantages of the modulator are discussed.

Theophanous, N.G.

1976-08-01T23:59:59.000Z

474

Role of Si on the Diffusional Interactions between U-Mo and Al-Si Alloys at 823 K (550 degrees C)  

Science Conference Proceedings (OSTI)

U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloys fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interactions products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and lead to premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo in contact with pure Al, Al-2wt.%Si, and Al-5wt.%Si, annealed at 823K for 1, 5 and 20 hours. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed for the analysis. Diffusion couples consisting of U-Mo vs. pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. The addition of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al and Si enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In the couples, the (U,Mo)(Al,Si)3 phase was observed throughout interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.

E. Perez; Y.H. Sohn; D.D. Keiser, Jr.

2013-01-01T23:59:59.000Z

475

M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications  

Science Conference Proceedings (OSTI)

Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti{sub 5}Si{sub 3}-based alloys was investigated. Oxidation behavior of Ti{sub 5}Si{sub 3}-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti{sub 5}Si{sub 3} by nucleation and growth of nitride subscale. Ti{sub 5}Si{sub 3.2} and Ti{sub 5}Si{sub 3}C{sub 0.5} alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi{sub 2} coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo{sub 3}Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo{sub 3}Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb{sub ss} (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb{sub SS} + NbB was determined to occur at 2104 {+-} 5 C by DTA.

Zhihong Tang

2007-12-01T23:59:59.000Z

476

Total Ore Processing Integration and Management  

SciTech Connect

This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 January through 31 March of 2006. (1) Work in Progress: Minntac Mine--Graphical analysis of drill monitor data moved from two-dimensional horizontal patterns to vertical variations in measured and calculated parameters. The rock quality index and the two dimensionless ({pi}) indices developed by Kewen Yin of the University of Minnesota are used by Minntac Mine to design their blasts, but the drill monitor data from any given pattern is obviously not available for the design of that shot. Therefore, the blast results--which are difficult to quantify in a short time--must be back-analyzed for comparison with the drill monitor data to be useful for subsequent blast designs. {pi}{sub 1} indicates the performance of the drill, while {pi}{sub 2} is a measure of the rock resistance to drilling. As would be expected, since a drill tends to perform better in rock that offers little resistance, {pi}{sub 1} and {pi}{sub 2} are strongly inversely correlated; the relationship is a power function rather than simply linear. Low values of each Pi index tend to be quantized, indicating that these two parameters may be most useful above certain minimum magnitudes. (2) Work in Progress: Hibtac Mine--Statistical examination of a data set from Hibtac Mine (Table 1) shows that incorporating information on the size distribution of material feeding from the crusher to the autogenous mills improves the predictive capability of the model somewhat (43% vs. 44% correlation coefficient), but a more important component is production data from preceding days (26% vs. 44% correlation coefficient), determined using exponentially weighted moving average predictive variables. This lag effect likely reflects the long and varied residence times of the different size fragments in the grinding mills. The rock sizes are also correlated with the geologic layers from which they originate. Additional predictive parameters include electric power drawn by the crusher and the inverse of the average grind index of the ore being milled.

Leslie Gertsch

2006-05-15T23:59:59.000Z

477

Pennsylvania Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Residential Deliveries included in Prices ; Pennsylvania Natural Gas Prices ...

478

U.S. Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Residential Deliveries included in Prices ; U.S. Natural Gas Prices ...

479

New York Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Residential Deliveries included in Prices ; New York Natural Gas Prices ...

480

Method for generating a crystalline {sup 99}MoO{sub 3} product and the isolation {sup 99m}Tc compositions therefrom  

DOE Patents (OSTI)

An improved method is described for producing {sup 99m}Tc compositions. {sup 100}Mo metal is irradiated with photons in a particle (electron) accelerator to produce {sup 99}Mo metal which is dissolved in a solvent. A solvated {sup 99}Mo product is then dried to generate a supply of {sup 99}MoO{sub 3} crystals. The crystals are thereafter heated at a temperature which will sublimate the crystals and form a gaseous mixture containing vaporized {sup 99m}TcO{sub 3} and vaporized {sup 99m}TcO{sub 2} but will not cause the production of vaporized {sup 99}MoO{sub 3}. The mixture is then combined with an oxidizing gas to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7}. Next, the gaseous stream is cooled to a temperature sufficient to convert the vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing product. The product has high purity levels resulting from the use of reduced temperature conditions and ultrafine crystalline {sup 99}MoO{sub 3} starting materials with segregated {sup 99m}Tc compositions therein which avoid the production of vaporized {sup 99}MoO{sub 3} contaminants. 1 fig.

Bennett, R.G.; Christian, J.D.; Kirkham, R.J.; Tranter, T.J.

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "dak mo total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Adsorption of Potassium on the MoS2(100) Surface: A First-Principles Investigation  

DOE Green Energy (OSTI)

Periodic density functional theory calculations were performed to investigate the interaction that potassium with the Mo and S edges of the MoS2(100) surface. Both neutral and cationic (+1) charged potassium-promoted systems at different sulfur coverages were considered. Our calculations indicate that the potassium atom readily donates its single 4s valence electron to the MoS2 structure for the neutral potassium-promoted system, and the neutral and cationic potassium-promoted systems demonstrate a similar adsorption behavior. Moreover, potassium changes the magnetic properties known to occur at the metallic edge surface, which have implications for electron spin dependent surface characterization methods (i.e., electron spin/paramagnetic spectroscopy). Potassium in both the neutral and cationic systems tends to maximize its interactions with the available sulfur atoms at the edge surface, preferring sites over four-fold S hollows on fully sulfided Mo and S edges and over the interstitial gap where two to four edge surface S atoms are available for coordination. As the potassium coverage increases, the adsorption energy per potassium atom, surface work function, and transfer of the K 4s electron to the MoS2(100) surface decreases, which is in line with an increased metallization of the potassium adlayer. The potassium adlayer tends to form chains along the interstitial with K-K distances ~1 Ň, which is notably less than those of bulk bcc K metal (4.61 Ň). Density of states for the potassium-saturated surface suggests enhanced involvement of broad K 3d states beginning just above the Fermi level. Potassium-promotion of MoS2(100) has implications for alcohol catalysis: increasing the surface basicity by increasing the electron charge of the surface, providing hydrogenation-promoting CO site, blocking edge surface that dissociate CO and lead to methanation, and limiting H2 dissociative adsorption to the edge surface and possibly inhibiting the H2 dissociative adsorption via s character electron repulsion. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

2011-04-15T23:59:59.000Z

482

Microstructural evolution during solution treatment of Co-Cr-Mo-C biocompatible alloys  

SciTech Connect

Three different Co-Cr-Mo-C alloys conforming to ASTM F75 standard were poured in an industrial environment and subjected to a conventional solution treatment at 1225 Degree-Sign C for several time intervals. The microstructural changes and transformations were studied in each case in order to evaluate the way in which treatment time influences the secondary phase fraction and clarify the microstructural changes that could occur. To assess how treatment time affects microstructure, optical microscopy and image analyzer software, scanning electron microscopy and energy dispersion spectrometry analysis were employed. The main phases detected in the as-cast state were: {sigma}-phase, M{sub 6}C, and M{sub 23}C{sub 6} carbides. The latter presented two different morphologies, blocky type and lamellar type. Despite being considered the most detrimental feature to mechanical properties, {sigma}-phase and lamellar carbides dissolution took place in the early stages of solution treatment. M{sub 23}C{sub 6} carbides featured two different behaviors. In the alloy obtained by melting an appropriate quantity of alloyed commercial materials, a decrease in size, spheroidization and transformation into M{sub 6}C carbides were simultaneously observed. In the commercial ASTM F75 alloy, in turn, despite being the same phase, only a marked decrease in precipitates size was noticed. These different behaviors could be ascribed to the initial presence of other phases in the alloy obtained from alloyed materials, such as {sigma}-phase and 'pearlitic' carbides, or to the initial precipitate size which was much larger in the first than in the commercial ASTM F75 alloy studied. M{sub 6}C carbides dissolved directly in the matrix as they could not be detected in samples solution-treated for 15 min. - Highlights: Black-Right-Pointing-Pointer Three different Co-Cr-Mo alloys were poured under an industrial environment. Black-Right-Pointing-Pointer Transformation of existing phases followed during conventional solution treatment. Black-Right-Pointing-Pointer In as-cast/treated samples, phases were identified by color metallography, SEM and EDS. Black-Right-Pointing-Pointer M{sub 23}C{sub 6} {yields} M{sub 6}C transformation was corroborated by SEM and EDS analysis. Black-Right-Pointing-Pointer Carbide spheroidization was also detected prior a noticeably carbide size decreasing.

Giacchi, J.V., E-mail: jgiacchi@exa.unicen.edu.ar [IFIMAT, Instituto de Fisica de Materiales Tandil, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia 1917, C1033AA, Buenos Aires (Argentina); Fornaro, O. [IFIMAT, Instituto de Fisica de Materiales Tandil, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia 1917, C1033AA, Buenos Aires (Argentina); Palacio, H. [IFIMAT, Instituto de Fisica de Materiales Tandil, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CICPBA), Calle 526 e/10 y 11, B1096APP, La Plata (Argentina)

2012-06-15T23:59:59.000Z

483

Nutrition Guide Station Menu Items Portion Size Calories Protein Total Fat Carbohydrates Sodium Cholesterol Total Fiber  

E-Print Network (OSTI)

Nutrition Guide #12;Station Menu Items Portion Size Calories Protein Total Fat Carbohydrates Sodium.00 43 70.0 0.0 Turkey Breast 4 oz 172 20 7.00 0.00 520 47.0 0.0 Grilled White Meat Chicken 4 oz 125 28 1.40 0.00 74 66.0 0.0 Fried Boneless Chicken 4 oz 212 38 5.00 0.58 90 103.0 0.0 Ham 4 oz 120 20 4.00 0

Aronov, Boris

484

Overview of a Welding Development Program for a Ni-Cr-Mo-Gd Alloy  

Science Conference Proceedings (OSTI)

The National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Laboratory, coordinates and integrates management and disposal of U.S. Department of Energy-owned spent nuclear fuel. These management functions include using the DOE standardized canister for packaging, storage, treatment, transport, and long-term disposal in the Yucca Mountain Repository. Nuclear criticality must be prevented in the postulated event where a waste package is breached and water (neutron moderator) is introduced into the waste package. Criticality control will be implemented by using a new, weldable, corrosion-resistant, neutron-absorbing material to fabricate the welded structural inserts (fuel baskets) that will be placed in the standardized canister. The new alloy is based on the Ni-Cr-Mo alloy system with a gadolinium addition. Gadolinium was chosen as the neutron absorption alloying element because of its high thermal neutron absorption cross section. This paper describes a weld development program to qualify this new material for American Society of Mechanical Engineers (ASME) welding procedures, develop data to extend the present ASME Code Case (unwelded) for welded construction, and understand the weldability and microstructural factors inherent to this alloy.

W. L. Hurt; R. E. Mizia; D. E. Clark

2007-06-01T23:59:59.000Z

485

Coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides  

SciTech Connect

We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the 0.1 eV valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.

Xiao, Di [ORNL; Liu, G. B. [University of Hong Kong, The; Feng, wanxiang [Chinese Academy of Sciences; Xu, Xiaodong [University of Washington; Yao, Wang [University of Hong Kong, The

2012-01-01T23:59:59.000Z

486

Window nighttime U-values: A comparison between computer calculations and MoWiTT measurements  

SciTech Connect

The proper specification of window U-values has been a controversial area for many years, and current attempts to incorporate more careful treatment of windows into building standards and utility conservation programs and to define window energy labels has heightened the controversy. In a previous paper (Klems 1979) it was argued that current calculation techniques, as embodied in the computer program WINDOW, accurately represented field-measured window U-values, provided frame corrections and surface heat transfer coefficients were correctly estimated, and that in most cases the calculations were also consistent with test laboratory measurements on the same windows. This means that the calculation could serve both as a standard for deriving calculated U-values and as a method of comparing measurements made under different conditions to determine their consistency. This work has now been extended to form a joint US/Canadian collaborative effort to test current computer programs. For six windows the U-values measured with the MoWiTT under field conditions are compared with detailed U-value calculations for the same conditions using the programs WINDOW and ANSYS. There is good agreement between measurements and calculations. 7 refs., 3 figs., 4 tabs.

Klems, J.H.; Reilly, S.

1989-11-01T23:59:59.000Z

487

Progress in converting {sup 99}Mo production from high- to low-enriched uranium--1999.  

SciTech Connect

Over this past year, extraordinary progress has been made in executing our charter to assist in converting Mo-99 production worldwide from HEU to LEU. Building on the successful development of the experimental LEU-foil target, we have designed a new, economical irradiation target. We have also successfully demonstrated, in collaboration with BATAN in Indonesia, that LEU can be substituted for HEU in the Cintichem target without loss of product yield or purity; in fact, conversion may make economic sense. We are interacting with a number of commercial producers--we have begun active collaborations with the CNEA and ANSTO; we are working to define the scope of collaborations with MDS Nordion and Mallinckrodt; and IRE has offered its services to irradiate and test a target at the appropriate time. Conversion of the CNEA process is on schedule. Other papers presented at this meeting will present specific results on the demonstration of the LEU-modified Cintichem process, the development of the new target, and progress in converting the CNEA process.

Snelgrove, J. L.; Vandegrift, G. F.; Conner, C.; Wiencek, T. C.; Hofman, G. L.

1999-09-29T23:59:59.000Z

488

Glass forming ability of the Mo-Pd system studied by thermodynamic modeling and ion beam mixing  

SciTech Connect

Glass forming ability/range of the Mo-Pd binary metal system was studied by thermodynamic calculations employing Miedema's model and ion beam mixing of multiple metal layers. The thermodynamic calculations predict a narrow composition range of 8-26 at% Pd, within which metallic glass formation is energetically favored, whereas the experimental results showed that ion beam mixing was able to synthesize metallic glasses within a composition range 13-30 at% Pd, which was well in accordance with the prediction. Besides, in the Mo{sub 70}Pd{sub 30} multilayered films, with varying the irradiation dose, a dual-phase metallic glass was formed, and it could be considered as an intermediate state. The possible mechanism for the formation of the metallic glasses was also discussed in terms of the atomic collision theory.

Ding, N.; Li, J. H.; Liu, B. X.

2011-07-01T23:59:59.000Z

489

Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor  

SciTech Connect

The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

Bsebsu, F.M.; Abotweirat, F. [Reactor Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: Bsebso@yahoo.com, E-mail: abutweirat@yahoo.com; Elwaer, S. [Radiochemistry Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: samiwer@yahoo.com

2008-07-15T23:59:59.000Z

490

Large scale total synthesis of apoptolidinone and progress towards the total synthesis of ammocidin  

E-Print Network (OSTI)

Apoptolidin 1.1 was isolated in 1997 by Hayakawa and co-workers from a soil bacterium Nocardiopsis sp. during screening for specific apoptosis inducers. The primary biological test revealed that this polyketide macrolide induced apoptosis in cells transformed with the adenovirus type E1A oncognene, but not normal cells. This dissertation describes the latest studies in understanding of apoptolidinís biological activity mechanism and previous contributions towards its total synthesis. Synthesizing apoptolidinone 1.26 by an intra-molecular Horner-Wadsworth-Emmons approach featuring a Suzuki coupling, cross metathesis and two diastereoselective aldol reactions is discussed. 15 mg apoptolidinone is prepared via our previously developed intramolecular Suzuking coupling approach. Ammocidin 3.1, which was found to induce apoptosis in Ba/F3-v12 cells in an IL- 3 free medium, is a specific apoptosis inducer discovered by Hayakawa and co-workers in 2001 from Saccharothrix sp. AJ9571. A strategy featuring Suzuki coupling, cross metathesis, Yamaguchi macrolactonization and three asymmetric aldol reactions was applied to the total synthesis of ammocidinone 3.6, the aglycone of ammocidin. The preparation of the key building blocks was discussed in the following chapter: aldehyde 3.8 (C14-C19) was synthesized via Sharpless asymmetric epoxidation; ethyl ketone 3.9í (C20-C28) was prepared via Kobayashi and Crimminsís asymmetric aldol methodologies; aldehyde 3.14 (C7-C13) was generated by Brown crotylation and cross metathesis.

Liu, Qingsong

2006-12-01T23:59:59.000Z

491

Utah Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Total Consumption (Million Cubic Feet) Utah Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

492

Utah Natural Gas % of Total Residential Deliveries (Percent)  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

493

Louisiana Natural Gas Gross Withdrawals Total Offshore (Million...  

Annual Energy Outlook 2012 (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

494

California Natural Gas Total Consumption (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

495

California Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

496